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Abstract

This note studies the behavior of Euler characteristics and of intersection ho-

mology Euler characteristics under proper morphisms of algebraic (respectively,

analytic) varieties. The methods also yield, for algebraic (respectively, analytic)

varieties, formulae comparing these two kinds of Euler characteristics. The

main results are direct consequences of the calculus of constructible functions

and Grothendieck groups of constructible sheaves. Similar formulae for Hodge-

theoretic invariants of algebraic varieties under morphisms were announced by

the first and third authors in [5, 14]. c© 2007 Wiley Periodicals, Inc.

1 Introduction

We study the behavior of (intersection homology) Euler characteristics under

proper morphisms of complex algebraic (respectively, analytic) varieties. We be-

gin by discussing simple formulae for the usual Euler-Poincaré characteristic, then

show that similar formulae hold for the intersection homology Euler characteris-

tic as well as for the corresponding Chern homology classes of MacPherson. The

methods used in the present paper also yield formulae expressing the Euler char-

acteristics of usual and intersection homology of an algebraic (respectively, ana-

lytic) variety in terms of each other and corresponding invariants of the subvarieties

formed by the closures of its singular strata.

The main results of this note are direct applications of the standard calculus of

constructible functions and Grothendieck groups of constructible sheaves. Some

of the formulae on the intersection homology Euler characteristic were originally

proven with the aid of the deep decomposition theorem of Bernstein, Beilinson,

Deligne, and Gabber (in short, BBDG) for the pushforward of an intersection ho-

mology complex under a proper morphism (cf. [1, 6]). The functorial approach

employed here was suggested by the referee. However, the core calculations used

in proving these results are modeled on our original approach based on BBDG.
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This note is a first step in an ongoing project that deals with the study of genera

of complex algebraic (respectively, analytic) varieties. In forthcoming papers [3, 4]

we will discuss the behavior of Hodge-theoretic genera under proper morphisms

and provide explicit formulae for the pushforward of various characteristic classes.

The functorial approach and the language of Grothendieck groups of constructible

sheaves used in this paper allow a simple translation of the underlying ideas to the

forthcoming papers, where Grothendieck groups of Saito’s algebraic mixed Hodge

modules will be employed.

Unless otherwise specified, all homology and intersection homology groups in

this paper are those with rational coefficients. We assume the reader’s familiar-

ity with intersection homology, and for some arguments also with (Grothendieck

groups of) constructible sheaves and derived categories. However, our results are

also explained in the simpler language of constructible functions, which relies only

on Euler characteristic information.

2 Topological Euler-Poincaré Characteristic

For a complex algebraic variety X , let χ(X) denote its topological Euler char-

acteristic. Then χ(X) equals the compactly supported Euler characteristic, χc(X)

(cf. [8, p. 141], [12, §6.0.6]).1 The additivity property for the Euler characteristic

reads as follows: for Z a Zariski closed subset of X , the long exact sequence of the

compactly supported cohomology

· · · → Hi
c (X \ Z) → Hi

c (X) → Hi
c (Z) → Hi+1

c (X \ Z) → · · ·
yields that χc(X) = χc(Z) + χc(X \ Z); therefore the same relation holds for χ .

The multiplicative property for fibrations asserts that if F ↪→ E → B is a locally

trivial topological fibration such that the three Euler characteristics χ(B), χ(F),

and χ(E) are defined, then χ(E) = χ(B) · χ(F) (e.g., see [7, cor. 2.5.5]). In

particular, if f : X → Y is a proper smooth submersion of smooth manifolds, with

Y connected and generic fiber F , then

(2.1) χ(X) = χ(Y ) · χ(F).

Indeed, by Ehresmann’s theorem, such a map is a locally trivial fibration in the

complex topology.

In this note we generalize this multiplicative property of proper smooth sub-

mersions in two different directions: first, we study the behavior of the usual Euler

characteristic under arbitrary proper maps of possibly singular varieties; second,

we replace the usual cohomology by intersection cohomology when dealing with

singular varieties and study the behavior of the intersection homology Euler char-

acteristic under arbitrary proper morphisms. The formulae we obtain here are clas-

sically referred to as the stratified multiplicative property for Euler characteristics

(cf. [5, 14]).

1 This fact is not true outside the category of complex varieties (e.g., if X is an oriented n-

dimensional topological manifold, then Poincaré duality yields that χc(X) = (−1)nχ(X)).
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Let Y be a topological space with a finite partition V into a disjoint union of

finitely many connected subsets V satisfying the frontier condition: “V ∩ W̄ �= ∅

implies that V ⊂ W̄ .” (The main examples of such spaces are complex algebraic or

compact analytic varieties with a fixed Whitney stratification.) Then V is partially

ordered by “V ≤ W if and only if V ⊂ W̄ .” Let FV(Y ) be the abelian group

of V-constructible functions on Y , i.e., of functions α : Y → Z such that α|V is

constant for all V ∈ V . This is a free abelian group with basis {1V |V ∈ V}, so that

α =
∑
V ∈V

α(V ) · 1V .

Note that {1V̄ |V ∈ V} is another basis for FV(Y ), since

1V̄ =
∑
W≤V

1W

and the matrix A = (aW,V ), with aW,V := 1 for W ≤ V and 0 otherwise, is

upper-triangular with respect to ≤, with all diagonal entries equal to 1. Thus A
is invertible. The nonzero entries of A−1 = (a′

W,V ) can inductively be calculated

(e.g., see [15, prop. 3.6.2]) by a′
V,V = 1 and, for W < V ,

a′
W,V = −

∑
W≤S<V

a′
W,S · aS,V .

This implies the following:

PROPOSITION 2.1 For each V ∈ V , define inductively 1̂V̄ by the formula

1̂V̄ = 1V̄ −
∑
W<V

1̂W̄ .

Then, for any α ∈ FV(Y ), one has the equality

(2.2) α =
∑

V

α(V ) · 1̂V̄ .

PROOF: As the notation indicates, 1̂V̄ depends only on the space V̄ with its

induced partition. Then by the above considerations we have

α =
∑

V

α(V ) · 1V =
∑
W≤V

α(V ) · a′
W,V · 1W̄ ,

and formula (2.2) follows from the inductive identification (for V fixed):∑
W≤V

a′
W,V · 1W̄ = 1V̄ −

∑
W≤S<V

a′
W,S · aS,V · 1W̄ = 1̂V̄ .

�
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Remark 2.2.

(1) If there is a stratum S ∈ V that is dense in Y , i.e., S̄ = Y or V ≤ S for all

V ∈ V , then formula (2.2) can be rewritten as

(2.3) α = α(S) · 1Y +
∑
V <S

(α(V ) − α(S)) · 1̂V̄ .

(2) For a group homomorphism φ : FV(Y ) → G for some abelian group G,

one obtains similar descriptions for φ(α) in terms of

φ̂(V̄ ) := φ(1̂V̄ ) = φ(1V̄ ) −
∑
W<V

φ(1̂W̄ ).

For the rest of this section we specialize to the complex algebraic (respectively,

compact analytic) context, with Y a reduced complex algebraic variety (respec-

tively, a reduced compact complex analytic space), and all V ∈ V locally closed

constructible subsets. The group Fc(Y ) of all complex algebraically (respectively,

analytically) constructible functions is defined as the direct limit of these FV(Y ).

Then one has the following important group homomorphisms on Fc(Y ) (e.g., see

[10, 11, 12, 13]):

(1) The Euler characteristic with compact support χc : Fc(Y ) → Z character-

ized by χc(1Z ) = χc(Z) for Z ⊂ Y a locally closed constructible subset.

(2) The Euler characteristic χ : Fc(Y ) → Z characterized by χ(1Z ) = χ(Z)

for Z ⊂ Y a closed algebraic (respectively, analytic) subset.

(3) For f : X → Y a proper complex algebraic (respectively, analytic) map,

the functorial pushdown f∗ : Fc(X) → Fc(Y ) is characterized by

f∗(1Z )(y) = χ(Z ∩ { f = y})
for Z ⊂ X a closed algebraic (respectively, analytic) subset.

(4) The Chern class transformation of MacPherson,

c∗ : Fc(Y ) → H BM
2∗ (Y ; Z),

which commutes with proper pushdowns and is uniquely characterized by

this property together with the normalization c∗(1M) = c∗(T M) ∩ [M] for

M a complex algebraic (respectively, analytic) manifold.

In fact, as already pointed out, in this context we have χ = χc. Moreover, χ ◦
f∗ = χ , and for Y compact one gets by functoriality χ(α) = deg(c∗(α)) for any

α ∈ Fc(Y ).

Now let f : X → Y be a proper complex algebraic (respectively, analytic)

map, with Y as above. Assume f∗(α) ∈ FV(Y ) for a given α ∈ Fc(X) (e.g., V ′
and V are complex Whitney stratifications of X and Y , respectively, such that f is

a stratified submersion, and α ∈ FV ′(X)). Then

f∗(α) =
∑
V ∈V

f∗(α)(V ) · 1V
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with

f∗(α)(V ) = χ(α|FV )

for FV the fiber of f over a point in V . Assume, moreover, that Y is irreducible,

so there is a dense stratum S ∈ V , with F := FS a general fiber of f . In terms of

f∗(α), formula (2.3) yields the following:

(2.4) f∗(α) = χ(α|F) · 1Y +
∑
V <S

(χ(α|FV ) − χ(α|F)) · 1̂V̄ .

By applying the homomorphism χ and c∗, respectively, to equation (2.4), we obtain

the following formulae:

COROLLARY 2.3

χ(α) = χ(α|F) · χ(Y ) +
∑
V <S

(χ(α|FV ) − χ(α|F)) · χ̂(V̄ ),(2.5)

f∗(c∗(α)) = χ(α|F) · c∗(Y ) +
∑
V <S

(χ(α|FV ) − χ(α|F)) · ĉ∗(V̄ ),(2.6)

where c∗(Y ) := c∗(1Y ), and similarly for ĉ∗(V̄ ), which by the functoriality of c∗ is
regarded as a homology class in the Borel-Moore homology H BM

2∗ (Y ; Z).

By letting α = 1X in the formulae (2.5) and (2.6) above, we obtained the strat-

ified multiplicative property for the topological Euler-Poincaré characteristic and

for the Chern-MacPherson class, respectively:

PROPOSITION 2.4 Let f : X → Y be a proper complex algebraic (respectively,
analytic) map, with Y irreducible (and compact in the analytic context) and en-
dowed with a complex algebraic (respectively, analytic) Whitney stratification V .
Assume f∗(1X ) ∈ FV(Y ). Then:

χ(X) = χ(F) · χ(Y ) +
∑
V <S

(χ(FV ) − χ(F)) · χ̂(V̄ ),(2.7)

f∗(c∗(X)) = χ(F) · c∗(Y ) +
∑
V <S

(χ(FV ) − χ(F)) · ĉ∗(V̄ ).(2.8)

3 Intersection Homology Euler Characteristics

Let Y be a topological pseudomanifold (or a locally conelike stratified space

[12, p. 232]) with a stratification V by finitely many oriented strata of even di-

mension. By definition, strata of V satisfy the frontier condition, and V is locally

topologically trivial along each stratum V , with fibers being the cone on a compact

pseudomanifold LV,Y , the “link” of V in Y . Note that each stratum V , its closure

V̄ , and in general any locally closed union of strata gets an induced stratification

of the same type. Examples are given by a complex algebraic (respectively, ana-

lytic) Whitney stratification of a reduced complex algebraic (respectively, compact

complex analytic) variety.
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Let ShV(Y ) be the category of V-constructible sheaves of rational vector spaces,

i.e., sheaves F with the property that for all V ∈ V the restriction F |V is a lo-

cally constant sheaf of Q-vector spaces, with finite-dimensional stalks. Denote

by Db
V(Y ) the corresponding derived category of bounded complexes with V-

constructible cohomology sheaves (compare [2, 10, 12]). Then one has an equality

of Grothendieck groups (e.g., compare [10, p. 77], [12, lemma 3.3.1])

K0(ShV(Y )) = K0(Db
V(Y ))

obtained by identifying the class of a complex with the alternating sum of the

classes of its cohomology sheaves.

Moreover, one has a canonical group epimorphism

χY : K0(Db
V(Y )) → FV(Y )

defined by taking stalkwise the Euler characteristic. Note that χY is not injective in

general (e.g., see [7, p. 98]), except for when all strata V ∈ V are simply connected,

e.g., for Y = {pt}, in which case we use the shorter notion K0(pt). So K0(pt) is

just the Grothendieck group of finite-dimensional Q-vector spaces, and it is a com-

mutative ring with respect to the tensor product with unit Qpt . Moreover, there is

an isomorphism K0(pt) ∼= Z induced by the Euler characteristic homomorphism.

K0(Db
V(Y )) becomes a unitary K0(pt)-module, with the multiplication defined by

the exterior product

K0(Db
V(Y )) × K0(pt) → K0(Db

V×{pt}(Y × {pt})) = K0(Db
V(Y )),

and the Euler characteristic homomorphisms χY and χ are compatible with this

structure (more generally, χY commutes with exterior products).

Important examples of V-constructible complexes are provided by the intersec-

tion cohomology complexes I CV̄ of the closures of the strata V ∈ V , extended by

0 to all of Y (cf. [1, 2, 9]). These are self-dual with respect to Verdier duality (and

become important in the context of perverse sheaves and mixed Hodge modules,

as in our forthcoming papers [3, 4]). The normalization axiom for I CV̄ (in the con-

ventions of [1]) yields that I CV̄ |V = QV [dim(V )], with dim(V ) := dimR(V )/2

(the complex dimension in the complex algebraic/analytic context). Since we work

in Grothendieck groups, in order to avoid signs in our calculations, we will use the

normalization condition of [2], that is, we work with I C ′
V̄

:= I CV̄ [−dim(V )],
whose hypercohomology is exactly the intersection cohomology of V̄ .

Let us fix for each W ∈ V a point w ∈ W with inclusion iw : {w} ↪→ Y . Then

(3.1) i∗
w[I C ′

W̄ ] = [i∗
w I C ′

W̄ ] = [Qpt ] ∈ K0(w) = K0(pt)

and i∗
w[I C ′

V̄
] �= [0] ∈ K0(pt) only if W ≤ V . If we let

(3.2) icV̄ := χY (I C ′
V̄ ) ∈ FV(Y )

be the corresponding constructible function, then

(3.3) supp(icV̄ ) = V̄ and icV̄ |V = 1V .
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Note that icV̄ (w) does not depend on the choice of w ∈ W , and this is also the case

for i∗
w[I CV̄ ] ∈ K0(pt). In fact, since for any j ∈ Z,

H j (i∗
w I C ′

V̄ ) � I H j (c◦LW,V )

with c◦LW,V , the open cone on the link LW,V of W in V̄ for W ≤ V (cf. [2,

prop. 4.2]), we have that

i∗
w[I C ′

V̄ ] = [I H∗(c◦LW,V )] ∈ K0(pt).

In terms of constructible functions, this gives

(3.4) icV̄ (w) = Iχ(c◦LW,V ) := χ([I H ∗(c◦LW,V )]).
In particular, {icV̄ |V ∈ V} is another distinguished basis of FV(Y ) since, by (3.3),

the transition matrix to the basis {1V } is upper-triangular with respect to ≤, with all

diagonal entries equal to 1. Moreover, by (3.1) the K0(pt)-submodule 〈[I C ′
V̄
]〉 of

K0(Db
V(Y )) generated by the elements [I C ′

V̄
] (V ∈ V) is in fact freely generated

by them, and the restriction

(3.5) χY : 〈[I C ′
V̄ ]〉 → FV(Y )

is an isomorphism.

The main technical result of this section is the following:

THEOREM 3.1 Assume Y has an open dense stratum S ∈ V so that V ≤ S for all
V . For each V ∈ V \ {S} define inductively

(3.6) Î C(V̄ ) := [I C ′
V̄ ] −

∑
W<V

Î C(W̄ ) · i∗
w[I C ′

V̄ ] ∈ K0(Db
V(Y )),

and similarly

(3.7) î c(V̄ ) := icV̄ −
∑
W<V

îc(W̄ ) · Iχ(c◦LW,V ) ∈ FV(Y )

so that χY ( Î C(V̄ )) = î c(V̄ ). As the notation suggests, Î C(V̄ ) and îc(V̄ ) depend
only on the stratified space V̄ with its induced stratification.

(i) Assume that [F] ∈ K0(Db
V(Y )) is an element of the K0(pt)-submodule

〈[I C ′
V̄
]〉. Then

(3.8) [F] = [I C ′
Y ] · i∗

s [F] +
∑
V <S

Î C(V̄ ) · (i∗
v [F] − i∗

s [F] · i∗
v [I C ′

Y ])
∈ K0(Db

V(Y )).

(ii) For any V-constructible function α ∈ FV(Y ), one has the equality

(3.9) α = α(s) · icY +
∑
V <S

(α(v) − α(s) · Iχ(c◦LV,Y )) · î c(V̄ ).
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PROOF: Note that equation (3.9) of the second part of the theorem is a direct

consequence of formula (3.8) from the first part. Indeed, by (3.5) we can first rep-

resent any α ∈ FV(Y ) as α = χY ([F]) for some [F] ∈ 〈[I C ′
V̄
]〉. Then, assuming

(3.8) holds for this choice of [F], we can apply χY to this equation and obtain (3.9).

In order to prove formula (3.8), consider

(3.10) [F] =
∑

V

[I C ′
V̄ ] · L(V )

for some L(V ) ∈ K0(pt). The aim is to identify these coefficients L(V ). Since S
is an open stratum, by applying i∗

s to (3.10) we obtain

i∗
s [F] = L(S) ∈ K0(s) = K0(pt).

Next fix a stratum W �= S and apply i∗
w to (3.10). Recall that i∗

w[I C ′
W̄

] = [Qpt ] ∈
K0(w) = K0(pt), and i∗

w[I C ′
V̄
] �= [0] ∈ K0(pt) only if W ≤ V . We obtain

(3.11) i∗
w[F] = L(W ) +

∑
W<V

i∗
w[I C ′

V̄ ] · L(V ) ∈ K0(w) = K0(pt).

Since S is dense, we have that W < S, so the stratum S appears in the summation

on the right-hand side of (3.11). Therefore

(3.12) i∗
w[F] − i∗

w[I C ′
Y ] · i∗

s [F] = L(W ) +
∑

W<V <S

i∗
w[I C ′

V̄ ] · L(V )

∈ K0(w) = K0(pt).

This implies that we can inductively calculate L(V ) in terms of

L ′(W ) := i∗
w[F] − i∗

w[I C ′
Y ] · i∗

s [F].
Indeed, (3.12) can be rewritten as

(3.13) L ′(W ) =
∑

W≤V <S

i∗
w[I C ′

V̄ ] · L(V ) ∈ K0(pt),

and the matrix A = (aW,V ), with aW,V := i∗
w[I C ′

V̄
] ∈ K0(pt) for W, V ∈ V \

{S}, is upper-triangular with respect to ≤, with 1’s on the diagonal. So A can be

inverted. The nonzero coefficients of A−1 = (a′
W,V ) can be inductively calculated

by a′
V,V = 1 and

(3.14) a′
W,V = −

∑
W≤T <V

a′
W,T · aT,V

for W < V . Then (3.10) becomes

[F] = [I C ′
Y ] · i∗

s [F] +
∑
W<S

[I C ′
W̄ ] · L(W )

= [I C ′
Y ] · i∗

s [F] +
∑

W≤V <S

[I C ′
W̄ ] · a′

W,V · L ′(V ).
(3.15)
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The result follows by the inductive identification (for V < S fixed)∑
W≤V

[I C ′
W̄ ] · a′

W,V = [I C ′
V̄ ] −

∑
W≤T <V

[I C ′
W̄ ] · a′

W,T · aT,V = Î C(V̄ ).

�

Remark 3.2. In this paper, we only make use of equation (3.9), and this could be

proven directly by working in FV(Y ) by following the same arguments as above.

However, the formula of equation (3.8) is particularly important since in the com-

plex algebraic context it extends to the framework of Grothendieck groups of al-

gebraic mixed Hodge modules that will be used in our forthcoming paper [4]. Of

course, the technical condition used in proving formula (3.8) is not generally satis-

fied, but it holds under the assumption of trivial monodromy along all strata V ∈ V
(e.g., if all strata V are simply connected). For more details, see [4].

For the remaining part of this section, we will specialize to the complex alge-

braic (respectively, compact complex analytic) context; that is, Y is a reduced com-

plex algebraic variety (respectively, a reduced compact complex analytic space),

with a complex algebraic (respectively, analytic) Whitney stratification V . In this

setting, let f : X → Y be a proper complex algebraic (respectively, analytic) map.

Assume f∗(α) ∈ FV(Y ) for a given α ∈ Fc(X); e.g., we choose V ′ and V com-

plex Whitney stratifications of X and Y , respectively, such that f is a stratified

submersion, and α ∈ FV ′(X). Then

f∗(α) =
∑
V ∈V

f∗(α)(V ) · 1V ,

with

f∗(α)(V ) = χ(α|FV ),

for FV the fiber of f over a point in V . Assume, moreover, that Y is irreducible

so there is a dense stratum S ∈ V with F := FS a general fiber of f . In terms of

f∗(α), the equation (3.9) of Theorem 3.1 becomes

(3.16) f∗(α) = χ(α|F) · icY +
∑
V <S

(
χ(α|FV ) − χ(α|F) · Iχ(c◦LV,Y )

) · î c(V̄ )

∈ FV(Y ).

By applying the group homomorphism χ and c∗ to equation (3.16), respec-

tively, we obtain the following (recall χ ◦ f∗ = χ and c∗ ◦ f∗ = f∗ ◦ c∗ for f
proper):

COROLLARY 3.3

χ(α) = χ(α|F) · Iχ(Y )(3.17)

+
∑
V <S

(
χ(α|FV ) − χ(α|F) · Iχ(c◦LV,Y )

) · Îχ(V̄ ),
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f∗(c∗(α)) = χ(α|F) · I c∗(Y )(3.18)

+
∑
V <S

(
χ(α|FV ) − χ(α|F) · Iχ(c◦LV,Y )

) · Î c∗(V̄ ).

Here Iχ(Y ) := χ(icY ) = χ([I H∗(Y ; Q)]) is the intersection homology Eu-
ler characteristic of Y , and similarly for Îχ(V̄ ). Also, I c∗(Y ) := c∗(icY ), and
similarly for Î c∗(V̄ ), which by functoriality is regarded as a homology class in
H BM

2∗ (Y ; Z), the even degree Borel-Moore homology of Y .

By letting α = 1X in the formulae (3.17) and (3.18) above, respectively, we

obtain:

PROPOSITION 3.4 Let f : X → Y be a proper complex algebraic (respectively,
analytic) map, with Y irreducible (and compact in the analytic context) and en-
dowed with a complex algebraic (respectively, analytic) Whitney stratification V .
Assume f∗(1X ) ∈ FV(Y ). Then:

χ(X) = χ(F) · Iχ(Y )(3.19)

+
∑
V <S

(
χ(FV ) − χ(F) · Iχ(c◦LV,Y )

) · Îχ(V̄ ),

f∗(c∗(X)) = χ(F) · I c∗(Y )(3.20)

+
∑
V <S

(
χ(FV ) − χ(F) · Iχ(c◦LV,Y )

) · Î c∗(V̄ ).

In the special case when f is the identity map, equation (3.19) yields a formula

expressing the Euler characteristics of usual and intersection homology of an al-

gebraic (respectively, analytic) variety in terms of each other and corresponding

invariants of the subvarieties formed by the closures of its singular strata. Sim-

ilarly, (3.20) yields in this case a comparison between the corresponding Chern

homology classes of MacPherson:

COROLLARY 3.5 Let Y be an irreducible complex algebraic (respectively, com-
pact analytic) variety endowed with a complex algebraic (respectively, analytic)

Whitney stratification V . Then in the above notations we have:

χ(Y ) = Iχ(Y ) +
∑
V <S

(1 − Iχ(c◦LV,Y )) · Îχ(V̄ ),(3.21)

c∗(Y ) = I c∗(Y ) +
∑
V <S

(1 − Iχ(c◦LV,Y )) · Î c∗(V̄ ).(3.22)

The stratified multiplicative property for the intersection homology Euler char-

acteristic and for the corresponding homology characteristic classes is obtained

from (3.17) and (3.18), respectively, in the case when α = icX . Indeed, we have:
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PROPOSITION 3.6 Let f : X → Y be a proper complex algebraic (respectively,
analytic) map, with X pure dimensional and Y irreducible (and compact in the
analytic context). Assume Y is endowed with a complex algebraic (respectively,
analytic) Whitney stratification V so that f∗(icX ) ∈ FV(Y ). Then:

Iχ(X) = Iχ(F) · Iχ(Y )(3.23)

+
∑
V <S

(
Iχ( f −1(c◦LV,Y )) − Iχ(F) · Iχ(c◦LV,Y )

) · Îχ(V̄ ),

f∗(I c∗(X)) = Iχ(F) · I c∗(Y )(3.24)

+
∑
V <S

(
Iχ( f −1(c◦LV,Y )) − Iχ(F) · Iχ(c◦LV,Y )

) · Î c∗(V̄ ).

PROOF: Based on the above considerations, it suffices to show that

(3.25) χ(icX |F) = Iχ(F)

and

(3.26) χ(icX |FV ) = Iχ( f −1(c◦LV,Y )).

Since the general fiber F of f is locally normally nonsingular embedded in X ,

we have a quasi-isomorphism [9, §5.4.1]:

I C ′
X |F � I C ′

F ,

hence an equality icX |F = icF , thus proving (3.25).

Similarly, since χ(icX |FV ) = f∗(icX )(v) for some v ∈ V , in order to prove

(3.26), it suffices to show that

(3.27) H j (R f∗ I C ′
X )v

∼= I H j ( f −1(c◦LV,Y ); Q).

Let N be a normal slice to V at v in local analytic coordinates (Y, v) ↪→ (Cn, v),

that is, a germ of a complex manifold (N , v) ↪→ (Cn, v), intersecting V transver-

sally only at v, and with dim V + dim N = n. Recall that the link LV,Y of the

stratum V in Y is defined as

LV,Y := Y ∩ N ∩ ∂ Br (v),

where Br (v) is an open ball of (very small) radius r around v. Moreover, Y ∩ N ∩
Br (v) is isomorphic (in a stratified sense) to the open cone c◦LV,Y on the link [2,

p. 44]. By factoring iv as the composition,

{v} φ
↪→ Y ∩ N

ψ
↪→ Y,

we can now write

H j (R f∗ I C ′
X )v

∼= H j (Y, iv∗i∗
v R f∗ I C ′

X )

∼= H j (v, φ∗ψ∗ R f∗ I C ′
X )

∼= H j (ψ∗ R f∗ I C ′
X )v
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∼= H j (c◦LV,Y , R f∗ I C ′
X )

∼= H j ( f −1(c◦LV,Y ), I C ′
X )

(∗)∼= H j ( f −1(c◦LV,Y ), I C ′
f −1(c◦LV,Y )

)

∼= I H j ( f −1(c◦LV,Y ); Q),

where in (∗) we used the fact that the inverse image of a normal slice to a stratum

of Y in a stratification of f is (locally) normally nonsingular embedded in X (this

fact is a consequence of the first isotopy lemma). �
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