A geometric perspective on generalized weighted Ehrhart theory

LAURENTIU MAXIM University of Wisconsin-Madison

MIST Workshop, Hong Kong, August 15, 2024

(joint work with J. Schürmann)

つくい

Lattice polytopes, Fans and Toric Varieties

\clubsuit $M \simeq \mathbb{Z}^n$ *n*-dimensional lattice in \mathbb{R}^n

 $4.171 \pm$

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B} \mathcal{B}

不満 トー 重 $2Q$

Lattice polytopes, Fans and Toric Varieties

 \clubsuit $M \simeq \mathbb{Z}^n$ *n*-dimensional lattice in \mathbb{R}^n $\clubsuit N = \text{Hom}(M, \mathbb{Z})$ the dual lattice

 $2Q$

∍

4. E. K

Lattice polytopes, Fans and Toric Varieties

\n- $$
M \simeq \mathbb{Z}^n
$$
 n-dimensional lattice in \mathbb{R}^n
\n- $N = \text{Hom}(M, \mathbb{Z})$ the dual lattice
\n- fan Σ in $N_{\mathbb{R}} = N \otimes \mathbb{R} \cong \mathbb{R}^n \rightsquigarrow$ toric variety X_{Σ}
\n

メロメ メタメ メミメ メミメン ミ

 298

$$
\clubsuit M \simeq \mathbb{Z}^n
$$
 n-dimensional lattice in \mathbb{R}^n

$$
\clubsuit N = \text{Hom}(M, \mathbb{Z}) \text{ the dual lattice}
$$

4.
$$
\mathsf{fan} \Sigma
$$
 in $N_{\mathbb{R}} = N \otimes \mathbb{R} \cong \mathbb{R}^n \leadsto \mathsf{toric} \text{ variety } X_{\Sigma}$

♣ Cone-Orbit Correspondence:

cone $\sigma\in\Sigma\leadsto$ orbit $\mathit{O}_{\sigma}\subset X_{\Sigma}\leadsto$ orbit closure $\mathit{V}_{\sigma}:=\bar{\mathit{O}}_{\sigma}.$

 $2Q$

4. E. K

$$
\clubsuit M \simeq \mathbb{Z}^n
$$
 n-dimensional lattice in \mathbb{R}^n

$$
\clubsuit N = \text{Hom}(M, \mathbb{Z}) \text{ the dual lattice}
$$

♣ fan Σ in $\overline{\mathcal{N}}_\mathbb{R} = N \otimes \mathbb{R} \cong \mathbb{R}^n \leadsto$ toric variety X_Σ

♣ Cone-Orbit Correspondence:

cone $\sigma\in\Sigma\leadsto$ orbit $\mathit{O}_{\sigma}\subset X_{\Sigma}\leadsto$ orbit closure $\mathit{V}_{\sigma}:=\bar{\mathit{O}}_{\sigma}.$

つくい

♣ If $P = Conv(S) \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ (with $S \subset M$ a finite set) is a full-dimensional lattice polytope, then

$$
\clubsuit M \simeq \mathbb{Z}^n
$$
 n-dimensional lattice in \mathbb{R}^n

$$
\clubsuit N = \text{Hom}(M, \mathbb{Z}) \text{ the dual lattice}
$$

4.
$$
\mathsf{fan} \Sigma
$$
 in $N_{\mathbb{R}} = N \otimes \mathbb{R} \cong \mathbb{R}^n \leadsto \mathsf{toric} \text{ variety } X_{\Sigma}$

♣ Cone-Orbit Correspondence:

cone $\sigma\in\Sigma\leadsto$ orbit $\mathit{O}_{\sigma}\subset X_{\Sigma}\leadsto$ orbit closure $\mathit{V}_{\sigma}:=\bar{\mathit{O}}_{\sigma}.$

へのへ

♣ If $P = Conv(S) \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ (with $S \subset M$ a finite set) is a full-dimensional lattice polytope, then

• $P \rightsquigarrow$ inner normal fan $\Sigma_P \rightsquigarrow$ projective toric variety $X_P := X_{\Sigma_P}$ with ample Cartier divisor D_P

$$
\clubsuit M \simeq \mathbb{Z}^n
$$
 n-dimensional lattice in \mathbb{R}^n

$$
\clubsuit N = \text{Hom}(M, \mathbb{Z}) \text{ the dual lattice}
$$

4.
$$
\mathsf{fan} \Sigma
$$
 in $N_{\mathbb{R}} = N \otimes \mathbb{R} \cong \mathbb{R}^n \leadsto \mathsf{toric} \text{ variety } X_{\Sigma}$

♣ Cone-Orbit Correspondence:

cone $\sigma\in\Sigma\leadsto$ orbit $\mathit{O}_{\sigma}\subset X_{\Sigma}\leadsto$ orbit closure $\mathit{V}_{\sigma}:=\bar{\mathit{O}}_{\sigma}.$

オート オート オート

へのへ

♣ If $P = Conv(S) \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ (with $S \subset M$ a finite set) is a full-dimensional lattice polytope, then

- $P \rightsquigarrow$ inner normal fan $\Sigma_P \rightsquigarrow$ projective toric variety $X_P := X_{\Sigma_P}$ with ample Cartier divisor D_P
- face $Q \preceq P \leadsto$ cone $\sigma_Q \in \Sigma_P \leadsto$ orbit O_{σ_Q} in X_P

♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope.

LAURENTIU MAXIM University of Wisconsin-Madison [Generalized weighted Ehrhart theory](#page-0-0)

 \leftarrow

不満 トー 重

÷ \sim $2Q$

♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope. \clubsuit Problem: Calculate $\#(\ell P \cap M)$, for $\ell \in \mathbb{Z}_{>0}$.

 $2Q$

4. E. K

- ♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope.
- \clubsuit Problem: Calculate $\#(\ell P \cap M)$, for $\ell \in \mathbb{Z}_{>0}$.
- \clubsuit Ehrhart-Macdonald (1960): $\text{Ehr}_P(\ell) := \#(\ell P \cap M)$ is a

polynomial in ℓ of degree *n*, called the Ehrhart polynomial of P.

♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope.

 \clubsuit Problem: Calculate $\#(\ell P \cap M)$, for $\ell \in \mathbb{Z}_{>0}$.

 \clubsuit Ehrhart-Macdonald (1960): $\text{Ehr}_P(\ell) := \#(\ell P \cap M)$ is a

polynomial in ℓ of degree n, called the Ehrhart polynomial of P. ♣ Geometric Approach (Danilov):

- ♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope.
- \clubsuit Problem: Calculate $\#(\ell P \cap M)$, for $\ell \in \mathbb{Z}_{>0}$.
- \clubsuit Ehrhart-Macdonald (1960): $\text{Ehr}_P(\ell) := \#(\ell P \cap M)$ is a
- polynomial in ℓ of degree *n*, called the Ehrhart polynomial of P.
- ♣ Geometric Approach (Danilov):
	- consider the associated (possibly singular) projective toric variety X_P with ample Cartier divisor D_P .

♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope. \clubsuit Problem: Calculate $\#(\ell P \cap M)$, for $\ell \in \mathbb{Z}_{>0}$. \clubsuit Ehrhart-Macdonald (1960): $\text{Ehr}_P(\ell) := \#(\ell P \cap M)$ is a polynomial in ℓ of degree n, called the Ehrhart polynomial of P. ♣ Geometric Approach (Danilov):

consider the associated (possibly singular) projective toric variety X_P with ample Cartier divisor D_P .

$$
\bullet
$$

$$
\mathrm{Ehr}_{\rho}(\ell) = \chi(X_{P}, \mathcal{O}(\ell D_{P}))
$$

$$
\stackrel{(RR)}{=} \sum_{k \geq 0} \left(\frac{1}{k!} \int_{X_{P}} [D_{P}]^{k} \cap td_{k}(X_{P}) \right) \ell^{k} = \sum_{k \geq 0} a_{k} \ell^{k},
$$

with $td_k(X_P) \in H_{2k}(X_P;\mathbb{Q})$ the degree k component of the Baum-Fulton-MacPherson Todd class $td_*(X_P)$.

マーター マーティング

♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope. \clubsuit Problem: Calculate $\#(\ell P \cap M)$, for $\ell \in \mathbb{Z}_{>0}$. \clubsuit Ehrhart-Macdonald (1960): $\text{Ehr}_P(\ell) := \#(\ell P \cap M)$ is a polynomial in ℓ of degree n, called the Ehrhart polynomial of P. ♣ Geometric Approach (Danilov):

consider the associated (possibly singular) projective toric variety X_P with ample Cartier divisor D_P .

$$
\bullet
$$

$$
\operatorname{Ehr}_{P}(\ell) = \chi(X_{P}, \mathcal{O}(\ell D_{P}))
$$

$$
\stackrel{(RR)}{=} \sum_{k \geq 0} \left(\frac{1}{k!} \int_{X_{P}} [D_{P}]^{k} \cap td_{k}(X_{P}) \right) \ell^{k} = \sum_{k \geq 0} a_{k} \ell^{k},
$$

with $td_k(X_P) \in H_{2k}(X_P;\mathbb{Q})$ the degree k component of the Baum-Fulton-MacPherson Todd class $td_*(X_P)$.

$$
\bullet \ \ a_n = \text{vol}(P), \ a_{n-1} = \frac{1}{2} \text{vol}(\partial P), \ a_0 = \chi(P) = 1.
$$

♣ Ehrhart reciprocity:

 $\mathrm{Ehr}_P(-\ell) = (-1)^n \cdot \#(\mathrm{Int}(\ell P) \cap M) = (-1)^n \cdot \mathrm{Ehr}_{\mathrm{Int}(P)}(\ell)$

 $4.171 \pm$

メ御 メイヨ メイヨ メーヨ

 $2Q$

♣ Ehrhart reciprocity:

 $\mathrm{Ehr}_P(-\ell) = (-1)^n \cdot \#(\mathrm{Int}(\ell P) \cap M) = (-1)^n \cdot \mathrm{Ehr}_{\mathrm{Int}(P)}(\ell)$

↓ Geometrically,

$$
\#(\mathrm{Int}(\ell P)\cap M)=(-1)^n\cdot\chi(X_P,\mathcal O(-\ell D_P))
$$

 $4.171 \pm$

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

重

 $2Q$

Weighted Ehrhart theory

 \bullet Face decomposition for P :

$$
\#(\ell P \cap M) = \sum_{Q \preceq P} \#(\mathrm{Relint}(\ell Q) \cap M),
$$

with $\text{Relint}(\ell Q)$ the relative interior of the face ℓQ of the dilated polytope ℓP .

 $2Q$

€

k 로 H

Weighted Ehrhart theory

 \bullet Face decomposition for P :

$$
\#(\ell P \cap M) = \sum_{Q \preceq P} \#(\mathrm{Relint}(\ell Q) \cap M),
$$

with $\text{Relint}(\ell Q)$ the relative interior of the face ℓQ of the dilated polytope ℓP .

♣ Assign Laurent polynomial weights $f_Q(y)\in \mathbb{Z}[y^{\pm 1}]$ to each face $Q \preceq P$ of P, and define for any $\ell \in \mathbb{Z}_{>0}$ the weighted Ehrhart "polynomial" of P and $f = \{f_{\Omega}\}_{{\Omega}\prec P}$ by

$$
\mathrm{Ehr}_{P,f}(\ell,y):=\sum_{Q\preceq P}f_Q(y)\cdot (1+y)^{\dim(Q)}\cdot \#(\mathrm{Relint}(\ell Q)\cap M)
$$

Weighted Ehrhart theory

 \bullet Face decomposition for P :

$$
\#(\ell P \cap M) = \sum_{Q \preceq P} \#(\mathrm{Relint}(\ell Q) \cap M),
$$

with $\text{Relint}(\ell Q)$ the relative interior of the face ℓQ of the dilated polytope ℓP .

♣ Assign Laurent polynomial weights $f_Q(y)\in \mathbb{Z}[y^{\pm 1}]$ to each face $Q \preceq P$ of P, and define for any $\ell \in \mathbb{Z}_{>0}$ the weighted Ehrhart "polynomial" of P and $f = \{f_{Q}\}_{Q\prec P}$ by

 $\mathrm{Ehr}_{P,f}(\ell,y) := \, \sum \, f_Q(y) \cdot (1+y)^{\mathsf{dim}(Q)} \cdot \#(\mathrm{Relint}(\ell Q) \cap M)$ $Q \leq P$

オート オート オート

つくい

4 If
$$
f = 1 := \{1\}
$$
, get for $y = 0$: $\text{Ehr}_{P,1}(\ell, 0) = \text{Ehr}_P(\ell)$

$$
\mathrm{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\mathrm{Relint}(\ell Q) \cap M)
$$

LAURENTIU MAXIM University of Wisconsin-Madison [Generalized weighted Ehrhart theory](#page-0-0)

 \leftarrow \Box

医头面的

÷

重

 298

$$
\mathrm{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\mathrm{Relint}(\ell Q) \cap M)
$$

 \clubsuit By classical Ehrhart theory for the faces of P, $\text{Ehr}_{P,f}(\ell, y)$ has the following properties:

 $2Q$

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

$$
\mathrm{Ehr}_{P,f}(\ell,y):=\sum_{Q\preceq P}f_Q(y)\cdot (1+y)^{\dim(Q)}\cdot \#(\mathrm{Relint}(\ell Q)\cap M)
$$

 \clubsuit By classical Ehrhart theory for the faces of P, $\text{Ehr}_{P,f}(\ell, y)$ has the following properties:

• Ehr $P_f(\ell, y)$ is obtained by evaluating a polynomial $Ehr_{P,f}(z, y)$ at $z = \ell \in \mathbb{Z}_{>0}$.

 Ω

4 E 6 4 E 6

$$
\mathrm{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\mathrm{Relint}(\ell Q) \cap M)
$$

 \clubsuit By classical Ehrhart theory for the faces of P, $\text{Ehr}_{P,f}(\ell, y)$ has the following properties:

• Ehr $P_f(\ell, y)$ is obtained by evaluating a polynomial $Ehr_{P,f}(z, y)$ at $z = \ell \in \mathbb{Z}_{>0}$.

• (Constant term) For
$$
\ell = 0
$$
,

$$
\mathrm{Ehr}_{P,f}(0,y)=\sum_{Q\preceq P}f_Q(y)\cdot(-1-y)^{\dim(Q)},
$$

オター・オート オート

へのへ

i.e., evaluating $\#(\operatorname{Relint}(\ell Q) \cap M)$ at $\ell = 0$ as $(-1)^{\dim(Q)}.$

$$
\mathrm{Ehr}_{P,f}(\ell,y):=\sum_{Q\preceq P}f_Q(y)\cdot (1+y)^{\dim(Q)}\cdot \#(\mathrm{Relint}(\ell Q)\cap M)
$$

 \clubsuit By classical Ehrhart theory for the faces of P, $\text{Ehr}_{P,f}(\ell, y)$ has the following properties:

• Ehr $\mathcal{P}_f(\ell, y)$ is obtained by evaluating a polynomial $Ehr_{P,f}(z, y)$ at $z = \ell \in \mathbb{Z}_{>0}$.

• (Constant term) For
$$
\ell = 0
$$
,

$$
\mathrm{Ehr}_{P,f}(0,y)=\sum_{Q\preceq P}f_Q(y)\cdot(-1-y)^{\dim(Q)},
$$

i.e., evaluating $\#(\operatorname{Relint}(\ell Q) \cap M)$ at $\ell = 0$ as $(-1)^{\dim(Q)}.$ • (Reciprocity formula) For $\ell \in \mathbb{Z}_{>0}$,

$$
\mathrm{Ehr}_{P,f}(-\ell,y)=\sum_{Q\preceq P}f_Q(y)\cdot(-1-y)^{\dim(Q)}\cdot\#(\ell Q\cap M).
$$

 $2Q$

店

すぼ おす 悪 おし

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with \emptyset corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with \emptyset corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

♣ There is an order-reversing one-to-one correspondence between the faces Q of P , and the faces Q° of the polar polytope P° , switching the roles of polytopes and emptysets seen as faces. For a proper face $\emptyset \ne Q \prec P$, one has $\dim_{\mathbb{R}}(Q) + \dim_{\mathbb{R}}(Q^{\circ}) = n-1.$

つくい

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with \emptyset corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

♣ There is an order-reversing one-to-one correspondence between the faces Q of P , and the faces Q° of the polar polytope P° , switching the roles of polytopes and emptysets seen as faces. For a proper face $\emptyset \ne Q \prec P$, one has $\dim_{\mathbb{R}}(Q) + \dim_{\mathbb{R}}(Q^{\circ}) = n-1.$ \bullet Consider the weight vector given by Stanley's g -polynomials

$$
f_Q(y)=g_{Q^{\circ}}(-y)=:\widetilde{g}_Q(-y)
$$

オ桐 トラ ミトラ ミトリ

へのへ

for the polar polytope of P, with $g_{\emptyset}(-y) = \widetilde{g}_{P}(-y) = 1$.

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with \emptyset corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

♣ There is an order-reversing one-to-one correspondence between the faces Q of P , and the faces Q° of the polar polytope P° , switching the roles of polytopes and emptysets seen as faces. For a proper face $\emptyset \ne Q \prec P$, one has $\dim_{\mathbb{R}}(Q) + \dim_{\mathbb{R}}(Q^{\circ}) = n-1.$ \bullet Consider the weight vector given by Stanley's g -polynomials

$$
f_Q(y)=g_{Q^{\circ}}(-y)=:\widetilde{g}_Q(-y)
$$

for the polar polytope of P, with $g_{\emptyset}(-y) = \widetilde{g}_{P}(-y) = 1$. If P is a simple polytope, the polar polytope P° is simplicial, so that $g_{Q^{\circ}}(-y) = 1$, for all faces Q of P.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Purity

Theorem (Beck-Gunnells-Materov)

For $f_{\mathcal{O}}(y) = g_{\mathcal{O}^{\circ}}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P , the following purity property holds:

 $\text{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \text{Ehr}_{P,f}(\ell, 1/y)$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君

 $2Q$

Purity

Theorem (Beck-Gunnells-Materov)

For $f_Q(y) = g_{Q} (y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P , the following purity property holds:

$\text{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \text{Ehr}_{P,f}(\ell, 1/y)$

メ御 メメモ メモ メーモ

 QQ

♣ Combinatorial proof relying on work of Brion-Vergne.

Purity

Theorem (Beck-Gunnells-Materov)

For $f_{\mathcal{O}}(y) = g_{\mathcal{O}^{\circ}}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P , the following purity property holds:

 $\text{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \text{Ehr}_{P,f}(\ell, 1/y)$

♣ Combinatorial proof relying on work of Brion-Vergne.

 \bullet If P is simple, purity implies Dehn-Sommerville relations for P.

メ御 メメモ メモ メーモ

 QQ

Theorem (Beck-Gunnells-Materov)

For $f_{\mathcal{O}}(y) = g_{\mathcal{O}^{\circ}}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P , the following purity property holds:

 $\text{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \text{Ehr}_{P,f}(\ell, 1/y)$

♣ Combinatorial proof relying on work of Brion-Vergne.

 \clubsuit If P is simple, purity implies Dehn-Sommerville relations for P.

• Our aim is to explain a *geometric proof* of this result, and to prove a form of reciprocity/purity for any weight vector f .

メロメメ 御 メメ きょくきょうき

 QQ

Theorem (Beck-Gunnells-Materov)

For $f_{\mathcal{O}}(y) = g_{\mathcal{O}^{\circ}}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P , the following purity property holds:

 $\text{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \text{Ehr}_{P,f}(\ell, 1/y)$

♣ Combinatorial proof relying on work of Brion-Vergne.

 \clubsuit If P is simple, purity implies Dehn-Sommerville relations for P.

♦ Our aim is to explain a *geometric proof* of this result, and to prove a form of reciprocity/purity for any weight vector f .

 \clubsuit We use Hodge theory, and recover all properties of $\mathrm{Ehr}_{P,f}(\ell)$ from the calculus of characteristic classes of mixed Hodge modules on X_P (via a generalized Hirzebruch-Rieman[n-](#page-33-0)[Ro](#page-35-0)[c](#page-29-0)[h\)](#page-30-0)[.](#page-34-0)
Since the set of the s

 $2Q$

Hodge polynomial

♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]):=\sum_{j,p}(-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \leftarrow

→ 重 トー 重

∍ \sim $2Q$
♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \clubsuit For a complex projective algebraic variety X (e.g., X_P), can take:

 $2Q$

す 重 を… 店

♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \clubsuit For a complex projective algebraic variety X (e.g., X_p), can take: (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^b\text{MHM}(X)$

 QQ

All The Second 遥

♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \clubsuit For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^b\text{MHM}(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^b\mathrm{MHM}(X)$

a Basa Basi

つくい

♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \clubsuit For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^b\text{MHM}(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^b\mathrm{MHM}(X)$

a Basa Basi

つくい

♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \bullet For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^b\text{MHM}(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^b\mathrm{MHM}(X)$

メター・メディ メディー

つくい

 \clubsuit For $\mathcal{M} \in D^b\mathrm{MHM}(X)$, set $\chi_y(X; \mathcal{M}) := \chi_y([\mathcal{H}^\bullet(X; \mathcal{M})]).$ In particular, for $\mathcal{M}=\mathbb{Q}_X$ set $\chi_y(X)=\chi_y([\dot{H}^\bullet(X)]),$ and for $\mathcal{M} = IC_X[-\dim(X)]$ set $I_{\chi_y}(X) := \chi_y([IH^{\bullet}(X)])$.

♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \bullet For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^b\text{MHM}(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^b\mathrm{MHM}(X)$

マター・マニュ マニュー

つくい

 \clubsuit For $\mathcal{M} \in D^b\mathrm{MHM}(X)$, set $\chi_y(X; \mathcal{M}) := \chi_y([\mathcal{H}^\bullet(X; \mathcal{M})]).$ In particular, for $\mathcal{M}=\mathbb{Q}_X$ set $\chi_y(X)=\chi_y([\dot{H}^\bullet(X)]),$ and for $\mathcal{M} = IC_X[-\dim(X)]$ set $I_{\chi_y}(X) := \chi_y([IH^{\bullet}(X)])$. $\star_{X-1}(X) = e(X)$ is the Euler characteristic of X.

♣ There is a Hodge polynomial ring homomorphism

$$
\chi_{y}: K_{0}(\text{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]
$$

$$
\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \text{Gr}_{F}^{p} H_{\mathbb{C}}^{j} \cdot (-y)^{p}
$$

 \bullet For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^b\text{MHM}(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^b\mathrm{MHM}(X)$

 \clubsuit For $\mathcal{M} \in D^b\mathrm{MHM}(X)$, set $\chi_y(X; \mathcal{M}) := \chi_y([\mathcal{H}^\bullet(X; \mathcal{M})]).$ In particular, for $\mathcal{M}=\mathbb{Q}_X$ set $\chi_y(X)=\chi_y([\dot{H}^\bullet(X)]),$ and for $\mathcal{M} = IC_X[-\dim(X)]$ set $I_{\chi_y}(X) := \chi_y([IH^{\bullet}(X)])$.

 $\lambda_{X-1}(X) = e(X)$ is the Euler characteristic of X.

 \clubsuit M.-Saito-Schürmann: $I\chi_1(X) = \sigma(X)$ is the intersection cohomology signature of X (Goresky-MacPh[ers](#page-41-0)[on](#page-43-0)[\)](#page-34-0)[.](#page-35-0)

For any weight vector $f = \{f_{Q}\}_{Q\prec P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$.

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

重

 QQ

For any weight vector $f = \{f_{Q}\}_{Q\prec P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$. Conversely, any such M defines a weight vector f .

重

つくい

する トライ ミドライ ミドー

For any weight vector $f = \{f_{Q}\}_{Q\prec P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$. Conversely, any such M defines a weight vector f .

御き メミメメミメー

 \equiv

つくい

 \clubsuit For f and M as above, set $\text{Ehr}_{P,f}(\ell) = \text{Ehr}_{P,M}(\ell)$.

For any weight vector $f = \{f_{Q}\}_{Q\prec P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$. Conversely, any such M defines a weight vector f .

メロメ メタメ メミメ メミメン ミ

 QQ

• For f and M as above, set $\text{Ehr}_{P,f}(\ell) = \text{Ehr}_{P,M}(\ell)$.

Example (Fieseler, Denef-Loeser)

For a lattice polytope P with Stanley's g -polynomials $f_Q(y) = g_{Q^{\circ}}(-y)$, one can choose $\mathcal{M} = IC_{X_P}[-n]$.

 \bullet For X projective,

$$
\chi_{\mathsf{y}}(X; \mathcal{M}) := \chi_{\mathsf{y}}([H^{\bullet}(X; \mathcal{M})]) = \int_X T_{\mathsf{y} *}([\mathcal{M}]),
$$

with

$$
T_{y*}: \mathcal{K}_0(\mathrm{MHM}(X)) \to H_{2*}(X) \otimes \mathbb{Q}[y^{\pm 1}]
$$

 $4.17 + 3$

不満 トー 重

 \rightarrow \equiv \rightarrow

 $2Q$

the Brasselet-Schürmann-Yokura Hirzebruch class transformation.

 \bullet For X projective,

$$
\chi_{\mathsf{y}}(X; \mathcal{M}) := \chi_{\mathsf{y}}([H^{\bullet}(X; \mathcal{M})]) = \int_X T_{\mathsf{y} *}([\mathcal{M}]),
$$

with

$$
\mathcal T_{y*}: \mathcal K_0(\mathrm{MHM}(X)) \to H_{2*}(X) \otimes \mathbb Q[y^{\pm 1}]
$$

the Brasselet-Schürmann-Yokura Hirzebruch class transformation. \clubsuit Set $T_{v*}(X) := T_{v*}([\mathbb{Q}_X])$, $IT_{v*}(X) := T_{v*}([IC_X[-\dim(X)]])$.

化重氮 化重氮化

 \equiv

 \bullet For X projective,

$$
\chi_{\mathsf{y}}(X; \mathcal{M}) := \chi_{\mathsf{y}}([H^{\bullet}(X; \mathcal{M})]) = \int_X T_{\mathsf{y} *}([\mathcal{M}]),
$$

with

$$
T_{y*}: \mathcal{K}_0(\mathrm{MHM}(X)) \rightarrow H_{2*}(X) \otimes \mathbb{Q}[y^{\pm 1}]
$$

the Brasselet-Schürmann-Yokura Hirzebruch class transformation.

 \clubsuit Set $T_{v*}(X) := T_{v*}([\mathbb{Q}_X])$, $IT_{v*}(X) := T_{v*}([IC_X[-\dim(X)]])$.

 \bullet If X is a toric variety, then

$$
T_{0*}(X)=td_*(X).
$$

 $2Q$

不幸 医

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P \subset M_{\mathbb{R}} \cong {\mathbb{R}}^n$.

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P\subset M_{\mathbb{R}}\cong {\mathbb{R}}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let \mathcal{V}_{σ_Q} be the closure of the orbit $O_{\sigma_Q}\subset X_P$, and choose a point $x_Q\in O_{\sigma_Q}.$

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P\subset M_{\mathbb{R}}\cong {\mathbb{R}}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let \mathcal{V}_{σ_Q} be the closure of the orbit $O_{\sigma_Q}\subset X_P$, and choose a point $x_Q\in O_{\sigma_Q}.$ Let $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ be a mixed Hodge module complex on X_P with constant cohomology sheaves along the torus orbits $O_{\sigma_Q},$ $Q \preceq P$ (e.g., \mathbb{Q}_{X_P} or IC_{X_P}).

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P\subset M_{\mathbb{R}}\cong {\mathbb{R}}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let \mathcal{V}_{σ_Q} be the closure of the orbit $O_{\sigma_Q}\subset X_P$, and choose a point $x_Q\in O_{\sigma_Q}.$ Let $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ be a mixed Hodge module complex on X_P with constant cohomology sheaves along the torus orbits $O_{\sigma_Q},$ $Q \preceq P$ (e.g., \mathbb{Q}_{X_P} or IC_{X_P}). Then:

 $\mathcal{T}_{y*}([\mathcal{M}]) = \sum$ $Q \preceq P$ $\chi_{_{\mathcal{Y}}}(\mathcal{H}^{\bullet}(\mathcal{M})_{\mathsf{x}_Q})\cdot (1+y)^{\mathsf{dim}(\mathcal{Q})}\cdot td_*([\omega_{V_{\sigma_Q}}]),$

where td_{*} : $K_0(\text{Coh}(X_P)) \to H_{2*}(X_P;\mathbb{Q})$ is the Todd class transformation of Baum-Fulton-MacPherson.

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P\subset M_{\mathbb{R}}\cong {\mathbb{R}}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let \mathcal{V}_{σ_Q} be the closure of the orbit $O_{\sigma_Q}\subset X_P$, and choose a point $x_Q\in O_{\sigma_Q}.$ Let $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ be a mixed Hodge module complex on X_P with constant cohomology sheaves along the torus orbits $O_{\sigma_Q},$ $Q \preceq P$ (e.g., \mathbb{Q}_{X_P} or IC_{X_P}). Then:

$$
T_{y*}([\mathcal{M}]) = \sum_{Q \preceq P} \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q}) \cdot (1+y)^{\dim(Q)} \cdot td_*([\omega_{V_{\sigma_Q}}]),
$$

where td_{*} : K₀(Coh(X_P)) \rightarrow H_{2*}(X_P; Q) is the Todd class transformation of Baum-Fulton-MacPherson. In particular,

$$
\chi_{\mathsf{y}}(\mathsf{X}_{\mathsf{P}}; \mathcal{M}) = \sum_{Q \preceq P} \chi_{\mathsf{y}}(\mathcal{H}^{\bullet}(\mathcal{M})_{\mathsf{x}_Q}) \cdot (-1 - \mathsf{y})^{\dim(Q)}.
$$

$$
\text{For } \mathcal{M}=\mathbb{Q}_{X_P}, \, \text{get:}
$$

Corollary

(a) The Hodge polynomial $\chi_{\gamma}(X_P)$ is computed by:

$$
\chi_{y}(X_{P})=\sum_{Q\preceq P}(-1-y)^{\dim(Q)}.
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

 299

$$
\text{For } \mathcal{M}=\mathbb{Q}_{X_P}, \text{ get: }
$$

Corollary

(a) The Hodge polynomial $\chi_{y}(X_{P})$ is computed by:

$$
\chi_{y}(X_{P})=\sum_{Q\preceq P}(-1-y)^{\dim(Q)}.
$$

(b) The Euler characteristic $e(X)$ is computed by:

 $e(X_P)$ = number of vertices of P.

 $4.171 \pm$

メ御 メイヨ メイヨ メーヨ

Stanley's g-polynomials and intersection cohomology

Corollary

Assume $0 \in \text{Int}(P)$, and $\mathcal{M} = \mathit{IC}_{X_P}[-n]$. Then:

$$
I\chi_{\mathsf{y}}(X_{P}):=\chi_{\mathsf{y}}([lH^{\bullet}(X_{P})])=\sum_{Q\preceq P}g_{Q^{\circ}}(-\mathsf{y})\cdot (-1-\mathsf{y})^{\dim(Q)}.
$$

COLLA

K 母 → K ミ →

 $\leftarrow \equiv \rightarrow \rightarrow$ 重

Stanley's g-polynomials and intersection cohomology

Corollary

Assume
$$
0 \in \text{Int}(P)
$$
, and $\mathcal{M} = IC_{X_P}[-n]$. Then:

$$
I\chi_{y}(X_{P}) := \chi_{y}([lH^{\bullet}(X_{P})]) = \sum_{Q \preceq P} g_{Q^{\circ}}(-y) \cdot (-1-y)^{\dim(Q)}.
$$

In particular, for $y = 1$, the Goresky-MacPherson signature is

$$
\sigma(X_P) = \sum_{Q \preceq P} g_{Q^{\circ}}(-1) \cdot (-2)^{\dim(Q)}.
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君

Stanley's g-polynomials and intersection cohomology

Corollary

Assume
$$
0 \in \text{Int}(P)
$$
, and $\mathcal{M} = IC_{X_P}[-n]$. Then:

$$
I\chi_{y}(X_{P}) := \chi_{y}([lH^{\bullet}(X_{P})]) = \sum_{Q \preceq P} g_{Q^{\circ}}(-y) \cdot (-1-y)^{\dim(Q)}.
$$

In particular, for $y = 1$, the Goresky-MacPherson signature is

$$
\sigma(X_P) = \sum_{Q \preceq P} g_{Q^{\circ}}(-1) \cdot (-2)^{\dim(Q)}.
$$

Remark

Upon substituting $y = -t^2$ in $I\chi_y(X_P)$, we recover Fieseler's formula for the intersection cohomology Poincaré polynomial $IP_{X_P}(t) = h_P(t^2)$ of X_P .

イロメ イ押 レイモ レイモ レー

Weighted Ehrhart theory via generalized HRR for X_P

Theorem B (M.-Schürmann)

Let $P \subset M_{\mathbb{R}} \cong {\mathbb{R}}^n$ be a full-dimensional lattice polytope with associated toric variety X_P and ample Cartier divisor D_P .

Let $P \subset M_{\mathbb{R}} \cong {\mathbb{R}}^n$ be a full-dimensional lattice polytope with associated toric variety X_P and ample Cartier divisor D_P . Then, for any Laurent polynomial weight vector $f = \{f_Q\}_{Q \prec P}$,

$$
\operatorname{Ehr}_{P,f}(\ell, y) = \int_{X_P} e^{\ell[D_P]} \cap T_{y*}([\mathcal{M}])
$$

=
$$
\sum_{k=0}^n \left(\frac{1}{k!} \int_X [D_P]^k \cap T_{y,k}([\mathcal{M}]) \right) \cdot \ell^k
$$

へのへ

Let $P \subset M_{\mathbb{R}} \cong {\mathbb{R}}^n$ be a full-dimensional lattice polytope with associated toric variety X_P and ample Cartier divisor D_P . Then, for any Laurent polynomial weight vector $f = \{f_Q\}_{Q \prec P}$,

$$
\operatorname{Ehr}_{P,f}(\ell, y) = \int_{X_P} e^{\ell[D_P]} \cap T_{y*}([\mathcal{M}])
$$

=
$$
\sum_{k=0}^n \left(\frac{1}{k!} \int_X [D_P]^k \cap T_{y,k}([\mathcal{M}]) \right) \cdot \ell^k
$$

with $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ a mixed Hodge module complex with constant cohomology sheaves along orbits chosen so that $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$ for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$.

イロメ イ何メ イラメイラメー

へのへ

Corollary

• Ehr $P_f(\ell, y)$ is a polynomial in ℓ .

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

 299

Corollary

- Ehr $P,f(\ell, y)$ is a polynomial in ℓ .
- **•** Constant term:

$$
\mathrm{Ehr}_{P,f}(0,y)=\chi_y(X_P;\mathcal{M})=\sum_{Q\preceq P}f_Q(y)\cdot(-1-y)^{\dim(Q)}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

活

 299

Reciprocity and Purity for arbitrary weight vectors

Theorem C (M.-Schürmann)

For any $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits, we have the reciprocity property

$$
\mathrm{Ehr}_{P,\mathcal{M}}(-\ell,y)=\mathrm{Ehr}_{P,\mathcal{D}_X\mathcal{M}}(\ell,\frac{1}{y}).
$$

Reciprocity and Purity for arbitrary weight vectors

Theorem C (M.-Schürmann)

For any $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits, we have the reciprocity property

$$
\mathrm{Ehr}_{P,\mathcal{M}}(-\ell,y)=\mathrm{Ehr}_{P,\mathcal{D}_X\mathcal{M}}(\ell,\frac{1}{y}).
$$

In particular, if M is such a self-dual pure Hodge module of weight n on X_P , then the following purity property holds:

$$
\mathrm{Ehr}_{P,\mathcal{M}}(-\ell, y) = (-y)^n \cdot \mathrm{Ehr}_{P,\mathcal{M}}(\ell, \frac{1}{y}).
$$

For any $\mathcal{M} \in D^b\mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits, we have the reciprocity property

$$
\mathrm{Ehr}_{P,\mathcal{M}}(-\ell,y)=\mathrm{Ehr}_{P,\mathcal{D}_X\mathcal{M}}(\ell,\frac{1}{y}).
$$

In particular, if M is such a self-dual pure Hodge module of weight n on X_P , then the following purity property holds:

$$
\mathrm{Ehr}_{P,\mathcal{M}}(-\ell,y) = (-y)^n \cdot \mathrm{Ehr}_{P,\mathcal{M}}(\ell,\frac{1}{y}).
$$

More generally, for any weight vector f on the faces of P, we have

$$
\mathrm{Ehr}_{P,f}(-\ell,y)=\sum_{Q\preceq P}f_Q(y)\cdot(-1-y)^{\dim(Q)}\cdot\#(\ell Q\cap M).
$$

COLOR

Remark

The purity of Beck-Gunnells-Materov for $\text{Ehr}_{P,f}(\ell, y)$, with f given by Stanley's g-polynomials of faces of the polar polytope P° , follows for the special case of I C_{X_P} , which is self-dual pure Hodge module of weight n on X_P .

重

つくい

すぼ おす 悪 おし

Generalized Ehrhart theory

 \clubsuit Let $\varphi\colon M_\mathbb{R} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

(大震 トー 重

E N

Generalized Ehrhart theory

 \clubsuit Let $\varphi\colon M_\mathbb{R} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

♣ The generalized Ehrhart "polynomial" is defined by

$$
\mathrm{Ehr}_P^{\varphi}(\ell) := \sum_{m \in \ell P \cap M} \varphi(m)
$$

 $2Q$

す 重 を…

Generalized Ehrhart theory

 \clubsuit Let $\varphi\colon M_\mathbb{R} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

♣ The generalized Ehrhart "polynomial" is defined by

$$
\mathrm{Ehr}_P^{\varphi}(\ell) := \sum_{m \in \ell P \cap M} \varphi(m)
$$

• If
$$
\varphi = 1
$$
, get $\text{Ehr}_P^1(\ell) = \text{Ehr}_P(\ell)$.

④ 重 ト ④ 重 ト …

 $2Q$

店
Generalized Ehrhart theory

 \clubsuit Let $\varphi\colon M_\mathbb{R} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

♣ The generalized Ehrhart "polynomial" is defined by

$$
\mathrm{Ehr}_P^{\varphi}(\ell) := \sum_{m \in \ell P \cap M} \varphi(m)
$$

• If
$$
\varphi = 1
$$
, get $\text{Ehr}_P^1(\ell) = \text{Ehr}_P(\ell)$.

Theorem (Brion-Vergne, 1997)

 $\mathrm{Ehr}_P^{\varphi}(\ell)$ is a polynomial in ℓ of degree $\mathsf{dim}(P)+\mathsf{deg}(\varphi)$, with constant term $\varphi(0)$, which satisfies the reciprocity law

$$
\begin{aligned} \operatorname{Ehr}_{P}^{\varphi}(-\ell) &= (-1)^{\dim(P) + \deg(\varphi)} \sum_{m \in \operatorname{Int}(\ell P) \cap M} \varphi(m) \\ &= (-1)^{\dim(P) + \deg(\varphi)} \cdot \operatorname{Ehr}_{\operatorname{Int}(P)}^{\varphi}(\ell) \end{aligned}
$$

 Ω

\clubsuit Let $\varphi\colon M_{\mathbb{R}}\cong{\mathbb{R}}^n\to{\mathbb{C}}$ be a homogeneous polynomial function.

LAURENTIU MAXIM University of Wisconsin-Madison [Generalized weighted Ehrhart theory](#page-0-0)

 $2Q$

す 重 を… 店 \clubsuit Let $\varphi\colon M_{\mathbb{R}}\cong{\mathbb{R}}^n\to{\mathbb{C}}$ be a homogeneous polynomial function.

♣ Consider a *weight vector f =* $\{f_{Q}\}$ *, with* $f_{Q}(y) \in \mathbb{Z}[y^{\pm 1}]$ *indexed* by the non-empty faces $\emptyset \neq Q \prec P$ of P.

 $2Q$

化异体 人名

 \clubsuit Let $\varphi\colon M_{\mathbb{R}}\cong{\mathbb{R}}^n\to{\mathbb{C}}$ be a homogeneous polynomial function.

♣ Consider a *weight vector f =* $\{f_{Q}\}$ *, with* $f_{Q}(y) \in \mathbb{Z}[y^{\pm 1}]$ *indexed* by the non-empty faces $\emptyset \neq Q \prec P$ of P.

♣ The generalized weighted Ehrhart "polynomial" is defined by

$$
\mathrm{Ehr}_{P,f}^{\varphi}(\ell,y):=\sum_{Q\preceq P}f_Q(y)\cdot (1+y)^{\dim(Q)+\deg(\varphi)}\cdot \sum_{m\in \mathrm{Relint}(\ell Q)\cap M}\varphi(m)
$$

with $\text{Relint}(\ell Q)$ denoting the relative interior of the face ℓQ of the dilated polytope ℓP .

オート オート オート

つくい

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of P) to this generalized weighted Ehrhart theory, so that $\mathrm{Ehr}_{{P},f}^{\varphi}(\ell,y)$ has the following properties:

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of P) to this generalized weighted Ehrhart theory, so that $\mathrm{Ehr}_{{P},f}^{\varphi}(\ell,y)$ has the following properties:

 $\mathrm{Ehr}_{{\mathcal P},f}^{\varphi}(\ell,\mathsf{y})$ is a polynomial in $\ell.$

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of P) to this generalized weighted Ehrhart theory, so that $\mathrm{Ehr}_{{P},f}^{\varphi}(\ell,y)$ has the following properties:

- $\mathrm{Ehr}_{{\mathcal P},f}^{\varphi}(\ell,\mathsf{y})$ is a polynomial in $\ell.$
- (Constant term) For $\ell = 0$,

$$
\mathrm{Ehr}_{P,f}^{\varphi}(0,y)=\sum_{Q\preceq P}f_Q(y)\cdot(-1-y)^{\dim(Q)+\deg(\varphi)}\cdot\varphi(0),
$$

i.e.,
$$
\left(\sum_{m\in \mathrm{Relint}(\ell Q)\cap M}\varphi(m)\right)|_{\ell=0}=(-1)^{\dim(Q)+\deg(\varphi)}\cdot \varphi(0).
$$

٠

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of P) to this generalized weighted Ehrhart theory, so that $\mathrm{Ehr}_{{P},f}^{\varphi}(\ell,y)$ has the following properties:

- $\mathrm{Ehr}_{{\mathcal P},f}^{\varphi}(\ell,\mathsf{y})$ is a polynomial in $\ell.$
- (Constant term) For $\ell = 0$,

$$
\mathrm{Ehr}_{P,f}^{\varphi}(0,y)=\sum_{Q\preceq P}f_Q(y)\cdot(-1-y)^{\dim(Q)+\deg(\varphi)}\cdot\varphi(0),
$$

i.e.,
$$
\left(\sum_{m\in \text{Relint}(\ell Q)\cap M} \varphi(m)\right)|_{\ell=0} = (-1)^{\dim(Q)+\deg(\varphi)} \cdot \varphi(0).
$$

(Reciprocity formula) For $\ell \in \mathbb{Z}_{>0}$,

$$
\mathrm{Ehr}_{P,f}^{\varphi}(-\ell,y)=\sum_{Q\preceq P}f_Q(y)\cdot (-1-y)^{\dim(Q)+\deg(\varphi)}\cdot \sum_{m\in\ell Q\cap M}\varphi(m).
$$

Assume $0 \in \text{Int}(P)$, and consider the weight vector given by Stanley's g-polynomials

$$
f_Q(y)=g_{Q^{\circ}}(-y)=:\widetilde{g}_Q(-y)
$$

for the faces of the polar polytope of P, with $g_{\emptyset}(-y) = \widetilde{g}_P(-y) = 1.$

 $2Q$

遥

→ 唐 × → 唐 × 。

Assume $0 \in \text{Int}(P)$, and consider the weight vector given by Stanley's g-polynomials

$$
f_Q(y)=g_{Q^{\circ}}(-y)=:\widetilde{g}_Q(-y)
$$

for the faces of the polar polytope of P, with $g_{\emptyset}(-y) = \widetilde{g}_P(-y) = 1.$

Theorem (Beck-Gunnells-Materov)

The following *purity* property holds:

 $\mathrm{Ehr}_{P,f}^{\varphi}(-\ell, y) = (-y)^{\dim(P) + \deg(\varphi)} \cdot \mathrm{Ehr}_{P,f}^{\varphi}(\ell, 1/y).$

メロメメ 御 メメ きょくきょうき

 QQ

 \clubsuit To prove all these properties for $\mathrm{Ehr}_{{P},f}^{\varphi}(\ell,y)$ geometrically, we need to work equivariantly, with torus equivariant mixed Hodge modules on X_P .

 $2Q$

∍

4. E. K

♣ A corresponding equivariant generalized HRR type theorem gives a weighted count of torus characters $\chi^{\bm{m}} \in \mathbb{Z}[\bar{M}].$

♣ A corresponding equivariant generalized HRR type theorem gives a weighted count of torus characters $\chi^{\bm{m}} \in \mathbb{Z}[\bar{M}].$

 \clubsuit Finally, the homogeneous polynomial φ defines a homomorphism

$$
\mathbb{Z}[M] \longrightarrow \mathbb{C}, \quad \chi^m \mapsto \varphi(-(1+y)\cdot m) = (-1-y)^{\deg(\varphi)} \cdot \varphi(m).
$$

a televisie televisie

つくい

♣ A corresponding equivariant generalized HRR type theorem gives a weighted count of torus characters $\chi^{\bm{m}} \in \mathbb{Z}[\bar{M}].$

 \clubsuit Finally, the homogeneous polynomial φ defines a homomorphism

$$
\mathbb{Z}[M] \longrightarrow \mathbb{C}, \quad \chi^m \mapsto \varphi(-(1+y)\cdot m) = (-1-y)^{\deg(\varphi)} \cdot \varphi(m).
$$

 \clubsuit To explain geometrically the polynomial behavior in ℓ of $\mathrm{Ehr}_{{\boldsymbol{\rho}},\boldsymbol{f}}^{\varphi}(\ell,y)$ we work in equivariant homology, using equivariant localization at torus fixed points (a combinatorial proof can be given using work of Brion-Vergne).

イロト イ押 トイチ トイチャー

Remark

If P is a simple lattice polytope, $\mathrm{Ehr}_{P,f}^{\varphi}(\ell,y)$ can be computed by Euler-Maclaurin type formulae, like in works of Beck-Gunnells-Materov (combinatorially) or Cappell-M.-Schürmann-Shaneson (via the equivariant Hirzebruch-Riemann-Roch formalism).

> す 重 を… 店

つくい

THANK YOU !!!

メロメメ 倒 メメ きょくきょう

目

 299

LAURENTIU MAXIM University of Wisconsin-Madison [Generalized weighted Ehrhart theory](#page-0-0)