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Lattice polytopes, Fans and Toric Varieties

& M ~ 7" n-dimensional lattice in R”

& N = Hom(M,Z) the dual lattice

& fan X in Ng = N® R & R" ~» toric variety Xy
& Cone-Orbit Correspondence:

cone o € ¥ ~» orbit O, C Xy ~» orbit closure V., := O,.
& If P =Conv(S) C Mg = R" (with S C M a finite set) is a

full-dimensional lattice polytope, then

@ P ~» inner normal fan ¥p ~» projective toric variety
Xp = Xx, with ample Cartier divisor Dp
o face Q X P~» cone og € Lp ~» orbit OUQ in Xp
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Classical Ehrhart theory

& M =2 7" lattice, P C Mg = R" full-dim. lattice polytope.
& Problem: Calculate #(/P N M), for { € Zyo.
& Ehrhart-Macdonald (1960): Ehrp(¢) := #((PN M) is a
polynomial in ¢ of degree n, called the Ehrhart polynomial of P.
& Geometric Approach (Danilov):
@ consider the associated (possibly singular) projective
toric variety Xp with ample Cartier divisor Dp.

Ehrp(€) = x(Xp, O({Dp))

(’f) Z (kll /XP[Dp]k N tdk(Xp)> ok = Z akgka

k>0 k>0

with tdx(Xp) € Hak(Xp; Q) the degree k component of the
Baum-Fulton-MacPherson Todd class td,(Xp).
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Classical Ehrhart theory

& M =2 7" lattice, P C Mg = R" full-dim. lattice polytope.

& Problem: Calculate #(/P N M), for { € Zyo.

& Ehrhart-Macdonald (1960): Ehrp(¢) := #((PN M) is a
polynomial in ¢ of degree n, called the Ehrhart polynomial of P.
& Geometric Approach (Danilov):

@ consider the associated (possibly singular) projective
toric variety Xp with ample Cartier divisor Dp.

Ehrp(¢) = x(Xp, O((Dp))
(RR) 1
= ;} (k' /XP[Dp]k N tdk(Xp)> ok = ;akgka

with tdx(Xp) € Hak(Xp; Q) the degree k component of the
Baum-Fulton-MacPherson Todd class td,(Xp).

@ a, =vol(P), ap—1 = %VOI(@P), ap = x(P) =1.
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& Ehrhart reciprocity:

Ehrp(—() = (1) - # (Int(£P) N M) = (~1)" - Bhrgy(py (¢)
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& Ehrhart reciprocity:

Ehrp(—() = (1) - # (Int(£P) N M) = (~1)" - Bhrgy(py (¢)

& Geometrically,

#(It(LP) N M) = (~1)" - x(Xp, O(~£Dp))
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Weighted Ehrhart theory

& Face decomposition for P:

#(LP M) =" #(Relint(¢Q) N M),

Q2P

with Relint(£Q) the relative interior of the face £Q of the dilated
polytope ¢P.
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#(LP M) =" #(Relint(¢Q) N M),

Q2P

with Relint(£Q) the relative interior of the face £Q of the dilated
polytope ¢P.

& Assign Laurent polynomial weights fo(y) € Z[y*!] to each face
Q =< P of P, and define for any £ € Z~( the weighted Ehrhart
“polynomial” of P and f = {fo}g=p by

Ehrp ¢(,y) Z fo(y) - (14 y)@m@) . 4 (Relint(¢Q) N M)
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Weighted Ehrhart theory

& Face decomposition for P:
#(LP M) =" #(Relint(¢Q) N M),
Q=P

with Relint(£Q) the relative interior of the face £Q of the dilated
polytope ¢P.

& Assign Laurent polynomial weights fo(y) € Z[y*!] to each face
Q =< P of P, and define for any £ € Z~( the weighted Ehrhart
“polynomial” of P and f = {fo}g=p by

Ehrp ¢(,y) Z fo(y) - (14 y)@m@) . 4 (Relint(¢Q) N M)
Q=P

& If f =1:= {1}, get for y = 0: Ehrp1(¢,0) = Ehrp(¥)
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Properties of the weighted Ehrhart polynomial Ehrp ¢(¢)

Ehrpe(l,y) = > fo(y) - (1+ ) ™@ . £(Relint(¢Q) N M)
Q=P
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& By classical Ehrhart theory for the faces of P, Ehrp ¢(¢, y) has
the following properties:
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Properties of the weighted Ehrhart polynomial Ehrp ¢(¢)

Ehrpe(l,y) = > fo(y) - (1+ ) ™@ . £(Relint(¢Q) N M)
Q=P

& By classical Ehrhart theory for the faces of P, Ehrp ¢(¢, y) has
the following properties:
e Ehrp ¢(¢,y) is obtained by evaluating a polynomial
Ehrpf(z,y) at z=1{ € Zyo.
e (Constant term) For ¢ =0,
Ehrp (0, y) Z foly — y)dm@),
Q=P
i.e., evaluating #(Relint(¢Q) N M) at £ = 0 as (—1)4m(Q),
° (Reciprocity formula) For ¢ € Zo,

Ehrp ¢( =Y foly — y)dm@) £ 0Q N M).
Q=P
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& Assume 0 € Int(P), and consider the polar polytope P° C Ng, a
full-dimensional polytope with respect to the lattice N, containing
the origin in the interior.
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LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory



& Assume 0 € Int(P), and consider the polar polytope P° C Ng, a
full-dimensional polytope with respect to the lattice N, containing
the origin in the interior.

& By taking cones at 0 € N over the proper faces of P°, with ()
corresponding to the origin, one gets the same lattice fan Xp
(hence the same toric variety Xp).

& There is an order-reversing one-to-one correspondence between
the faces Q of P, and the faces Q° of the polar polytope P°,
switching the roles of polytopes and emptysets seen as faces. For a
proper face (} # Q < P, one has dimg(Q) + dimg(Q°) = n— 1.
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& Assume 0 € Int(P), and consider the polar polytope P° C Ng, a
full-dimensional polytope with respect to the lattice N, containing
the origin in the interior.

& By taking cones at 0 € N over the proper faces of P°, with ()
corresponding to the origin, one gets the same lattice fan Xp
(hence the same toric variety Xp).

& There is an order-reversing one-to-one correspondence between
the faces Q of P, and the faces Q° of the polar polytope P°,
switching the roles of polytopes and emptysets seen as faces. For a
proper face (} # Q < P, one has dimg(Q) + dimg(Q°) = n— 1.

& Consider the weight vector given by Stanley's g-polynomials

fo(y) = gqo(—y) =: go(—y)

for the polar polytope of P, with gy(—y) = gp(—y) = 1.
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& Assume 0 € Int(P), and consider the polar polytope P° C Ng, a
full-dimensional polytope with respect to the lattice N, containing
the origin in the interior.

& By taking cones at 0 € N over the proper faces of P°, with ()
corresponding to the origin, one gets the same lattice fan Xp
(hence the same toric variety Xp).

& There is an order-reversing one-to-one correspondence between
the faces Q of P, and the faces Q° of the polar polytope P°,
switching the roles of polytopes and emptysets seen as faces. For a
proper face (} # Q < P, one has dimg(Q) + dimg(Q°) = n— 1.

& Consider the weight vector given by Stanley's g-polynomials

fo(y) = gqo(—y) =: go(—y)

for the polar polytope of P, with gy(—y) = gp(—y) = 1.
& If P is a simple polytope, the polar polytope P° is simplicial, so
that ggo(—y) = 1, for all faces Q of P.
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Purity

Theorem (Beck-Gunnells-Materov)

For fo(y) = ggo(—y) the weight vector given by Stanley’s
g-polynomials for the faces of the polar polytope P° of P, the
following purity property holds:

EhrP,f(_an) = (_y)n : EhrP,f(ga ]-/y)
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g-polynomials for the faces of the polar polytope P° of P, the
following purity property holds:
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& Combinatorial proof relying on work of Brion-Vergne.
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For fo(y) = ggo(—y) the weight vector given by Stanley’s
g-polynomials for the faces of the polar polytope P° of P, the
following purity property holds:

EhrP,f(_€7y) = (_y)n : EhrP,f(ga ]-/y)

& Combinatorial proof relying on work of Brion-Vergne.

& If P is simple, purity implies Dehn-Sommerville relations for P.
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Purity

Theorem (Beck-Gunnells-Materov)

For fo(y) = ggo(—y) the weight vector given by Stanley’s
g-polynomials for the faces of the polar polytope P° of P, the
following purity property holds:

EhrP,f(_€7y) = (_y)n : EhrP,f(ga ]-/y)

& Combinatorial proof relying on work of Brion-Vergne.
& If P is simple, purity implies Dehn-Sommerville relations for P.

& Our aim is to explain a geometric proof of this result, and to
prove a form of reciprocity/purity for any weight vector f.
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Purity

Theorem (Beck-Gunnells-Materov)

For fo(y) = ggo(—y) the weight vector given by Stanley’s
g-polynomials for the faces of the polar polytope P° of P, the
following purity property holds:

EhrP,f(_€7y) = (_y)n : EhrP,f(ga ]-/y)

& Combinatorial proof relying on work of Brion-Vergne.
& If P is simple, purity implies Dehn-Sommerville relations for P.

& Our aim is to explain a geometric proof of this result, and to
prove a form of reciprocity/purity for any weight vector f.

% We use Hodge theory, and recover all properties of Ehrp ¢(¢)
from the calculus of characteristic classes of mixed Hodge modules
on Xp (via a generalized Hirzebruch-Riemann-Roch).
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Hodge polynomial

& There is a Hodge polynomial ring homomorphism

Xy : Ko(MHS) — Z[y™!]

Xy([H?]) =Y (~1Y - dime G2 HL. - (—y)P
Jp
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Hodge polynomial

& There is a Hodge polynomial ring homomorphism
Xy : Ko(MHS) — Z[y*!]
X ([H]) = (~1) - dime Grf HE - (—y)P
Jsp

& For a complex projective algebraic variety X (e.g., Xp), can take:
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Hodge polynomial

& There is a Hodge polynomial ring homomorphism

Xy : Ko(MHS) — Z[y™!]

W([H) =D (~1) - dime Gig HL - (—y)”
Jsp
& For a complex projective algebraic variety X (e.g., Xp), can take:
o (cohomology) H® = H*(X; M), for M € DPMHM(X)
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Hodge polynomial

& There is a Hodge polynomial ring homomorphism

Xy : Ko(MHS) — Z[y™!]

Xy ([H]) := > (~1Y - dime G2 HE. - (—y)P
jp
& For a complex projective algebraic variety X (e.g., Xp), can take:
o (cohomology) H® = H*(X; M), for M € DPMHM(X)
o (stalks) H® = H*(M),, for x € X and M € D MHM(X)
& For M € DPMHM(X), set x, (X; M) := x, ([H*(X; M)]).

In particular, for M = Qx set x,(X) = x, ([H*(X)]),
and for M = ICx[—dim(X)] set Iy, (X) := x, ([[H*(X)]).
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Hodge polynomial

& There is a Hodge polynomial ring homomorphism

Xy : Ko(MHS) — Z[y™!]

Xy ([H]) := > (~1Y - dime G2 HE. - (—y)P
jp
& For a complex projective algebraic variety X (e.g., Xp), can take:
o (cohomology) H® = H*(X; M), for M € DPMHM(X)
o (stalks) H® = H*(M),, for x € X and M € D MHM(X)

& For M € DPMHM(X), set x, (X; M) := x, ([H*(X; M)]).
In particular, for M = Qx set x,(X) = x, ([H*(X)]),
and for M = ICx[—dim(X)] set Iy, (X) := x, ([[H*(X)]).

& x_1(X) = e(X) is the Euler characteristic of X.
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Hodge polynomial

& There is a Hodge polynomial ring homomorphism

Xy : Ko(MHS) — Z[y™!]

Xy ([H]) := > (~1Y - dime G2 HE. - (—y)P
jp
& For a complex projective algebraic variety X (e.g., Xp), can take:
o (cohomology) H® = H*(X; M), for M € DPMHM(X)
o (stalks) H® = H*(M),, for x € X and M € D MHM(X)

& For M € DPMHM(X), set x, (X; M) := x, ([H*(X; M)]).
In particular, for M = Qx set x,(X) = x, ([H*(X)]),

and for M = ICx[—dim(X)] set Iy, (X) := x, ([[H*(X)]).

& x_1(X) = e(X) is the Euler characteristic of X.

& M.-Saito-Schirmann: Ix1(X) = o(X) is the intersection
cohomology signature of X (Goresky-MacPherson).
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Lemma (M.-Schiirmann)

For any weight vector f = {fq}q=<p on the faces of the lattice
polytope P, there exists some M € DPMHM(Xp) with constant
cohomology sheaves along the torus orbits such that

fo(y) = xy(H*(M)x,)

for some (any) xq € Oy, C Xp.

LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory



Lemma (M.-Schiirmann)

For any weight vector f = {fq}q=<p on the faces of the lattice
polytope P, there exists some M € DPMHM(Xp) with constant
cohomology sheaves along the torus orbits such that

fo(y) = xy(H*(M)x,)

for some (any) xq € Os, C Xp. Conversely, any such M defines a
weight vector f.
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Lemma (M.-Schiirmann)

For any weight vector f = {fq}q=<p on the faces of the lattice
polytope P, there exists some M € DPMHM(Xp) with constant
cohomology sheaves along the torus orbits such that

fo(y) = xy(H*(M)x,)

for some (any) xq € Os, C Xp. Conversely, any such M defines a
weight vector f.

& For f and M as above, set Ehrp ¢(¢) = Ehrp r(¢).
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Lemma (M.-Schiirmann)

For any weight vector f = {fq}q=<p on the faces of the lattice
polytope P, there exists some M € DPMHM(Xp) with constant
cohomology sheaves along the torus orbits such that

fo(y) = xy(H*(M)x,)

for some (any) xq € Os, C Xp. Conversely, any such M defines a
weight vector f.

& For f and M as above, set Ehrp ¢(¢) = Ehrp r(¢).

Example (Fieseler, Denef-Loeser)

For a lattice polytope P with Stanley’'s g-polynomials
fo(y) = g@°(—y), one can choose M = ICx,[—n].
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Homology Hirzebruch classes

& For X projective,

3 (X M) = iy ([H* (X M)]) = /X T, (M),

with
Tyw : Ko(MHM(X)) — Hau(X) ® Q[y*!]

the Brasselet-Schurmann-Yokura Hirzebruch class transformation.
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Homology Hirzebruch classes

& For X projective,

WXEM) = (06 AMOD = [ T (),
with
Tyt Ko(MHM(X)) = Hau(X) ® Q[y*Y]
the Brasselet-Schurmann-Yokura Hirzebruch class transformation.

% Set Tyu(X) := Tyu([Qx]), 1Tyu(X) = Tyul[ICx[= dim(X)]]).
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Homology Hirzebruch classes

& For X projective,

WXEM) = (06 AMOD = [ T (),
with
Tys + Ko(MHM(X)) = Hau(X) ® Q[y™"]
the Brasselet-Schurmann-Yokura Hirzebruch class transformation.
& Set T, (X) := Tyu([Qx]), ITyu(X) := Tyu([ICx[— dim(X)]]).
& If X is a toric variety, then

To«(X) = td(X).
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Hirzebruch classes of toric varieties

Theorem A (M.-Schiirmann)

Let Xp be the toric variety defined by the inner normal fan X p of a
full-dimensional lattice polytope P C Mg = R".
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Hirzebruch classes of toric varieties

Theorem A (M.-Schiirmann)

Let Xp be the toric variety defined by the inner normal fan X p of a
full-dimensional lattice polytope P C Mg =2 R". For each face

Q@ =< P with corresponding cone o € Lp, let V,,Q be the closure
of the orbit Oy, C Xp, and choose a point xq € O, .
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Hirzebruch classes of toric varieties

Theorem A (M.-Schiirmann)

Let Xp be the toric variety defined by the inner normal fan X p of a
full-dimensional lattice polytope P C Mg =2 R". For each face

Q@ =< P with corresponding cone o € Lp, let V,,Q be the closure
of the orbit Oy, C Xp, and choose a point xq € Oq,,.

Let M € DPMHM(Xp) be a mixed Hodge module complex on Xp
with constant cohomology sheaves along the torus orbits O,
Q = P (e.g., @XP or ICXP)-
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Hirzebruch classes of toric varieties

Theorem A (M.-Schiirmann)

Let Xp be the toric variety defined by the inner normal fan X p of a
full-dimensional lattice polytope P C Mg =2 R". For each face

Q@ =< P with corresponding cone o € Lp, let V,,Q be the closure
of the orbit Oy, C Xp, and choose a point xq € Oq,,.

Let M € DPMHM(Xp) be a mixed Hodge module complex on Xp
with constant cohomology sheaves along the torus orbits O,

Q 2 P (eg, Qx, orICx,). Then:

Tye(IMD) = Y Xy (- (M)xg) - (1 + ) ™D - td, (v 1),
Q=P

where td, : Ko(Coh(Xp)) — Hax(Xp; Q) is the Todd class
transformation of Baum-Fulton-MacPherson.
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Hirzebruch classes of toric varieties

Theorem A (M.-Schiirmann)

Let Xp be the toric variety defined by the inner normal fan X p of a
full-dimensional lattice polytope P C Mg =2 R". For each face

Q@ =< P with corresponding cone o € Lp, let V,,Q be the closure
of the orbit Oy, C Xp, and choose a point xq € Oq,,.

Let M € DPMHM(Xp) be a mixed Hodge module complex on Xp
with constant cohomology sheaves along the torus orbits O,

Q 2 P (eg, Qx, orICx,). Then:

Tye(IMD) = Y Xy (- (M)xg) - (1 + ) ™D - td, (v 1),
Q=P

where td, : Ko(Coh(Xp)) — Hax(Xp; Q) is the Todd class
transformation of Baum-Fulton-MacPherson. In particular,

Xy (Xpi M) = 37 Xy (H (M)sg) - (=1 — y)dm(@),
Q=P
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For M = Qx,, get:

Corollary

(a) The Hodge polynomial x,(Xp) is computed by:

0(Xe) = 3 (1= y)*@.
Q=P
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For M = Qx,, get:

Corollary

(a) The Hodge polynomial x,(Xp) is computed by:

x(Xe) = Y (1= ).
Q=P

(b) The Euler characteristic e(X) is computed by:

e(Xp) = number of vertices of P.
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Stanley’s g-polynomials and intersection cohomology

Corollary

Assume 0 € Int(P), and M = ICx,[—n]. Then:

Ixy(Xp) := x, ([IH*(Xp)]) Z goo(—y) - (—1 — y)dm(@),
Q<P
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Stanley’s g-polynomials and intersection cohomology

Corollary

Assume 0 € Int(P), and M = ICx,[—n]. Then:

Ixy(Xp) := x, ([IH*(Xp)]) Z goo(—y) - (—1 — y)dm(@),
Q<P

In particular, for y = 1, the Goresky-MacPherson signature is

=" goe(-1) - (-2)(@.

Q=P
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Stanley’s g-polynomials and intersection cohomology

Corollary

Assume 0 € Int(P), and M = ICx,[—n]. Then:

/XY(XP) = Xy([IH. Xp Z ng y) )dlm(Q)
Q=P

In particular, for y = 1, the Goresky-MacPherson signature is

= goe(-1) - (2@

Q=P
Upon substituting y = —t2 in Ix,(Xp), we recover Fieseler's

formula for the intersection cohomology Poincaré polynomial
IPXp(t) = hp(tZ) of Xp.
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Weighted Ehrhart theory via generalized HRR for Xp

Theorem B (M.-Schiirmann)

Let P C Mg =2 R" be a full-dimensional lattice polytope with
associated toric variety Xp and ample Cartier divisor Dp.

LAURENTIU MAXIM University of Wisconsin-Madison Generalized weighted Ehrhart theory



Weighted Ehrhart theory via generalized HRR for Xp

Theorem B (M.-Schiirmann)

Let P C Mg =2 R" be a full-dimensional lattice polytope with
associated toric variety Xp and ample Cartier divisor Dp. Then, for
any Laurent polynomial weight vector f = {fq}q=<p,

Ehrp (£, y) = /X 0% 1 T, ([IM])
P

_ ;0 (4 [1oen Tyatisa) ) -
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Weighted Ehrhart theory via generalized HRR for Xp

Theorem B (M.-Schiirmann)

Let P C Mg =2 R" be a full-dimensional lattice polytope with
associated toric variety Xp and ample Cartier divisor Dp. Then, for
any Laurent polynomial weight vector f = {fq}q=<p,

Ehrp (£, y) = /X 0% 1 T, ([IM])
P

_ ;0 (4 [1oen Tyatisa) ) -

with M € DPMHM(Xp) a mixed Hodge module complex with
constant cohomology sheaves along orbits chosen so that
fo(y) = xy(H*(M)x,) for some (any) xq € Oy, C Xp.
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Corollary

e Ehrp¢(¢,y) is a polynomial in £.
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Corollary

e Ehrp¢(¢,y) is a polynomial in £.

o Constant term:

Ehrp ¢(0,y) = xy(Xpi M) = Y foly — y)dim(@)
Q=P
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Reciprocity and Purity for arbitrary weight vectors

Theorem C (M.-Schiirmann)

For any M € DPMHM(Xp) with constant cohomology sheaves
along the torus orbits, we have the reciprocity property

1
Ehrp,M(—K,y) = EhrP,DxM(Z, ;)
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Reciprocity and Purity for arbitrary weight vectors

Theorem C (M.-Schiirmann)

For any M € D®MHM(Xp) with constant cohomology sheaves
along the torus orbits, we have the reciprocity property

1
Ehrp,M(—f,y) = EhrP,DxM(Z, ;)

In particular, if M is such a self-dual pure Hodge module of weight
n on Xp, then the following purity property holds:

1
Ehrp pm(—4,y) = (=y)" - Ehrp (4, ;)-
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Reciprocity and Purity for arbitrary weight vectors

Theorem C (M.-Schiirmann)

For any M € D®MHM(Xp) with constant cohomology sheaves
along the torus orbits, we have the reciprocity property

1
Ehrp,M(—f,y) = EhrP,DxM(& ;)

In particular, if M is such a self-dual pure Hodge module of weight
n on Xp, then the following purity property holds:

1
Ehrp pm(—4,y) = (=y)" - Ehrp (4, ;)-

More generally, for any weight vector f on the faces of P, we have

Ehrp ¢( = foly — y)dim@) . 1(rQ N M).

Q=P
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Remark

The purity of Beck-Gunnells-Materov for Ehrp ¢(¢, y), with f given
by Stanley’s g-polynomials of faces of the polar polytope P°,
follows for the special case of ICx,, which is self-dual pure Hodge
module of weight n on Xp.
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Generalized Ehrhart theory

& Let p: Mp 2 R" — C be a homogeneous polynomial function.
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Generalized Ehrhart theory

& Let p: Mp 2 R" — C be a homogeneous polynomial function.
& The generalized Ehrhart “polynomial” is defined by
Ehrf(0) .= > o(m)

melPNM
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Generalized Ehrhart theory

& Let p: Mp 2 R" — C be a homogeneous polynomial function.

& The generalized Ehrhart “polynomial” is defined by
Ehrf(0) .= > o(m)

melPNM

& If o = 1, get Ehrh(¢) = Ehrp(¥).
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Generalized Ehrhart theory

& Let p: Mp 2 R" — C be a homogeneous polynomial function.

& The generalized Ehrhart “polynomial” is defined by
Ehrf(0) .= > o(m)

melPNM

& If o = 1, get Ehrh(¢) = Ehrp(¥).

Theorem (Brion-Vergne, 1997)

Ehr%(¢) is a polynomial in ¢ of degree dim(P) + deg(y), with
constant term ¢(0), which satisfies the reciprocity law

Bhig(—() = (()ImEO S pm)
méelnt(¢P)NM

— (—1)dim(P)+deg(e) . Ehrfm(P)(Z)
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Generalized weighted Ehrhart theory

& Let p: Mg 2 R" — C be a homogeneous polynomial function.
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Generalized weighted Ehrhart theory

& Let p: Mg 2 R" — C be a homogeneous polynomial function.

& Consider a weight vector f = {fg}, with fo(y) € Z[y™!] indexed
by the non-empty faces ) # Q@ < P of P.
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Generalized weighted Ehrhart theory

& Let p: Mg 2 R" — C be a homogeneous polynomial function.

& Consider a weight vector f = {fg}, with fo(y) € Z[y™!] indexed
by the non-empty faces ) # Q@ < P of P.

& The generalized weighted Ehrhart “polynomial” is defined by

Ehrg  (Cy) =) foly) - (L+y)m@tdeelel K7 p(m)
Q=P méeRelint(£Q)NM

with Relint(£Q) denoting the relative interior of the face /Q of the
dilated polytope £P.
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Properties of Ehl‘sf;,f(ga y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that Ehr} (¢, y) has the following properties:
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Properties of Ehl‘sf;,f(ga y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that Ehr} (¢, y) has the following properties:

e Ehr% ,(¢,y) is a polynomial in £.
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Properties of Ehrﬁ’f(& y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that Ehr} (¢, y) has the following properties:

° Ehrf,’f(f,y) is a polynomial in £.
o (Constant term) For ¢ =0,

Ehrf (0,y) = ) foly — y)dim(@+deg() . 5(0),
Q2P

ie., <Zm€Relint(€Q)ﬁM So(m)> |f:0 = (_1)dim(Q)+deg(<p) . (,0(0)
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Properties of Ehrﬁ’f(& y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that Ehr} (¢, y) has the following properties:

° Ehrf,’f(f,y) is a polynomial in £.
o (Constant term) For ¢ =0,

Ehrf (0,y) = ) foly — y)dim(@+deg() . 5(0),
Q2P

ie., (ZmERelint(ZQ)ﬁM 90(”7)> =0 = (—1)4m(Q+eeele) . (0).
@ (Reciprocity formula) For £ € Z~y,

Ehrf (—Cy) = Y fo(y) - (—1 — y)dm(@tdeel). %" o(m).
Q=P melQNM
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Purity of Ehrp ((¢, )

Assume 0 € Int(P), and consider the weight vector given by
Stanley's g-polynomials

fo(y) = geo(—y) =: ga(~y)

for the faces of the polar polytope of P, with
g(-y)=gr(-y)=1.
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Purity of Ehrp ((¢, )

Assume 0 € Int(P), and consider the weight vector given by
Stanley's g-polynomials

fo(y) = geo(—y) =: ga(~y)

for the faces of the polar polytope of P, with
g(-y)=gr(-y)=1.

Theorem (Beck-Gunnells-Materov)

The following purity property holds:

Bl (~0,y) = (—y) ™) H9e82) . Beg (4,1/y).
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& To prove all these properties for Ehrf,’f(&y) geometrically, we
need to work equivariantly, with torus equivariant mixed Hodge
modules on Xp.
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& To prove all these properties for Ehrf,’f(&y) geometrically, we
need to work equivariantly, with torus equivariant mixed Hodge

modules on Xp. These automatically have constant cohomology
sheaves along orbits (Tanisaki).
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& To prove all these properties for Ehrf,’f(&y) geometrically, we
need to work equivariantly, with torus equivariant mixed Hodge
modules on Xp. These automatically have constant cohomology
sheaves along orbits (Tanisaki).

& A corresponding equivariant generalized HRR type theorem
gives a weighted count of torus characters x™ € Z[M].
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& To prove all these properties for Ehrf,’f(&y) geometrically, we
need to work equivariantly, with torus equivariant mixed Hodge
modules on Xp. These automatically have constant cohomology
sheaves along orbits (Tanisaki).

& A corresponding equivariant generalized HRR type theorem
gives a weighted count of torus characters x™ € Z[M].

& Finally, the homogeneous polynomial ¢ defines a homomorphism

ZIM] — C, X" o(=(1+y)-m) = (=1 = y)*) . o(m).
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& To prove all these properties for Ehrf,’f(&y) geometrically, we
need to work equivariantly, with torus equivariant mixed Hodge
modules on Xp. These automatically have constant cohomology
sheaves along orbits (Tanisaki).

& A corresponding equivariant generalized HRR type theorem
gives a weighted count of torus characters x™ € Z[M].

& Finally, the homogeneous polynomial ¢ defines a homomorphism

ZIM] — C, X" o(=(1+y)-m) = (=1 = y)*) . o(m).

& To explain geometrically the polynomial behavior in £ of
Ehr“ﬁ,f(ﬁ,y) we work in equivariant homology, using equivariant
localization at torus fixed points (a combinatorial proof can be
given using work of Brion-Vergne).
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RENEILS

If P is a simple lattice polytope, Ehry (¢, y) can be computed by
Euler-Maclaurin type formulae, like in works of
Beck-Gunnells-Materov (combinatorially) or
Cappell-M.-Schiirmann-Shaneson (via the equivariant
Hirzebruch-Riemann-Roch formalism).
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THANK YOU
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