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Virtual tangent bundle of a hypersurface

o Let X <5 Y be a complex algebraic hypersurface (or Ici) in a
complex algebraic manifold Y, with normal bundle Nx Y .

@ The virtual tangent bundle of X is:
T)‘?r = [Ty|x] — [ny] S KO(X)

° T)‘?r is independent of the embedding in Y, so it is a
well-defined element in K°(X), the Grothendieck group of
algebraic vector bundles on X.

o If X is smooth: Ty* = [Tx] € K°(X).
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Characteristic classes

@ Let R be a commutative ring with unit, and
c*: (KY(X),®) = (H*(X) ® R,U)
a multiplicative characteristic class theory of complex
algebraic vector bundles, with H*(X) = H?*(X; Z).

@ Associate to a hypersurface (or Ici) X an intrinsic homology
class (i.e., independent of the embedding X — Y):

cYT(X) = c*(TX") N [X] € Ho(X) @ R,

with [X] € H.(X) the fundamental class of X in a suitable
homology theory H.(X) (e.g., HEM(X)=Borel-Moore
homology).

@ Assume cl.(—) is a homology characteristic class theory for
complex algebraic varieties, so that if X smooth:

cl(X) = c*(Tx) N[X] (normalization)
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o If X is smooth:
ir def * vir * nor
M (X) = e (TY™) N [X] = o (Tx) N [X] = ch(X) .
o If X is singular, the difference

Ml (X) := cly™(X) — cl(X)

depends in general on the singularities of X.
o If k: Xsing = X, then

Ml (X) € Image(k),

so Mcl.(X) measures the complexity of singularities of X.
e Corollary: c//™(X) = clg(X), for k > dim Xsing.
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Problem: Describe Mcl.(X) = cly'"(X) — cl(X) in terms of the
geometry of the singular locus ¥ := Xng of X.

Byproduct: Compute the (very) complicated “actual” homology
class cl.(X) in terms of the simpler (cohomological) virtual class
and invariants of the singularities of X.
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Chern and Milnor classes of singular hypersurfaces

o cl* = ¢*= Chern class

e Virtual Chern (or Fulton-Johnson) class of X:
c:ir(X) = C*(T)‘éir) N [X].
@ cl, = ¢, = Chern class transformation of MacPherson,
& Ko(DP(X)) X5 F(X) S Ho(X),

with
&.(X) = c(10x]) = (1x).
(Here F(X) is the group of constructible functions on X.)
e Gauss-Bonnet-Chern: if X is compact: x(X) = f[x] c(X).
@ Milnor class of X: M,(X) 1= c/"(X) — c(X).
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Example (Reason for terminology)

If X" is a hypersurface with only isolated singularities, then

MX) = 3 x(FFa®) = 3 (1)

XEXsing XEXsing

where Fy and puy are the the Milnor fiber and Milnor number of the
IHS germ (X, x) C (C™1,0).
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Milnor fibration, nearby and vanishing cycles

o X" =f"10), f: Y"1 — C regular, Y-complex manifold
@ For x € Xiing and 0 < 0 < ¢, there is a Milnor fibration:

B.(x) N FY(Dg) L by,

whose Milnor fiber Fy is a local smoothing of X near x.

@ if x € Xying is isolated, then F, ~ \/#X S with uy the Milnor
number of f at x; the §"'s are called vanishing cycles at x.

@ Deligne: there exist nearby and resp. vanishing cycle functors
Ve, of - DE(Y) — DP(X), so that

H<(rQy )x = HX(F; Q) , H*(9rQy)x =~ H*(F; Q)

o If x € X.cg, then F is contractible, so Supp(prQy) € Xiing-
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Verdier specialization for MacPherson-Chern classes yields:
e (X) = e(vr(Qy))
So the Milnor class of X is computed by:
M (X) = (X)) = e X)= cu(pr(Qv)) € Hi(Xsing)
Vast literature on Milnor classes: Aluffi, Yokura, Ohmoto,

Brasselet-Lehmann-Seade-Suwa, Parusinski-Pragacz, Schiirmann,
M., Fulwood, Callejas-Bedregal-Morgado-Seade, etc.
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Hodge polynomials and Hirzebruch classes

e Hodge polynomial x,(X) of a complex algebraic variety X is:
Z( Y xy (H(X ZJ p (—1) dim Gr‘EHj(X; C)-(=y)?
J
@ generalized Hirzebruch-Riemann-Roch theorem: if X is
smooth and compact, then

(X) = /[X] TH(X) N [X],

with T7(X) := T;(Tx) the cohomology Hirzebruch class of
X.

o T*/(X)=c*(X), just as x_1 = x.
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e if X is singular, then
w0 = [ T.00.
(X
where T,.(X) := T,.([QY)] is the homology Hirzebruch class
of X, for
Ty : Ko(MHM(X)) = H.(X) @ Q[y™]

the Brasselet-Schirmann-Yokura Hirzebruch class
transformation (2005).

e if X is smooth, then
Ty«(X) = T;(Tx)N[X] (normalization)
T-1:(X) = e(X) € Hi(X) © Q,

(a class version of x_1 = x.)
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Milnor-Hirzebruch classes of complex hypersurfaces

The Milnor-Hirzebruch class of a complex algebraic hypersurface X
in the complex algebraic manifold Y is defined as:

Mys(X) = T (X) = Ty, (X)),

where . _
Ty (X) = T(TX") N [X] € Hi(X) ® Qly].

o M_1,(X) = M, (X)®Q
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Milnor-Hirzebruch classes of (global) hypersurfaces

o Let Y™ be a complex algebraic manifold, and f : Y — C an
algebraic function, with X := {f = 0}.

@ Deligne's nearby and resp. vanishing cycle functors
Ve, or - DE(Y) — DP(X) admit lifts to Saito's mixed Hodge
modules.

@ In particular, the stalk cohomologies

H*(PrQy)x = H*(F Q) , H¥(prQy)x =~ H*(F(; Q)

carry Q-mixed Hodge structures.
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Specialization of Hirzebruch classes (Schiirmann) yields:
O T(X) = Ty(TxX") N [X]= Ty (v ([QF]))
Q@ Myu(X) = TpH(X) = Ty (X)= Ty, (er(1QVD)

Example (Isolated singularities)

If the n-dimensional hypersurface X has only isolated singularities,
then

My(X) = Y (=1 ([H(F Q)D),

XEijng
where Fy is the Milnor fiber of the IHS (X, x).

Many computations in literature: Cappell, M., Saito, Schiirmann,
Shaneson, Yokura, etc. Applications to Donaldson-Thomas theory.
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Sample calculation

Theorem (Cappell-M.-Schiirmann-Shaneson, 2010)

If > = Xsing has dimension r, then:

M, (X) = (=1)"""x, ([H™"(Fn.x;: Q)]) - [Z] + L-0.t

where Fy x is the transversal Milnor fiber at x € ¥,g, i.€., the
Milnor fiber of the isolated singularity germ (X N N, x) defined
(locally in the analytic topology) by restricting f to a normal slice
N at a regular point x € ¥ .
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The nearby and vanishing cycle functors ¢, of come equipped
with monodromy actions compatible with the local monodromies
of the Milnor fibrations. By using the semi-simple part of the local
monodromy action on H*(F,; Q) and the corresponding eigenspace
decomposition, Steenbrink-Varchenko defined the (local) Hodge
spectrum of the IHS germ (X, x).
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Spectral Hirzebruch and Milnor-Hirzebruch classes

M.-Saito-Schiirmann: spectral Hirzebruch class

TP - K" (MHM(X)) = | Ho(X) @ Q[tn, t =

n>1

which is a characteristic class version of the Hodge spectrum

hsp : Ky""(mHs) — U Z[t%, t*%].
n>1

Here K§""(mHs) is the Grothendieck group of Q-mixed Hodge
structures with a finite order automorphism.

hSp(H7 T) = Z ta(Zdim GI’,I_EHQQ . tp) c Z[til/ord(T)],
aeQn(0,1) PEZL

where Hc , is the exp(2mia)-eigenspace of Hg := H ® C.
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Spectral Hirzebruch class transformation:

P K" (MHM(X)) — | Ha( X)® Q[tn, t ],

n>1

where KJ™"(MHM(X)) is the Grothendieck group of algebraic
mixed Hodge modules with a finite order automorphism, e.g., the
semi-simple part hs of the monodromy acting on ¢, pr.

The spectral classes T;?(M, T) are refined versions (for t = —y
and forgetting the action) of the Hirzebruch classes T,.(M).
Moreover, if X is compact:

/[x] TEE(M, T) = hsp([H*(M), T°1) := 3 (1) hsp([H (M), T7]).
J

If X = f~1(0), with f : Y — C as before, we define the spectral
Milnor-Hirzebruch class of X by:

MP(X) = TP (prQy, hs) € Ha(Xsing) [t/ 4],
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Il. Multiplier ideals and jumping coefficients
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Multiplier ideals and jumping coefficients

X := f~1(0) reduced hypersurface in a complex manifold Y.
The multiplier ideal of X, with coefficient o € Q, is:

| 2

J(aX) :={g € Oy, |§2a

is locally integrable}.

The J(aX) form a decreasing sequence of ideal sheaves of Oy
satisfying:
J(@X) =0y (a<0), J((a+1)X)=FfT(aX) (a=0)

(smaller multiplier ideals ~ worse singularities.)
J(aX) satisfies right-continuity in c:

J(@X)=T((a+e)X), 0<e< 1.
Jumping coefficients of f (or X ) are defined by:
JEX) = {a € Q| T((a - £)X)/T(aX) #0}.
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log canonical threshold

log canonical threshold of f
let(f) := min{a € JC(X)}.

smaller Ict ~~ worse singularities.

o f(x,y)=x2—y?:C?>—=C, let(f) =1
o f(x,y)=x>—y3:C%2— C, Ict(f) = 5/6.

e 1 € JC(f) (from the smooth points of X).
o Ict(f) =1 <= X has Du Bois/log canonical singularities.

e JC(X) = (JC(X)N(0,1]) + N, so can restrict to
aecQn(o,1].
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. Use of characteristic classes in birational geometry
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Let ME(X)|¢» € Hu(Xing) be the coefficient of t* in ME(X).

Theorem (M.-Saito-Schiirmann)

Ifa € (0,1) NQ is not a jumping coefficient for f, then

ME(X)|ea = 0. The converse holds if Xsing is projective.

Theorem (M.-Saito-Schiirmann)

My(X)ly=0 = @ MEX)|ee € He(Xoing)

aeQn(0,1)

Theorem (M.-Saito-Schiirmann)

Assume Xging is projective. Then:

X has only Du Bois singularities <= M .(X)|y,=0 = 0.

Ishii (1985) proved the isolated singularities case.
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What's behind these results?

Multiplier ideals are essentially the same as the V/-filtration on Oy.
In fact, Budur-Saito showed:

a¢ JC(f) < GryOy =0.

The vanishing cycle complex and its eigenspaces (hence also the
spectral classes) have a V-filtration description.

LAURENTIU MAXIM University of Wisconsin-Madison Measuring the complexity of hypersurface singularities in algel



THANK YOU
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Thom-Sebastiani for spectral Milnor-Hirzebruch classes

Theorem (M.-Saito-Schiirmann)

Let X; = f,-_l(O), for f: : Y; — C a non-constant function on a
connected complex manifold Y;, and ¥; := Sing(X;), i = 1,2.
Let X :=f~1(0) C Y := Y1 x Ya, with f := fi + f, and

Y := Sing(X). Then:

ME(X) = —ME(X1) B ME(Xe) € Hu(D)[e!/ )],

after replacing Y; by an open neighborhood of X; (i =1,2) if
necessary (to get ¥ =¥ X ¥).

RENEILS

If X; (i = 1,2) has only isolated singularities, the theorem reduces
to the Thom-Sebastiani formula for the Hodge spectrum
(Scherk-Steenbrink, Varchenko).
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Thom-Sebastiani for multiplier ideals

In the notations of the Thom-Sebastiani theorem:

Theorem (M.-Saito-Schiirmann)

We have the equality for any o € (0,1):
j(OzX Z j a1X1) X j(QQXQ) C Oy = Oy, X Oy,,
al1tar=a

and
JC(f)N(0,1) = (JC(A) + JC()) N (0, 1),

let(f) = min{1, lct(f) + Ict(f)}.
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Definition of Hirzebruch classes of singular varieties

Ty, : Ko(MHM(X)) — H2Y (X) @ QIy™],

is the Brasselet-Schiirmann-Yokura transformation (2005):

Ty, (M) := td(14,).DR,[M]
where td(i ). is a twisted BFM Todd class transformation.
o If X smooth,

DR,[M] :=) (~1)"[GreM @ Q4] - (—y)P* € Ko(X)ly*']
i,p
with (M, F) the underlying filtered left Dx-modules of M.

@ In X singular, use local embeddings into smooth varieties.

@ Set:
Ty (X) = T,.(1Qx]).
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