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Lattice polytopes, Fans and Toric Varieties

♣ M ≃ Zn n-dimensional lattice in Rn

♣ N = Hom(M,Z) the dual lattice
♣ fan Σ in NR = N ⊗ R ∼= Rn ; toric variety XΣ

♣ Cone-Orbit Correspondence:

cone σ ∈ Σ ; orbit Oσ ⊂ XΣ ; orbit closure Vσ := Ōσ.

♣ If P = Conv(S) ⊂ MR ∼= Rn (with S ⊂ M a finite set) is a
full-dimensional lattice polytope, then

P ; inner normal fan ΣP ; projective toric variety
XP := XΣP

with ample Cartier divisor DP

face Q ⪯ P ; cone σQ ∈ ΣP ; orbit OσQ
in XP
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Classical Ehrhart theory

♣ M ∼= Zn lattice, P ⊂ MR ∼= Rn full-dim. lattice polytope.

♣ Problem: Calculate #(ℓP ∩M), for ℓ ∈ Z>0.
♣ Ehrhart-Macdonald (1960): EhrP(ℓ) := #(ℓP ∩M) is a
polynomial in ℓ of degree n, called the Ehrhart polynomial of P.
♣ Geometric Approach (Danilov):

consider the associated (possibly singular) projective
toric variety XP with ample Cartier divisor DP .

EhrP(ℓ) = χ(XP ,O(ℓDP))

(RR)
=

∑
k≥0

(
1

k!

∫
XP

[DP ]
k ∩ tdk(XP)

)
ℓk =

∑
k≥0

akℓ
k ,

with tdk(XP) ∈ H2k(XP ;Q) the degree k component of the
Baum-Fulton-MacPherson Todd class td∗(XP).

an = vol(P), an−1 =
1
2vol(∂P), a0 = χ(P) = 1.
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Reciprocity

♣ Ehrhart reciprocity:

EhrP(−ℓ) = (−1)n ·#(Int(ℓP) ∩M) = (−1)n · EhrInt(P)(ℓ)

♣ Geometrically,

#(Int(ℓP) ∩M) = (−1)n · χ(XP ,O(−ℓDP))
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Weighted Ehrhart theory

♣ Face decomposition for P:

#(ℓP ∩M) =
∑
Q⪯P

#(Relint(ℓQ) ∩M),

with Relint(ℓQ) the relative interior of the face ℓQ of the dilated
polytope ℓP.

♣ Assign Laurent polynomial weights fQ(y) ∈ Z[y±1] to each face
Q ⪯ P of P, and define for any ℓ ∈ Z>0 the weighted Ehrhart
“polynomial” of P and f = {fQ}Q⪯P by

EhrP,f (ℓ, y) :=
∑
Q⪯P

fQ(y) · (1 + y)dim(Q) ·#(Relint(ℓQ) ∩M)

♣ If f = 1 := {1}, get for y = 0: EhrP,1(ℓ, 0) = EhrP(ℓ)
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Properties of the weighted Ehrhart polynomial EhrP,f (ℓ)

EhrP,f (ℓ, y) :=
∑
Q⪯P

fQ(y) · (1 + y)dim(Q) ·#(Relint(ℓQ) ∩M)

♣ By classical Ehrhart theory for the faces of P, EhrP,f (ℓ, y) has
the following properties:

EhrP,f (ℓ, y) is obtained by evaluating a polynomial
EhrP,f (z , y) at z = ℓ ∈ Z>0.
(Constant term) For ℓ = 0,

EhrP,f (0, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q),

i.e., evaluating #(Relint(ℓQ) ∩M) at ℓ = 0 as (−1)dim(Q).
(Reciprocity formula) For ℓ ∈ Z>0,

EhrP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q) ·#(ℓQ ∩M).
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♣ Assume 0 ∈ Int(P), and consider the polar polytope P◦ ⊂ NR, a
full-dimensional polytope with respect to the lattice N, containing
the origin in the interior.

♣ By taking cones at 0 ∈ NR over the proper faces of P◦, with ∅
corresponding to the origin, one gets the same lattice fan ΣP

(hence the same toric variety XP).
♣ There is an order-reversing one-to-one correspondence between
the faces Q of P, and the faces Q◦ of the polar polytope P◦,
switching the roles of polytopes and emptysets seen as faces. For a
proper face ∅ ≠ Q ≺ P, one has dimR(Q) + dimR(Q

◦) = n − 1.
♣ Consider the weight vector given by Stanley’s g -polynomials

fQ(y) = gQ◦(−y) =: g̃Q(−y)

for the polar polytope of P, with g∅(−y) = g̃P(−y) = 1.
♣ If P is a simple polytope, the polar polytope P◦ is simplicial, so
that gQ◦(−y) = 1, for all faces Q of P.
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♣ There is an order-reversing one-to-one correspondence between
the faces Q of P, and the faces Q◦ of the polar polytope P◦,
switching the roles of polytopes and emptysets seen as faces. For a
proper face ∅ ≠ Q ≺ P, one has dimR(Q) + dimR(Q

◦) = n − 1.
♣ Consider the weight vector given by Stanley’s g -polynomials

fQ(y) = gQ◦(−y) =: g̃Q(−y)

for the polar polytope of P, with g∅(−y) = g̃P(−y) = 1.
♣ If P is a simple polytope, the polar polytope P◦ is simplicial, so
that gQ◦(−y) = 1, for all faces Q of P.
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Purity

Theorem (Beck-Gunnells-Materov)

For fQ(y) = gQ◦(−y) the weight vector given by Stanley’s
g-polynomials for the faces of the polar polytope P◦ of P, the
following purity property holds:

EhrP,f (−ℓ, y) = (−y)n · EhrP,f (ℓ, 1/y)

♣ Combinatorial proof relying on work of Brion-Vergne.

♣ If P is simple, purity implies Dehn-Sommerville relations for P.

♣ Our aim is to explain a geometric proof of this result, and to
prove a form of reciprocity/purity for any weight vector f .

♣ We use Hodge theory, and recover all properties of EhrP,f (ℓ)
from the calculus of characteristic classes of mixed Hodge modules
on XP (via a generalized Hirzebruch-Riemann-Roch).
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Hodge polynomial

♣ There is a Hodge polynomial ring homomorphism

χy : K0(MHS) −→ Z[y±1]

χy ([H
•]) :=

∑
j ,p

(−1)j · dimCGrpFH
j
C · (−y)p

♣ For a complex projective algebraic variety X (e.g., XP), can take:

(cohomology) H• = H•(X ;M), for M ∈ DbMHM(X )

(stalks) H• = H•(M)x , for x ∈ X and M ∈ DbMHM(X )

♣ For M ∈ DbMHM(X ), set χy (X ;M) := χy ([H
•(X ;M)]).

In particular, for M = QX set χy (X ) = χy ([H
•(X )]),

and for M = ICX [− dim(X )] set Iχy (X ) := χy ([IH
•(X )]).

♣ χ−1(X ) = e(X ) is the Euler characteristic of X .

♣ M.-Saito-Schürmann: Iχ1(X ) = σ(X ) is the intersection
cohomology signature of X (Goresky-MacPherson).

LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory



Hodge polynomial

♣ There is a Hodge polynomial ring homomorphism

χy : K0(MHS) −→ Z[y±1]

χy ([H
•]) :=

∑
j ,p

(−1)j · dimCGrpFH
j
C · (−y)p

♣ For a complex projective algebraic variety X (e.g., XP), can take:

(cohomology) H• = H•(X ;M), for M ∈ DbMHM(X )

(stalks) H• = H•(M)x , for x ∈ X and M ∈ DbMHM(X )

♣ For M ∈ DbMHM(X ), set χy (X ;M) := χy ([H
•(X ;M)]).

In particular, for M = QX set χy (X ) = χy ([H
•(X )]),

and for M = ICX [− dim(X )] set Iχy (X ) := χy ([IH
•(X )]).

♣ χ−1(X ) = e(X ) is the Euler characteristic of X .
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Lemma (M.-Schürmann)

For any weight vector f = {fQ}Q⪯P on the faces of the lattice
polytope P, there exists some M ∈ DbMHM(XP) with constant
cohomology sheaves along the torus orbits such that

fQ(y) = χy (H•(M)xQ )

for some (any) xQ ∈ OσQ
⊂ XP .

Conversely, any such M defines a
weight vector f .

♣ For f and M as above, set EhrP,f (ℓ) = EhrP,M(ℓ).

Example (Fieseler, Denef-Loeser)

For a lattice polytope P with Stanley’s g -polynomials
fQ(y) = gQ◦(−y), one can choose M = ICXP

[−n].
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Homology Hirzebruch classes

♣ For X projective,

χy (X ;M) := χy ([H
•(X ;M)]) =

∫
X
Ty∗([M]),

with
Ty∗ : K0(MHM(X )) → H2∗(X )⊗Q[y±1]

the Brasselet-Schürmann-Yokura Hirzebruch class transformation.

♣ Set Ty∗(X ) := Ty∗([QX ]), ITy∗(X ) := Ty∗([ICX [− dim(X )]]).

♣ If X is a toric variety, then

T0∗(X ) = td∗(X ).
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Hirzebruch classes of toric varieties

Theorem A (M.-Schürmann)

Let XP be the toric variety defined by the inner normal fan ΣP of a
full-dimensional lattice polytope P ⊂ MR ∼= Rn.

For each face
Q ⪯ P with corresponding cone σQ ∈ ΣP , let VσQ

be the closure
of the orbit OσQ

⊂ XP , and choose a point xQ ∈ OσQ
.

Let M ∈ DbMHM(XP) be a mixed Hodge module complex on XP

with constant cohomology sheaves along the torus orbits OσQ
,

Q ⪯ P (e.g., QXP
or ICXP

). Then:

Ty∗([M]) =
∑
Q⪯P

χy (H•(M)xQ ) · (1 + y)dim(Q) · td∗([ωVσQ
]),

where td∗ : K0(Coh(XP)) → H2∗(XP ;Q) is the Todd class
transformation of Baum-Fulton-MacPherson. In particular,

χy (XP ;M) =
∑
Q⪯P

χy (H•(M)xQ ) · (−1− y)dim(Q).
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For M = QXP
, get:

Corollary

(a) The Hodge polynomial χy (XP) is computed by:

χy (XP) =
∑
Q⪯P

(−1− y)dim(Q).

(b) The Euler characteristic e(X ) is computed by:

e(XP) = number of vertices of P.
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Stanley’s g -polynomials and intersection cohomology

Corollary

Assume 0 ∈ Int(P), and M = ICXP
[−n]. Then:

Iχy (XP) := χy ([IH
•(XP)]) =

∑
Q⪯P

gQ◦(−y) · (−1− y)dim(Q).

In particular, for y = 1, the Goresky-MacPherson signature is

σ(XP) =
∑
Q⪯P

gQ◦(−1) · (−2)dim(Q).

Remark

Upon substituting y = −t2 in Iχy (XP), we recover Fieseler’s
formula for the intersection cohomology Poincaré polynomial
IPXP

(t) = hP(t
2) of XP .
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formula for the intersection cohomology Poincaré polynomial
IPXP

(t) = hP(t
2) of XP .
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Weighted Ehrhart theory via generalized HRR for XP

Theorem B (M.-Schürmann)

Let P ⊂ MR ∼= Rn be a full-dimensional lattice polytope with
associated toric variety XP and ample Cartier divisor DP .

Then, for
any Laurent polynomial weight vector f = {fQ}Q⪯P ,

EhrP,f (ℓ, y) =

∫
XP

eℓ[DP ] ∩ Ty∗([M])

=
n∑

k=0

(
1

k!

∫
X
[DP ]

k ∩ Ty ,k([M])

)
· ℓk

with M ∈ DbMHM(XP) a mixed Hodge module complex with
constant cohomology sheaves along orbits chosen so that
fQ(y) = χy (H•(M)xQ ) for some (any) xQ ∈ OσQ

⊂ XP .
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Corollary

EhrP,f (ℓ, y) is a polynomial in ℓ.

Constant term:

EhrP,f (0, y) = χy (XP ;M) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)
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Reciprocity and Purity for arbitrary weight vectors

Theorem C (M.-Schürmann)

For any M ∈ DbMHM(XP) with constant cohomology sheaves
along the torus orbits, we have the reciprocity property

EhrP,M(−ℓ, y) = EhrP,DXM(ℓ,
1

y
).

In particular, if M is such a self-dual pure Hodge module of weight
n on XP , then the following purity property holds:

EhrP,M(−ℓ, y) = (−y)n · EhrP,M(ℓ,
1

y
).

More generally, for any weight vector f on the faces of P, we have

EhrP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q) ·#(ℓQ ∩M).
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Remark

The purity of Beck-Gunnells-Materov for EhrP,f (ℓ, y), with f given
by Stanley’s g-polynomials of faces of the polar polytope P◦,
follows for the special case of ICXP

, which is self-dual pure Hodge
module of weight n on XP .
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Generalized Ehrhart theory

♣ Let φ : MR ∼= Rn → C be a homogeneous polynomial function.

♣ The generalized Ehrhart “polynomial” is defined by

EhrφP(ℓ) :=
∑

m∈ℓP∩M
φ(m)

♣ If φ = 1, get Ehr1P(ℓ) = EhrP(ℓ).

Theorem (Brion-Vergne, 1997)

EhrφP(ℓ) is a polynomial in ℓ of degree dim(P) + deg(φ), with
constant term φ(0), which satisfies the reciprocity law

EhrφP(−ℓ) = (−1)dim(P)+deg(φ)
∑

m∈Int(ℓP)∩M

φ(m)

= (−1)dim(P)+deg(φ) · EhrφInt(P)(ℓ)
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Generalized weighted Ehrhart theory

♣ Let φ : MR ∼= Rn → C be a homogeneous polynomial function.

♣ Consider a weight vector f = {fQ}, with fQ(y) ∈ Z[y±1] indexed
by the non-empty faces ∅ ≠ Q ⪯ P of P.

♣ The generalized weighted Ehrhart “polynomial” is defined by

EhrφP,f (ℓ, y) :=
∑
Q⪯P

fQ(y) · (1 + y)dim(Q)+deg(φ) ·
∑

m∈Relint(ℓQ)∩M

φ(m)

with Relint(ℓQ) denoting the relative interior of the face ℓQ of the
dilated polytope ℓP.
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Properties of EhrφP,f (ℓ, y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that EhrφP,f (ℓ, y) has the following properties:

EhrφP,f (ℓ, y) is a polynomial in ℓ.

(Constant term) For ℓ = 0,

EhrφP,f (0, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) · φ(0),

i.e.,
(∑

m∈Relint(ℓQ)∩M φ(m)
)
|ℓ=0 = (−1)dim(Q)+deg(φ) · φ(0).

(Reciprocity formula) For ℓ ∈ Z>0,

EhrφP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) ·
∑

m∈ℓQ∩M
φ(m).
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Purity of EhrφP,f (ℓ, y)

Assume 0 ∈ Int(P), and consider the weight vector given by
Stanley’s g -polynomials

fQ(y) = gQ◦(−y) =: g̃Q(−y)

for the faces of the polar polytope of P, with
g∅(−y) = g̃P(−y) = 1.

Theorem (Beck-Gunnells-Materov)

The following purity property holds:

EhrφP,f (−ℓ, y) = (−y)dim(P)+deg(φ) · EhrφP,f (ℓ, 1/y).
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♣ To prove all these properties for EhrφP,f (ℓ, y) geometrically, we
need to work equivariantly, with torus equivariant mixed Hodge
modules on XP .

These automatically have constant cohomology
sheaves along orbits (Tanisaki).

♣ A corresponding equivariant generalized HRR type theorem
gives a weighted count of torus characters χm ∈ Z[M].

♣ Finally, the homogeneous polynomial φ defines a homomorphism

Z[M] −→ C, χm 7→ φ(−(1 + y) ·m) = (−1− y)deg(φ) · φ(m).

♣ To explain geometrically the polynomial behavior in ℓ of
EhrφP,f (ℓ, y) we work in equivariant homology, using equivariant
localization at torus fixed points (a combinatorial proof can be
given using work of Brion-Vergne).
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Remark

If P is a simple lattice polytope, EhrφP,f (ℓ, y) can be computed by
Euler-Maclaurin type formulae, like in works of
Beck-Gunnells-Materov (combinatorially) or
Cappell-M.-Schürmann-Shaneson (via the equivariant
Hirzebruch-Riemann-Roch formalism).
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THANK YOU !!!

LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory


