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Abstract. The aim of this note is to survey recent applications of topology and
singularity theory in the study of the algebraic complexity of concrete optimization
problems in applied algebraic geometry and algebraic statistics.

1. Introduction

This note surveys recent developments in the study of the algebraic complexity of
concrete optimization problems in applied algebraic geometry and algebraic statistics.
We will focus on the Euclidean distance degree of [7], which is an algebraic measure of
the complexity of nearest point problems. For complete details, the interested reader
may consult [20, 21, 22]. Similar methods apply to the computation of other important
invariants in algebraic statistics (e.g., the maximum likelihood degree).

Without being particularly heavy on technical details, it is our hope that the results
and techniques described in this note are of equal interest for pure mathematicians and
applied scientists: besides acquainting applied scientists with a variety of tools from
topology, algebraic geometry and singularity theory, the interdisciplinary nature of the
work presented here should lead pure mathematicians to become more acquainted with
a myriad of tools used in more applied research fields, such as computer vision.

1.1. Nearest point problems. Euclidean distance degree. Many models in data
science or engineering are algebraic models (i.e., they can be realized as real algebraic
varieties X ⊂ RN) for which one needs to solve a nearest point problem. Specifically,
for such an algebraic model X ⊂ RN and a generic data point u = (u1, . . . , uN) ∈ RN ,
one needs to find a nearest point u∗ ∈ Xreg to u, i.e., a point u∗ which minimizes the
(squared) Euclidean distance from the given data point u ∈ RN . (Here, Xreg denotes the
smooth locus of X.)

The standard approach for solving the nearest point problem for an algebraic model
X ⊂ RN and a generic data point u ∈ RN is to list and examine the critical points of
the squared distance function

du(x) =
N∑
i=1

(xi − ui)2
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on the smooth locus Xreg. In practice, algorithms (e.g., Gröbner bases, numerical al-
gebraic geometry) detect all complex critical points of du (i.e., consider X ⊂ CN), and
then sort out the real ones.

If X is an irreducible closed subvariety of CN then, for a generic choice of data point
u, the function du|Xreg has finitely many critical points on the smooth locus Xreg of X.
Moreover, this number of critical points is independent of the generic choice of u, so it
defines an invariant of the embedding of X in CN called the Euclidean distance (ED)
degree of X. It is denoted by EDdeg(X). Therefore, the ED degree of the complexified
model variety gives an algebraic measure of the complexity of solving such an optimiza-
tion problem, and it is a good indicator of the running time needed to solve the problem
exactly.

The Euclidean distance degree was introduced in [7], and has since been extensively
studied in areas like computer vision [3, 11, 20], biology [10], chemical reaction networks
[1], engineering [6, 29], numerical algebraic geometry [12, 18], data science [14], etc. It is
an additive analogue of another important invariant in algebraic statistics, namely the
maximum likelihood (ML) degree, e.g., see [5, 8, 15, 16].

1.2. Classical examples of nearest point problems. Let us briefly indicate two
main examples of nearest point problems. The interested reader may consult, e.g., [7,
Section 3] and the references therein for more such examples.

Example 1.1 (Low-rank approximation). Fix positive integers r ≤ s ≤ t and set
N = st. Consider the following model of bordered-rank (≤ r) matrices:

Xr :=
{
X = [xij] ∈ Rs×t | rank(X) ≤ r

}
⊂ RN .

As generic data point, we choose a general s×t matrix U = [uij] ∈ Rs×t = RN . The near-
est point problem can be solved in this case by using the singular value decomposition.
Indeed, the general matrix U admits a product decomposition

U = T1 · diag(σ1, . . . , σs) · T2,
where σ1 > · · · > σs are the singular values of the matrix U (all of which can be assumed
non-zero since U is general), and T1, T2 are orthogonal matrices. Then the Eckart-Young
Theorem (e.g., see [7, Example 2.3]) states that the matrix of rank ≤ r closest to U is:

U∗ = T1 · diag(σ1, . . . , σr, 0, . . . , 0) · T2 ∈ Xr.

The other critical points of the squared distance function dU are given by

T1 · diag(0, . . . , 0, σi1 , 0, . . . , 0, σir , 0, . . . , 0) · T2,
where {i1 < . . . < ir} runs over all r-element subsets of {1, . . . , s}. In particular, there
are

(
s
r

)
critical points of the squared distance function dU , all of which are real matrices

of rank exactly r. (Note that the regular part of Xr consists exactly of rank-r matrices.)

Example 1.2 (Triangulation problem in computer vision). In computer vision, trian-
gulation (or 3D-reconstruction) refers to the process of reconstructing a point in the
three-dimensional (3D) space from its two-dimensional (2D) projections in n ≥ 2 cam-
eras in general position. The triangulation problem has many practical applications,
e.g., in tourism, for reconstructing the 3D structure of a tourist attraction based on a
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large number of online pictures [2]; in robotics, for creating a virtual 3D space from mul-
tiple cameras mounted on an autonomous vehicle; in filmmaking, for adding animation
and graphics to a movie scene after everything is already shot, etc. If the 2D projections
are given with infinite precision, then two cameras suffice to determine the 3D point.
In practice, however, various sources of “noise” (pixelation, lens distortion, etc.) lead
to inaccuracies in the measured image coordinates. The problem, then, is to find a 3D
point which optimally fits the measured image points.

The algebraic model fitting the triangulation problem is the space of all possible n-
tuples of such 2D projections with infinite precision, called the affine multiview variety
Xn; see [7, Example 3.3] and [20, Section 4] for more details. The above optimization
problem translates into finding a point u∗ ∈ Xn of minimum distance to a (generic)
point u ∈ R2n obtained by collecting the 2D coordinates of n “noisy” images of the
given 3D point. Once u∗ is obtained, a 3D point is recovered by triangulating any
two of its n projections. As already indicated in the previous section, in order to find
such a minimizer u∗ algebraically, one regards Xn as a complex algebraic variety and
examines all complex critical points of the squared Euclidean distance function du on
Xn. Under the assumption that n ≥ 3, the complex algebraic variety Xn is smooth and
3-dimensional, and one is then interested in computing the Euclidean distance degree
EDdeg(Xn) of the affine multiview variety Xn.

An explicit conjectural formula for the Euclidean distance degree EDdeg(Xn) was
proposed in [7, Conjecture 3.4], based on numerical computations from [27] for configu-
rations involving n ≤ 7 cameras:

Conjecture 1.3 (Multiview conjecture). The Euclidean distance degree of the affine
multiview variety Xn is given by:

(1) EDdeg(Xn) =
9

2
n3 − 21

2
n2 + 8n− 4.

This conjecture was the main motivation for the introduction of the Euclidean distance
degree in [7].

A proof of Conjecture 1.3 was obtained in [20] for n ≥ 3 cameras in general position,
by first giving a purely topological interpretation of the Euclidean distance degree of
any complex affine variety as an “Euler-Mather characteristic” involving MacPherson’s
local Euler obstruction function. This approach will be explained in Section 2 below.
In Section 3, we discuss topological formulae for the (projective) ED degree of complex
projective varieties (cf. [21]), answering positively a conjecture of Aluffi-Harris. Section
4 deals with a computation of the ED degree of a smooth projective variety Y in terms
of generic ED degrees associated to the singularities of a certain hypersurface on Y (cf.
[22]).

Acknowledgements. The author thanks Jose Rodriguez and Botong Wang for their
collaboration on the work surveyed in this note. The author is partially supported by
the Simons Foundation Collaboration Grant #567077, and by a Van Vleck Professorship
Research Award (University of Wisconsin).
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2. ED degrees of complex affine varieties and the multiview conjecture

In this section we explain how to compute the Euclidean distance degree of a complex
affine variety as an Euler characteristic. We apply this computation to the resolution of
the multiview conjecture (Conjecture 1.3).

2.1. Euclidean distance degree. Let us first recall the following definition from [7]:

Definition 2.1. The Euclidean distance (ED) degree EDdeg(X) of an irreducible closed
variety X ⊂ CN is the number of complex critical points of

du(x) =
N∑
i=1

(xi − ui)2

on the smooth locus Xreg of X (for general u = (u1, . . . , uN) ∈ CN).

Example 2.2. Every linear space X has ED degree 1.

Example 2.3. As already discussed in Example 1.1, if Xr denotes the variety of s × t
real matrices (with s ≤ t) of rank at most r, then EDdeg(Xr) =

(
s
r

)
.

Remark 2.4. Let us explain the reason for the use of the term “degree” in Definition
2.1, see [7, Theorem 4.1] for complete details. For an irreducible closed variety X ⊂ CN

of codimension c, consider the ED correspondence EX defined as the topological closure
in CN × CN of the set of pairs (x, u) such that x ∈ Xreg is a critical point of du. Note
that EX can be identified with the conormal space T ∗XCN of X in CN . In particular, the
first projection π1 : EX → X is an affine vector bundle of rank c over Xreg, whereas for
general data points u ∈ CN the second projection π2 : EX → CN has finite fibers π−12 (u)
of cardinality equal to EDdeg(X).

2.2. Topological interpretation of ED degrees. Our approach to studying ED de-
grees in [20] makes use of Whitney stratifications and constructible functions. Let us
recall here the main ingredients.

Let X be a complex algebraic variety. Then it is known that X admits a Whitney
stratification, i.e., a partition S into locally closed nonsingular subvarieties (called strata),
along which X is topologically equisingular. For example, the variety Xr of bordered-
rank matrices is Whitney stratified (over C) by the rank condition.

Definition 2.5. Given a complex algebraic variety X with a Whitney stratification S,
a function ϕ : X → Z is S-constructible if ϕ is constant along each stratum S ∈ S.

Example 2.6. A constant function ϕ = c ∈ Z (e.g., ϕ = 1X) is constructible with
respect to any Whitney stratification of X.

Example 2.7 (MacPherson’s local Euler obstruction). The local Euler obstruction func-
tion

EuX : X → Z

is an essential ingredient in MacPherson’s definition of Chern classes for singular vari-
eties, cf. [17]. It satisfies the following properties:

(a) EuX is S-constructible for any fixed Whitney stratification S of X.
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(b) If x ∈ X is a smooth point, then EuX(x) = 1. In particular, if X is smooth then
EuX = 1X .

(c) If X is a curve, then EuX(x) is the multiplicity of X at x.
(d) If (X, x) is an isolated singularity germ, then EuX(x) = χ(CL(X, x)), where

CL(X, x) denotes the complex link of x in X.
(e) The local Euler obstruction function is an analytic invariant. In particular, if U

is a Zariski open set in X, then EuX |U = EuU .
(f) The local Euler obstruction function is preserved under generic hyperplane sec-

tions.

Definition 2.8. LetX be a complex algebraic variety with a fixed Whitney stratification
S. The (weighted) Euler characteristic of an S-constructible function ϕ is defined as:

χ(ϕ) :=
∑
S∈S

χ(S) · ϕ(S),

with ϕ(S) denoting the (constant) value of ϕ on the stratum S ∈ S.

Example 2.9. Using the additivity of the Euler-Poincaré characteristic in complex
algebraic geometry, one has:

χ(1X) =
∑
S∈S

χ(S) = χ(X).

Definition 2.10. The Euler characteristic χ(EuX) of the local Euler obstruction func-
tion is usually referred to as the Euler-Mather characteristic of X.

We can now state our main result from [20]:

Theorem 2.11. Let X ⊂ CN be an irreducible closed subvariety. Then, for general
u = (u0, . . . , uN) ∈ CN+1, we have:

(2) EDdeg(X) = (−1)dimC Xχ(EuX\Qu),

where Qu = {
∑N

i=1(xi − ui)2 = u0} ⊂ CN .
In particular, if X is smooth (e.g., the affine multiview variety), then

(3) EDdeg(X) = (−1)dimC Xχ(X \Qu)

for general u = (u0, . . . , uN) ∈ CN+1.

Example 2.12. If X = C is a complex line, then (2) yields:

EDdeg(X) = −χ(X \Qu) = − (χ(X)− χ(X ∩Qu)) = −(1− 2) = 1.

In order to explain the proof of Theorem 2.11, we first linearize the optimization
problem as follows. Consider the closed embedding

i : CN ↪→ CN+1 , (x1, . . . , xN) 7→ (x21 + · · ·+ x2N , x1, . . . , xN),

and let w0, . . . , wN be the coordinates of CN+1. Then the function
∑

1≤i≤N(xi−ui)2−u0
on CN is the pullback of the function

w0 +
∑

1≤i≤N

−2uiwi +
∑

1≤i≤N

u2i − u0
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on CN+1. The computation of the ED degree EDdeg(X) amounts now to counting the
number of complex critical points of a generic linear function on the regular part of the
affine variety i(X) ⊂ CN+1. Theorem 2.11 is then a consequence of the following more
general result from stratified Morse theory (see [26, Equation (2)]):

Theorem 2.13. Let X ⊂ CN be an irreducible closed subvariety. Let ` : CN → C be a
general linear function, and let Hc be the hyperplane in CN defined by the equation ` = c
for a general c ∈ C. Then the number of critical points of `|Xreg equals

(−1)dimC Xχ(EuX\Hc).

When X is smooth (e.g., the affine multiview variety), one can give a simpler proof of
(3) by the following Lefschetz-type result (see [20, Theorem 3.1]) applied to the smooth
affine variety i(X):

Theorem 2.14. Let X ⊂ CN be a smooth closed subvariety of complex dimension d.
Let ` : CN → C be a general linear function, and let Hc be the hyperplane in CN defined
by the equation ` = c for a general c ∈ C. Then:

(a) X is homotopy equivalent to X ∩Hc with finitely many d-cells attached.
(b) the numbers of d-cells attached equals the number of critical points of `|X .
(c) the number of critical points of `|X is equal to (−1)d · χ(X \Hc).

Theorem 2.14 is proved in [20] by using Morse theory. Specifically, we consider real
Morse functions of the form log |f |, where f is a nonvanishing holomorphic Morse func-
tion on a complex manifold. Such a Morse function has the following key properties:

(i) The critical points of log |f | coincide with the critical points of f .
(ii) The index of every critical point of log |f | is equal to the complex dimension of

the manifold on which f is defined.

However, as a real-valued Morse function, log |f | is almost never proper. So one needs
to employ the non-proper Morse theory techniques developed by Palais-Smale [24].

2.3. The multiview conjecture. Our result from (3) can be used to confirm the mul-
tiview conjecture of [7] (Conjecture 1.3). Indeed, one has:

Theorem 2.15. The ED degree of the affine multiview variety Xn ⊂ C2n corresponding
to n ≥ 3 cameras in general position satisfies:

EDdeg(Xn) = −χ(Xn \Qu) =
9

2
n3 − 21

2
n2 + 8n− 4.

The computation of χ(Xn \ Qu) is quite involved and it relies on topological and
algebraic techniques from Singularity theory, see [20, Section 4] for complete details.
Let us only indicate here the key technical points. Even though both Xn and Qu are
smooth in C2n and they intersect transversally, their intersection “at infinity” is very
singular. We regard the affine multiview variety Xn as a Zariski open subset in its
closure Yn in (CP2)n, with divisor at infinity Yn \ Xn = D∞. 1 It can be easily seen

1A different compactification of Xn, in CP2n, was considered in [11], where the ED degree of the
affine multiview variety Xn was studied via characteristic classes. This leads to an upper bound for the
Euclidean distance degree of Xn given by: EDdeg(Xn) ≤ 6n3 − 15n2 + 11n− 4.
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that Yn is isomorphic to the blowup of CP3 at n points. By using the additivity of the
Euler-Poincaré characteristic, for the computation of χ(Xn \Qu) it suffices to calculate

χ(Yn), χ(D∞), χ(Du), χ(D∞ ∩ Du), where Du := Yn ∩ Qu. The main difficulty arises
in the calculation of χ(Du), since Du is an irreducible (hyper)surface in Yn with a
1-dimensional singular locus. For the computation of Euler-Poincaré characteristics
of complex projective hypersurfaces, we refer the reader to [25] or [19, Section 10.4].
Theorem 2.15 is then a direct consequence of the following formulae obtained in [20,
Theorem 4.1]:

(i) χ(Yn) = 2n+ 4.

(ii) χ(D∞) = n3

6
− 3n2

2
+ 16n

3
.

(iii) χ(Du) = 4n3 − 9n2 + 9n.

(iv) χ(D∞ ∩Du) = −n3

3
+ 13n

3
.

3. Projective Euclidean distance degree

Many models in data science, engineering and other applied fields are realized as affine
cones (defined by homogeneous polynomials), so it is natural to consider such models
as projective varieties. Examples of such models occur in (structured) low rank matrix
approximation [23], low rank tensor approximation, formation shape control [4], and all
across algebraic statistics [8, 28].

Example 3.1. The variety Xr of s× t matrices of rank ≤ r is an affine cone.

We make the following natural definition (cf. [7]):

Definition 3.2. If Y ⊂ CPN is an irreducible complex projective variety, define the
projective Euclidean distance degree of Y by

pEDdeg(Y ) := EDdeg(C(Y )),

where C(Y ) is the affine cone of Y in CN+1.

The affine cone C(Y ) on a projective variety Y acquires a very complicated singularity
at the cone point, so the computation of pEDdeg(Y ) via formula (2) is in general very
difficult. Instead, one aims in this case to describe EDdeg(C(Y )) in terms of the topology
of the projective variety Y itself. This problem has been addressed by Aluffi and Harris
in [3] (building on preliminary results from [7]) in the special case when Y is a smooth
projective variety. The main result of Aluffi-Harris can be formulated as follows (see [3,
Theorem 8.1]):

Theorem 3.3. Let Y ⊂ CPN be a smooth complex projective variety, and assume that
Y * Q, where Q = {x20 + · · ·+ x2N = 0} is the isotropic quadric in CPN . Then

(4) pEDdeg(Y ) = (−1)dimC Y χ(Y \ (Q ∪H))

where H ⊂ CPN is a general hyperplane.

Theorem 3.3 was proved in [3] by using the theory of characteristic classes for singular
varieties, and it provides a generalization of [7, Theorem 5.8], where it was assumed
that the smooth projective variety Y intersects the isotropic quadric Q transversally,
i.e., that Y ∩ Q is a smooth hypersurface in Y . Aluffi and Harris also conjectured
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that formula (4) should admit a natural generalization to arbitrary (possibly singular)
projective varieties by using the “Euler-Mather characteristic” defined in terms of the
local Euler obstruction function. We addressed their conjecture in [21, Theorem 1.3],
where we proved the following result:

Theorem 3.4. Let Y ⊂ CPN be an irreducible complex projective variety. Then

(5) pEDdeg(Y ) = (−1)dimC Y χ(EuY \(Q∪H)),

where Q is the isotropic quadric and H is a general hyperplane in CPN .

The proof of Theorem 3.4 is Morse-theoretic, and it employs ideas similar to those
used to prove Theorem 2.11.

Note that in the case when Y ⊂ CPN is smooth, Theorem 3.4 reduces to the statement
of Theorem 3.3. Theorem 3.4 also generalizes [3, Proposition 3.1], where the ED degree
of a possibly singular projective variety Y ⊂ CPN is computed under the assumption that
Y intersects the isotropic quadric Q transversally. In this case, one actually computes
what is called the generic ED degree of Y . For more results concerning generic ED
degrees, see also [3, 7, 13, 23], and Section 4 below.

Our topological interpretation of ED degrees reduces their calculation to the prob-
lem of computing MacPherson’s local Euler obstruction function and the Euler-Poincaré
characteristics of certain smooth algebraic varieties (strata). We present such computa-
tions in the following examples.

Example 3.5 (Nodal curve). Let Y = {x20x2 − x21(x1 + x2) = 0} ⊂ CP2. It has only
one singular point p = [0 : 0 : 1]. Therefore, the local Euler obstruction function EuY
equals 1 on the smooth locus Yreg of Y , and EuY (p) = 2. Note that Y intersects the
isotropic quadric Q transversally at 6 points, and it intersects a generic hyperplane H
at 3 points. Moreover, Yreg is isomorphic to C∗. So by inclusion-exclusion, we get that
χ(Yreg \(Q∪H)) = −9. It then follows from (5) that pEDdeg(Y ) = (−1) · [(−9)+2] = 7.

Example 3.6 (Whitney umbrella). Consider the Whitney umbrella, i.e., the projective
surface Y = {x20x1−x2x23 = 0} ⊂ CP3. The singular locus of Y is defined by x0 = x3 = 0.
Y has a Whitney stratification with strata: S3 := {[0 : 1 : 0 : 0], [0 : 0 : 1 : 0]},
S2 = {x0 = x3 = 0} \ S3, and S1 = Y \ {x0 = x3 = 0}. It is well known that EuY
takes the values 1, 2 and 1 along S1, S2 and S3, respectively. Therefore, if we let
U := CP3 \ (Q∪H) for a generic hyperplane H ⊂ CP3 and Q the isotropic quadric, then

χ(EuY |U) = χ(Y ∩ U) + χ(S2 ∩ U).

The terms on the right-hand side of the above equality can be computed directly by using
the inclusion-exclusion property of the Euler characteristic. One gets: χ(Y ∩ U) = 13
and χ(S2 ∩U) = −3 (see [21, Example 4.4] for complete details). Altogether, this yields
that pEDdeg(Y ) = χ(EuY |U) = 10.

Remark 3.7. In view of recent computations of the local Euler obstruction function for
determinantal varieties [9], it is an interesting exercise to check that (2) or (5) recovers
the Euclidean distance degree of the variety of s× t matrices of rank ≤ r, as discussed
in Example 2.3.
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4. Defect of ED degree

We begin this section by noting that the projective ED degree pEDdeg(Y ) is difficult
to compute even if Y ⊂ CPN is smooth, since Y and Q may intersect non-transversally
in CPN . The idea is then to perturb the objective (i.e., squared distance) function to
create a transversal intersection. For this purpose, we make the following:

Definition 4.1. The λ-Euclidean distance (ED) degree EDdegλ(X) of a closed irre-
ducible variety X ⊂ CN is the number of complex critical points of

dλu(x) =
N∑
i=1

λi(xi − ui)2 , λ = (λ1, . . . , λN)

on the smooth locus Xreg of X (for general u ∈ CN).
Similarly, If Y ⊂ CPN is an irreducible complex projective variety, we define the

projective λ-Euclidean distance degree of Y by

pEDdegλ(Y ) := EDdegλ(C(Y )),

where C(Y ) is the affine cone of Y in CN+1.
If λ = 1, we get the (unit) ED degree, EDdeg := EDdeg1, resp., pEDdeg = pEDdeg1.

If λ is generic, we get the corresponding generic ED degrees.

Theorem 3.4 can be easily adapted to the weighted context to obtain the following
result:

Theorem 4.2. Let Y ⊂ CPN be an irreducible complex projective variety. Then

(6) pEDdegλ(Y ) = (−1)dimC Y χ(EuY \(Qλ∪H)),

where Qλ := {λ0x20+· · ·+λNx2N = 0} and H is a general hyperplane in PN . In particular,
if Y is smooth, then

(7) pEDdegλ(Y ) = (−1)dimC Y χ(Y \ (Qλ ∪H)).

For generic λ, the quadric Qλ intersects Y transversally in CPN , and the computation
of the generic projective ED degree pEDdeg(Y ) is more manageable (e.g., see [7, 13, 3],
etc). This motivates the following:

Definition 4.3 (Defect of ED degree). If Y ⊂ CPN is an irreducible projective variety
and λ is generic, the defect of Euclidean distance degree of Y is defined as:

EDdefect(Y ) := pEDdegλ(Y )− pEDdeg(Y ).

It is known that EDdefect(Y ) is non-negative, but for many varieties appearing in
optimization, engineering, statistics, and data science, this defect is quite substantial.
In [22], we give a new topological interpretation of this defect in terms of invariants of
singularities of Y ∩ Q (i.e., the non-transversal intersection locus) when Y is a smooth
irreducible complex projective variety in CPN . Specifically, we prove the following result
(see [22, Theorem 1.5]):



10 LAURENTIU G. MAXIM

Theorem 4.4. Let Y ⊂ CPN be a smooth irreducible variety, with Y * Q, and let
Z = Sing(Y ∩Q). Let V be the collection of strata of a Whitney stratification of Y ∩Q
which are contained in Z, and choose λ generic. Then:

(8) EDdefect(Y ) =
∑
V ∈V

αV · pEDdegλ(V̄ ),

where, for any stratum V ∈ V,

αV = (−1)codimY ∩Q V ·

µV − ∑
{S|V <S}

χc(LV,S) · µS

 ,

with µV = χ(H̃∗(FV ; Q)) the Euler characteristic of the reduced cohomology of the Milnor
fiber FV of the hypersurface Y ∩ Q ⊂ Y at some point in V , and LV,S the complex link
of a pair of distinct strata (V, S) with V ⊂ S̄.

The proof of Theorem 4.4 relies on the theory of vanishing cycles, adapted to the
pencil of quadrics Qλ on Y , see [22, Section 2] for complete details.

Note that computing the ED degree defect of Y ⊂ CPN yields a formula for the
projective ED degree pEDdeg(Y ) only in terms of generic ED degrees (which, as already
mentioned, are easier to compute). Also, computing the ED degree defect directly is
generally much easier than the individual computations of pEDdeg(Y ) and pEDdegλ(Y )
for generic λ.

As an immediate consequence of Theorem 4.4, we get the following result from [3,
Corollary 6.3]:

Corollary 4.5. Under the notations of Theorem 4.4, assume that Z = Sing(Y ∩Q) has
only isolated singularities. Then

(9) EDdefect(Y ) =
∑
x∈Z

µx,

where µx is the Milnor number of the isolated hypersurface singularity germ (Y ∩Q, x)
in Y .

Furthermore, if Y ∩Q is equisingular along the non-transversal intersection locus Z,
then Theorem 4.4 yields the following:

Corollary 4.6. Under the notations of Theorem 4.4, assume that Z = Sing(Y ∩ Q) is
connected and Y ∩Q is equisingular along Z. Then:

(10) EDdefect(Y ) = µ · pEDdegλ(Z),

where µ is the Milnor number of the isolated transversal singularity at some point x ∈ Z
(i.e., the Milnor number of the isolated hypersurface singularity in a normal slice to Z
at x).

Theorem 4.4 was motivated by the “duality conjecture” of [23, (3.5)] in structured
low-rank approximation, which predicts a formula for the Euclidean distance degree
defect of the restriction of (the dual variety of) Y to a linear space L. At this point
let us note that, since intersecting Y with a general linear space L does not change the



11

multiplicities αV on the right-hand side of formula (8), Theorem 4.4 has the following
immediate consequence:

Corollary 4.7. With the notations of Theorem 4.4, and for L a general linear subspace
of CPN , we have:

(11) EDdefect(Y ∩ L) =
∑
V ∈V

αV · pEDdegλ(V̄ ∩ L).

Let us conclude this section with the following example:

Example 4.8 (2 × 2 matrices of rank 1). Let Y = {x0x3 − x1x2 = 0} ⊂ CP3, with
isotropic quadric Q = {

∑3
i=0 x

2
i = 0}. Then Y ∩ Q consists of 4 lines, with 4 isolated

double point singularities (hence, each having Milnor number 1). Corollary 4.5 yields
that EDdefect(Y ) = 4. In fact, as shown in [7], one has in this case that pEDdeg(Y ) = 2
and pEDdegλ(Y ) = 6 for generic λ. For a higher-dimensional generalization of this
example, see [22, Example 3.3].
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