A geometric perspective on generalized weighted Ehrhart theory

LAURENTIU MAXIM University of Wisconsin-Madison

MIST Workshop, Hong Kong, August 15, 2024

(joint work with J. Schürmann)

Lattice polytopes, Fans and Toric Varieties

$\clubsuit M \simeq \mathbb{Z}^n$ *n*-dimensional lattice in \mathbb{R}^n

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Lattice polytopes, Fans and Toric Varieties

♣ $M \simeq \mathbb{Z}^n$ *n*-dimensional lattice in \mathbb{R}^n ♣ $N = Hom(M, \mathbb{Z})$ the dual lattice

・日・ ・ ヨ・ ・ ヨ・

Lattice polytopes, Fans and Toric Varieties

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

cone $\sigma \in \Sigma \rightsquigarrow$ orbit $O_{\sigma} \subset X_{\Sigma} \rightsquigarrow$ orbit closure $V_{\sigma} := \overline{O}_{\sigma}$.

(日) (四) (三) (三) (三)

cone $\sigma \in \Sigma \rightsquigarrow$ orbit $O_{\sigma} \subset X_{\Sigma} \rightsquigarrow$ orbit closure $V_{\sigma} := \overline{O}_{\sigma}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

♣ If $P = \text{Conv}(S) \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ (with $S \subset M$ a finite set) is a full-dimensional lattice polytope, then

♣ *M* ≃ ℤⁿ *n*-dimensional lattice in ℝⁿ
♣ *N* = Hom(*M*,ℤ) the dual lattice
♣ fan Σ in *N*_ℝ = *N* ⊗ ℝ ≅ ℝⁿ → toric variety *X*_Σ
♣ Cone-Orbit Correspondence:

cone $\sigma \in \Sigma \rightsquigarrow$ orbit $O_{\sigma} \subset X_{\Sigma} \rightsquigarrow$ orbit closure $V_{\sigma} := \overline{O}_{\sigma}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

♣ If $P = \text{Conv}(S) \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ (with $S \subset M$ a finite set) is a full-dimensional lattice polytope, then

• $P \rightsquigarrow inner normal fan \Sigma_P \rightsquigarrow$ projective toric variety $X_P := X_{\Sigma_P}$ with ample Cartier divisor D_P

$$\begin{array}{l} \mathsf{cone} \ \sigma \in \Sigma \rightsquigarrow \mathsf{orbit} \ \mathcal{O}_\sigma \subset X_\Sigma \rightsquigarrow \mathsf{orbit} \ \mathsf{closure} \ V_\sigma := \bar{\mathcal{O}}_\sigma. \end{array} \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

♣ If $P = \text{Conv}(S) \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ (with $S \subset M$ a finite set) is a full-dimensional lattice polytope, then

- $P \rightsquigarrow inner normal fan \Sigma_P \rightsquigarrow$ projective toric variety $X_P := X_{\Sigma_P}$ with ample Cartier divisor D_P
- face $Q \preceq P \rightsquigarrow$ cone $\sigma_Q \in \Sigma_P \rightsquigarrow$ orbit \mathcal{O}_{σ_Q} in X_P

♣ $M \cong \mathbb{Z}^n$ lattice, $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ full-dim. lattice polytope.

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

♣ M ≅ Zⁿ lattice, P ⊂ M_ℝ ≅ ℝⁿ full-dim. lattice polytope.
♣ Problem: Calculate #(ℓP ∩ M), for ℓ ∈ Z_{>0}.

向下 イヨト イヨト

♣ M ≅ Zⁿ lattice, P ⊂ M_R ≅ Rⁿ full-dim. lattice polytope.
♣ Problem: Calculate #(ℓP ∩ M), for ℓ ∈ Z_{>0}.
♣ Ehrhart-Macdonald (1960): Ehr_P(ℓ) := #(ℓP ∩ M) is a polynomial in ℓ of degree n, called the Ehrhart polynomial of P.

♣ M ≅ Zⁿ lattice, P ⊂ M_ℝ ≅ Rⁿ full-dim. lattice polytope.
♣ Problem: Calculate #(ℓP ∩ M), for ℓ ∈ Z_{>0}.
♣ Ehrhart-Macdonald (1960): Ehr_P(ℓ) := #(ℓP ∩ M) is a polynomial in ℓ of degree n, called the Ehrhart polynomial of P.
♣ Geometric Approach (Danilov):

♣ M ≅ Zⁿ lattice, P ⊂ M_ℝ ≅ Rⁿ full-dim. lattice polytope.
♣ Problem: Calculate #(ℓP ∩ M), for ℓ ∈ Z_{>0}.
♣ Ehrhart-Macdonald (1960): Ehr_P(ℓ) := #(ℓP ∩ M) is a polynomial in ℓ of degree n, called the Ehrhart polynomial of P.
♣ Geometric Approach (Danilov):

• consider the associated (possibly singular) projective *toric variety* X_P with ample Cartier divisor D_P.

♣ M ≅ Zⁿ lattice, P ⊂ M_ℝ ≅ ℝⁿ full-dim. lattice polytope.
♣ Problem: Calculate #(ℓP ∩ M), for ℓ ∈ Z_{>0}.
♣ Ehrhart-Macdonald (1960): Ehr_P(ℓ) := #(ℓP ∩ M) is a polynomial in ℓ of degree n, called the Ehrhart polynomial of P.
♣ Geometric Approach (Danilov):

• consider the associated (possibly singular) projective toric variety X_P with ample Cartier divisor D_P.

$$\operatorname{Ehr}_{P}(\ell) = \chi(X_{P}, \mathcal{O}(\ell D_{P}))$$

$$\stackrel{(RR)}{=} \sum_{k \ge 0} \left(\frac{1}{k!} \int_{X_{P}} [D_{P}]^{k} \cap td_{k}(X_{P}) \right) \ell^{k} = \sum_{k \ge 0} a_{k} \ell^{k},$$

with $td_k(X_P) \in H_{2k}(X_P; \mathbb{Q})$ the degree k component of the Baum-Fulton-MacPherson Todd class $td_*(X_P)$.

イロト イポト イヨト イヨト

۲

♣ M ≅ Zⁿ lattice, P ⊂ M_ℝ ≅ ℝⁿ full-dim. lattice polytope.
♣ Problem: Calculate #(ℓP ∩ M), for ℓ ∈ Z_{>0}.
♣ Ehrhart-Macdonald (1960): Ehr_P(ℓ) := #(ℓP ∩ M) is a polynomial in ℓ of degree n, called the Ehrhart polynomial of P.
♣ Geometric Approach (Danilov):

• consider the associated (possibly singular) projective *toric variety* X_P with ample Cartier divisor D_P.

$$\begin{aligned} \operatorname{Ehr}_{P}(\ell) &= \chi(X_{P}, \mathcal{O}(\ell D_{P})) \\ &\stackrel{(RR)}{=} \sum_{k \geq 0} \left(\frac{1}{k!} \int_{X_{P}} [D_{P}]^{k} \cap td_{k}(X_{P}) \right) \ell^{k} = \sum_{k \geq 0} a_{k} \ell^{k}, \end{aligned}$$

with $td_k(X_P) \in H_{2k}(X_P; \mathbb{Q})$ the degree k component of the Baum-Fulton-MacPherson Todd class $td_*(X_P)$.

•
$$a_n = \operatorname{vol}(P)$$
, $a_{n-1} = \frac{1}{2}\operatorname{vol}(\partial P)$, $a_0 = \chi(P) = 1$.

Ehrhart reciprocity:

 $\operatorname{Ehr}_{P}(-\ell) = (-1)^{n} \cdot \# (\operatorname{Int}(\ell P) \cap M) = (-1)^{n} \cdot \operatorname{Ehr}_{\operatorname{Int}(P)}(\ell)$

(4回) (1日) (日) 日

Ehrhart reciprocity:

 $\operatorname{Ehr}_{P}(-\ell) = (-1)^{n} \cdot \# (\operatorname{Int}(\ell P) \cap M) = (-1)^{n} \cdot \operatorname{Ehr}_{\operatorname{Int}(P)}(\ell)$

Geometrically,

$$\#(\mathrm{Int}(\ell P)\cap M)=(-1)^n\cdot\chi(X_P,\mathcal{O}(-\ell D_P))$$

米田 と 米田 と 米田 と 三田

Weighted Ehrhart theory

Face decomposition for *P*:

$$\#(\ell P \cap M) = \sum_{Q \preceq P} \#(\operatorname{Relint}(\ell Q) \cap M),$$

with $\operatorname{Relint}(\ell Q)$ the relative interior of the face ℓQ of the dilated polytope ℓP .

向下 イヨト イヨト

Weighted Ehrhart theory

Face decomposition for *P*:

$$#(\ell P \cap M) = \sum_{Q \preceq P} #(\operatorname{Relint}(\ell Q) \cap M),$$

with $\operatorname{Relint}(\ell Q)$ the relative interior of the face ℓQ of the dilated polytope ℓP .

♣ Assign Laurent polynomial weights $f_Q(y) \in \mathbb{Z}[y^{\pm 1}]$ to each face $Q \leq P$ of P, and define for any $\ell \in \mathbb{Z}_{>0}$ the weighted Ehrhart "polynomial" of P and $f = \{f_Q\}_{Q \leq P}$ by

 $\operatorname{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\operatorname{Relint}(\ell Q) \cap M)$

(日本) (日本) (日本)

Weighted Ehrhart theory

Face decomposition for *P*:

$$#(\ell P \cap M) = \sum_{Q \preceq P} #(\operatorname{Relint}(\ell Q) \cap M),$$

with $\operatorname{Relint}(\ell Q)$ the relative interior of the face ℓQ of the dilated polytope ℓP .

♣ Assign Laurent polynomial weights $f_Q(y) \in \mathbb{Z}[y^{\pm 1}]$ to each face $Q \leq P$ of P, and define for any $\ell \in \mathbb{Z}_{>0}$ the weighted Ehrhart "polynomial" of P and $f = \{f_Q\}_{Q \leq P}$ by

 $\operatorname{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\operatorname{Relint}(\ell Q) \cap M)$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 $\clubsuit \text{ If } f = \mathbf{1} := \{1\}, \text{ get for } y = 0: \text{ Ehr}_{P,\mathbf{1}}(\ell, 0) = \text{Ehr}_{P}(\ell)$

$$\operatorname{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\operatorname{Relint}(\ell Q) \cap M)$$

LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory

向下 イヨト イヨト

$$\operatorname{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\operatorname{Relint}(\ell Q) \cap M)$$

♣ By classical Ehrhart theory for the faces of *P*, $Ehr_{P,f}(\ell, y)$ has the following properties:

$$\operatorname{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\operatorname{Relint}(\ell Q) \cap M)$$

A By classical Ehrhart theory for the faces of P, $Ehr_{P,f}(\ell, y)$ has the following properties:

• $\operatorname{Ehr}_{P,f}(\ell, y)$ is obtained by evaluating a polynomial $\operatorname{Ehr}_{P,f}(z, y)$ at $z = \ell \in \mathbb{Z}_{>0}$.

$$\operatorname{Ehr}_{P,f}(\ell, y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\operatorname{Relint}(\ell Q) \cap M)$$

& By classical Ehrhart theory for the faces of P, $Ehr_{P,f}(\ell, y)$ has the following properties:

• $\operatorname{Ehr}_{P,f}(\ell, y)$ is obtained by evaluating a polynomial $\operatorname{Ehr}_{P,f}(z, y)$ at $z = \ell \in \mathbb{Z}_{>0}$.

• (Constant term) For
$$\ell = 0$$
,

$$\operatorname{Ehr}_{P,f}(0,y) = \sum_{Q \preceq P} f_Q(y) \cdot (-1-y)^{\dim(Q)},$$

i.e., evaluating $\#(\operatorname{Relint}(\ell Q) \cap M)$ at $\ell = 0$ as $(-1)^{\dim(Q)}$.

Properties of the weighted Ehrhart polynomial $\operatorname{Ehr}_{P,f}(\ell)$

$$\operatorname{Ehr}_{P,f}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q)} \cdot \#(\operatorname{Relint}(\ell Q) \cap M)$$

A By classical Ehrhart theory for the faces of P, $Ehr_{P,f}(\ell, y)$ has the following properties:

• $\operatorname{Ehr}_{P,f}(\ell, y)$ is obtained by evaluating a polynomial $\operatorname{Ehr}_{P,f}(z, y)$ at $z = \ell \in \mathbb{Z}_{>0}$.

• (Constant term) For
$$\ell = 0$$
,

$$\operatorname{Ehr}_{P,f}(0,y) = \sum_{Q \preceq P} f_Q(y) \cdot (-1-y)^{\dim(Q)},$$

i.e., evaluating $#(\operatorname{Relint}(\ell Q) \cap M)$ at $\ell = 0$ as $(-1)^{\dim(Q)}$. • (Reciprocity formula) For $\ell \in \mathbb{Z}_{>0}$,

$$\operatorname{Ehr}_{P,f}(-\ell,y) = \sum_{Q \leq P} f_Q(y) \cdot (-1-y)^{\dim(Q)} \cdot \#(\ell Q \cap M).$$

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with \emptyset corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

・ 「 ・ ・ こ ・ ・ こ ・ ・

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with Ø corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

♣ There is an order-reversing one-to-one correspondence between the faces Q of P, and the faces Q° of the polar polytope P° , switching the roles of polytopes and emptysets seen as faces. For a proper face $\emptyset \neq Q \prec P$, one has dim_ℝ(Q) + dim_ℝ(Q°) = n - 1.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with \emptyset corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

♣ There is an order-reversing one-to-one correspondence between the faces Q of P, and the faces Q° of the polar polytope P° , switching the roles of polytopes and emptysets seen as faces. For a proper face $\emptyset \neq Q \prec P$, one has dim_ℝ(Q) + dim_ℝ(Q°) = n - 1. ♣ Consider the weight vector given by Stanley's *g*-polynomials

$$f_Q(y) = g_{Q^\circ}(-y) =: \widetilde{g}_Q(-y)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

for the polar polytope of P, with $g_{\emptyset}(-y) = \widetilde{g}_P(-y) = 1$.

♣ By taking cones at $0 \in N_{\mathbb{R}}$ over the proper faces of P° , with \emptyset corresponding to the origin, one gets the same lattice fan Σ_P (hence the same toric variety X_P).

♣ There is an order-reversing one-to-one correspondence between the faces Q of P, and the faces Q° of the polar polytope P° , switching the roles of polytopes and emptysets seen as faces. For a proper face $\emptyset \neq Q \prec P$, one has dim_ℝ(Q) + dim_ℝ(Q°) = n - 1. ♣ Consider the weight vector given by Stanley's *g*-polynomials

$$f_Q(y) = g_{Q^\circ}(-y) =: \widetilde{g}_Q(-y)$$

for the polar polytope of P, with $g_{\emptyset}(-y) = \tilde{g}_P(-y) = 1$. If P is a *simple* polytope, the polar polytope P° is *simplicial*, so that $g_{Q^{\circ}}(-y) = 1$, for all faces Q of P.

(ロ) (同) (E) (E) (E) (E)

Theorem (Beck-Gunnells-Materov)

For $f_Q(y) = g_{Q^\circ}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P, the following purity property holds:

 $\operatorname{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \operatorname{Ehr}_{P,f}(\ell, 1/y)$

イロト イポト イヨト イヨト 二日

Theorem (Beck-Gunnells-Materov)

For $f_Q(y) = g_{Q^\circ}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P, the following purity property holds:

$\operatorname{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \operatorname{Ehr}_{P,f}(\ell, 1/y)$

イロト イヨト イヨト イヨト 二日

Combinatorial proof relying on work of Brion-Vergne.

Theorem (Beck-Gunnells-Materov)

For $f_Q(y) = g_{Q^\circ}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P, the following purity property holds:

$$\operatorname{Ehr}_{P,f}(-\ell,y) = (-y)^n \cdot \operatorname{Ehr}_{P,f}(\ell,1/y)$$

& Combinatorial proof relying on work of Brion-Vergne.

If P is simple, purity implies Dehn-Sommerville relations for P.

・同・ ・ヨト ・ヨト

Theorem (Beck-Gunnells-Materov)

For $f_Q(y) = g_{Q^\circ}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P, the following purity property holds:

$$\operatorname{Ehr}_{P,f}(-\ell,y) = (-y)^n \cdot \operatorname{Ehr}_{P,f}(\ell,1/y)$$

& Combinatorial proof relying on work of Brion-Vergne.

If P is simple, purity implies Dehn-Sommerville relations for P.

Our aim is to explain a *geometric proof* of this result, and to prove a form of reciprocity/purity for *any* weight vector *f*.

イロン 不同 とうほう 不同 とう

Theorem (Beck-Gunnells-Materov)

For $f_Q(y) = g_{Q^\circ}(-y)$ the weight vector given by Stanley's g-polynomials for the faces of the polar polytope P° of P, the following purity property holds:

 $\operatorname{Ehr}_{P,f}(-\ell, y) = (-y)^n \cdot \operatorname{Ehr}_{P,f}(\ell, 1/y)$

& Combinatorial proof relying on work of Brion-Vergne.

If P is simple, purity implies Dehn-Sommerville relations for P.

Our aim is to explain a *geometric proof* of this result, and to prove a form of reciprocity/purity for *any* weight vector *f*.

♣ We use Hodge theory, and recover all properties of $Ehr_{P,f}(\ell)$ from the calculus of characteristic classes of mixed Hodge modules on X_P (via a generalized Hirzebruch-Riemann-Roch).

Hodge polynomial

There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([\mathcal{H}^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣
There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([\mathcal{H}^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

& For a complex projective algebraic variety X (e.g., X_P), can take:

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([H^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

♣ For a complex projective algebraic variety X (e.g., X_P), can take:
● (cohomology) H[•] = H[•](X; M), for M ∈ D^bMHM(X)

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([\mathcal{H}^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

& For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^{b}MHM(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_x$, for $x \in X$ and $\mathcal{M} \in D^b MHM(X)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([\mathcal{H}^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

& For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^{b}MHM(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_x$, for $x \in X$ and $\mathcal{M} \in D^b MHM(X)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([\mathcal{H}^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

A For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^{b}MHM(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^{b}MHM(X)$

・ 何 ト ・ ヨ ト ・ ヨ ト

♣ For $\mathcal{M} \in D^{b}$ MHM(X), set $\chi_{y}(X; \mathcal{M}) := \chi_{y}([H^{\bullet}(X; \mathcal{M})])$. In particular, for $\mathcal{M} = \mathbb{Q}_{X}$ set $\chi_{y}(X) = \chi_{y}([H^{\bullet}(X)])$, and for $\mathcal{M} = IC_{X}[-\dim(X)]$ set $I\chi_{y}(X) := \chi_{y}([IH^{\bullet}(X)])$.

There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([\mathcal{H}^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

A For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^{b}MHM(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^{b}MHM(X)$

- 本部 トイヨト イヨト - ヨ

♣ For $\mathcal{M} \in D^{b}$ MHM(X), set $\chi_{y}(X; \mathcal{M}) := \chi_{y}([H^{\bullet}(X; \mathcal{M})])$. In particular, for $\mathcal{M} = \mathbb{Q}_{X}$ set $\chi_{y}(X) = \chi_{y}([H^{\bullet}(X)])$, and for $\mathcal{M} = IC_{X}[-\dim(X)]$ set $I\chi_{y}(X) := \chi_{y}([IH^{\bullet}(X)])$. ♣ $\chi_{-1}(X) = e(X)$ is the Euler characteristic of X.

A There is a Hodge polynomial ring homomorphism

$$\chi_{y} : \mathcal{K}_{0}(\mathrm{MHS}) \longrightarrow \mathbb{Z}[y^{\pm 1}]$$
$$\chi_{y}([\mathcal{H}^{\bullet}]) := \sum_{j,p} (-1)^{j} \cdot \dim_{\mathbb{C}} \mathrm{Gr}_{F}^{p} \mathcal{H}_{\mathbb{C}}^{j} \cdot (-y)^{p}$$

A For a complex projective algebraic variety X (e.g., X_P), can take:

- (cohomology) $H^{\bullet} = H^{\bullet}(X; \mathcal{M})$, for $\mathcal{M} \in D^{b}MHM(X)$
- (stalks) $H^{\bullet} = \mathcal{H}^{\bullet}(\mathcal{M})_{x}$, for $x \in X$ and $\mathcal{M} \in D^{b}MHM(X)$

♣ For $\mathcal{M} \in D^b$ MHM(X), set $\chi_y(X; \mathcal{M}) := \chi_y([H^{\bullet}(X; \mathcal{M})])$. In particular, for $\mathcal{M} = \mathbb{Q}_X$ set $\chi_y(X) = \chi_y([H^{\bullet}(X)])$, and for $\mathcal{M} = IC_X[-\dim(X)]$ set $I\chi_y(X) := \chi_y([IH^{\bullet}(X)])$.

 $\lambda_{-1}(X) = e(X)$ is the Euler characteristic of X.

♣ M.-Saito-Schürmann: $I_{\chi_1}(X) = \sigma(X)$ is the intersection cohomology signature of X (Goresky-MacPherson).

For any weight vector $f = \{f_Q\}_{Q \leq P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$.

(本部) (문) (문) (문

For any weight vector $f = \{f_Q\}_{Q \leq P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$. Conversely, any such \mathcal{M} defines a weight vector f.

(本部) (문) (문) (문

For any weight vector $f = {f_Q}_{Q \leq P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$. Conversely, any such \mathcal{M} defines a weight vector f.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

♣ For *f* and \mathcal{M} as above, set $\operatorname{Ehr}_{P,f}(\ell) = \operatorname{Ehr}_{P,\mathcal{M}}(\ell)$.

For any weight vector $f = \{f_Q\}_{Q \leq P}$ on the faces of the lattice polytope P, there exists some $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits such that

 $f_Q(y) = \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q})$

for some (any) $x_Q \in O_{\sigma_Q} \subset X_P$. Conversely, any such \mathcal{M} defines a weight vector f.

イロト イヨト イヨト イヨト 三日

♣ For *f* and \mathcal{M} as above, set $\operatorname{Ehr}_{P,f}(\ell) = \operatorname{Ehr}_{P,\mathcal{M}}(\ell)$.

Example (Fieseler, Denef-Loeser)

For a lattice polytope *P* with Stanley's *g*-polynomials $f_Q(y) = g_{Q^\circ}(-y)$, one can choose $\mathcal{M} = IC_{X_P}[-n]$.

For X projective,

$$\chi_y(X;\mathcal{M}) := \chi_y([H^{\bullet}(X;\mathcal{M})]) = \int_X T_{y*}([\mathcal{M}]),$$

with

$$T_{y*}: K_0(\operatorname{MHM}(X)) \to H_{2*}(X) \otimes \mathbb{Q}[y^{\pm 1}]$$

回 とう ほ とう きょう

the Brasselet-Schürmann-Yokura Hirzebruch class transformation.

For X projective,

$$\chi_{y}(X;\mathcal{M}) := \chi_{y}([H^{\bullet}(X;\mathcal{M})]) = \int_{X} T_{y*}([\mathcal{M}]),$$

with

$$T_{y*}: K_0(\mathrm{MHM}(X)) \to H_{2*}(X) \otimes \mathbb{Q}[y^{\pm 1}]$$

the Brasselet-Schürmann-Yokura Hirzebruch class transformation. Set $T_{v*}(X) := T_{v*}([\mathbb{Q}_X]), \ IT_{v*}(X) := T_{v*}([IC_X[-\dim(X)]]).$

伺下 イヨト イヨト

3

For X projective,

$$\chi_y(X;\mathcal{M}) := \chi_y([H^{\bullet}(X;\mathcal{M})]) = \int_X T_{y*}([\mathcal{M}]),$$

with

$$T_{y*}: \mathcal{K}_0(\mathrm{MHM}(X)) \to \mathcal{H}_{2*}(X) \otimes \mathbb{Q}[y^{\pm 1}]$$

the Brasselet-Schürmann-Yokura Hirzebruch class transformation.

$$\texttt{A Set } T_{y*}(X) := T_{y*}([\mathbb{Q}_X]), \ \ IT_{y*}(X) := T_{y*}([IC_X[-\dim(X)]]).$$

 \clubsuit If X is a toric variety, then

$$T_{0*}(X) = td_*(X).$$

(A) (E) (A) (E) (A)

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$.

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let V_{σ_Q} be the closure of the orbit $O_{\sigma_Q} \subset X_P$, and choose a point $x_Q \in O_{\sigma_Q}$.

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let V_{σ_Q} be the closure of the orbit $O_{\sigma_Q} \subset X_P$, and choose a point $x_Q \in O_{\sigma_Q}$. Let $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ be a mixed Hodge module complex on X_P with constant cohomology sheaves along the torus orbits O_{σ_Q} , $Q \preceq P$ (e.g., \mathbb{Q}_{X_P} or IC_{X_P}).

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let V_{σ_Q} be the closure of the orbit $O_{\sigma_Q} \subset X_P$, and choose a point $x_Q \in O_{\sigma_Q}$. Let $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ be a mixed Hodge module complex on X_P with constant cohomology sheaves along the torus orbits O_{σ_Q} , $Q \preceq P$ (e.g., \mathbb{Q}_{X_P} or IC_{X_P}). Then:

 $T_{y*}([\mathcal{M}]) = \sum_{Q \leq P} \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q}) \cdot (1+y)^{\dim(Q)} \cdot td_*([\omega_{V_{\sigma_Q}}]),$

where $td_* : K_0(Coh(X_P)) \to H_{2*}(X_P; \mathbb{Q})$ is the Todd class transformation of Baum-Fulton-MacPherson.

Let X_P be the toric variety defined by the inner normal fan Σ_P of a full-dimensional lattice polytope $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$. For each face $Q \preceq P$ with corresponding cone $\sigma_Q \in \Sigma_P$, let V_{σ_Q} be the closure of the orbit $O_{\sigma_Q} \subset X_P$, and choose a point $x_Q \in O_{\sigma_Q}$. Let $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ be a mixed Hodge module complex on X_P with constant cohomology sheaves along the torus orbits O_{σ_Q} , $Q \preceq P$ (e.g., \mathbb{Q}_{X_P} or IC_{X_P}). Then:

$$\mathcal{T}_{y*}([\mathcal{M}]) = \sum_{Q \preceq P} \chi_y(\mathcal{H}^{\bullet}(\mathcal{M})_{x_Q}) \cdot (1+y)^{\dim(Q)} \cdot td_*([\omega_{V_{\sigma_Q}}]),$$

where $td_* : K_0(Coh(X_P)) \to H_{2*}(X_P; \mathbb{Q})$ is the Todd class transformation of Baum-Fulton-MacPherson. In particular,

$$\chi_{y}(X_{P};\mathcal{M}) = \sum_{Q \prec P} \chi_{y}(\mathcal{H}^{\bullet}(\mathcal{M})_{x_{Q}}) \cdot (-1-y)^{\dim(Q)}.$$

For
$$\mathcal{M} = \mathbb{Q}_{X_P}$$
, get:

Corollary

(a) The Hodge polynomial $\chi_y(X_P)$ is computed by:

$$\chi_y(X_P) = \sum_{Q \leq P} (-1 - y)^{\dim(Q)}.$$

<ロ> <四> <四> <四> <三</td>

For
$$\mathcal{M} = \mathbb{Q}_{X_P}$$
, get:

Corollary

(a) The Hodge polynomial $\chi_y(X_P)$ is computed by:

$$\chi_y(X_P) = \sum_{Q \preceq P} (-1 - y)^{\dim(Q)}.$$

(b) The Euler characteristic e(X) is computed by:

 $e(X_P)$ = number of vertices of P.

(本部) (문) (문) (문

Stanley's g-polynomials and intersection cohomology

Corollary

Assume
$$0 \in Int(P)$$
, and $\mathcal{M} = IC_{X_P}[-n]$. Then:

$$I\chi_{y}(X_{P}) := \chi_{y}([IH^{\bullet}(X_{P})]) = \sum_{Q \leq P} g_{Q^{\circ}}(-y) \cdot (-1-y)^{\dim(Q)}.$$

・ロト ・回ト ・ヨト

< 注→ 注

Stanley's g-polynomials and intersection cohomology

Corollary

Assume
$$0 \in Int(P)$$
, and $\mathcal{M} = IC_{X_P}[-n]$. Then:

$$I\chi_y(X_P) := \chi_y([IH^{\bullet}(X_P)]) = \sum_{Q \preceq P} g_{Q^{\circ}}(-y) \cdot (-1-y)^{\dim(Q)}.$$

In particular, for y = 1, the Goresky-MacPherson signature is

$$\sigma(X_P) = \sum_{Q \preceq P} g_{Q^{\circ}}(-1) \cdot (-2)^{\dim(Q)}.$$

(日) (四) (三) (三) (三)

Stanley's g-polynomials and intersection cohomology

Corollary

Assume
$$0 \in Int(P)$$
, and $\mathcal{M} = IC_{X_P}[-n]$. Then:

$$I\chi_{y}(X_{P}) := \chi_{y}([IH^{\bullet}(X_{P})]) = \sum_{Q \leq P} g_{Q^{\circ}}(-y) \cdot (-1-y)^{\dim(Q)}.$$

In particular, for y = 1, the Goresky-MacPherson signature is

$$\sigma(X_P) = \sum_{Q \leq P} g_{Q^{\circ}}(-1) \cdot (-2)^{\dim(Q)}.$$

Remark

Upon substituting $y = -t^2$ in $I\chi_y(X_P)$, we recover Fieseler's formula for the intersection cohomology Poincaré polynomial $IP_{X_P}(t) = h_P(t^2)$ of X_P .

イロト イポト イヨト イヨト

Weighted Ehrhart theory via generalized HRR for X_P

Theorem B (M.-Schürmann)

Let $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ be a full-dimensional lattice polytope with associated toric variety X_P and ample Cartier divisor D_P .

A (1) < (2) </p>

Let $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ be a full-dimensional lattice polytope with associated toric variety X_P and ample Cartier divisor D_P . Then, for any Laurent polynomial weight vector $f = \{f_Q\}_{Q \leq P}$,

$$\begin{split} \mathrm{Ehr}_{\mathcal{P},f}(\ell,y) &= \int_{X_{\mathcal{P}}} e^{\ell[D_{\mathcal{P}}]} \cap \mathcal{T}_{y*}([\mathcal{M}]) \\ &= \sum_{k=0}^{n} \left(\frac{1}{k!} \int_{X} [D_{\mathcal{P}}]^{k} \cap \mathcal{T}_{y,k}([\mathcal{M}]) \right) \cdot \ell^{k} \end{split}$$

< (17) > < (17) > >

Let $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$ be a full-dimensional lattice polytope with associated toric variety X_P and ample Cartier divisor D_P . Then, for any Laurent polynomial weight vector $f = \{f_Q\}_{Q \leq P}$,

$$egin{aligned} & \mathrm{Ehr}_{\mathcal{P},f}(\ell,y) = \int_{X_{\mathcal{P}}} \mathrm{e}^{\ell[\mathcal{D}_{\mathcal{P}}]} \cap \mathcal{T}_{y*}([\mathcal{M}]) \ & = \sum_{k=0}^n \left(rac{1}{k!} \int_X [\mathcal{D}_{\mathcal{P}}]^k \cap \mathcal{T}_{y,k}([\mathcal{M}])
ight) \cdot \ell^k \end{aligned}$$

with $\mathcal{M} \in D^{b}\mathrm{MHM}(X_{P})$ a mixed Hodge module complex with constant cohomology sheaves along orbits chosen so that $f_{Q}(y) = \chi_{y}(\mathcal{H}^{\bullet}(\mathcal{M})_{x_{Q}})$ for some (any) $x_{Q} \in O_{\sigma_{Q}} \subset X_{P}$.

ヘロン ヘロン ヘヨン ヘヨン

Corollary

• Ehr_{P,f}(ℓ , y) is a polynomial in ℓ .

・ロト ・回ト ・ヨト ・ヨト … ヨ

Corollary

- Ehr_{P,f}(ℓ , y) is a polynomial in ℓ .
- Constant term:

$$\operatorname{Ehr}_{P,f}(0,y) = \chi_{y}(X_{P};\mathcal{M}) = \sum_{Q \leq P} f_{Q}(y) \cdot (-1-y)^{\dim(Q)}$$

<ロ> <四> <四> <四> <三</td>

Reciprocity and Purity for arbitrary weight vectors

Theorem C (M.-Schürmann)

For any $\mathcal{M} \in D^b \mathrm{MHM}(X_P)$ with constant cohomology sheaves along the torus orbits, we have the reciprocity property

$$\operatorname{Ehr}_{\mathcal{P},\mathcal{M}}(-\ell,y) = \operatorname{Ehr}_{\mathcal{P},\mathcal{D}_X\mathcal{M}}(\ell,\frac{1}{y}).$$

For any $\mathcal{M} \in D^{b}MHM(X_{P})$ with constant cohomology sheaves along the torus orbits, we have the reciprocity property

$$\operatorname{Ehr}_{P,\mathcal{M}}(-\ell,y) = \operatorname{Ehr}_{P,\mathcal{D}_X\mathcal{M}}(\ell,\frac{1}{y}).$$

In particular, if M is such a self-dual pure Hodge module of weight n on X_P , then the following purity property holds:

$$\operatorname{Ehr}_{\mathcal{P},\mathcal{M}}(-\ell,y) = (-y)^n \cdot \operatorname{Ehr}_{\mathcal{P},\mathcal{M}}(\ell,\frac{1}{y}).$$

For any $\mathcal{M} \in D^{b}MHM(X_{P})$ with constant cohomology sheaves along the torus orbits, we have the reciprocity property

$$\operatorname{Ehr}_{P,\mathcal{M}}(-\ell,y) = \operatorname{Ehr}_{P,\mathcal{D}_X\mathcal{M}}(\ell,\frac{1}{y}).$$

In particular, if \mathcal{M} is such a self-dual pure Hodge module of weight n on X_P , then the following purity property holds:

$$\operatorname{Ehr}_{\mathcal{P},\mathcal{M}}(-\ell,y) = (-y)^n \cdot \operatorname{Ehr}_{\mathcal{P},\mathcal{M}}(\ell,\frac{1}{y}).$$

More generally, for any weight vector f on the faces of P, we have

$$\operatorname{Ehr}_{P,f}(-\ell,y) = \sum_{Q \preceq P} f_Q(y) \cdot (-1-y)^{\dim(Q)} \cdot \#(\ell Q \cap M).$$

Remark

The purity of Beck-Gunnells-Materov for $Ehr_{P,f}(\ell, y)$, with f given by Stanley's g-polynomials of faces of the polar polytope P° , follows for the special case of IC_{X_P} , which is self-dual pure Hodge module of weight n on X_P .

・ 同 ト ・ ヨ ト ・ ヨ ト

2

Generalized Ehrhart theory

♣ Let φ : $M_{\mathbb{R}} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

Generalized Ehrhart theory

♣ Let φ : $M_{\mathbb{R}} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

The generalized Ehrhart "polynomial" is defined by

$$\operatorname{Ehr}^{\varphi}_{P}(\ell) := \sum_{m \in \ell P \cap M} \varphi(m)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Generalized Ehrhart theory

♣ Let φ : $M_{\mathbb{R}} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

The generalized Ehrhart "polynomial" is defined by

$$\operatorname{Ehr}^{\varphi}_{P}(\ell) := \sum_{m \in \ell P \cap M} \varphi(m)$$

$$If \varphi = 1, get Ehr_P^1(\ell) = Ehr_P(\ell).$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

3
Generalized Ehrhart theory

♣ Let φ : $M_{\mathbb{R}} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

The generalized Ehrhart "polynomial" is defined by

$$\operatorname{Ehr}^{\varphi}_{P}(\ell) := \sum_{m \in \ell P \cap M} \varphi(m)$$

$$\clubsuit$$
 If $\varphi = 1$, get $\operatorname{Ehr}^1_P(\ell) = \operatorname{Ehr}_P(\ell)$.

Theorem (Brion-Vergne, 1997)

 $\operatorname{Ehr}_{P}^{\varphi}(\ell)$ is a polynomial in ℓ of degree dim(P) + deg (φ) , with constant term $\varphi(0)$, which satisfies the reciprocity law

$$\operatorname{Ehr}_{P}^{\varphi}(-\ell) = (-1)^{\dim(P) + \deg(\varphi)} \sum_{m \in \operatorname{Int}(\ell P) \cap M} \varphi(m)$$
$$= (-1)^{\dim(P) + \deg(\varphi)} \cdot \operatorname{Ehr}_{\operatorname{Int}(P)}^{\varphi}(\ell)$$

♣ Let φ : $M_{\mathbb{R}} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory

白 と く ヨ と く ヨ と …

♣ Let φ : $M_{\mathbb{R}} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

♣ Consider a weight vector $f = \{f_Q\}$, with $f_Q(y) \in \mathbb{Z}[y^{\pm 1}]$ indexed by the non-empty faces $\emptyset \neq Q \leq P$ of P.

♣ Let φ : $M_{\mathbb{R}} \cong \mathbb{R}^n \to \mathbb{C}$ be a homogeneous polynomial function.

♣ Consider a weight vector $f = \{f_Q\}$, with $f_Q(y) \in \mathbb{Z}[y^{\pm 1}]$ indexed by the non-empty faces $\emptyset \neq Q \leq P$ of *P*.

The generalized weighted Ehrhart "polynomial" is defined by

$$\operatorname{Ehr}_{P,f}^{\varphi}(\ell,y) := \sum_{Q \preceq P} f_Q(y) \cdot (1+y)^{\dim(Q) + \deg(\varphi)} \cdot \sum_{m \in \operatorname{Relint}(\ell Q) \cap M} \varphi(m)$$

with $\operatorname{Relint}(\ell Q)$ denoting the relative interior of the face ℓQ of the dilated polytope ℓP .

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of *P*) to this generalized weighted Ehrhart theory, so that $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ has the following properties:

伺 ト イヨト イヨト

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of *P*) to this generalized weighted Ehrhart theory, so that $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ has the following properties:

• $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ is a polynomial in ℓ .

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of *P*) to this generalized weighted Ehrhart theory, so that $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ has the following properties:

- $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ is a polynomial in ℓ .
- (Constant term) For $\ell = 0$,

$$\operatorname{Ehr}_{P,f}^{\varphi}(0,y) = \sum_{Q \preceq P} f_Q(y) \cdot (-1-y)^{\dim(Q) + \deg(\varphi)} \cdot \varphi(0),$$

i.e.,
$$\left(\sum_{m \in \operatorname{Relint}(\ell Q) \cap M} \varphi(m)\right)|_{\ell=0} = (-1)^{\dim(Q) + \deg(\varphi)} \cdot \varphi(0).$$

The Brion-Vergne combinatorial approach to reciprocity can be linearly extended (over the faces of *P*) to this generalized weighted Ehrhart theory, so that $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ has the following properties:

- $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ is a polynomial in ℓ .
- (Constant term) For $\ell = 0$,

$$\operatorname{Ehr}_{P,f}^{\varphi}(0,y) = \sum_{Q \preceq P} f_Q(y) \cdot (-1-y)^{\dim(Q) + \deg(\varphi)} \cdot \varphi(0),$$

i.e.,
$$\left(\sum_{m \in \text{Relint}(\ell Q) \cap M} \varphi(m)\right)|_{\ell=0} = (-1)^{\dim(Q) + \deg(\varphi)} \cdot \varphi(0).$$

(Reciprocity formula) For $\ell \in \mathbb{Z}_{>0}$,

$$\operatorname{Ehr}_{P,f}^{\varphi}(-\ell,y) = \sum_{Q \preceq P} f_Q(y) \cdot (-1-y)^{\dim(Q) + \deg(\varphi)} \cdot \sum_{m \in \ell Q \cap M} \varphi(m).$$

• (1) • (

Assume $0 \in Int(P)$, and consider the weight vector given by Stanley's *g*-polynomials

$$f_Q(y) = g_{Q^\circ}(-y) =: \widetilde{g}_Q(-y)$$

for the faces of the polar polytope of P, with $g_{\emptyset}(-y) = \widetilde{g}_P(-y) = 1.$

Assume $0 \in Int(P)$, and consider the weight vector given by Stanley's *g*-polynomials

$$f_Q(y) = g_{Q^\circ}(-y) =: \widetilde{g}_Q(-y)$$

for the faces of the polar polytope of P, with $g_{\emptyset}(-y) = \widetilde{g}_P(-y) = 1.$

Theorem (Beck-Gunnells-Materov)

The following purity property holds:

 $\operatorname{Ehr}_{P,f}^{\varphi}(-\ell, y) = (-y)^{\dim(P) + \deg(\varphi)} \cdot \operatorname{Ehr}_{P,f}^{\varphi}(\ell, 1/y).$

<ロ> (四) (四) (三) (三) (三)

\clubsuit To prove all these properties for $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ geometrically, we need to work equivariantly, with torus equivariant mixed Hodge modules on X_P .

4 To prove all these properties for $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ geometrically, we need to work equivariantly, with torus equivariant mixed Hodge modules on X_P . These automatically have constant cohomology sheaves along orbits (Tanisaki).

♣ To prove all these properties for $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ geometrically, we need to work equivariantly, with torus equivariant mixed Hodge modules on X_P . These automatically have constant cohomology sheaves along orbits (Tanisaki).

♣ A corresponding equivariant generalized HRR type theorem gives a weighted count of torus characters $\chi^m \in \mathbb{Z}[M]$.

♣ To prove all these properties for $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ geometrically, we need to work equivariantly, with torus equivariant mixed Hodge modules on X_P . These automatically have constant cohomology sheaves along orbits (Tanisaki).

♣ A corresponding equivariant generalized HRR type theorem gives a weighted count of torus characters $\chi^m \in \mathbb{Z}[M]$.

 \clubsuit Finally, the homogeneous polynomial arphi defines a homomorphism

$$\mathbb{Z}[M] \longrightarrow \mathbb{C}, \quad \chi^m \mapsto \varphi(-(1+y) \cdot m) = (-1-y)^{\deg(\varphi)} \cdot \varphi(m).$$

♣ To prove all these properties for $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ geometrically, we need to work equivariantly, with torus equivariant mixed Hodge modules on X_P . These automatically have constant cohomology sheaves along orbits (Tanisaki).

♣ A corresponding equivariant generalized HRR type theorem gives a weighted count of torus characters $\chi^m \in \mathbb{Z}[M]$.

 \clubsuit Finally, the homogeneous polynomial arphi defines a homomorphism

$$\mathbb{Z}[M] \longrightarrow \mathbb{C}, \quad \chi^m \mapsto \varphi(-(1+y) \cdot m) = (-1-y)^{\deg(\varphi)} \cdot \varphi(m).$$

4 To explain geometrically the polynomial behavior in ℓ of $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ we work in equivariant homology, using equivariant localization at torus fixed points (a combinatorial proof can be given using work of Brion-Vergne).

・ 回 と ・ ヨ と ・ ヨ と

Remark

If P is a simple lattice polytope, $\operatorname{Ehr}_{P,f}^{\varphi}(\ell, y)$ can be computed by Euler-Maclaurin type formulae, like in works of Beck-Gunnells-Materov (combinatorially) or Cappell-M.-Schürmann-Shaneson (via the equivariant Hirzebruch-Riemann-Roch formalism).

< 三 ▶ ……

THANK YOU !!!

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Ð,

LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory