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1
Basics of Homotopy Theory

1.1 Homotopy Groups

Definition 1.1.1. For each n ≥ 0 and X a topological space with x0 ∈ X, the
n-th homotopy group of X is defined as

πn(X, x0) =
{

f : (In, ∂In)→ (X, x0)
}

/ ∼

where I = [0, 1] and ∼ is the usual homotopy of maps.

Remark 1.1.2. Note that we have the following diagram of sets:

(In, ∂In)
f

//

((

(X, x0)

(In/∂In, ∂In/∂In)

g
77

with (In/∂In, ∂In/∂In) ' (Sn, s0). So we can also define

πn(X, x0) =
{

g : (Sn, s0)→ (X, x0)
}

/ ∼ .

Remark 1.1.3. If n = 0, then π0(X) is the set of connected components
of X. Indeed, we have I0 = pt and ∂I0 = ∅, so π0(X) consists of
homotopy classes of maps from a point into the space X.

Now we will prove several results analogous to the case n = 1,
which corresponds to the fundamental group.

Proposition 1.1.4. If n ≥ 1, then πn(X, x0) is a group with respect to the
operation + defined as:

( f + g)(s1, s2, . . . , sn) =

 f (2s1, s2, . . . , sn) 0 ≤ s1 ≤ 1
2

g(2s1 − 1, s2, . . . , sn)
1
2 ≤ s1 ≤ 1.

(Note that if n = 1, this is the usual concatenation of paths/loops.)

Proof. First note that since only the first coordinate is involved in this
operation, the same argument used to prove that π1 is a group is valid
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0 1/2 1 s1

In−1

f g

Figure 1.1: f + g

here as well. Then the identity element is the constant map taking all
of In to x0 and the inverse element is given by

− f (s1, s2, . . . , sn) = f (1− s1, s2, . . . , sn).

Proposition 1.1.5. If n ≥ 2, then πn(X, x0) is abelian.

Intuitively, since the + operation only involves the first coordinate, if
n ≥ 2, there is enough space to “slide f past g”.

f g ' f g '
g

f
' g f

' g f

Figure 1.2: f + g ' g + f

Proof. Let n ≥ 2 and let f , g ∈ πn(X, x0). We wish to show that
f + g ' g + f . We first shrink the domains of f and g to smaller cubes
inside In and map the remaining region to the base point x0. Note that
this is possible since both f and g map to x0 on the boundaries, so
the resulting map is continuous. Then there is enough room to slide
f past g inside In. We then enlarge the domains of f and g back to
their original size and get g + f . So we have “constructed” a homotopy
between f + g and g + f , and hence πn(X, x0) is abelian.

Remark 1.1.6. If we view πn(X, x0) as homotopy classes of maps
(Sn, s0) → (X, x0), then we have the following visual representation
of f + g (one can see this by collapsing boundaries in the above cube
interpretation).
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Xc
g

f

Figure 1.3: f + g, revisited

Next recall that if X is path-connected and x0, x1 ∈ X, then there is
an isomorphism

βγ : π1(X, x1)→ π1(X, x0)

where γ is a path from x1 to x0, i.e., γ : [0, 1]→ X with γ(0) = x1 and
γ(1) = x0. The isomorphism βγ is given by

βγ([ f ]) = [γ̄ ∗ f ∗ γ]

for any [ f ] ∈ π1(X, x1), where γ̄ = γ−1 and ∗ denotes path concatana-
tion. We next show a similar fact holds for all n ≥ 1.

Proposition 1.1.7. If n ≥ 1 and X is path-connected, then there is an
isomorphism βγ : πn(X, x1)→ πn(X, x0) given by

βγ([ f ]) = [γ · f ],

where γ is a path in X from x1 to x0, and γ · f is constructed by first shrinking
the domain of f to a smaller cube inside In, and then inserting the path γ

radially from x1 to x0 on the boundaries of these cubes.

x1

x1

x1 x1

x0

x0

x0 x0f

Figure 1.4: βγ

Proof. It is easy to check that the following properties hold:

1. γ · ( f + g) ' γ · f + γ · g

2. (γ · η) · f ' γ · (η · f ), for η a path from x0 to x1

3. cx0 · f ' f , where cx0 denotes the constant path based at x0.

4. βγ is well-defined with respect to homotopies of γ or f .

Note that (1) implies that βγ is a group homomorphism, while (2)
and (3) show that βγ is invertible. Indeed, if γ(t) = γ(1− t), then
β−1

γ = βγ.
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So, as in the case n = 1, if the space X is path-connected, then πn is
independent of the choice of base point. Further, if x0 = x1, then (2)
and (3) also imply that π1(X, x0) acts on πn(X, x0) as:

π1 × πn → πn

(γ, [ f ]) 7→ [γ · f ]

Definition 1.1.8. We say X is an abelian space if π1 acts trivially on πn for
all n ≥ 1.

In particular, this implies that π1 is abelian, since the action of π1 on
π1 is by inner-automorphisms, which must all be trivial.

We next show that πn is a functor.

Proposition 1.1.9. A map φ : X → Y induces group homomorphisms
φ∗ : πn(X, x0)→ πn(Y, φ(x0)) given by [ f ] 7→ [φ ◦ f ], for all n ≥ 1.

Proof. First note that, if f ' g, then φ ◦ f ' φ ◦ g. Indeed, if ψt is
a homotopy between f and g, then φ ◦ ψt is a homotopy between
φ ◦ f and φ ◦ g. So φ∗ is well-defined. Moreover, from the definition
of the group operation on πn, it is clear that we have φ ◦ ( f + g) =

(φ ◦ f ) + (φ ◦ g). So φ∗([ f + g]) = φ∗([ f ]) + φ∗([g]). Hence φ∗ is a
group homomorphism.

The following is a consequence of the definition of the above induced
homomorphisms:

Proposition 1.1.10. The homomorphisms induced by φ : X → Y on higher
homotopy groups satisfy the following two properties:

1. (φ ◦ ψ)∗ = φ∗ ◦ ψ∗.

2. (idX)∗ = idπn(X,x0)
.

We thus have the following important consequence:

Corollary 1.1.11. If φ : (X, x0)→ (Y, y0) is a homotopy equivalence, then
φ∗ : πn(X, x0)→ πn(Y, φ(x0)) is an isomorphism, for all n ≥ 1.

Example 1.1.12. Consider Rn (or any contractible space). We have
πi(R

n) = 0 for all i ≥ 1, since Rn is homotopy equivalent to a point.

The following result is very useful for computations:

Proposition 1.1.13. If p : X̃ → X is a covering map, then p∗ : πn(X̃, x̃)→
πn(X, p(x̃)) is an isomorphism for all n ≥ 2.

Proof. First we show that p∗ is surjective. Let x = p(x̃) and consider
f : (Sn, s0) → (X, x). Since n ≥ 2, we have that π1(Sn) = 0, so
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f∗(π1(Sn, s0)) = 0 ⊂ p∗(π1(X̃, x̃)). So f admits a lift to X̃, i.e., there
exists f̃ : (Sn, s0) → (X̃, x̃) such that p ◦ f̃ = f . Then [ f ] = [p ◦ f̃ ] =
p∗([ f̃ ]). So p∗ is surjective.

(X̃, x̃)

p
��

(Sn, s0)
f
//

f̃
::

(X, x)

Next, we show that p∗ is injective. Suppose [ f̃ ] ∈ ker p∗. So p∗([ f̃ ]) =
[p ◦ f̃ ] = 0. Let p ◦ f̃ = f . Then f ' cx via some homotopy φt :
(Sn, s0) → (X, x0) with φ1 = f and φ0 = cx. Again, by the lifting
criterion, there is a unique φ̃t : (Sn, s0)→ (X̃, x̃) with p ◦ φ̃t = φt.

(X̃, x̃)

p
��

(Sn, s0)
φt
//

φ̃t
::

(X, x)

Then we have p ◦ φ̃1 = φ1 = f and p ◦ φ̃0 = φ0 = cx, so by the
uniqueness of lifts, we must have φ̃1 = f̃ and φ̃0 = cx̃. Then φ̃t is a
homotopy between f̃ and cx̃. So [ f̃ ] = 0. Thus p∗ is injective.

Example 1.1.14. Consider S1 with its universal covering map p : R→
S1 given by p(t) = e2πit. We already know that π1(S1) = Z. If n ≥ 2,
Proposition 1.1.13 yields that πn(S1) = πn(R) = 0.

Example 1.1.15. Consider Tn = S1 × S1 × · · · × S1, the n-torus. We
have π1(Tn) = Zn. By using the universal covering map p : Rn → Tn,
we have by Proposition 1.1.13 that πi(Tn) = πi(R

n) = 0 for i ≥ 2.

Definition 1.1.16. If πn(X) = 0 for all n ≥ 2, the space X is called aspheri-
cal.

Remark 1.1.17. As a side remark, the celebrated Singer-Hopf conjecture
asserts that if X is a smooth closed aspherical manifold of dimension
2k, then (−1)k · χ(X) ≥ 0, where χ denotes the Euler characteristic.

Proposition 1.1.18. Let {Xα}α be a collection of path-connected spaces. Then

πn

(
∏

α

Xα

)
∼= ∏

α

πn(Xα)

for all n.

Proof. First note that a map f : Y → ∏α Xα is a collection of maps
fα : Y → Xα. For elements of πn, take Y = Sn (note that since all spaces
are path-connected, we may drop the reference to base points). For
homotopies, take Y = Sn × I.



6 homotopy theory and applications

Example 1.1.19. A natural question to ask is if there exist spaces X and
Y such that πn(X) ∼= πn(Y) for all n, but with X and Y not homotopy
equivalent. Whitehead’s Theorem (to be discussed later on) states that
if a map of CW complexes f : X → Y induces isomorphisms on all πn,
then f is a homotopy equivalence. So for the above question to have a
positive answer, we must find X and Y so that there is no continuous
map f : X → Y inducing the isomorphisms on πn’s. Consider

X = S2 ×RP3 and Y = RP2 × S3.

Then πn(X) = πn(S2 ×RP3) = πn(S2)× πn(RP3). Since S3 is a cov-
ering of RP3, for all n ≥ 2 we have that πn(X) = πn(S2) × πn(S3).
We also have π1(X) = π1(S2)× π1(RP3) = Z/2. Similarly, we have
πn(Y) = πn(RP2 × S3) = πn(RP2)× πn(S3). And since S2 is a cover-
ing of RP2, for n ≥ 2 we have that πn(Y) = πn(S2)× πn(S3). Finally,
π1(Y) = π1(RP2)× π1(S3) = Z/2. So

πn(X) = πn(Y) for all n.

By considering homology groups, however, we see that X and Y are
not homotopy equivalent. Indeed, by the Künneth formula, we get that
H5(X) = Z while H5(Y) = 0 (since RP3 is oriented while RP2 is not).

Just like there is a homomorphism π1(X) −→ H1(X), we can also
construct Hurewicz homomorphisms

hX : πn(X) −→ Hn(X)

defined by

[ f : Sn → X] 7→ f∗[Sn],

where [Sn] is the fundamental class of Sn. A very important result in
homotopy theory is the following:

Theorem 1.1.20. (Hurewicz)
If n ≥ 2 and πi(X) = 0 for all i < n, then Hi(X) = 0 for i < n and
πn(X) ∼= Hn(X).

Moreover, there is also a relative version of the Hurewicz theorem
(see the next section for a definition of the relative homotopy groups),
which can be used to prove the following:

Corollary 1.1.21. If X and Y are CW complexes with π1(X) = π1(Y) = 0,
and a map f : X → Y induces isomorphisms on all integral homology groups
Hn, then f is a homotopy equivalence.

We’ll discuss all of these in the subsequent sections.
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1.2 Relative Homotopy Groups

Given a triple (X, A, x0) where x0 ∈ A ⊆ X, we define relative homo-
topy groups as follows:

Definition 1.2.1. Let X be a space and let A ⊆ X and x0 ∈ A. Let

In−1 = {(s1, . . . , sn) ∈ In| sn = 0}

and set
Jn−1 = ∂In\In−1.

Then define the n-th homotopy group of the pair (X, A) with basepoint x0 as:

πn(X, A, x0) =
{

f : (In, ∂In, Jn−1)→ (X, A, x0)
}

/ ∼

where, as before, ∼ is the homotopy equivalence relation.

In−1

sn Jn−1

Alternatively, by collapsing Jn−1 to a point, we obtain a commutative
diagram

(In, ∂In, Jn−1)
f

//

g

((

(X, A, x0)

(Dn, Sn−1, s0)

77

where g is obtained by collapsing Jn−1. So we can take

πn(X, A, x0) =
{

g : (Dn, Sn−1, s0)→ (X, A, x0)
}

/ ∼ .

A sum operation is defined on πn(X, A, x0) by the same formulas
as for πn(X, x0), except that the coordinate sn now plays a special role
and is no longer available for the sum operation. Thus, we have:

Proposition 1.2.2. If n ≥ 2, then πn(X, A, x0) forms a group under the
usual sum operation. Further, if n ≥ 3, then πn(X, A, x0) is abelian.
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A

x0

x0x0

A

Dn

Sn−1x0

Remark 1.2.3. Note that the proposition fails in the case n = 1. Indeed,
we have that

π1(X, A, x0) =
{

f : (I, {0, 1}, {1})→ (X, A, x0)
}

/ ∼ .

Then π1(X, A, x0) consists of homotopy classes of paths starting any-
where A and ending at x0, so we cannot always concatenate two paths.

X
A

x0

f

Just as in the absolute case, a map of pairs φ : (X, A, x0)→ (Y, B, y0)

induces homomorphisms φ∗ : πn(X, A, x0)→ πn(Y, B, y0) for all n ≥ 2.

A very important feature of the relative homotopy groups is the
following:

Proposition 1.2.4. The relative homotopy groups of (X, A, x0) fit into a long
exact sequence

· · · → πn(A, x0)
i∗→ πn(X, x0)

j∗→ πn(X, A, x0)
∂n−→ πn−1(A, x0)→ · · ·
· · · → π0(X, x0)→ 0,

where the map ∂n is defined by ∂n[ f ] = [ f |In−1 ] and all others are induced by
inclusions.

Remark 1.2.5. Near the end of the above sequence, where group struc-
tures are not defined, exactness still makes sense: the image of one map
is the kernel of the next, which consists of those elements mapping to
the homotopy class of the constant map.

Example 1.2.6. Let X be a path-connected space, and

CX := X× [0, 1]/X× {0}
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be the cone on X. We can regard X as a subspace of CX via X× {1} ⊂
CX. Since CX is contractible, the long exact sequence of homotopy
groups gives isomorphisms

πn(CX, X, x0) ∼= πn−1(X, x0).

In what follows, it will be important to have a good description of
the zero element 0 ∈ πn(X, A, x0).

Lemma 1.2.7. Let [ f ] ∈ πn(X, A, x0). Then [ f ] = 0 if, and only if, f ' g
for some map g with image contained in A.

Proof. (⇐) Suppose f ' g for some g with Image g ⊂ A.

A

x0

x0 x0A X
g

Then we can deform In to Jn−1 as indicated in the above picture, and
so g ' cx0 . Since homotopy is a transitive relation, we then get that
f ' cx0 .
(⇒) Suppose [ f ] = 0 in πn(X, A, x0). So f ' cx0 . Take g = cx0 .

Recall that if X is path-connected, then πn(X, x0) is independent of
our choice of base point, and π1(X) acts on πn(X) for all n ≥ 1. In the
relative case, we have:

Lemma 1.2.8. If A is path-connected, then βγ : πn(X, A, x1)→ πn(X, A, x0)

is an isomorphism, where γ is a path in A from x1 to x0.

f

γ γA

Figure 1.5: relative βγ

Remark 1.2.9. In particular, if x0 = x1, we get an action of π1(A) on
πn(X, A).

It is easy to see that the following three conditions are equivalent:
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1. every map Si → X is homotopic to a constant map,

2. every map Si → X extends to a map Di+1 → X, with Si = ∂Di+1,

3. πi(X, x0) = 0 for all x0 ∈ X.

In the relative setting, the following are equivalent for any i > 0:

1. every map (Di, ∂Di) → (X, A) is homotopic rel. ∂Di to a map
Di → A,

2. every map (Di, ∂Di)→ (X, A) is homotopic through such maps to a
map Di → A,

3. every map (Di, ∂Di)→ (X, A) is homotopic through such maps to a
constant map Di → A,

4. πi(X, A, x0) = 0 for all x0 ∈ A.

Remark 1.2.10. As seen above, if α : Sn = ∂en+1 → X represents an
element [α] ∈ πn(X, x0), then [α] = 0 if and only if α extends to a map
en+1 → X. Thus if we enlarge X to a space X′ = X ∪α en+1 by adjoining
an (n + 1)-cell en+1 with α as attaching map, then the inclusion j :
X ↪→ X′ induces a homomorphism j∗ : πn(X, x0) → πn(X′, x0) with
j∗[α] = 0. We say that [α] “has been killed”.

The following is left as an exercise:

Lemma 1.2.11. Let (X, x0) be a space with a basepoint, and let X′ = X ∪α

en+1 be obtained from X by adjoining an (n + 1)-cell. Then the inclusion
j : X ↪→ X′ induces a homomorphism j∗ : πi(X, x0)→ πi(X′, x0), which is
an isomorphism for i < n and surjective for i = n.

Definition 1.2.12. We say that the pair (X, A) is n-connected if πi(X, A) =

0 for i ≤ n and X is n-connected if πi(X) = 0 for i ≤ n.

In particular, X is 0-connected if and only if X is connected. More-
over, X is 1-connected if and only if X is simply-connected.

1.3 Homotopy Extension Property

Definition 1.3.1 (Homotopy Extension Property). Given a pair (X, A),
a map F0 : X → Y, and a homotopy ft : A → Y such that f0 = F0|A, we
say that (X, A) satisfies the homotopy extension property (HEP) if there is
a homotopy Ft : X → Y extending ft and F0. In other words, (X, A) has
homotopy extension property if any map X× {0} ∪ A× I → Y extends to a
map X× I → Y.

Proposition 1.3.2. Any CW pair has the homotopy extension property. In
fact, for every CW pair (X, A), there is a deformation retract r : X × I →
X × {0} ∪ A × I, hence X × I → Y can be defined by the composition
X× I r→ X× {0} ∪ A× I → Y.
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Proof. We have an obvious deformation retract Dn × I r−→ Dn × {0} ∪
Sn−1 × I. For every n, consider the pair (Xn, An ∪ Xn−1), where Xn

denotes the n-skeleton of X. Then

Xn × I =
[
Xn × {0} ∪ (An ∪ Xn−1)× I

]
∪ Dn × I,

where the cylinders Dn × I corresponding to n-cells Dn in X\A are
glued along Dn×{0}∪ Sn−1× I to the pieces Xn×{0}∪ (An ∪Xn−1)×
I. By deforming these cylinders Dn × I we get a deformation retraction

rn : Xn × I → Xn × {0} ∪ (An ∪ Xn−1)× I.

Concatenating these deformation retractions by performing rn over
[
1−

1
2n−1 , 1− 1

2n

]
, we get a deformation retraction of X× I onto X× {0} ∪

A× I. Continuity follows since CW complexes have the weak topology
with respect to their skeleta, so a map of CW complexes is continuous
if and only if its restriction to each skeleton is continuous.

1.4 Cellular Approximation

All maps are assumed to be continuous.

Definition 1.4.1. Let X and Y be CW-complexes. A map f : X → Y is called
cellular if f (Xn) ⊂ Yn for all n, where Xn denotes the n-skeleton of X and
similarly for Y.

Definition 1.4.2. Let f : X → Y be a map of CW complexes. A map
f ′ : X → Y is a cellular approximation of f if f ′ is cellular and f is homotopic
to f ′.

Theorem 1.4.3 (Cellular Aproximation Theorem). Any map f : X → Y
between CW-complexes has a cellular approximation f ′ : X → Y. Moreover,
if f is already cellular on a subcomplex A ⊆ X, we can take f ′|A = f |A.

The proof of Theorem 1.4.3 uses the following key technical result.

Lemma 1.4.4. Let f : X ∪ en → Y ∪ ek be a map of CW complexes, with en,
ek denoting an n-cell and, resp., k-cell attached to X and, resp., Y. Assume

that f (X) ⊆ Y, f |X is cellular, and n < k. Then f
h.e.' f ′ (rel. X) , with

Image( f ′) ⊆ Y.

Remark 1.4.5. If in the statement of Lemma 1.4.4 we assume that X
and Y are points, then we get that the inclusion Sn ↪→ Sk (n < k) is
homotopic to the constant map Sn → {s0} for some point s0 ∈ Sk.

Lemma 1.4.4 is used along with induction on skeleta to prove the
cellular approximation theorem as follows.



12 homotopy theory and applications

Proof of Theorem 1.4.3. Suppose f |Xn is cellular, and let en be an (open)
n-cell of X. Since ēn is compact, f (ēn) (hence also f (en)) meets only
finitely many open cells of Y. Let ek be an open cell of maximal
dimension in Y which meets f (en). If k ≤ n, f is already cellular on
en. If n < k, Lemma 1.4.4 can be used to homotop f |Xn−1∪en (rel. Xn−1)
to a map whose image on en misses ek. By finitely many iterations
of this process, we eventually homotop f |Xn−1∪en (rel. Xn−1) to a map
f ′ : Xn−1 ∪ en → Yn, i.e., whose image on en misses all cells in Y of
dimension > n. Doing this for all n-cells of X, staying fixed on n-cells
in A where f is already cellular, we obtain a homotopy of f |Xn (rel.
Xn−1 ∪ An) to a cellular map. By the homotopy extension property 1.3.2,
we can extend this homotopy (together with the constant homotopy on
A) to a homotopy defined on all of X. This completes the induction
step.

For varying n→ ∞, we concatenate the above homotopies to define
a homotopy from f to a cellular map f ′ (rel. A) by performing the above
construction (i.e., the n-th homotopy) on the t-interval [1− 1/2n, 1−
1/2n+1].

We also have the following relative version of Theorem 1.4.3:

Theorem 1.4.6 (Relative cellular approximation). Any map f : (X, A)→
(Y, B) of CW pairs has a cellular approximation by a homotopy through such
maps of pairs.

Proof. First we use the cellular approximation for f |A : A → B. Let
f ′ : A→ B be a cellular map, homotopic to f |A via a homotopy H. By
the Homotopy Extension Property 1.3.2, we can regard H as a homotopy
on all of X, so we get a map f ′ : X → Y such that f ′|A is a cellular
map. By the second part of the cellular approximation theorem 1.4.3,

f ′
h.e.' f ′′, with f ′′ : X → Y a cellular map satisfying f ′|A = f ′′|A. The

map f ′′ provides the required cellular approximation of f .

Corollary 1.4.7. Let A ⊂ X be CW complexes and suppose that all cells of
X \ A have dimension > n. Then πi(X, A) = 0 for i ≤ n.

Proof. Let [ f ] ∈ πi(X, A). By the relative version of the cellular approxi-
mation, the map of pairs f : (Di, Si−1)→ (X, A) is homotopic to a map
g with g(Di) ⊂ Xi. But for i ≤ n, we have that Xi ⊂ A, so Image g ⊂ A.
Therefore, by Lemma 1.2.7, [ f ] = [g] = 0.

Corollary 1.4.8. If X is a CW complex, then πi(X, Xn) = 0 for all i ≤ n.

Therefore, the long exact sequence for the homotopy groups of the
pair (X, Xn) yields the following:

Corollary 1.4.9. Let X be a CW complex. For i < n, we have πi(X) ∼=
πi(Xn).
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1.5 Excision for homotopy groups. The Suspension Theorem

We state here the following useful result without proof:

Theorem 1.5.1 (Excision). Let X be a CW complex which is a union of
subcomplexes A and B, such that C = A ∩ B is path connected. Assume
that (A, C) is m-connected and (B, C) is n-connected, with m, n ≥ 1. Then
the map πi(A, C) −→ πi(X, B) induced by inclusion is an isomorphism if
i < m + n and a surjection for i = m + n.

The following consequence is very useful for itering homotopy
groups of spheres:

Theorem 1.5.2 (Freudenthal Suspension Theorem). Let X be an (n− 1)-
connected CW complex. For any map f : Si → X, consider its suspension,

Σ f : ΣSi = Si+1 → ΣX.

The assignment
[ f ] ∈ πi(X) 7→ [Σ f ] ∈ πi+1(ΣX)

defines a homomorphism πi(X)→ πi+1(ΣX), which is an isomorphism for
i < 2n− 1 and a surjection for i = 2n− 1.

Proof. Decompose the suspension ΣX as the union of two cones C+X
and C−X intersecting in a copy of X. By using long exact sequences
of pairs and the fact that the cones C+X and C−X are contractible, the
suspension map can be written as a composition:

πi(X) ∼= πi+1(C+, X) −→ πi+1(ΣX, C−X) ∼= πi+1(ΣX),

with the middle map induced by inclusion.
Since X is (n − 1)-connected, from the long exact sequence of

(C±X, X), we see that the pairs (C±X, X) are n-connected. Therefore,
the Excision Theorem 1.5.1 yields that πi+1(C+, X) −→ πi+1(ΣX, C−X)

is an isomorphism for i + 1 < 2n and it is surjective for i + 1 = 2n.

1.6 Homotopy Groups of Spheres

We now turn our attention to computing (some of) the homotopy
groups πi(Sn). For i ≤ n, i = n + 1, n + 2, n + 3 and a few more cases,
these homotopy groups are known (and we will work them out later
on). In general, however, this is a very difficult problem. For i = n, we
would expect to have πn(Sn) = Z by associating to each (homotopy
class of a) map f : Sn → Sn its degree. For i < n, we will show that
πi(Sn) = 0. Note that if f : Si → Sn is not surjective, i.e., there is
y ∈ Sn\ f (Si), then f factors through Rn, which is contractible. By
composing f with the retraction Rn → x0 we get that f ' cx0 . However,
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there are surjective maps Si → Sn for i < n, in which case the above
“proof” fails. To make things work, we “alter” f to make it cellular, so
the following holds.

Proposition 1.6.1. For i < n, we have πi(Sn) = 0.

Proof. Choose the standard CW-structure on Si and Sn. For [ f ] ∈
πi(Sn), we may assume by Theorem 1.4.3 that f : Si → Sn is cellular.
Then f (Si) ⊂ (Sn)i. But (Sn)i is a point, so f is a constant map.

Recall now the following special case of the Suspension Theorem
1.5.2 for X = Sn:

Theorem 1.6.2. Let f : Si → Sn be a map, and consider its suspension,

Σ f : ΣSi = Si+1 → ΣSn = Sn+1.

The assignment

[ f ] ∈ πi(Sn) 7→ [Σ f ] ∈ πi+1(Sn+1)

defines a homomorphism πi(Sn) → πi+1(Sn+1), which is an isomorphism
πi(Sn) ∼= πi+1(Sn+1) for i < 2n− 1 and a surjection for i = 2n− 1.

Corollary 1.6.3. πn(Sn) is either Z or a finite quotient of Z (for n ≥ 2),
generated by the degree map.

Proof. By the Suspension Theorem 1.6.2, we have the following:

Z ∼= π1(S1)� π2(S2) ∼= π3(S3) ∼= π4(S4) ∼= · · ·

To show that π1(S1) ∼= π2(S2), we can use the long exact sequence for
the homotopy groups of a fibration, see Theorem 1.11.8 below. For any
fibration (e.g., a covering map)

F ↪→ E −→ B

there is a long exact sequence

· · · −→ πi(F) −→ πi(E) −→ πi(B) −→ πi−1(F) −→ · · · (1.6.1)

Applying the above long exact sequence to the Hopf fibration S1 ↪→
S3 → S2, we obtain:

· · · −→ π2(S1) −→ π2(S3) −→ π2(S2) −→ π1(S1) −→ π1(S3) −→ · · ·

Using the fact that π2(S3) = 0 and π1(S3) = 0, we therefore have an
isomorphism:

π2(S2) ∼= π1(S1) ∼= Z.

Note that by using the vanishing of the higher homotopy groups of S1,
the long exact sequence (1.11.8) also yields that

π3(S2) ∼= π2(S2) ∼= Z.
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Remark 1.6.4. Unlike the homology and cohomology groups, the ho-
motopy groups of a finite CW-complex can be infinitely generated. This
fact is discussed in the next example.

Example 1.6.5. For n ≥ 2, consider the finite CW complex S1 ∨ Sn. We
then have that

πn(S1 ∨ Sn) = πn(S̃1 ∨ Sn),

where S̃1 ∨ Sn is the universal cover of S1 ∨ Sn, as depicted in the
attached figure. By contracting the segments between consecutive

−1

0

1

2

Figure 1.6: universal cover of S1 ∨ Sn

integers, we have that

S̃1 ∨ Sn '
∨

k∈Z

Sn
k ,

with Sn
k denoting the n-sphere corresponding to the integer k. So for

any n ≥ 2, we have:

πn(S1 ∨ Sn) = πn(
∨

k∈Z

Sn
k ),

which is the free abelian group generated by the inclusions Sn
k ↪→∨

k∈Z Sn
k . Indeed, we have the following:

Lemma 1.6.6. πn(
∨

α Sn
α) is free abelian and generated by the inclusions of

factors.

Proof. Suppose first that there are only finitely many Sn
α ’s in the wedge∨

α Sn
α . Then we can regard

∨
α Sn

α as the n-skeleton of ∏α Sn
α . The cell

structure of a particular Sn
α consists of a single 0-cell e0

α and a single
n-cell, en

α . Thus, in the product ∏α Sn
α there is one 0-cell e0 = ∏α e0

α,
which, together with the n-cells⋃

α

(∏
β 6=α

e0
β)× en

α ,
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form the n-skeleton
∨

α Sn
α . Hence ∏α Sn

α \
∨

α Sn
α has only cells of di-

mension at least 2n, which by Corollary 1.4.8 yields that the pair
(∏α Sn

α ,
∨

α Sn
α) is (2n− 1)-connected. In particular, as n ≥ 2, we get:

πn(
∨
α

Sn
α)
∼= πn

(
∏

α

Sn
α

)
∼= ∏

α

πn(Sn
α) =

⊕
α

πn(Sn
α) =

⊕
α

Z.

To reduce the case of infinitely many summands Sn
α to the finite case,

consider the homomorphism Φ :
⊕

α πn(Sn
α) −→ πn(

∨
α Sn

α) induced
by the inclusions Sn

α ↪→ ∨
α Sn

α . Then Φ is onto since any map f : Sn →∨
α Sn

α has compact image contained in the wedge sum of finitely many
Sn

α ’s, so by the above finite case, [ f ] is in the image of Φ. Moreover, a
nullhomotopy of f has compact image contained in the wedge sum of
finitely many Sn

α ’s, so by the above finite case we have that Φ is also
injective.

To conclude our example, we showed that πn(S1 ∨ Sn) ∼= πn(
∨

k∈Z Sn
k ),

and πn(
∨

k∈Z Sn
k ) is free abelian generated by the inclusion of each of

the infinite number of n-spheres. Therefore, πn(S1 ∨ Sn) is infinitely
generated.

Remark 1.6.7. Under the action of π1 on πn, we can regard πn as a
Z[π1]-module. Here Z[π1] is the group ring of π1 with Z-coefficients,
whose elements are of the form ∑α nαγα, with nα ∈ Z and only finitely
many non-zero, and γα ∈ π1. Since all the n-spheres Sn

k in the universal
cover

∨
k∈Z Sn

k are identified under the π1-action, πn is a free Z[π1]-
module of rank 1, i.e.,

πn ∼= Z[π1] ∼= Z[Z] ∼= Z[t, t−1],

1 7→ t

−1 7→ t−1

n 7→ tn,

which is infinitely generated (by the powers of t) over Z (i.e., as an
abelian group).

Remark 1.6.8. If we consider the class of spaces for which π1 acts
trivially on all of πn’s, a result of Serre asserts that the homotopy
groups of such spaces are finitely generated if and only if homology
groups are finitely generated.

1.7 Whitehead’s Theorem

Definition 1.7.1. A map f : X → Y is a weak homotopy equivalence if it
induces isomorphisms on all homotopy groups πn.
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Notice that a homotopy equivalence is a weak homotopy equiva-
lence. The following important result provides a converse to this fact in
the world of CW complexes.

Theorem 1.7.2 (Whitehead). If X and Y are CW complexes and f : X → Y
is a weak homotopy equivalence, then f is a homotopy equivalence. Moreover,
if X is a subcomplex of Y, and f is the inclusion map, then X is a deformation
retract of Y.

The following consequence is very useful in practice:

Corollary 1.7.3. If X and Y are CW complexes with π1(X) = π1(Y) = 0,
and f : X → Y induces isomorphisms on homology groups Hn for all n, then
f is a homotopy equivalence.

The above corollary follows from Whitehead’s theorem and the fol-
lowing relative version of the Hurewicz Theorem 1.10.1 (to be discussed
later on):

Theorem 1.7.4 (Hurewicz). If n ≥ 2, and πi(X, A) = 0 for i < n, with
A simply-connected and non-empty, then Hi(X, A) = 0 for i < n and
πn(X, A) ∼= Hn(X, A).

Before discussing the proof of Whitehead’s theorem, let us give
an example that shows that having induced isomorphisms on all ho-
mology groups is not sufficient for having a homotopy equivalence
(so the simply-connectedness assumption in Corollary 1.7.3 cannot be
dropped):

Example 1.7.5. Let

f : X = S1 ↪→ (S1 ∨ Sn) ∪ en+1 = Y (n ≥ 2)

be the inclusion map, with the attaching map for the (n + 1)-cell of
Y described below. We know from Example 1.6.5 that πn(S1 ∨ Sn) ∼=
Z[t, t−1]. We define Y by attaching the (n + 1)-cell en+1 to S1 ∨ Sn by a
map g : Sn = ∂en+1 → S1 ∨ Sn so that [g] ∈ πn(S1 ∨ Sn) corresponds to
the element 2t− 1 ∈ Z[t, t−1]. We then see that

πn(Y) = Z[t, t−1]/(2t− 1) 6= 0 = πn(X),

since by setting t = 1
2 we get that Z[t, t−1]/(2t− 1) ∼= Z[ 1

2 ] = {
a

2k | k ∈
Z≥0} ⊂ Q. In particular, f is not a homotopy equivalence. Moreover,
from the long exact sequence of homotopy groups for the (n − 1)-
connected pair (Y, X), the inclusion X ↪→ Y induces an isomorphism
on homotopy groups πi for i < n. Finally, this inclusion map also
induces isomorphisms on all homology groups, Hn(X) ∼= Hn(Y) for all
n, as can be seen from cellular homology. Indeed, the cellular boundary
map

Hn+1(Yn+1, Yn)→ Hn(Yn, Yn−1)
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is an isomorphism since the degree of the composition of the attaching
map Sn → S1 ∨ Sn of en+1 with the collapse map S1 ∨ Sn → Sn is
2− 1 = 1.

Let us now get back to the proof of Whitehead’s Theorem 1.7.2. To
prove Whitehead’s theorem, we will use the following:

Lemma 1.7.6 (Compression Lemma). Let (X, A) be a CW pair, and (Y, B)
be a pair with Y path-connected and B 6= ∅. Suppose that for each n > 0 for
which X \ A has cells of dimension n, πn(Y, B, b0) = 0 for all b0 ∈ B. Then
any map f : (X, A) → (Y, B) is homotopic to some map f ′ : X → B fixing
A (i.e., with f ′|A = f |A).

Proof. Assume inductively that f (Xk−1 ∪ A) ⊆ B. Let ek be a k-cell in
X\A, with characteristic map α : (Dk, Sk−1)→ X. Ignoring basepoints,
we regard α as an element [α] ∈ πk(X, Xk−1 ∪ A). Then f∗[α] = [ f ◦
α] ∈ πk(Y, B) = 0 by our hypothesis, since ek is a k-cell in X\A. By
Lemma 1.2.7, there is a homotopy H : (Dk, Sk−1)× I → (Y, B) such
that H0 = f ◦ α and Image(H1) ⊆ B.

Performing this process for all k-cells in X\A simultaneously, we get
a homotopy from f to f ′ such that f ′(Xk ∪ A) ⊆ B. Using the homotopy
extension property 1.3.2, we can regard this as a homotopy on all of X,
i.e., f ' f ′ as maps X → Y, so the induction step is completed.

Finitely many applications of the induction step finish the proof if
the cells of X \ A are of bounded dimension. In general, we have

f '
H1

f1, with f1(X1 ∪ A) ⊆ B,

f1 '
H2

f2, with f2(X2 ∪ A) ⊆ B,

· · ·

fn−1 '
Hn

fn, with fn(Xn ∪ A) ⊆ B,

and so on. Any finite skeleton is eventually fixed under these homo-
topies.

Define a homotopy H : X× I → Y as

H = Hi on
[
1− 1

2i−1 , 1− 1
2i

]
.

Note that H is continuous by CW topology, so it gives the required
homotopy.

Proof of Whitehead’s theorem. We can split the proof of Theorem 1.7.2
into two cases:
Case 1: If f is an inclusion X ↪→ Y, since πn(X) = πn(Y) for all n, we
get by the long exact sequence for the homotopy groups of the pair
(Y, X) that πn(Y, X) = 0 for all n. Applying the above compression
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lemma 1.7.6 to the identity map id : (Y, X)→ (Y, X) yields a deforma-
tion retraction r : Y → X of Y onto X.
Case 2: The general case of a map f : X → Y can be reduced to the
above case of an inclusion by using the mapping cylinder of f , i.e.,

M f := (X× I) tY/(x, 1) ∼ f (x).

Y

X× {1}

X× {0}
X× I

−→

Y

X

f (X)

Figure 1.7: The mapping cylinder M f of
f

Note that M f contains both X = X× {0} and Y as subspaces, and M f

deformation retracts onto Y. Moreover, the map f can be written as the
composition of the inclusion i of X into M f , and the retraction r from
M f to Y:

f : X = X× {0} i
↪→ M f

r→ Y.

Since M f is homotopy equivalent to Y via r, it suffices to show that M f

deformation retracts onto X, so we can replace f with the inclusion
map i. If f is a cellular map, then M f is a CW complex having X as
a subcomplex. So we can apply Case 1. If f is not cellular, than f is
homotopic to some cellular map g, so we may work with g and the
mapping cylinder Mg and again reduce to Case 1.

We can now prove Corollary 1.7.3:

Proof. After replacing Y by the mapping cylinder M f , we may assume
that f is an inclusion X ↪→ Y. As Hn(X) ∼= Hn(Y) for all n, we have
by the long exact sequence for the homology groups of the pair (Y, X)

that Hn(Y, X) = 0 for all n.
Since X and Y are simply-connected, we have π1(Y, X) = 0. So by

the relative Hurewicz Theorem 1.10.1, the first non-zero πn(Y, X) is
isomorphic to the first non-zero Hn(Y, X). So πn(Y, X) = 0 for all n.
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Then, by the homotopy long exact sequence for the pair (Y, X), we get
that

πn(X) ∼= πn(Y)

for all n, with isomorphisms induced by the inclusion map f . Finally,
Whitehead’s theorem 1.7.2 yields that f is a homotopy equivalence.

Example 1.7.7. Let X = RP2 and Y = S2 × RP∞. First note that
π1(X) = π1(Y) ∼= Z/2. Also, since S2 is a covering of RP2, we have
that

πi(X) ∼= πi(S2), i ≥ 2.

Moreover, πi(Y) ∼= πi(S2)× πi(RP∞), and as RP∞ is covered by S∞ =⋃
n≥0 Sn, we get that

πi(Y) ∼= πi(S2)× πi(S∞), i ≥ 2.

To calculate πi(S∞), we use cellular approximation. More precisely,
we can approximate any f : Si → S∞ by a cellular map g so that
Image g ⊂ Sn for i� n. Thus, [ f ] = [g] ∈ πi(Sn) = 0, and we see that

πi(X) ∼= πi(S2) ∼= πi(Y), i ≥ 2.

Altogether, we have shown that X and Y have the same homotopy
groups. However, as can be easily seen by considering homology
groups, X and Y are not homotopy equivalent. In particular, by White-
head’s theorem, there cannot exist a map f : RP2 → S2×RP∞ inducing
isomorphisms on πn for all n. (If such a map existed, it would have to
be a homotopy equivalence.)

Example 1.7.8. As we will see later on, the CW complexes S2 and S3 ×
CP∞ have isomorphic homotopy groups, but they are not homotopy
equivalent.

1.8 CW approximation

Recall that map f : X → Y is a weak homotopy equivalence if it induces
isomorphisms on all homotopy groups πn. As seen in Theorem 1.10.3,
a weak homotopy equivalence induces isomorphisms on all homol-
ogy and cohomology groups. Furthermore, Whitehead’s Theorem
1.7.2 shows that a weak homotopy equivalence of CW complexes is a
homotopy equivalence.

In this section we show that given any space X, there exists a (unique
up to homotopy) CW complex Z and a weak homotopy equivalence
f : Z → X. Such a map f : Z → X is called a CW approximation of X.

Definition 1.8.1. Given a pair (X, A), with ∅ 6= A a CW complex, an
n-connected CW model of (X, A) is an n-connected CW pair (Z, A), together
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with a map f : Z → X with f |A = idA, so that f∗ : πi(Z) → πi(X) is an
isomorphism for i > n and an injection for i = n (for any choice of basepoint).

Remark 1.8.2. If such models exist, by letting A consist of one point in
each path-component of X and n = 0, we get a CW approximation Z
of X.

Theorem 1.8.3. For any pair (X, A) with A a nonempty CW complex such n-
connected models (Z, A) exist. Moreover, Z can be built from A by attaching
cells of dimension greater than n. (Note that by cellular approximation this
implies that πi(Z, A) = 0 for i ≤ n).

We will prove this theorem after discussing the following conse-
quences:

Corollary 1.8.4. Any pair of spaces (X, X0) has a CW approximation (Z, Z0).

Proof. Let f0 : Z0 → X0 be a CW approximation of X0, and consider
the map g : Z0 → X defined by the composition of f0 and the inclusion
map X0 ↪→ X. Let Mg be the mapping cylinder of g. Hence we get
the sequence of maps Z0 ↪→ Mg → X, where the map r : Mg → X is a
deformation retract.

Now, let (Z, Z0) be a 0-connected CW model of (Mg, Z0). Consider
the composition:

( f , f0) : (Z, Z0) −→ (Mg, Z0)
(r, f0)−→ (X, X0)

So the map f : Z → X is obtained by composing the weak homotopy
equivalence Z → Mg and the deformation retract (hence homotopy
equivalence) Mg → X. In other words, f is a weak homotopy equiva-
lence and f |Z0 = f0, thus proving the result.

Corollary 1.8.5. For each n-connected CW pair (X, A) there is a CW pair
(Z, A) that is homotopy equivalent to (X, A) relative to A, and such that Z
is built from A by attaching cells of dimension > n.

Proof. Let (Z, A) be an n-connected CW model of (X, A). By Theorem
1.8.3, Z is built from A by attaching cells of dimension > n. We

claim that Z
h.e.' X (rel. A). First, by definition, the map f : Z → X

has the property that f∗ is an isomorphism on πi for i > n and an
injection on πn. For i < n, by the n-connectedness of the given model,
πi(X) ∼= πi(A) ∼= πi(Z) where the isomorphisms are induced by f
since the following diagram commutes,

Z
f
// X

A

OO

id // A

OO
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(with A ↪→ Z and A ↪→ X the inclusion maps.) For i = n, by n-
connectedness of (X, A) the composition

πn(A)� πn(Z)� πn(X)

is onto. So the induced map f∗ : πn(Z) → πn(X) is surjective. Alto-
gether, f∗ induces isomorphisms on all πi, so by Whitehead’s Theorem
we conclude that f : Z → X is a homotopy equivalence.

We make f stationary on A as follows. Define the quotient space

W f := M f /{{a} × I ∼ pt, ∀a ∈ A}

of the mapping cylinder M f obtained by collapsing each segment
{a} × I to a point, for any a ∈ A. Assuming f has been made cellular,
W f is a CW complex containing X and Z as subcomplexes, and W f

deformation retracts onto X just as M f does.
Consider the map h : Z → X given by the composition Z ↪→

W f → X, where W f → X is the deformation retract. We claim that
Z is a deformation retract of W f , thus giving us that h is a homotopy
equivalence relative to A. Indeed, πi(W f ) ∼= πi(X) (since W f is a
deformation retract of X) and πi(X) ∼= πi(Z) since X is homotopy
equivalent to Z. Using Whitehead’s theorem, we conclude that Z is a
deformation retract of W f .

Proof of Theorem 1.8.3. We will construct Z as a union of subcomplexes

A = Zn ⊆ Zn+1 ⊆ · · ·

such that for each k ≥ n + 1, Zk is obtained from Zk−1 by attaching
k-cells.

We will show by induction that we can construct Zk together with
a map fk : Zk → X such that fk|A = idA and fk∗ is injective on πi for
n ≤ i < k and onto on πi for n < i ≤ k. We start the induction at k = n,
with Zn = A, in which case the conditions on πi are void.

For the induction step, k→ k + 1, consider the set {φα}α of genera-
tors φα : Sk → Zk of ker ( fk∗ : πk(Zk)→ πk(X)). Define

Yk+1 := Zk ∪α ∪φα ek+1
α ,

where ek+1
α is a (k + 1)-cell attached to Zk along φα.

Then fk : Zk → X extends to Yk+1. Indeed, fk ◦ φα : Sk → Zk → X
is nullhomotopic, since [ fk ◦ φα] = fk∗[φα] = 0. So we get a map g :
Yk+1 → X. It is easy to check that the g∗ is injective on πi for n ≤ i ≤ k,
and onto on πk. In fact, since we extend fk on (k+ 1)-cells, we only need
to check the effect on πk. The elements of ker(g∗) on πk are represented
by nullhomotopic maps (by construction) Sk → Zk ⊂ Yk+1 → X. So g∗
is one-to-one on πk. Moreover, g∗ is onto on πk since, by hypothesis,
the composition πk(Zk)→ πk(Yk+1)→ πk(X) is onto.
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Let {φβ : Sk+1 → X} be a set of generators of πk+1(X, x0) and let
Zk+1 = Yk+1 ∨

β
Sk+1

β . We extend g to a map fk+1 : Zk+1 → X by defining

fk+1|Sk+1
β

= φβ. This implies that fk+1 induces an epimorphism on πk+1.

The remaining conditions on homotopy groups are easy to check.

Remark 1.8.6. If X is path-connected and A is a point, the construction
of a CW model for (X, A) gives a CW approximation of X with a single
0-cell. In particular, by Whitehead’s Theorem 1.7.2, any connected CW
complex is homotopy equivalent to a CW complex with a single 0-cell.

Proposition 1.8.7. Let g : (X, A) → (X′, A′) be a map of pairs, where
A, A′ are nonempty CW complexes. Let (Z, A) be an n-connected CW model
of (X, A) with associated map f : (Z, A) → (X, A), and let (Z′, A′) be an
n′-connected model of (X′, A′) with associated map f ′ : (Z′, A′)→ (X′, A′).
Assume that n ≥ n′. Then there exists a map h : Z → Z′, unique up to
homotopy, such that h|A = g|A and,

(Z, A)
f−−−−→ (X, A)

h
y g

y
(Z′, A′)

f ′−−−−→ (X′, A′)

commutes up to homotopy.

Proof. The proof is a standard induction on skeleta. We begin with the
map g : A→ A′ ⊆ Z′, and recall that Z is obtained from A by attaching
cells of dimension > n. Let k be the smallest dimension of such a cell,
thus (A ∪ Zk, A) has a k-connected model, fk : (Zk, A) → (A ∪ Zk, A)

such that fk|A = idA. Composing this new map with g allows us to
consider g as having been extended to the k skeleton of Z. Iterating
this process produces our map.

Corollary 1.8.8. CW-approximations are unique up to homotopy equivalence.
More generally, n-connected models of a pair (X, A) are unique up to homotopy
relative to A.

Proof. Assume that f : (Z, A) → (X, A) and f ′ : (Z′, A) → (X, A) are
two n-connected models of (X, A). Then we may take (X, A) = (X′, A′)
and g = id in the above lemma twice, and conclude that there are two
maps h0 : Z → Z′ and h1 : Z′ → Z, such that f ◦ h1 ' f ′ (rel. A)
and f ′ ◦ h0 ' f (rel. A). In particular, f ◦ (h1 ◦ h0) ' f (rel. A) and
f ′ ◦ (h0 ◦ h1) ' f ′ (rel. A). The uniqueness in Proposition 1.8.7 then
implies that h1 ◦ h0 and h0 ◦ h1 are homotopic to the respective identity
maps (rel. A).

Remark 1.8.9. By taking n = n′ is Proposition 1.8.7, we get a functorial-
ity property for n-connected CW models. For example, a map X → X′

of spaces induces a map of CW approximations Z → Z′.
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Remark 1.8.10. By letting n vary, and by letting (Zn, A) be an n-
connected CW model for (X, A), then Proposition 1.8.7 gives a tower of
CW models

��

Z2

��

��

Z1

�� ��

A

GG

??

// Z0 // X
with commutative triangle on the left, and homotopy-commutative
triangles on the right.

Example 1.8.11 (Whitehead towers). Assume X is an arbitrary CW
complex with A ⊂ X a point. Then the resulting tower of n-connected
CW modules of (X, A) amounts to a sequence of maps

· · · −→ Z2 −→ Z1 −→ Z0 −→ X

with Zn n-connected and the map Zn → X inducing isomorphisms on
all homotopy groups πi with i > n. The space Z0 is path-connected
and homotopy equivalent to the component of X containing A, so one
may assume that Z0 equals this component. The space Z1 is simply-
connected, and the map Z1 → X has the homotopy properties of the
universal cover of the component Z0 of X. In general, if X is connected
the map Zn → X has the homotopy properties of an n-connected cover
of X. An example of a 2-connected cover of S2 is the Hopf map S3 → S2.

Example 1.8.12 (Postnikov towers). If X is a connected CW complex,
the tower of n-connected models for the pair (CX, X), with CX the
cone on X, is called the Postnikov tower of X. Relabeling Zn as Xn−1,
the Postnikov tower gives a commutative diagram

��

X3

��

X2

��

X

GG

??

// X1

where the induced homomorphism πi(X)→ πi(Xn) is an isomorphism
for i ≤ n and πi(Xn) = 0 if i > n. Indeed, by Definition 1.8.1 we get
πi(Xn) = πi(Zn+1) ∼= πi(CX) = 0 for i ≥ n + 1.
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1.9 Eilenberg-MacLane spaces

Definition 1.9.1. A space X having just one nontrivial homotopy group
πn(X) = G is called an Eilenberg-MacLane space K(G, n).

Example 1.9.2. We have already seen that S1 is a K(Z, 1) space, and
RP∞ is a K(Z/2Z, 1) space. The fact that CP∞ is a K(Z, 2) space will
be discussed in Example 1.11.16 by making use of fibrations and the
associated long exact sequence of homotopy groups.

Lemma 1.9.3. If a CW-pair (X, A) is r-connected (r ≥ 1) and A is s-
connected (s ≥ 0), then the map πi(X, A) → πi(X/A) induced by the
quotient map X → X/A is an isomorphism if i ≤ r + s and onto if i =

r + s + 1.

Proof. Let CA be the cone on A and consider the complex

Y = X ∪A CA

obtained from X by attaching the cone CA along A ⊆ X. Since CA is a
contactible subcomplex of Y, the quotient map

q : Y −→ Y/CA = X/A

is obtained by deforming CA to the cone point inside Y, so it is a
homotopy equivalence. So we have a sequence of homomorphisms

πi(X, A) −→ πi(Y, CA)
∼=←− πi(Y)

∼=−→ πi(X/A),

where the first and second maps are induced by the inclusion of pairs,
the second map is an isomorphism by the long exact sequence of the
pair (Y, CA)

0 = πi(CA)→ πi(Y)→ πi(Y, CA)→ πi−1(CA) = 0,

and the third map is the isomorphism q∗. It therefore remains to
investigate the map πi(X, A) −→ πi(Y, CA). We know that (X, A) is
r-connected and (CA, A) is (s + 1)-connected. The second fact once
again follows from the long exact sequence of the pair and the fact that
A is s-connected. Using the Excision Theorem 1.5.1, the desired result
follows immediately.

Lemma 1.9.4. Assume n ≥ 2. If X = (
∨

α Sn
α) ∪

⋃
β en+1

β is obtained

from
∨

α Sn
α by attaching (n + 1)-cells en+1

β via basepoint-preserving maps
φβ : Sn

β →
∨

α Sn
α , then

πn(X) = πn(
∨
α

Sn
α)/〈φβ〉 = (

⊕
α

Z)/〈φβ〉.
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Proof. Consider the following portion of the long exact sequence for
the homotopy groups of the n-connected pair (X,

∨
α Sn

α):

πn+1(X,
∨
α

Sn
α)

∂−→ πn(
∨
α

Sn
α) −→ πn(X) −→ πn(X,

∨
α

Sn
α) = 0,

where the fact that πn(X,
∨

α Sn
α) = 0 follows by Corollary 1.4.8 of the

Cellular Approximation theorem. So πn(X) ∼= πn(
∨

α Sn
α)/Image(∂).

We have the identification X/
∨

α Sn
α '

∨
β Sn+1

β , so by Lemma 1.9.3

and Lemma 1.6.6 we get that πn+1(X,
∨

α Sn
α)
∼= πn+1(

∨
β Sn+1

β ) is free

with a basis consisting of the characteristic maps Φβ of the cells en+1
β .

Since ∂([Φβ]) = [φβ], the claim follows.

Example 1.9.5. Any abelian group G can be realized as πn(X) with
n ≥ 2 for some space X. In fact, given a presentation G = 〈gα | rβ〉, we
can can take

X =
(∨

α

Sn
α

)
∪
⋃
β

en+1
β ,

with the Sn
α ’s corresponding to the generators of G, and with en+1

β

attached to
∨

α Sn
α by a map f : Sn

β →
∨

α Sn
α satisfying [ f ] = rβ. Note

also that by cellular approximation, πi(X) = 0 for i < n, but nothing
can be said about πi(X) with i > n.

Theorem 1.9.6. For any n ≥ 1 and any group G (which is assumed abelian
if n ≥ 2) there exists an Eilenberg-MacLane space K(G, n).

Proof. Let Xn+1 = (
∨

α Sn
α) ∪

⋃
β en+1

β be the (n − 1)-connected CW
complex of dimension n + 1 with πn(Xn+1) = G, as constructed in
Example 1.9.5. Enlarge Xn+1 to a CW complex Xn+2 obtained from
Xn+1 by attaching (n + 2)-cells en+2

γ via maps representing some set of
generators of πn+1(Xn+1). Since (Xn+2, Xn+1) is (n + 1)-connected (by
Corollary 1.4.8), the long exact sequence for the homotopy groups of
the pair (Xn+2, Xn+1) yields isomorphisms πi(Xn+2) = πi(Xn+1) for
i ≤ n, together with the exact sequence

· · · → πn+2(Xn+2, Xn+1)
∂→ πn+1(Xn+1)→ πn+1(Xn+2)→ 0.

Next note that ∂ is an isomorphism by construction and Lemma 1.9.3.
Indeed, Lemma 1.9.3 yields that the quotient map Xn+2 → Xn+2/Xn+1

induces an epimorphism

πn+2(Xn+2, Xn+1)→ πn+2(Xn+2/Xn+1) ∼= πn+2(
∨
γ

Sn+2
γ ),

which is an isomorphism for n ≥ 2. Moreover, we also have an epimor-
phism πn+2(

∨
γ Sn+2

γ )→ πn+1(Xn+1) by our construction of Xn+2. As
∂ is onto, we then get that πn+1(Xn+2) = 0.
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Repeat this construction inductively, at the k-th stage attaching
(n+ k+ 1)-cells to Xn+k to create a CW complex Xn+k+1 with vanishing
πn+k and without changing the lower homotopy groups. The union of
this increasing sequence of CW complexes is then a K(G, n) space.

Corollary 1.9.7. For any sequence of groups {Gn}n∈N, with Gn abelian for
n ≥ 2, there exists a space X such that πn(X) ∼= Gn for any n.

Proof. Call Xn = K(Gn, n). Then X = ∏n Xn has the desired prescribed
homotopy groups.

Lemma 1.9.8. Let X be a CW complex of the form (
∨

α Sn
α) ∪

⋃
β en+1

β for
some n ≥ 1. Then for every homomorphism ψ : πn(X) → πn(Y) with Y a
path-connected space, there exists a map f : X → Y such that f∗ = ψ on πn.

Proof. Recall from Lemma 1.9.4 that πn(X) is generated by the inclu-
sions iα : Sn

α ↪→ X. Let f send the wedge point of X to a basepoint
of Y, and extend f onto Sn

α by choosing a fixed representative for
ψ([iα]) ∈ πn(Y). This then allows us to define f on the n-skeleton
Xn =

∨
α Sn

α of X, and we notice that, by construction of f : Xn → Y,
we have that

f∗([iα]) = [ f ◦ iα] = [ f |Sn
α
] = ψ([iα]).

Because the iα generate πn(Xn), we then get that f∗ = ψ.
To extend f over a cell en+1

β , we need to show that the composition
of the attaching map φβ : Sn → Xn for this cell with f is nullhomotopic
in Y. We have [ f ◦ φβ] = f∗([φβ]) = ψ([φβ]) = 0, as the φβ are precisely
the relators in πn(X) by Example 1.9.5. Thus we obtain an extension
f : X → Y. Moreover, f∗ = ψ since the elements [iα] generate πn(Xn) =

πn(X).

Proposition 1.9.9. The homotopy type of a CW complex K(G, n) is uniquely
determined by G and n.

Proof. Let K and K′ be K(G, n) CW complexes, and assume without loss
of generality (since homotopy equivalence is an equivalence relation)
that K is the particular K(G, n) constructed in Theorem 1.9.6, i.e., built
from a space X as in Lemma 1.9.8 by attaching cells of dimension n + 2
and higher. Since X = Kn+1, we have that πn(X) = πn(K) = πn(K′),
and call the composition of these isomorphisms ψ : πn(X) → πn(K′).
By Lemma 1.9.8, there is a map f : X → K′ inducing ψ on πn. To
extend this map over K, we proceed inductively, first extending it over
the (n + 2)-cells, than over the (n + 3)-cells, and so on.

Let en+2
γ be an (n + 2)-cell of K, with attaching map φγ : Sn+1 → X.

Then f ◦ φγ : Sn+1 → K′ is nullhomotopic since πn+1(K′) = 0. There-
fore, f extends over en+2

γ . Proceed similarly for higher dimensional
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cells of K to get a map f : K → K′ which is a weak homotopy equiva-
lence. By Whitehead’s Theorem 1.7.2, we conclude that f is a homotopy
equivalence.

1.10 Hurewicz Theorem

Theorem 1.10.1 (Hurewicz). If a space X is (n− 1)-connected and n ≥ 2,
then H̃i(X) = 0 for i < n and πn(X) ∼= Hn(X). Moreover, if a pair (X, A)

is (n− 1)-connected with n ≥ 2, and π1(A) = 0, then Hi(X, A) = 0 for all
i < n and πn(X, A) ∼= Hn(X, A).

Proof. First, since all hypotheses and assertions in the statement deal
with homology and homotopy groups, if we prove the statement for
a CW approximation of X (or (X, A)) then the results will also hold
for the original space (or pair). Hence, we assume without loss of
generality that X is a CW complex and (X, A) is a CW-pair.

Secondly, the relative case can be reduced to the absolute case. In-
deed, since (X, A) is (n − 1)-connected and that A is 1-connected,
Lemma 1.9.3 implies that πi(X, A) = πi(X/A) for i ≤ n, while
Hi(X, A) = H̃i(X/A) always holds for CW-pairs.

In order to prove the absolute case of the theorem, let x0 be a 0-cell
in X. Since X, hence also (X, x0), is (n− 1)-connected, Corollary 1.8.5
tells us that we can replace X by a homotopy equivalent CW complex
with (n− 1)-skeleton a point, i.e., Xn−1 = x0. In particular, H̃i(X) = 0
for i < n. For showing that πn(X) ∼= Hn(X), we may disregard any
cells of dimension greater than n + 1 since these have no effect on πn

or Hn. Thus we may assume that X has the form (
∨

α Sn
α) ∪

⋃
β en+1

β . By
Lemma 1.9.4, we then have that πn(X) ∼= (

⊕
α Z)/〈φβ〉. On the other

hand, cellular homology yields the same calculation for Hn(X), so we
are done.

Remark 1.10.2. One cannot expect any sort of relationship between
πi(X) and Hi(X) beyond n. For example, Sn has trivial homology in
degrees > n, but many nontrivial homotopy groups in this range, if
n ≥ 2. On the other hand, CP∞ has trivial higher homotopy groups
in the range > 2 (as a K(Z, 2) space), but many nontrivial homology
groups in this range.

Recall the Hurewicz Theorem has been already used for proving the
important Corollary 1.7.3. Here we give another important application
of Theorem 1.10.1:

Theorem 1.10.3. If f : X → Y induces isomorphisms on homotopy groups
πn for all n, then it induces isomorphisms on homology and cohomology
groups with G coefficients, for any group G.
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Proof. By the universal coefficient theorems, it suffices to show that f
induces isomorphisms on integral homology groups H∗(−; Z).

We only prove here the assertion under the extra condition that
X is simply connected (the general case follows easily from spectral
sequence theory, and it will be dealt with later on). As before, after re-
placing Y with the homotopy equivalent space defined by the mapping
cylinder M f of f , we can assume that f is an inclusion. Since by the
hypothesis, πn(X) ∼= πn(Y) for all n, with isomorphisms induced by
the inclusion f , the homotopy long exact sequence of the pair (Y, X)

yields that πn(Y, X) = 0 for all n. By the relative Hurewicz theorem (as
π1(X) = 0), this gives that Hn(Y, X) = 0 for all n. Hence, by the long
exact sequence for homology, Hn(X) ∼= Hn(Y) for all n, and the proof
is complete.

Example 1.10.4. Take X = RP2 × S3 and Y = S2 ×RP3. As seen in
Example 1.1.19, X and Y have isomorphic homotopy groups πn for
all n, but H5(X) 6∼= H5(Y). So there cannot exist a map f : X → Y
inducing the isomorphisms on the πn.

1.11 Fibrations. Fiber bundles

Definition 1.11.1 (Homotopy Lifting Property). A map p : E → B has
the homotopy lifting property (HLP) with respect to a space X if, given a
homotopy gt : X → B, and a lift g̃0 : X → E of g0, there exists a homotopy
g̃t : X → E lifting gt and extending g̃0.

X
g̃0

// E

p

��

X

g̃t

??

gt
// B

Definition 1.11.2 (Lift Extension Property). A map p : E → B has the
lift extension property (LEP) with respect to a pair (Z, A) if for all maps
f : Z → B and g : A→ E, there exists a lift f̃ : Z → E of f extending g.

E

p

��

A

g

77

� � // Z

f̃

??

f
// B

Remark 1.11.3. (HLP) is a special case of (LEP), with Z = X × [0, 1],
and A = X× {0}.
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Definition 1.11.4. A fibration p : E → B is a map having the homotopy
lifting property with respect to all spaces X.

Definition 1.11.5 (Homotopy Lifting Property with respect to a pair).
A map p : E → B has the homotopy lifting property with respect to a pair
(X, A) if each homotopy gt : X → B lifts to a homotopy g̃t : X → E starting
with a given lift g̃0 and extending a given lift g̃t : A→ E.

Remark 1.11.6. The homotopy lifting property with respect to the pair
(X, A) is the lift extension property for (X× I, X× {0} ∪ A× I).

Remark 1.11.7. The homotopy lifting property with respect to a disk
Dn is equivalent to the homotopy lifting property with respect to the
pair (Dn, ∂Dn), since the pairs (Dn × I, Dn × {0}) and (Dn × I, Dn ×
{0} ∪ ∂Dn × I) are homeomorphic. This implies that a fibration has
the homotopy lifting property with respect to all CW pairs (X, A). Indeed,
the homotopy lifting property for disks is in fact equivalent to the
homotopy lifting property with respect to all CW pairs (X, A). This
can be easily seen by induction over the skeleta of X, so it suffices to
construct a lifting g̃t one cell of X \ A at a time. Composing with the
characteristic map Dn → X of a cell then gives the reduction to the case
(X, A) = (Dn, ∂Dn).

Theorem 1.11.8 (Long exact sequence for homotopy groups of a fibra-
tion). Given a fibration p : E→ B, points b ∈ B and e ∈ F := p−1(b), there
is an isomorphism p∗ : πn(E, F, e)

∼=−→ πn(B, b) for all n ≥ 1. Hence, if B is
path-connected, there is a long exact sequence of homotopy groups:

· · · −→ πn(F, e) −→ πn(E, e)
p∗−→ πn(B, b) −→ πn−1(F, e) −→ · · ·

· · · −→ π0(E, e) −→ 0

Proof. To show that p∗ is onto, represent an element of πn(B, b) by a
map f : (In, ∂In) → (B, b), and note that the constant map to e is a
lift of f to E over Jn−1 ⊂ In. The homotopy lifting property for the
pair (In−1, ∂In−1) extends this to a lift f̃ : In → E. This lift satisfies
f̃ (∂In) ⊂ F since f (∂In) = b. So f̃ represents an element of πn(E, F, e)
with p∗([ f̃ ]) = [ f ] since p f̃ = f .

To show the injectivity of p∗, let f̃0, f̃1 : (In, ∂In, Jn−1) → (E, F, e)
be so that p∗( f̃0) = p∗( f̃1). Let H : (In × I, ∂In × I) → (B, b) be a
homotopy from p f̃0 to p f̃1. We have a partial lift given by f̃0 on In×{0},
f̃1 on In × {1} and the constant map to e on Jn−1 × I. The homotopy
lifting property for CW pairs extends this to a lift H̃ : In× I → E giving
a homotopy f̃t : (In, ∂In, Jn−1)→ (E, F, e) from f̃0 to f̃1.

Finally, the long exact sequence of the fibration follows by plugging
πn(B, b) in for πn(E, F, e) in the long exact sequence for the pair (E, F).
The map πn(E, e) → πn(E, F, e) in the latter sequence becomes the
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composition πn(E, e) → πn(E, F, e)
p∗→ πn(B, b), which is exactly p∗ :

πn(E, e) → πn(B, b). The surjectivity of π0(F, e) → π0(E, e) follows
from the path-connectedness of B, since a path in E from an arbitrary
point x ∈ E to F can be obtained by lifting a path in B from p(x) to
b.

Definition 1.11.9. Given two fibrations pi : Ei → B, i = 1, 2, a map
f : E1 → E2 is fiber-preserving if the diagram

E1
f
//

p1
��

E2

p2
��

B

commutes. Such a map f is called a fiber homotopy equivalence if f is both
fiber-preserving and a homotopy equivalence, i.e., there is a map g : E2 → E1

such that f and g are fiber-preserving and f ◦ g and g ◦ f are homotopic to
the identity maps by fiber-preserving maps.

Definition 1.11.10 (Fiber Bundle). A map p : E → B is a fiber bundle
with fiber F if, for any point b ∈ B, there exists a neighborhood Ub of b with
a homeomorphism h : p−1(Ub) → Ub × F so that the following diagram
commutes:

p−1(Ub)
h //

p

""

Ub × F

pr

}}

Ub

Remark 1.11.11. Fibers of fibrations are homotopy equivalent, while
fibers of fiber bundles are homeomorphic.

Theorem 1.11.12 (Hurewicz). Fiber bundles over paracompact spaces are
fibrations.

Here are some easy examples of fiber bundles.

Example 1.11.13. If F is discrete, a fiber bundle with fiber F is a covering
map. Moreover, the long exact sequence for the homotopy groups
yields that p∗ : πi(E) → πi(B) is an isomorphism if i ≥ 2 and a
monomorphism for i = 1.

Example 1.11.14. The Möbius band I × [−1, 1]�(0, y) ∼ (1,−y) −→ S1

is a fiber bundle with fiber [−1, 1], induced from the projection map
I × [−1, 1]→ I.
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0 1

1

−1

Example 1.11.15. By glueing the unlabeled edges of a Möbius band,
we get K → S1 (where K is the Klein bottle), a fiber bundle with fiber
S1.

Example 1.11.16. The following is a fiber bundle with fiber S1:

S1 ↪→ S2n+1(⊂ Cn+1) −→ CPn

(z0, . . . , zn) 7→ [z0 : . . . : zn] = [z]

For [z] ∈ CPn, there is an i such that zi 6= 0. Then we have a neighbor-
hood

U[z] = {[z0 : . . . : 1 : . . . : zn]} ∼= Cn

(with the entry 1 in place of the ith coordinate) of [z], with a homeo-
morphism

p−1(U[z]) −→ U[z] × S1

(z0, . . . , zn) 7→ ([z0 : . . . : zn], zi/|zi|).

By letting n go to infinity, we get a diagram of fibrations

S1 � p

""

= S1 � q

""

= · · · = S1 � p

!!

S2n+1

��

⊂ S2n+3

��

⊂ . . . ⊂ S∞

��

CPn ⊂ CPn+1 ⊂ . . . ⊂ CP∞

In particular, from the long exact sequence of the fibration

S1 ↪→ S∞ −→ CP∞

with S∞ contactible, we obtain that

πi(CP∞) ∼= πi−1(S1) =

{
Z i = 2
0 i 6= 2

i.e.,
CP∞ = K(Z, 2),



basics of homotopy theory 33

as already mentioned in our discussion about Eilenberg-MacLane
spaces.

Remark 1.11.17. As we will see later on, for any topological group
G there exists a “universal fiber bundle” G ↪→ EG

πG−→ BG with EG
contractible, classifying the space of (principal) G-bundles. That is, any
G-bundle π : E → B over a space B is determined by (the homotopy
class of) a classifying map f : B→ BG by pull-back: π ∼= f ∗πG:

E

π

��

EG

πG
��

' {pt}

B
f
// BG

From this point of view, CP∞ can be identified with the clasifying space
BS1 of (principal) S1-bundles.

Example 1.11.18. By letting n = 1 in the fibration of Example 1.11.16,
the corresponding bundle

S1 ↪→ S3 −→ CP1 ∼= S2 (1.11.1)

is called the Hopf fibration. The long exact sequence of homotopy group
for the Hopf fibration gives: π2(S2) ∼= π1(S1) and πn(S3) ∼= πn(S2) for
all n ≥ 3. Together with the fact that CP∞ = K(Z, 2), this shows that S2

and S3 ×CP∞ are simply-connected CW complexes with isomorphic
homotopy groups, though they are not homotopy equivalent as can be
easily seen from cellular homology.

Example 1.11.19. A fiber bundle similar to that of Example 1.11.16 can
be obtained by replacing C with the quaternions H, namely:

S3 ↪→ S4n+3 −→HPn.

(Note that S4n+3 can be identified with the unit sphere in Hn+1.) In
particular, by letting n = 1 we get a second Hopf fiber bundle

S3 ↪→ S7 −→HP1 ∼= S4. (1.11.2)

A third example of a Hopf bundle

S7 ↪→ S15 −→ S8 (1.11.3)

can be constructed by using the nonassociative 8-dimensional algebra
O of Cayley octonions, whose elements are pair of quaternions (a1, a2)

with multiplication defined by

(a1, a2) · (b1, b2) = (a1b1 − b̄2a2, a2b̄1 + b2a1).
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Here we regard S15 as the unit sphere in the 16-dimensional vector space
O2, and the projection map S15 −→ S8 = O ∪ {∞} is (z0, z1) 7→ z0z−1

1
(just like for the other Hopf bundles). There are no fiber bundles
with fiber, total space and base spheres, other than those provided by
the Hopf bundles of (1.11.1), (1.11.2) and (1.11.3). Finally, note that
there is an “octonion projective plane” OP2 obtained by glueing a cell
e16 to S8 via the Hopf map S15 → S8; however, there is no octonion
analogue of RPn, CPn or HPn for higher n, since the associativity of
multiplication is needed for the relation (z0, · · · , zn) ∼ λ(z0, · · · , zn) to
be an equivalence relation.

Example 1.11.20. Other examples of fiber bundles are provided by the
orthogonal and unitary groups:

O(n− 1) ↪→ O(n)→ Sn−1

A 7→ Ax,

where x is a fixed unit vector in Rn. Similarly, there is a fibration

U(n− 1) ↪→ U(n)→ S2n−1

A 7→ Ax,

with x a fixed unit vector in Cn. These examples will be discussed in
some detail in the next section.

1.12 More examples of fiber bundles

Definition 1.12.1. For n ≤ k, the n-th Stiefel manifold associated to Rk is
defined as

Vn(R
k) := {n-frames in Rk},

where an n-frame in Rk is an n-tuple {v1, . . . , vn} of orthonormal vectors in
Rk, i.e., v1, . . . , vn are pairwise orthonormal: 〈vi, vj〉 = δij.

We assign Vn(Rk) the subspace topology induced from

Vn(R
k) ⊂ Sk−1 × · · · × Sk−1︸ ︷︷ ︸

n times

,

where Sk−1 × · · · × Sk−1 has the usual product topology.

Example 1.12.2. V1(R
k) = Sk−1.

Example 1.12.3. Vn(Rn) ∼= O(n).

Definition 1.12.4. The n-th Grassmann manifold associated to Rk is defined
as:

Gn(R
k) := {n-dimensional vector subspaces in Rk}.
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Example 1.12.5. G1(R
k) = RPk−1

There is a natural surjection

p : Vn(R
k) −→ Gn(R

k)

given by
{v1, . . . , vn} 7→ span{v1, . . . , vn}.

The fact that p is onto follows by the Gram-Schmidt procedure. So
Gn(Rk) is endowed with the quotient topology via p.

Lemma 1.12.6. The projection p is a fiber bundle with fiber Vn(Rn) = O(n).

Proof. Let V ∈ Gn(Rk) be fixed. The fiber p−1(V) consists on n-frames
in V ∼= Rn, so it is homeomorphic to Vn(Rn). Let us now choose an
orthonormal frame on V. By projection and Gram-Schmidt, we get
orthonormal frames on all “nearby” (in some neighborhood U of V)
vector subspaces V′. Indeed, by projecting the frame of V orthogo-
nally onto V′ we get a (non-orthonormal) basis for V′, then apply the
Gram-Schmidt process to this basis to make it orthonormal. This is a
continuous process. The existence of such frames on all n-planes in
U allows us to identify them with Rn, so p−1(U) is identified with
U ×Vn(Rn).

To conclude this discussion, we have shown that for k > n, there are
fiber bundles:

O(n) �
�

// Vn(Rk) // Gn(Rk) (1.12.1)

A similar method gives the following fiber bundle for all triples
m < n ≤ k:

Vn−m(Rk−m) �
�

// Vn(Rk)
p

// Vm(Rk)

{v1, . . . , vn} � // {v1, . . . , vm}

(1.12.2)

Here, the projection p sends an n-frame onto the m-frame formed
by its first m vectors, so the fiber consists of (n − m)-frames in the
(k−m)-plane orthogonal to the given frame.

Example 1.12.7. If k = n in the bundle (1.12.2), we get the fiber bundle

O(n−m) �
�

// O(n) // Vm(Rn). (1.12.3)

Here, O(n−m) is regarded as the subgroup of O(n) fixing the first m
standard basis vectors. So Vm(Rn) is identifiable with the coset space
O(n)�O(n−m), or the orbit space of the free action of O(n− m) on

O(n) by right multiplication. Similarly,

Gm(R
n) ∼= O(n)�O(m)×O(n−m),
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where O(m)×O(n−m) consists of the orthogonal transformations of
Rn taking the m-plane spanned by the first m standard basis vectors to
itself.

If, moreover, we take m = 1 in (1.12.3), we get the fiber bundle

O(n− 1) �
�

// O(n) // Sn−1

A � //

(
A 0
0 1

)
B � // Bu

(1.12.4)

with u ∈ Sn−1 some fixed unit vector. In particular, this identifies Sn−1

as an orbit (or homogeneous) space:

Sn−1 ∼= O(n)�O(n− 1).

Example 1.12.8. If m = 1 in the bundle (1.12.2), we get the fiber bundle

Vn−1(R
k−1) �

�
// Vn(Rk) // Sk−1. (1.12.5)

By using the long exact sequence for bundle (1.12.5) and induction on
n, it follows readily that Vn(Rk) is (k− n− 1)-connected.

Remark 1.12.9. The long exact sequence of homotopy groups for the
bundle (1.12.4) shows that πi(O(n)) is independent of n for n large. We
call this the stable homotopy group πi(O). Bott Periodicity shows that
πi(O) is periodic in i with period 8. Its values are:

i 1 2 3 4 5 6 7 8

πi(O) Z/2 Z/2 0 Z 0 0 0 Z

Definition 1.12.10.

Vn(R
∞) :=

∞⋃
k=1

Vn(R
k) Gn(R

∞) :=
∞⋃

k=1

Gn(R
k)

The infinite grassmanian Gn(R∞) carries a lot of topological infor-
mation. As we will see later on, the space Gn(R∞) is the classifying
space for rank-n real vector bundles. In fact, we get a “limit” fiber
bundle:

O(n) �
�

// Vn(R∞) // Gn(R∞). (1.12.6)

Moreover, we have the following:

Proposition 1.12.11. Vn(R∞) is contractible.

Proof. By using the bundle (1.12.5) for k→ ∞, we see that πi(Vn(R∞)) =

0 for all i. Using the CW structure and Whitehead’s Theorem 1.7.2
shows that Vn(R∞) is contractible.



basics of homotopy theory 37

Alternatively, we can define an explicit homotopy ht : R∞ → R∞ by

ht(x1, x2, . . .) := (1− t)(x1, x2, . . .) + t(0, x1, x2, . . .).

Then ht is linear for each t with ker ht = {0}. So ht preserves inde-
pendence of vectors. Applying ht to an n-frame we get an n-tuple of
independent vectors, which can be made orthonormal by the Gram-
Schmidt (G-S, for short) process. We then get a deformation retraction
of Vn(R∞) onto the subspace of n-frames with first coordinate zero.
Repeating this procedure n times, we get a deformation of Vn(R∞) to
the subspace of n-frames with first n coordinates zero.

Let {e1, . . . , en} be the standard n-frame in R∞. For an n-frame
{v1, . . . , vn} of vectors with first n coordinates zero, define a homotopy
kt : Vn(R∞)→ Vn(R∞) by

kt ({v1, . . . , vn}) :=
[
(1− t){v1, . . . , vn}+ t{e1, . . . , en}

]
◦ (G− S).

Then kt preserves linear independence and orthonormality by Gram-
Schmidt.

Composing ht and kt, any n-frame is moved continuously to the
standard n-frame {e1, . . . , en}. Thus kt ◦ ht is a contraction of Vn(R∞).

Similar considerations apply if we use C or H instead of R, so we
can define complex or quaternionic Stiefel and Grasmann manifolds,
by using the usual hermitian inner products in Ck and Hk, respectively.
In particular, O(n) gets replaced by U(n) if C is used, and Sp(n) is
the quaternionic analog of this. Then similar fiber bundles can be
constructed in the complex and quaternionic setting. For example, over
C we get fiber bundles

U(n) �
�

// Vn(Ck)
p
// Gn(Ck), (1.12.7)

with Vn(Ck) a (2k − 2n)-connected space. As k → ∞, we get a fiber
bundle

U(n) �
�

// Vn(C∞) // Gn(C∞), (1.12.8)

with Vn(C∞) contractible. As we will see later on, this means that
Vn(C∞) is the classifying space for rank-n complex vector bundles. We
also have a fiber bundle similar to (1.12.4)

U(n− 1) �
�

// U(n) // S2n−1, (1.12.9)

whose long exact sequence of homotopy groups then shows that
πi(U(n)) is stable for large n. Bott periodicity shows that this sta-
ble group πi(U) repeats itself with period 2: the relevant groups are
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0 for i even, and Z for i odd. Note that by (1.12.9), odd-dimensional
spheres can be realized as complex homogeneous spaces via

S2n−1 ∼= U(n)�U(n− 1).

Many of these fiber bundles will become essential tools in the next
chapter for computing (co)homology of matrix groups, with a view
towards classifying spaces and characteristic classes of manifolds.

1.13 Turning maps into fibration

In this section, we show that any map is homotopic to a fibration.
Given a map f : A→ B, define

E f := {(a, γ) | a ∈ A, γ : [0, 1]→ B with γ(0) = f (a)}.

E f is a topological space with respect to the compact-open topology.
Then A can be regarded as a subset of E f , by mapping a ∈ A to
(a, c f (a)), where c f (a) is the constant path based at the image of a under
f . Define

E f
p−→ B

(a, γ) 7→ γ(1)

Then p|A = f , so f = p ◦ i where i is the inclusion of A in E f . Moreover,
i : A −→ E f is a homotopy equivalence, and p : E f −→ B is a fibration
with fiber A. So f can be factored as a composition of a homotopy
equivalence and a fibration:

A �
� h.e.

i
//

f

99E f
fibration

p
// B

Example 1.13.1. If A = {b} ↪→ B and f is the inclusion of b in B, then
E f =: PB is the contractible space of paths in B starting at b (called the
path-space of B):
In this case, the above construction yields the path fibration

ΩB = p−1(b) ↪→ PB −→ B,

where ΩB is the space of all loops in B based at b, and PB −→ B is
given by γ 7→ γ(1). Since PB is contractible, the associated long exact
sequence of the fibration yields that

πi(B) ∼= πi−1(ΩB) (1.13.1)

for all i.
The isomorphism (1.13.1) suggests that the Hurewicz Theorem 1.10.1

can also be proved by induction on the degree of connectivity. Indeed,
if B is n-connected then ΩB is (n− 1)-connected. We’ll give the details
of such an approach by using spectral sequences.
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The following result is useful for computations:

Proposition 1.13.2 (Puppé sequence). Given a fibration F ↪→ E → B,
there is a sequence of maps

· · · −→ Ω2B −→ ΩF −→ ΩE −→ ΩB −→ F −→ E −→ B

with any two consecutive maps forming a fibration.

1.14 Exercises

1. Let f : X → Y be a homotopy equivalence. Let Z be any other space.
Show that f induces bijections:

f∗ : [Z, X]→ [Z, Y] and f ∗ : [Y, Z]→ [X, Z] ,

where [A, B] denotes the set of homotopy classes of maps from the
space A to B.

2. Find examples of spaces X and Y which have the same homology
groups, cohomology groups, and cohomology rings, but with different
homotopy groups.

3. Use homotopy groups in order to show that there is no retraction
RPn → RPk if n > k > 0.

4. Show that an n-connected, n-dimensional CW complex is con-
tractible.

5. (Extension Lemma)
Given a CW pair (X, A) and a map f : A→ Y with Y path-connected,
show that f can be extended to a map X → Y if πn−1(Y) = 0 for all n
such that X \ A has cells of dimension n.
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6. Show that a CW complex retracts onto any contractible subcomplex.
(Hint: Use the above extension lemma.)

7. If p : (X̃, Ã, x̃0) → (X, A, x0) is a covering space with Ã = p−1(A),
show that the map p∗ : πn(X̃, Ã, x̃0)→ πn(X, A, x0) is an isomorphism
for all n > 1.

8. Show that a CW complex is contractible if it is the union of an
increasing sequence of subcomplexes X1 ⊂ X2 ⊂ · · · such that each
inclusion Xi ↪→ Xi+1 is nullhomotopic. Conclude that S∞ is contractible,
and more generally, this is true for the infinite suspension Σ∞(X) :=⋃

n≥0 Σn(X) of any CW complex X.

9. Use cellular approximation to show that the n-skeletons of homotopy
equivalent CW complexes without cells of dimension n + 1 are also
homotopy equivalent.

10. Show that a closed simply-connected 3-manifold is homotopy
equivalent to S3. (Hint: Use Poincaré Duality, and also the fact that
closed manifolds are homotopy equivalent to CW complexes.)

11. Show that a map f : X → Y of connected CW complexes is a
homotopy equivalence if it induces an isomorphism on π1 and if a
lift f̃ : X̃ → Ỹ to the universal covers induces an isomorphism on
homology.

12. Show that π7(S4) is non-trivial. [Hint: It contains a Z-summand.]

13. Prove that the space SO(3) of orthogonal 3 × 3 matrices with
determinant 1 is homeomorphic to RP3.

14. Show that if Sk → Sm → Sn is a fiber bundle, then k = n− 1 and
m = 2n− 1.

15. Show that if there were fiber bundles Sn−1 → S2n−1 → Sn for all n,
then the groups πi(Sn) would be finitely generated free abelian groups
computable by induction, and non-zero if i ≥ n ≥ 2.

16. Let U(n) be the unitary group. Find πk(U(n)) for k = 1, 2, 3 and
n ≥ 2.

17. If p : E→ B is a fibration over a contractible space B, then p is fiber
homotopy equivalent to the trivial fibration B× F → B.
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2
Spectral Sequences. Applications

Most of our considerations involving spectral sequences will be applied
to fibrations. If F ↪→ E→ B is such a fibration, then a spectral sequence
can be regarded as a machine which takes as input the (co)homology
of the base B and fiber F and outputs the (co)homology of the total
space E. Our emphasis here is on applications of the theory of spectral
sequences, and not so much on developing the theory itself.

2.1 Homological spectral sequences. Definitions

We begin with a discussion of homological spectral sequences.

Definition 2.1.1. A (homological) spectral sequence is a sequence

{Er
∗,∗, dr

∗,∗}r≥0

of chain complexes of abelian groups, such that

Er+1
∗,∗ = H∗(Er

∗,∗).

In more detail, we have abelian groups {Er
p,q} and maps (called “differentials”)

dr
p,q : Er

p,q → Er
p−r,q+r−1

such that (dr)2 = 0 and

Er+1
p,q :=

ker
(

dr
p,q : Er

p,q → Er
p−r,q+r−1

)
Image

(
dr

p+r,q−r+1 : Er
p+r,q−r+1 → Er

p,q

) .

We will focus on the first quadrant spectral sequences, i.e., with
Er

p,q = 0 whenever p < 0 or q < 0. Hence, for any fixed (p, q) in
the first quadrant and for sufficiently large r, the differentials dr

p,q and
dr

p+r,q−r+1 vanish, so that

Er
p,q = Er+1

p,q = · · · = E∞
p,q.
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Er
p−r,q+r−1

Er
p,q

0 · · · p− r p

q + r− 1

q

...

0

dr

dr

dr

Figure 2.1: r-th page Er

In this case we say that the spectral sequence degenerates at page Er.
When it is clear from the context which differential we refer to, we

will simply write dr, instead of dr
∗,∗.

Definition 2.1.2. If {Hn}n are groups, we say the spectral sequence converges
(or abuts) to H∗, and we write

(Er, dr)V H∗,

if for each n there is a filtration

Hn = Dn,0 ⊇ Dn−1,1 ⊇ · · · ⊇ D1,n−1 ⊇ D0,n ⊇ D−1,n+1 = 0

such that, for all p, q,
E∞

p,q = Dp,q�Dp−1,q+1
.

Hn/Dn−1,1

Dn−1,1/Dn−2,2

D0,n

D1,n−1/D0,n

Figure 2.2: n-th diagonal of E∞
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To read off H∗ from E∞, we need to solve several extension problems.
But if Er

∗,∗ and H∗ are vector spaces, then

Hn ∼=
⊕

p+q=n
E∞

p,q,

since in this case all extension problems are trivial.

Remark 2.1.3. The following observation is very useful in practice:

• If E∞
p,q = 0, for all p + q = n, then Hn = 0.

• If Hn = 0, then E∞
p,q = 0 for all p + q = n.

Before explaining in more detail what is behind the theory of spec-
tral sequences, we present the special case of a spectral sequence associ-
ated to fibrations, and discuss some immediate applications (including
to Hurewicz theorem).

Theorem 2.1.4 (Serre). If π : E → B is a fibration with fiber F, and with
π1(B) = 0 and π0(F) = 0, then there is a first quadrant spectral sequence
with

E2
p,q = Hp(B; Hq(F))V H∗(E) (2.1.1)

converging to H∗(E).

Remark 2.1.5. Fix some coefficient group K. Then, since B and F are
connected, we have:

• E2
p,0 = Hp(B; H0(F; K)) = Hp(B; K),

• E2
0,q = H0(B; Hq(F; K)) = Hq(F; K)

The remaining entries on the E2-page are computed by the universal
coefficient theorem.

Definition 2.1.6. The spectral sequence of the above theorem shall be referred
to as the Leray-Serre spectral sequence of a fibration, and any ring of coefficients
can be used.

Remark 2.1.7. If π1(B) 6= 0, then the coefficients Hq(F) on B are acted
upon by π1(B), i.e., these coefficients are “twisted” by the monodromy
of the fibration if it is not trivial. As we will see later on, in this case
the E2-page of the Leray-Serre spectral sequence is given by

E2
p,q = Hp(B;Hq(F)),

i.e., the homology of B with local coefficients Hq(F).
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H∗(F)

H∗(B)

Figure 2.3: p-axis and q-axis of E2

2.2 Immediate Applications: Hurewicz Theorem Redux

As a first application of the Lera-Serre spectral sequence, we can now
give a new proof of the Hurewicz Theorem in the absolute case:

Theorem 2.2.1 (Hurewicz Theorem). If X is (n− 1)-connected, n ≥ 2,
then H̃i(X) = 0 for i ≤ n− 1 and πn(X) ∼= Hn(X).

Proof. Consider the path fibration:

ΩX �
�

// PX // X, (2.2.1)

and recall that the path space PX is contractible. Note that the loop
space ΩX is connected, since π0(ΩX) ∼= π1(X) = 0. Moreover, since
π1(X) = 0, the Leray-Serre spectral sequence (2.1.1) for the path fibra-
tion has the E2-page given by

E2
p,q = Hp(X, Hq(ΩX))V H∗(PX).

We prove the statement of the theorem by induction on n. The
induction starts at n = 2, in which case we clearly have H1(X) = 0
since X is simply-connected. Moreover,

π2(X) ∼= π1(ΩX) ∼= H1(ΩX),

where the first isomorphism follows from the long exact sequence of
homotopy groups for the path fibration, and the second isomorphism
is the abelianization since π2(X), hence also π1(ΩX), is abelian. So it
remains to show that we have an isomorphism

H1(ΩX) ∼= H2(X). (2.2.2)

Consider the E2-page of the Leray-Serre spectral sequence for the path
fibration. We need to show that

d2 : E2
2,0 = H2(X)→ E2

0,1 = H1(ΩX)
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is an isomorphism.

E2
H∗(ΩX)

H1(ΩX)

Z
H∗(X)

H1(X) H2(X)

d2

Since {E2
p,q}V H∗(PX) and PX is contactible, we have by Remark

2.1.3 that E∞
p,q = 0 for all p, q > 0. Hence, if d2 : H2(X) → H1(ΩX)

is not an isomorphism, then E3
0,1 6= 0 and E3

2,0 = ker d2 6= 0. But the
differentials d3 and higher will not affect E3

0,1 and E3
2,0. So these groups

remain unchanged (hence non-zero) also on E∞, contradicting the fact
that E∞ = 0 except for (p, q) = (0, 0). This proves (2.2.2).

Now assume the statement of the theorem holds for n− 1 and prove
it for n. Since X is (n− 1)-connected, we have by the homotopy long
exact sequence of the path fibration that ΩX is (n− 2)-connected. So
by the induction hypothesis applied to ΩX (assuming now that n.geq3,
as the case n = 2 has been dealt with earlier), we have that H̃i(ΩX) = 0
for i < n− 1, and πn−1(ΩX) ∼= Hn−1(ΩX).

Therefore, we have isomorphisms:

πn(X) ∼= πn−1(ΩX) ∼= Hn−1(ΩX),

where the first isomorphism follows from the long exact sequence
of homotopy groups for the path fibration, and the second is by the
induction hypothesis, as already mentioned. So it suffices to show that
we have an isomorphism

Hn−1(ΩX) ∼= Hn(X). (2.2.3)

Consider the Leray-Serre spectral sequence for the path fibration.
By using the universal coefficient theorem for homology, the terms on
the E2-page are given by

E2
p,q = Hp(X, Hq(ΩX))

∼= Hp(X)⊗ Hq(ΩX)⊕ Tor(Hp−1(X), Hq(ΩX))

= 0

for 0 < q < n− 1, by the induction hypothesis for ΩX.
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H∗(ΩX)

0

...

0

Hn−1(ΩX)

Z

H∗(X)

H1(X) H2(X)
. . .

Hn−1(X) Hn(X)

dn

Hence, the differentials d2, d3 · · · dn−1 acting on the entries on the p-axis
for p ≤ n, do not affect these entries. The entries Hn(X) and Hn−1(ΩX)

are affected only by the differential dn. Also, higher differentials starting
with dn+1 do not affect these entries. But since the spectral sequence
converges to H∗(PX) with PX contractible, all entries on the E∞-page
(except at the origin) must vanish. In particular, this implies that
Hi(X) = 0 for 1 ≤ i ≤ n− 1, and dn : Hn(X)→ Hn−1(ΩX) must be an
isomorphism, thus proving (2.2.3).

2.3 Leray-Serre Spectral Sequence

In this section, we give some more details about the Leray-Serre spectral
sequence. We begin with some general considerations about spectral
sequences.

Start off with a chain complex C∗ with a bounded increasing filtra-
tion F•C∗, i.e., each FpC∗ is a subcomplex of C∗, Fp−1C∗ ⊆ FpC∗ for
any p, FpC∗ = C∗ for p very large, and FpC∗ = 0 for p very small. We
get an induced filtration on the homology groups Hi(C∗) by

Fp Hi(C∗) := Image(Hi(FpC∗)→ Hi(C∗)).

The general theory of spectral sequences (e.g., see Hatcher or Griffiths-
Harris), asserts that there exists a homological spectral sequence with
E1-page given by:

E1
p,q = Hp+q(FpC∗/Fp−1C∗)V H∗(C∗)
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and differential d1 given by the connecting homomorphism in the long
exact sequence of homology groups associated to the triple

(FpC∗, Fp−1C∗, Fp−2C∗).

Moreover, we have

Theorem 2.3.1.

E∞
p,q = FpHp+q(C∗)/Fp−1Hp+q(C∗)

So to reconstruct H∗(C∗) one needs to solve a collection of extension
problems.

Back to the Leray-Serre spectral sequence, let F ↪→ E π→ B be a
fibration with B a simply-connected finite CW-complex. Let C∗(E) be
the singular chain complex of E, filtered by

FpC∗(E) := C∗(π−1(Bp)),

where Bp is the p-skeleton of B. Then,

FpC∗(E)/Fp−1C∗(E) = C∗(π−1(Bp))/C∗(π−1(Bp−1))

= C∗(π−1(Bp), π−1(Bp−1)).

By excision,

H∗(FpC∗(E)/Fp−1C∗(E)) =
⊕
ep

H∗(π−1(ep), π−1(∂ep))

where the direct sum is over the p-cells ep in B. Since ep is contractible,
the fibration above it is trivial, so homotopy equivalent to ep × F. Thus,

H∗(π−1(ep), π−1(∂ep)) ∼= H∗(ep × F, ∂ep × F)
∼= H∗(Dp × F, Sp−1 × F)
∼= H∗−p(F)
∼= Hp(Dp, Sp−1; H∗−p(F)),

where the third isomorphism follows by the Künneth formula. Alto-
gether, there is a spectral sequence with E1-page

E1
p,q = Hp+q(FpC∗(E)/Fp−1C∗(E)) ∼=

⊕
ep

Hp(Dp, Sp−1; Hq(F)).

Here, d1 takes E1
p,q to

⊕
ep−1

Hp−1(Dp−1, Sp−2; Hq(F)) by the boundary
map of the long exact sequence of the triple (Bp, Bp−1, Bp−2). By cellular
homology, this is exactly a description of the boundary map of the CW-
chain complex of B with coefficients in Hq(F), hence

E2
p,q = Hp(B, Hq(F)).
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Remark 2.3.2. If the base B of the fibration is not simply-connected,
then the coefficients Hq(F) on B in E2 are acted upon by π1(B), i.e.,
these coefficients are “twisted” by the monodromy of the fibration if it
is not trivial, so taking the homology of the E1-page yields

E2
p,q = Hp(B;Hq(F)),

regarded now as the homology of B with local coefficients Hq(F).

The above considerations yield Serre’s theorem:

Theorem 2.3.3. Let F
i
↪→ E π→ B be a fibration with π1(B) = 0 (or π1(B)

acts trivially on H∗(F)) and π0(E) = 0. Then, there is a first quadrant
spectral sequence with E2-page

E2
p,q = Hp(B, Hq(F))

which converges to H∗(E).

Therefore, there exists a filtration

Hn(E) = Dn,0 ⊇ Dn−1,1 ⊇ . . . ⊇ D0,n ⊇ D−1,n+1 = 0

such that E∞
p,q = Dp,q/Dp−1,q+1.

n-th diagonal of E∞

Hn(E)/Dn−1,1

Dn−1,1/Dn−2,2

D0,n

D1,n−1/D0,n
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(a) We have the following diagram of groups and homomorphisms:

Hp(B) = E2
p,0 ⊇ ker d2

p,0 = E3
p,0 ⊇ ker d3

p,0 = E4
p,0 ⊇ . . .⊇ ker dp

p,0 = Ep+1
p,0

...

=

OO

E∞
p,0

=

OO

Hp(E)/Dp−1,1Hp(E)

=

OO

Hp(E)

onto

OOOO

π∗

[[

Moreover, the above diagram commutes, i.e., the composition

Hp(E)� E∞
p,0 ⊆ E2

p,0 = Hp(B), (2.3.1)

which is also called the edge homomorphism, coincides with π∗ :
Hp(E)→ Hp(B).

(b) We have the following diagram of groups and homomorphisms:

Hq(F) = E2
0,q

// //

i∗

**

E3
0,q = Hq(F)/Image(d2) // // . . . // // Eq+2

0,q

=
��

...

=

��

E∞
0,q

=

��

D0,q Hq(E)
� _

��

Hq(E)

Furthermore, this diagram commutes.

(c)

Theorem 2.3.4. The image of the Hurewicz map hn
B : πn(B)→ Hn(B)

is contained in En
n,0, which is called the group of transgression elements.
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Furthermore, the following diagram commutes:

πn(B)

l.e.s. ∂

��

hn
B // Hn(B) = E2

n,0 ⊇ . . . ⊇ En
n,0

dn

��

πn−1(F)
hn−1

F // Hn−1(F) = E2
0,n−1

// // . . . // // En
0,n−1

2.4 Hurewicz Theorem, continued

Under the assumptions of the Hurewicz theorem, consider the follow-
ing transgression diagram of Theorem 2.3.4:

πn(X)

∼= ∂

��

hn
X // Hn(X) = E2

n,0 = . . . = En
n,0

∼= dn

��

πn−1(ΩX)
hn−1

ΩX

∼= // Hn−1(ΩX) = E2
0,n−1 = . . . = En

0,n−1

The Hurewicz homomorphism hn−1
ΩX is an isomorphism by the inductive

hypothesis, ∂ is an isomorphism by the homotopy long exact sequence
associated to the path fibration for X, and dn is an isomorphism by the
spectral sequence argument used in the proof of the Hurewicz theorem.
Therefore, hn

X : πn(X)→ Hn(X) is an isomorphism since the diagram
commutes.

Remark 2.4.1. It can also be shown inductively that under the assump-
tions of the Hurewicz theorem,

hn+1
X : πn+1(X) −→ Hn+1(X)

is an epimorphism.

In what follows we give more general versions of the Hurewicz
theorem. Recall that even if X is a finite CW-complex the homotopy
groups πi(X) are not necessarily finitely generated. However, we have
the following result:

Theorem 2.4.2 (Serre). If X is a finite CW-complex with π1(X) = 0 (or
more generally if X is abelian), then the homotopy groups πi(X) are finitely
generated abelian groups for i ≥ 2.

Definition 2.4.3. Let C be a category of abelian groups which is closed under
extension, i.e., whenever

0 // A // B // C // 0

is a short exact sequence of abelian groups with two of A, B, C contained in C,
then so is the third. A homomorphism ϕ : A→ B is called a
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• monomorphism mod C if ker ϕ ∈ C;

• epimorphism mod C if coker ϕ ∈ C;

• isomorphism mod C if ker ϕ, coker ϕ ∈ C.

Example 2.4.4. Natural examples of categories C as above include
{finite abelian groups}, {finitely generated abelian groups}, as well as
{p-groups}.

We then have the following:

Theorem 2.4.5 (Hurewicz mod C). Given n ≥ 2, if πi(X) ∈ C for 1 ≤
i ≤ n − 1, then H̃i(X) ∈ C for i ≤ n − 1, hn

X : πn(X) → Hn(X) is an
isomorphism mod C, and hn+1

X : πn+1(X) → Hn+1(X) is an epimorphism
mod C.

We need the following easy fact which guarantees that in the Leray-
Serre spectral sequence of the path fibration we have En

p,q ∈ C.

Lemma 2.4.6. If G ∈ C and X is a finite CW-complex, then Hi(X; G) ∈ C
for any i. More generally (even if X is not a CW complex), if A, B ∈ C, then
Tor(A, B) ∈ C.

Then the proof of Theorem 2.4.5 is the same as that of the classical
Hurewicz theorem, after replacing “∼=” by “∼= mod C”, and “0” by
“C”:

πn(X)

∼= ∂

��

hn
X // Hn(X) = E2

n,0 = . . . = En
n,0

∼= mod C dn

��

πn−1(ΩX)
hn−1

ΩX

∼= mod C
// Hn−1(ΩX) = E2

0,n−1 = . . . = En
0,n−1

Specifically, hn−1
ΩX is an isomorphism mod C by the inductive hypothesis,

∂ is an isomorphism by the long exact sequence associated to the path
fibration, and dn is an isomorphism mod C by a spectral sequence
argument similar to the one used in the proof of the Hurewicz theorem.
Therefore, hn

X is an isomorphism mod C since the diagram commutes.

Proof of Serre’s Theorem 2.4.2. Let

C = {finitely generated abelian groups}.

Then, H̃i(X) ∈ C since X is a finite CW-complex. By Theorem 2.4.5, we
have πi(X) ∈ C for i ≥ 2.

As another application, we can now prove the following result:

Theorem 2.4.7. Let X and Y be any connected spaces and f : X → Y a weak
homotopy equivalence (i.e., f induces isomorphisms on homotopy groups).
Then f induces isomorphisms on (co)homology groups with any coefficients.



52 homotopy theory and applications

Proof. By universal coefficient theorems, it suffices to show that f
induces isomorphisms on integral homology. As such, we can assume
that f is a fibration, and let F denote its fiber.

Since f is a weak homotopy equivalence, the long exact sequence
of the fibration yields that πi(F) = 0 for all i ≥ 0. Hence, by the
Hurewicz theorem, H̃i(F) = 0, for all i ≥ 0. Also, H0(F) = Z, since F
is connected.

Consider now the Leray-Serre spectral sequence associated to the
fibration f , with E2-page given by (see Remark 2.1.7):

E2
p,q = Hp(Y,Hq(F))V H∗(X),

where Hq(F) is a local coefficient system (i.e., locally constant sheaf)
on Y with stalk Hq(F). Since F has no homology, except in degree zero
(where H0(F) = H0(F) is always the trivial local system when F is
path-connected), we get:

E2
p,q = 0 for q > 0,

and
E2

p,0 = Hp(Y).

Therefore, all differentials in the spectral sequence vanish, so

E2 = · · · = E∞.

Recall now that

Hn(X) = Dn,0 ⊇ Dn−1,1 ⊇ · · · ⊇ 0

and E∞
p,q = Dp,q/Dp−1,q+1. So if q > 0, then Dp,q = Dp−1,q+1 since

E∞
p,q = 0. In particular, Dn−1,1 = · · · = D0,n = D−1,n+1 = 0. Therefore,

Hn(X) = E∞
n,0 = E2

n,0 = Hn(Y)

and, by our remarks on the Leray-Serre spectral sequence (and edge
homomorphism), the above composition of isomorphisms coincides
with f∗, thus proving the claim.

2.5 Gysin and Wang sequences

As another application of the Leray-Serre spectral sequence, we discuss
the Gysin and Wang sequences.

Theorem 2.5.1 (Gysin sequence). Let F ↪→ E π→ B be a fibration, and
suppose that F is a homology n-sphere. Assume that π1(B) acts trivially on
Hn(F), e.g., π1(B) = 0. Then there exists an exact sequence

· · · → Hi(E) π∗→ Hi(B)→ Hi−n−1(B)→ Hi−1(E) π∗→ Hi−1(B)→ · · ·
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Proof. The Leray-Serre spectral sequence of the fibration has

E2
p,q = Hp(B; Hq(F)) =

Hp(B) , q = 0, n

0 , otherwise.

E2 = · · · = En+1

n

0

H∗(B)

0

H∗(B)

Thus the only possibly nonzero differentials are:

dn+1 : En+1
p,0 −→ En+1

p−n−1,n.

In particular,
En+1

p,q = · · · = E2
p,q

for any (p, q), and

E∞
p,q =


0 , q 6= 0, n

ker(dn+1 : En+1
p,0 → En+1

p−n−1,n) , q = 0

coker(dn+1 : En+1
p+n+1,0 → En+1

p−n−1,n) , q = n.

(2.5.1)

The above calculations yield the exact sequences

0 −→ E∞
p,0 −→ En+1

p,0
dn+1
−→ En+1

p−n−1,n −→ E∞
p−n−1,n −→ 0.

The filtration on Hi(E) reduces to

0 ⊂ E∞
i−n,n = Di−n,n ⊂ Di,0 = Hi(E)

and so the sequences

0 −→ E∞
i−n,n −→ Hi(E) −→ E∞

i,0 −→ 0 (2.5.2)

are exact for each i.
The desired exact sequence follows by combining (2.5.1), (2.5.2) and

the edge isomorphism (2.3.1).

Theorem 2.5.2 (Wang). If F ↪→ E→ Sn is a fibration, then there is an exact
sequence:

· · · −→ Hi(F) −→ Hi(E) −→ Hi−n(F) −→ Hi−1(F) −→ · · ·

Proof. Exercise.
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2.6 Suspension Theorem for Homotopy Groups of Spheres

We first need to compute the homology of the loop space ΩSn for n > 1.

Proposition 2.6.1. If n > 1, we have:

H∗(ΩSn) =

Z , ∗ = a(n− 1), a ∈N

0 , otherwise

Proof. Consider the Leray-Serre spectral sequence for the path fibration
(with π1(Sn) = π0(ΩSn) = 0)

ΩSn ↪→ PSn ' ∗ → Sn,

with E2-page

E2
p,q = Hp(Sn; Hq(ΩSn)) =

Hq(ΩSn) , p = 0, n

0 , otherwise

which converges to H∗(PSn) = H∗(point). In particular, E∞
p,q = 0 for

all (p, q) 6= (0, 0).

E2 = · · · = En

0

H1(ΩSn) H1(ΩSn)

Hi(ΩSn) Hi(ΩSn)

...
...

H∗(ΩSn)

H∗(Sn)
0 n. . .

First note that we have H0(ΩSn) = Z since π0(ΩSn) = π1(Sn) = 0.
Moreover, Hi(ΩSn) = E2

0,i = E3
0,i = E∞

0,i = 0 for 0 < i < n− 1, since
these entries are not affected by any differential. Furthermore, d2 =

d3 = . . . = dn−1 = 0 since these differential are too short to alter any of
the entries they act on. So

E2 = . . . = En.

Similarly, we have dn+1 = dn+2 = . . . = 0, as these differentials are too
long, and so

En+1 = En+2 = . . . = E∞.
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Since E∞
p,q = 0 for all (p, q) 6= (0, 0), all nonzero entries in En (except at

the origin) have to be killed in En+1. In particular,

dn
n,q : En

n,q −→ En
0,q+n−1

are isomorphisms.

E2 = · · · = En

0

H2n−2(ΩSn)

Hn(ΩSn)

Hn−1(ΩSn) Hn−1(ΩSn)

0

0

0

0

...

...
...

H∗(ΩSn)

0 Z n Z = H0(ΩSn). . .

dn

dn

For instance, dn : Z = H0(ΩSn) = En
n,0 −→ En

0,n−1 = Hn−1(ΩSn)

is an isomorphism, hence Hn−1(ΩSn) = Z. More generally, we get
isomorphisms

Hq(ΩSn) ∼= Hq+n−1(ΩSn)

for any q ≥ 0. Since H0(ΩSn) ∼= Z and Hi(ΩSn) = 0 for 0 < i < n− 1,
this gives:

H∗(ΩSn) =

Z , ∗ = a(n− 1), a ∈N

0 , otherwise

as desired.

We can now give a new proof of the Suspension Theorem for homo-
topy groups.

Theorem 2.6.2. If n ≥ 3, there are isomorphisms πi(Sn−1) ∼= πi+1(Sn), for
i ≤ 2n− 4, and we have an exact sequence:

Z→ π2n−3(Sn−1)→ π2n−2(Sn)→ 0.

Proof. We have Z ∼= πn(Sn) ∼= πn−1(ΩSn). Let g : Sn−1 → ΩSn be a
generator of πn−1(ΩSn). First, we claim that

g∗ is an isomorphism on Hi(−) for all i < 2n− 2.
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This is clear if i = 0, since ΩSn is connected. Given our calculation for
Hi(ΩSn) in Proposition 2.6.1, it suffices to prove the claim for i = n− 1.
We have a commutative diagram:

g∗ : Hn−1(Sn−1) - Hn−1(ΩSn)

�

πn−1(Sn−1)

h

6

g∗ - πn−1(ΩSn)

h

6

[id] 7→ [g ◦ id] = [g]

where h is the Hurewicz map. The bottom arrow g∗ is an isomorphism
on πn−1 by our choice of g. The two vertical arrows are isomorphisms
by the Hurewicz theorem (recall that n ≥ 3, so both Sn−1 and ΩSn are
simply-connected). By the commutativity of the diagram we get the
isomorphism on the top horizontal arrow, thus proving the claim.

Since we deal only with homotopy and homology groups, we can
moreover assume that g is an inclusion. Then the homology long exact
sequence for the pair (ΩSn, Sn−1) reads as:

· · · → Hi(Sn−1)
g∗−→ Hi(ΩSn)→ Hi(ΩSn, Sn−1)→

→ Hi−1(Sn−1)
g∗−→ Hi−1(ΩSn)→ · · ·

From the above claim, we obtain that Hi(ΩSn, Sn−1) = 0, for i < 2n− 2,
together with the exact sequence

0→ Z = H2n−2(ΩSn)
∼=−→ H2n−2(ΩSn, Sn−1)→ 0

Since Sn−1 is simply-connected (as n− 1 ≥ 2), by the relative Hurewicz
theorem, we get that πi(ΩSn, Sn−1) = 0 for i < 2n− 2, and

π2n−2(ΩSn, Sn−1) ∼= H2n−2(ΩSn, Sn−1) ∼= Z.

From the homotopy long exact sequence of the pair (ΩSn, Sn−1), we
then get πi(ΩSn) ∼= πi(Sn−1) for i < 2n− 3 and the exact sequence

· · · → Z→ π2n−3(Sn−1)→ π2n−3(ΩSn)→ 0

Finally, using the fact that πi(ΩSn) ∼= πi+1(Sn), we get the desired
result.

By taking i = 4 and n = 4, we get the first isomorphism in the
following:

Corollary 2.6.3. π4(S3) ∼= π5(S4) ∼= . . . ∼= πn+1(Sn)
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2.7 Cohomology Spectral Sequences

Let us now turn our attention to spectral sequences computing coho-
mology. In the case of a fibration, we have the following Leray-Serre
cohomology spectral sequence:

Theorem 2.7.1 (Serre). Let F ↪→ E→ B be a fibration, with π1(B) = 0 (or
π1(B) acting trivially on fiber cohomology) and π0(F) = 0. Then there exists
a cohomology spectral sequence with E2-page

Ep,q
2 = Hp(B, Hq(F))

converging to H∗(E). This means that, for each n, Hn(E) admits a filtration

Hn(E) = D0,n ⊇ D1,n−1 ⊇ . . . ⊇ Dn,0 ⊇ Dn+1,−1 = 0

so that
Ep,q

∞ = Dp,q
�Dp+1,q−1.

Moreover, the differential dp,q
r : Ep,q

r → Ep+r,q−r+1
r satisfies (dr)2 = 0, and

Er+1 = H∗(Er, dr).

n-th diagonal of E∞

Dn,0

Dn−1,1/Dn,0

Hn(E)/D1,n−1

D1,n−1/D2,n−2

The corresponding statements analogous to those of Remarks 2.1.3
and 2.1.5 also apply to the spectral sequence of Theorem 2.7.1.

The Leray-Serre cohomology spectral sequence comes endowed
with the structure of a product on each page Er, which is induced from
a product on E2, i.e., there is a map

• : Ep,q
r × Ep′ ,q′

r −→ Ep+p′ ,q+q′
r

satisfying the Leibnitz condition

dr(x • y) = dr(x) • y + (−1)deg(x)x • dr(y)



58 homotopy theory and applications

where deg(x) = p + q. On the E2-page this product is the cup product
induced from

Hp(B, Hq(F))× Hp′(B, Hq′(F)) −→ Hp+p′(B, Hq+q′(F))

m · γ× n · ν 7→ (m ∪ n) · (γ ∪ ν)

with m ∈ Hq(F), n ∈ Hq′(F), γ ∈ Cp(B) and ν ∈ Cp′(B), so that
m ∪ n ∈ Hq+q′(F) and γ ∪ ν ∈ Cp+p′(B).

As it is the case for homology, the cohomology Leray-Serre spectral
sequence satisfies the following property:

Theorem 2.7.2. Given a fibration F
i
↪→ E π→ B with F connected and

π1(B) = 0 (or π1(B) acts trivially on the fiber cohomology), the compositions

Hq(B) = Eq,0
2 � Eq,0

3 � · · ·� Eq,0
q � Eq,0

q+1 = Eq,0
∞ ⊂ Hq(E) (2.7.1)

and

Hq(E)� E0,q
∞ = E0,q

q+1 ⊂ E0,q
q ⊂ · · · ⊂ E0,q

2 = Hq(F) (2.7.2)

are the homomorphisms π∗ : Hq(B) → Hq(E) and i∗ : Hq(E) → Hq(F),
respectively.

Recall that for a space of finite type, the (co)homology groups
are finitely generated. By using the universal coefficient theorem in
cohomology, we have the following useful result:

Proposition 2.7.3. Suppose that F ↪→ E→ B is a fibration with F connected
and assume that π1(B) = 0 (or π1(B) acts trivially on the fiber cohomology).
If B and F are spaces of finite type (e.g., finite CW complexes), then for a field
K of coefficients we have:

Ep,q
2 = Hp(B; K)⊗K Hq(F; K).

Sufficient conditions for the cohomology of the total space of a
fibration to be the tensor product of the cohomology of the fiber and
that of the base space are given by the following result.

Theorem 2.7.4 (Leray-Hirsch). Suppose F
i
↪→ E π−→ B is a fibration, with

B and F of finite type, π1(B) = 0 and π0(F) = 0, and let K be a field of
coefficients. Assume that i∗ : H∗(E; K)→ H∗(F; K) is onto. Then

H∗(E; K) ∼= H∗(B; K)⊗K H∗(F; K).

Proof. Consider the Leray-Serre cohomology spectral sequence

Ep,q
2 = Hp(B; Hq(F; K))V H∗(E; K)
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of the fibration F ↪→ E→ B. By Proposition 2.7.3, we have:

Ep,q
2 = Hp(B; K)⊗K Hq(F; K).

In order to prove the theorem, it suffices to show that

E2 = · · · = E∞,

i.e., that all differentials d2, d3, etc., vanish. Indeed, since we work with
field coefficients, all extension problems encountered in passing from
E∞ to H∗(E; K) are trivial, i.e.,

Hn(E; K) ∼=
⊕

p+q=n
Ep,q

∞ .

Recall from Theorem 2.7.2 that the composite

Hq(E; K)� E0,q
∞ = E0,q

q+1 ⊂ E0,q
q ⊂ · · · ⊂ E0,q

2 = Hq(F; K)

is the homomorphism i∗ : Hq(E; K) → Hq(F; K). Since i∗ is assumed
onto, all these inclusions must be equalities. So all dr, when restricted
to the q-axis, must vanish. On the other hand, at E2 we have

Ep,q
2 = Ep,0

2 ⊗ E0,q
2 (2.7.3)

since K is a field, and d2 is already zero on Ep,0
2 since we work with a

first quadrant spectral sequence. Since d2 is a derivation with respect
to (2.7.3), we conclude that d2 = 0 and E3 = E2. The same argument
applies to d3 and, continuing in this fashion, we see that the spectral
sequence collapses (degenerates) at E2, as desired.

2.8 Elementary computations

Example 2.8.1. As a first example of the use of the Leray-Serre co-
homology spectral sequence, we compute here the cohomology ring
H∗(CP∞) of CP∞.

Consider the fibration

S1 ↪→ S∞ ' ∗ → CP∞.

The E2-page of the associated Leray-Serre cohomology spectral se-
quence starts with:

E2
H∗(S1)

Z

Z
H∗(CP∞)

0 Z

d2
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Here, H1(CP∞) = E1,0
2 = 0 since it is not affected by any differential dr,

and the E∞-page has only zero entries except at the origin. Moreover,
since the cohomology of the fiber is torsion-free, we get by the universal
coefficient theorem in cohomology that

Ep,q
2 = Hp(CP∞, Hq(S1)) = Hp(CP∞)⊗ Hq(S1).

In particular, we have E1,1
2 = 0 and E0,1

2 = H1(S1) = Z.
Since S∞ has no positive cohomology, hence the E∞-page has only

zero entries except at the origin, it is easy to see that d2 : E0,1
2 → E2,0

2 has
to be an isomorphism, since these entries are not affected by any other
differential. Hence we have H2(CP∞) = E2,0

2
∼= Z. Since all entries on

the E2-page are concentrated at q = 0 and q = 1, the only differential
which can affect these entries is d2. A similar argument then shows
that d2 : Ep,1

2 → Ep+2,0
2 is an isomorphism for any p ≥ 0. This yields

that Heven(CP∞) = Z and Hodd(CP∞) = 0.
Let Z = 〈x〉 = H1(S1). Let y = d2(x) be a generator of H2(CP∞).

E2
H∗(S1)

x

1
H∗(CP∞)

0 y 0 y2

0 xy

d2d2

Then, after noting that xy = (1⊗ x)(y⊗ 1) is a generator of Z = E2,1
2 ,

we have:

d2(xy) = d2(x)y + (−1)deg(x)xd2(y) = y2,

Therefore, H4(CP∞) = Z = 〈y2〉, since the d2 that hits y2 is an iso-
morphism. By induction, we get that d2(xyn−1) = yn is a generator of
H2n(CP∞). Altogether, H∗(CP∞) ∼= Z[y], with deg(y) = 2.

Example 2.8.2 (Cohomology groups of lens spaces). In this example
we compute the cohomology groups of lens spaces. Let us first recall
the relevant definitions.

Assume n ≥ 1. Consider the scaling action of C∗ on Cn+1\{0}, and
the induced S1-action on S2n+1. By identifying Z/r with the group
of rth roots of unity in C∗, we get (by restriction) an action of Z/r on
S2n+1. The quotient

L(n, r) := S2n+1
�Z/r

is called a lens space.
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The action of Z/r on S2n+1 is clearly free, so the quotient map
S2n+1 → L(n, r) is a covering map with deck group Z/r. Since S2n+1

is simply-connected, it is the universal cover of L(n, r). This yields that
π1(L(n, r)) = Z/r and all higher homotopy groups of L(n, r) agree
with those of the sphere S2n+1.

By a telescoping construction, which amounts to letting n→ ∞, we
get a covering map S∞ → L(∞, r) := S∞

�Z/r with contractible total
space. In particular,

L(∞, r) = K(Z/r, 1).

To compute the cohomology of L(n, r), one may be tempted to
use the Leray-Serre spectral sequence for the covering map Z/r ↪→
S2n+1 → L(n, r). However, since L(n, r) is not simply-connected, com-
putations may be tedious. Instead, we consider the fibration

S1 ↪→ L(n, r)→ CPn (2.8.1)

whose base space is simply-connected. This fibration is obtained by
noting that the action of S1 on S2n+1 descends to an action of S1 =

S1/(Z/r) on L(n, r), with orbit space CPn.
Consider now the Leray-Serre cohomology spectral sequence for

the fibration (2.8.1):

Ep,q
2 = Hp(CPn, Hq(S1; Z))V Hp+q(L(n, r); Z)

and note that Ep,q
2 = 0 for q 6= 0, 1. This implies that all differentials d3

and higher vanish, so
E3 = · · · = E∞.

On the E2-page, we have by the universal coefficient theorem in coho-
mology that:

Ep,q
2 = Hp(CPn; Z)⊗ Hq(S1; Z).

Let a be a generator of Z = E0,1
2
∼= H1(S1; Z), and let x be a generator

of Z = E2,0
2
∼= H2(CPn; Z). We claim that

d2(a) = rx. (2.8.2)

E2
H∗(S1)

a

1
H∗(CPn)

0 x 0 x2

ax20 ax 0

xn

axn

d2d2

. . .
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To find d2, it suffices to compute H2(L(n, r); Z). Indeed, by looking
at the entries of the second diagonal of E∞ = · · · = E3, we have:

H2(L(n, r); Z) = D0,2, E0,2
∞ = D0,2

�D1,1 = 0, E1,1
∞ = D1,1

�D2,0 = 0, and

E2,0
∞ = D2,0 = Z�Image(d2)

. In particular,

H2(L(n, r); Z) = D0,2 = D1,1 = D2,0 = Z�Image(d2)
. (2.8.3)

On the other hand, since H1(L(n, r); Z) = π1(L(n, r)) = Z/r, we get
by the universal coefficient theorem that

H2(L(n, r); Z) = (free part)⊕Z/r. (2.8.4)

By comparing (2.8.3) and (2.8.4), we conclude that d2(a) = rx and
H2(L(n, r); Z) = Z/r.

By using the Künneth formula and the ring structure of H∗(CPn; Z),
it follows from the Leibnitz formula and induction that d2(axk−1) = rxk

for 1 ≤ k ≤ n, and we also have d2(axn) = 0. In particular, all the
nontrivial differentials labelled by d2 are given by multiplication by r.

Since multiplication by r is injective, the E3 = · · · = E∞-page is
given by

E∞

0

Z 0 Z/r 0 Z/r

00 0 0

Z/r

Z

. . .

The extension problems for going from E∞ to the cohomology of
the total space L(n, r) are in this case trivial, since every diagonal of E∞

contains at most one nontrivial entry. We conclude that

Hi(L(n, r); Z) =


Z i = 0

Z/r i = 2, 4, · · · , 2n

Z i = 2n + 1

0 otherwise.

By letting n→ ∞, we obtain similarly that

Hi(K(Z/r, 1); Z) =


Z i = 0

Z/r i = 2k, k ≥ 1

0 otherwise.

In particular, if r = 2, this computes the cohomology of RP∞.
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2.9 Computation of πn+1(Sn)

In this section we prove the following result:

Theorem 2.9.1. If n ≥ 3,

πn+1(Sn) = Z/2.

Theorem 2.9.1 follows from the Suspension Theorem (see Corollary
2.6.3), together with the following explicit calculation:

Theorem 2.9.2.
π4(S3) = Z/2.

The proof of Theorem 2.9.2 given here uses the Postnikov tower
approximation of S3, whose construction we recall here. (A different
proof of this fact will be given in the next section, by using Whitehead
towers.)

Lemma 2.9.3 (Postnikov approximation). Let X be a CW complex with
πk := πk(X). For any n, there is a sequence of fibrations

K(πk, k) ↪→ Yk → Yk−1

and maps X → Yk with a commuting diagram

Y1 Y2oo · · ·Yn−1oo Ynoo

X

kk ii
cc OO

such that X → Yk induces isomorphisms πi(X) ∼= πi(Yk) for i ≤ k, and
πi(Yk) = 0 for i > k.

Proof. To construct Yn we kill off the homotopy groups of X in degrees
≥ n+ 1 by attaching cells of dimension ≥ n+ 2. We then have πi(Yn) =

πi(X) for i ≤ n and πi(Yn) = 0 if i > n. Having constructed Yn, the
space Yn−1 is obtained from Yn by killing the homotopy groups of Yn

in degrees ≥ n, which is done by attaching cells of dimension ≥ n + 1.
Repeating this procedure, we get inclusions

X ⊂ Yn ⊂ Yn−1 ⊂ · · · ⊂ Y1 = K(π1, 1),

which we convert to fibrations. From the homotopy long exact sequence
for each of these fibrations, we see that the fiber of Yk → Yk−1 is a
K(πk, k)-space.

Proof of Theorem 2.9.2. We consider the Postnikov tower construction in
the case n = 4, X = S3, to obtain a fibration

K(π4, 4) ↪→ Y4 → Y3 = K(Z, 3), (2.9.1)
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where π4 = π4(S3) = π4(Y4). Here, Y3 = K(Z, 3) since to get Y3 we
kill off all higher homotopy groups of S3 starting at π4. Since Y4 is
obtained from S3 by attaching cells of dimension ≥ 6, it doesn’t have
cells of dimensions 4 and 5, thus

H4(Y4) = H5(Y4) = 0.

Let us now consider the homology spectral sequence for the fibration
(2.9.1). By the Hurewicz theorem,

Hp(K(Z, 3); Z) =

0 p = 1, 2

Z p = 3

Hq(K(π4, 4); Z) =

0 q = 1, 2, 3

π4(S3) q = 4.

So the E2-page looks like

H∗(K(π4, 4))

0

0

0

π4

Z
H∗(K(Z, 3)

0 0 Z H4 H5

d5

Since H4(Y4) = 0 = H5(Y4), all entries on the fourth and fifth diagonals
of E∞ are zero. The only differential that can affect π4(S3) = E2

0,4 =

· · · = E5
0,4 is

d5 : H5(K(Z, 3), Z) −→ π4(S3),

and by the previous remark, this map has to be an isomorphism (note
also that E2

5,0 = H5(K(Z, 3), Z) can be affected only by d5, and this
element too has to be killed at E∞). Hence

π4(S3) ∼= H5(K(Z, 3), Z). (2.9.2)

In order to compute H5(K(Z, 3), Z), we use the cohomology Leray-
Serre spectral squence associated to the path fibration for K(Z, 3),
namely

ΩK(Z, 3) ↪→ PK(Z, 3)→ K(Z, 3),
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and note that, since PK(Z, 3) is contractible, we have πi(ΩK(Z, 3)) ∼=
πi+1(K(Z, 3)), i.e., ΩK(Z, 3) ' K(Z, 2) = CP∞. Since each H j(CP∞) is
a finitely generated free abelian group, the universal coefficient theorem
yields that

Ep,q
2 = Hp(K(Z, 3); Hq(CP∞)) ∼= Hp(K(Z, 3))⊗ Hq(CP∞), (2.9.3)

and the product structure on E2 is that of the tensor product of
H∗(K(Z, 3)) and H∗(CP∞).

Since Ep,q
2 = 0 for q odd, we have d2 = 0, so E2 = E3. Similarly, all

the even differentials d2n are zero, so E2n = E2n+1, for all n ≥ 1. Since
the total space of the fibration is contractible, we have that Ep,q

∞ = 0 for
all (p, q) 6= (0, 0), so every non-zero entry on the E2-page (except at the
origin) must be killed on subsequent pages.

Let a ∈ H2(CP∞) ∼= Z be a generator. So ak is a generator of
H2k(CP∞) = E0,2k

2 , for any k ≥ 1. We create elements on E∗,02 , which
will sooner or later kill off all the non-zero elements in the spectral
sequence.

E2 = E3

H∗(CP∞)

1 0

2 a

3 0

4 a2

5 0

0
1

H∗(K(Z, 3))
0 1

0

2

0

3

s

as

4

0

5

0

6

y = s2

d3
∼=

d3

·2

d3

Note that E1,0
3 = E1,0

2 = H1(K(Z, 3)) is never touched by any differen-
tial, so

H1(K(Z, 3)) = E1,0
∞ = 0.

Moreover, since d2 = 0, we also have that

H2(K(Z, 3)) = E2,0
2 = E2,0

3 = E2,0
∞ = 0.

The only differential that can affect 〈a〉 = E0,2
2 = E0,2

3 is d0,2
3 : E0,2

3 → E3,0
3 ,

so there must be an element s ∈ E3,0
3 that kills off a, i.e., d3(a) = s. On

the other hand, since E3,0
3 is only affected by d3 and it must be killed
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off at infinity, we must have that d0,2
3 : E0,2

3 → E3,0
3 is an isomorphism,

so s generates
Z = E3,0

3 = E3,0
2 = H3(K(Z, 3)).

By (2.9.3), we also have that E3,2
3 = E3,2

2 = Z, generated by as. Note that

d3(a2) = 2ad3(a) = 2as,

so d0,4
3 : E0,4

3 → E3,2
3 is given by multiplication by 2. In particular,

E0,4
4 = 0. Next notice that H4(K(Z, 3)) = E4,0

3 and H5(K(Z, 3)) = E5,0
3

can only be touched by the differentials d3, d4, or d5, but all of these are
trivial maps because their domains are zero. Thus, as H4(K(Z, 3)) and
H5(K(Z, 3)) can not killed by any differential, we have

H4(K(Z, 3)) = H5(K(Z, 3)) = 0.

Similarly, H6(K(Z, 3)) = E6,0
3 and 〈as〉 = E3,2

3 are only affected by
d3. Since d3(a2) = 2as, we have ker(d3 : 〈as〉 = E3,2

3 → E6,0
3 ) =

Image(d3 : E0,4
3 → E3,2

3 = 〈as〉) = 〈2as〉 ⊆ 〈as〉, and hence H6(K(Z, 3)) =
Image(d3 : E3,2

3 → E6,0
3 ) ∼= 〈as〉 / 〈2as〉 = Z/2.

In view of the above calculations, we get by the universal coefficient
theorem that

H5(K(Z, 3)) = Z/2. (2.9.4)

The assertion of the theorem then follows by combining (2.9.2) and
(2.9.4).

Corollary 2.9.4.
π4(S2) = Z/2.

Proof. This follows from Theorem 2.9.2 and the long exact sequence of
homotopy groups for the Hopf fibration S1 ↪→ S3 → S2.

2.10 Whitehead tower approximation and π5(S3)

In order to compute π5(S3) we make use of the Whitehead tower
approximation. We recall here the construction.

Whitehead tower

Let X be a connected CW complex, with πq = πq(X) for any q ≥ 0.

Definition 2.10.1. A Whitehead tower of X is a sequence of fibrations

· · · −→ Xn −→ Xn−1 −→ · · · → X0 = X

such that

(a) Xn is n-connected
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(b) πq(Xn) = πq(X) for q ≥ n + 1

(c) the fiber of Xn → Xn−1 is a K(πn, n− 1)-space.

Lemma 2.10.2. For X a CW complex, Whitehead towers exist.

Proof. We construct Xn inductively. Suppose that Xn−1 has already
been defined. Add cells to Xn−1 to kill off πq(Xn−1) for q ≥ n + 1.
So we get a space Y which, by construction, is a K(πn, n)-space. Now
define the space

Xn := P∗Xn−1 := { f : I → Y, f (0) = ∗, f (1) ∈ Xn−1}

consisting of of paths in Y beginning at a basepoint ∗ ∈ Xn−1 and
ending somewhere in Xn−1. Endow Xn with the compact-open topology.
As in the case of the path fibration, the map π : Xn → Xn−1 defined by
γ→ γ(1) is a fibration with fiber ΩY = K(πn, n− 1).

From the long exact sequence of homotopy groups associated to the
fibration

K(πn, n− 1) ↪→ Xn → Xn−1

we get that πq(Xn) = πq(Xn−1) for q ≥ n + 1, and πq(Xn) = 0 for
q ≤ n− 2. Furthermore, the sequence

0 −→ πn(Xn) −→ πn(Xn−1) −→ πn−1(K(πn, n− 1)) −→ πn−1(Xn) −→ 0

is exact. So we are done if we show that the boundary homomor-
phism ∂ : πn(Xn−1) −→ πn−1(K(πn, n− 1)) of the long exact sequence
is an isomorphism. For this, note that the inclusion Xn−1 ⊂ Y =

K(πn, n) = Xn−1 ∪ {cells of dimension ≥ n + 2} induces an isomor-
phism πn(Xn−1) ∼= πnK(πn, n) ∼= πn−1(K(πn, n − 1)), which is pre-
cisely the above boundary map ∂.

Calculation of π4(S3) and π5(S3)

In this section we use the Whitehead tower for X = S3 to compute
π5(S3).

Theorem 2.10.3.
π5(S3) ∼= Z/2.

Proof. Consider the Whitehead tower for X = S3. Since S3 is 2-
connected, we have in the notation of Definition 2.10.1 that X = X1 =

X2. Let πi := πi(S3), for any i ≥ 0. We have fibrations

K(π4, 3) // X4

��

K(π3, 2) // X3

��

S3
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Since π3 = Z, we have K(π3, 2) = CP∞. Moreover, since X4 is 4-
connected, we get by definition and Hurewicz that

π5(S3) ∼= π5(X4) ∼= H5(X4).

Similarly,
π4(S3) ∼= π4(X3) ∼= H4(X3).

Once again we are reduced to computing homology groups. Using the
universal coefficient theorem, we will deduce the homology groups
from cohomology.

Consider now the cohomology spectral sequence for the fibration

CP∞ ↪→ X3 → S3.

The E2-page is given by

Ep,q
2 = Hp(S3, Hq(CP∞, Z)) = Hp(S3)⊗ Hq(CP∞)V H∗(X3).

In particular, Ep,q
2 = 0 unless p = 0, 3 and q is even.

E2 = E3
H∗(CP∞)

1 0

2 x

3 0

4 x2

0
1

H∗(S3)
0 1

0

2

0

3

u

xu

d3
∼=

d3

·2

Since Ep,q
2 = 0 for q odd, we have d2 = 0, so E2 = E3. In addition, for

r ≥ 4, dr = 0. So E4 = E∞.
Since X3 is 3-connected, we have by Hurewicz that H2(X3) =

H3(X3) = 0, so all entries on the second and third diagonals of
E∞ = E4 are 0. This implies that d0,2

3 : E0,2
3 = Z → E3,0

3 = Z is
an isomorphism. Let H∗(CP∞) = Z[x] with x of degree 2, and let u be
a generator of H3(S3). Then we have d3(x) = u. By the Leibnitz rule,
d3xn = nxn−1dx = nxn−1u, and since xn generates E0,2n

3 and xn−1u
generates E3,2n−2

3 , the differential d0,2n
3 is given by multiplication by n.

This completely determines E4 = E∞, hence the integral cohomology
and (by the universal coefficient theorem) homology of X3 is easily
computed as:

q 0 1 2 3 4 5 6 7 · · · 2k 2k + 1 · · ·
Hq(X3) Z 0 0 0 0 Z/2 0 Z/3 · · · 0 Z/k · · ·
Hq(X3) Z 0 0 0 Z/2 0 Z/3 0 · · · Z/k 0 · · ·
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In particular, π4 = H4(X3) = Z/2, which reproves Theorem 2.9.1.

In order to compute π5(S3) ∼= H5(X4), we use the homology spectral
sequence for the fibration

K(π4, 3) ↪→ X4 → X3,

with E2-page

E2
p,q = Hp(X3; Hq(K(Z/2, 3)))V H∗(X4).

Note that, by the Hurewicz theorem, we have: Hi(K(π4, 3)) = 0 for
i = 1, 2 and H3(K(π4, 3)) = π4 = Z/2. So E2

p,q = 0 for q = 1, 2. Also,
E2

p,0 = Hp(X3), whose values are computed in the above table.

H∗(K(Z/2, 3))

1 0

2 0

3 Z/2

4 0

5 Z/2

0
Z

H∗(X3)
0 1

0

2

0

3

0

4

Z/2

5

0

6

Z/3

d4

d6

Since X4 is 4-connected, we have by Hurewicz that H3(X4) = H4(X4) =

0, so all entries on the third and fourth diagonal of E∞ are zero. Since
the first and second row of E2 are zero, this forces d4 : E4

4,0 = E2
4,0 →

E4
0,3 = E2

0,3 to be an isomorphism (thus recovering the fact that π4
∼=

Z/2), and
H4(K(Z/2, 3)) = E2

0,4 = E∞
0,4 = 0.

Moreover, by a spectral sequence argument for the path fibration of
K(Z/2, 3), we obtain (see Exercise 6)

E2
0,5 = H5(K(Z/2, 3)) = Z/2,

and this entry can only be affected by d6 : E6
6,0
∼= Z/3 → E6

0,5 =

E2
0,5
∼= Z/2, which is the zero map, so E∞

0,5 = Z/2. Thus, on the fifth
diagonal of E∞, all entries are zero except E∞

0,5 = Z/2, which yields
H5(X4) = Z/2, i.e., π5(S3) = Z/2.
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2.11 Serre’s theorem on finiteness of homotopy groups of spheres

In this section we prove the following result:

Theorem 2.11.1 (Serre).

(a) πi(S2k+1) is finite for i > 2k + 1.

(b) πi(S2k) is finite for i > 2k, i 6= 4k− 1, and

π4k−1(S2k) = Z⊕ {finite abelian group}.

Proof of part (a). The case k = 0 is easy since πi(S1) is in fact trivial
for i > 1. For k > 0, recall Serre’s theorem 2.4.2, according to which
a simply-connected finite CW complex has finitely generated homo-
topy groups. In particular, the groups πi(S2k+1) are finitely generated
abelian for all i > 1. Therefore, πi(S2k+1) (i > 1) is finite if it is a torsion
group.

In what follows we show that

πi(S2k−1) ∼= πi+2(S2k+1) mod torsion, (2.11.1)

and part (a) of the theorem follows then by induction. The key to
proving the isomorphism (2.11.1) is the fact that

π2k−1(Ω
2S2k+1) ∼= π2k+1(S2k+1) = Z.

Letting β : S2k−1 → Ω2S2k+1 be a generator of π2k−1(Ω2S2k+1), we
will show that β induces an isomorphism mod torsion on H∗ (i.e., an
isomorphism on H∗(−; Q)). Let us assume this fact for now. WLOG,
we assume that β is an inclusion, and then the homology long exact
sequence of the pair (Ω2S2k+1, S2k−1) yields that

H∗(Ω2S2k+1, S2k−1) = 0 mod torsion.

The relative version of the Hurewicz mod torsion Theorem 2.4.5 then
tells us that

πi(Ω2S2k+1, S2k−1) = 0 mod torsion

for all i, so again by the homotopy long exact sequence of the pair
we get that πi(S2k−1) ∼= πi(Ω2S2k+1) ∼= πi+2(S2k+1) mod torsion, as
desired.

Thus, it remains to show that the generator β : S2k−1 → Ω2S2k+1 of
π2k−1Ω2(S2k+1) induces an isomorphism on H∗(−; Q). The bulk of the
argument amounts to showing that Hi(Ω2(S2k+1); Q) = 0 for i 6= 2k− 1,
which we do by computing Hi(Ω2(S2k+1); Q)∨ = Hi(Ω2(S2k+1); Q)

with the help of the cohomology spectral sequence for the path fibration
Ω2S2k+1 ↪→ ∗ → ΩS2k+1. The E2-page is given by

Ep,q
2 = Hp(ΩS2k+1; Hq(Ω2S2k+1; Q))V H∗(∗; Q),
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and since the total space of the fibration is contractible, we have Ep,q
∞ = 0

unless p = q = 0, in which case E0,0
∞ ∼= Z.

It is a simple exercise (using the path fibration ΩS2k+1 ↪→ ∗ →
S2k+1) to show that

H∗(ΩS2k+1; Q) ∼= Q[e], deg e = 2k.

Hence,

Ep,q
2 =Hp(ΩS2k+1; Hq(Ω2S2k+1; Q))

∼= Hp(ΩS2k+1; Q)⊗Q Hq(Ω2S2k+1; Q)

has possibly non-trivial columns only at multiples p of 2k, with E2k,0
2
∼=

Q = 〈ek〉. This implies that d2, d3, . . . , d2k−1 are all zero, hence E2 = E2k.
Furthermore, since the first non-trivial homotopy group πq(Ω2S2k+1) ∼=
πq+2(S2k+1) appears at q = 2k− 1, it follows by Hurewicz that

Hq(Ω2S2k+1; Q) = 0, for 0 < q < 2k− 1.

Therefore, Ep,q
2 = 0 for 0 < q < 2k− 1.

E2 = · · · = E2k
H∗(Ω2S2k+1; Q)

ω2k− 1

1

0

0
H∗(ΩS2k+1; Q)

0 e

2k. . .
0

. . .
e2

4k

0 eω 0

d2kd2k

. . .

Since E2k,0
2k
∼= H2k(ΩS2k+1) = 〈e〉 and E0,2k−1

2k
∼= H2k−1(Ω2S2k+1) are

only affected by d0,2k−1
2k : E0,2k−1

2k → E2k,0
2k , we must have that d0,2k−1

2k is an
isomorphism in order for E2k,0

2k+1 = E2k,0
∞ and E0,2k−1

2k+1 = E0,2k−1
∞ to be zero.

So H2k−1(Ω2S2k+1) ∼= Q = 〈ω〉, with d2k(ω) = e. As a consequence,

E2jk,2k−1
2k = H2jk(ΩS2k+1; Q)⊗Q H2k−1(Ω2S2k+1) = 〈ej〉⊗Q 〈ω〉 = 〈ejω〉

and d2jk,2k−1
2k : E2jk,2k−1

2k → E2jk+2k,0
2k are isomorphisms since d2k(ejω) =

jd2k(e)ω + ejd2k(ω) = ej+1. This implies that, except for q ∈ {0, 2k− 1},
Ep,q

2k is always trivial, and in particular that Hi(Ω2S2k+1; Q) = E0,i
2k is

trivial for i 6= 0, 2k− 1. (If there was anything else in H∗(Ω2S2k+1; Q),
it would have to also be present at infinity.)

Next note that S2k−1 and Ω2S2k+1 are (2k − 2)-connected, so by
the Hurewicz theorem, their rational cohomology vanishes in degrees
i < 2k − 1. Hence, β : S2k−1 → Ω2S2k+1 induces isomorphisms on
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Hi(−; Q) if i 6= 2k− 1. In order to show that β induces an isomorphism
on H2k−1(−; Q), recall the commutative diagram:

H2k−1(S2k−1)
β∗
// H2k−1(Ω2S2k+1)

π2k−1(S2k−1)

h ∼=

OO

β∗
// π2k−1(Ω2S2k+1)

h ∼=

OO

where the lower horizontal β∗ is an isomorphism since β is the gen-
erator of π2k−1(Ω2S2k+1), and the vertical arrows are isomorphisms
by Hurewicz. Since the diagram commutes, the top horozontal map
labelled β∗ is an isomorphism also, and the proof of part (a) is com-
plete.

Proof of part (b). We shall construct a fibration

S2k−1 ↪→ E π−→ S2k

such that
πi(E) ∼= πi(S4k−1) (mod torsion). (2.11.2)

Assuming for now that such a fibration exists, then since by part (a) we
have that

πi(S4k−1) =

finite i 6= 4k− 1

Z i = 4k− 1
,

we deduce that

πi(E) =

finite i 6= 4k− 1

Z⊕ finite i = 4k− 1.

The homotopy long exact sequence:

· · · // πi(S2k−1) // πi(E) // πi(S2k) // πi−1(S2k−1) // · · ·

together with that fact proved in part (a) that

πi(S2k−1) =

finite i 6= 2k− 1

Z i = 2k− 1
,

then yields that

πi(S2k) =

finite i 6= 2k, 4k− 1

Z⊕ finite i = 4k− 1,

as desired.
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Note that in order to have (2.11.2), it is sufficient for E to satisfy
Hi(E) ∼= Hi(S4k−1) modulo torsion, i.e.,

Hi(E) =

finite i 6= 0, 4k− 1

Z⊕ finite i = 4k− 1.

Indeed, by Hurewicz mod torsion, we then have that π4k−1(E) ∼=
H4k−1(E) mod torsion, and let f : S4k−1 → E be a generator of the
Z-summand of π4k−1(E). WLOG, we can assume that f is an inclu-
sion. The homology long exact sequence of the pair (E, S4k−1) then
implies that H∗(E, S4k−1) = 0 mod torsion. By Hurewicz mod torsion
this yields π∗(E, S4k−1) = 0 mod torsion. Finally, the homotopy long
exact sequence gives πi(E) ∼= πi(S4k−1) mod torsion.

Back to the construction of the space E, we start with the tangent
bundle TS2k → S2k, and let π : T0S2k → S2k be its restriction to the
space of nonzero tangent vectors to S2k. Then π is a fibration, since it
is locally trivial, and its fiber is R2k \ {0} ' S2k−1. We let

E = T0S2k.

Let us now consider the Leray-Serre homology spectral sequence of
this fibration, with

E2
p,q = Hp(S2k; Hq(S2k−1)) = Hp(S2k)⊗ Hq(S2k−1)V H∗(E).

Therefore, the page E2 has only four non-trivial entries at (p, q) = (0, 0),
(2k, 0), (0, 2k− 1), (2k− 1, 2k), and all these entries are isomorphic to
Z.

E2 = · · · = E2kH∗(S2k−1)

Z

Z

Z

H∗(S2k)
Z

d2k

Clearly, the differentials d2, d3, . . . , d2k−1 are all zero, as are the dif-
ferentials d2k+1, . . . . The only possibly non-zero differential in the
spectral sequence is d2k

2k,0 : E2k
2k,0 → E2k

0,2k−1. Thus, E2 = · · · = E2k and
E2k+1 = · · · = E∞. Therefore, the space E has the desired homology if
and only if

d2k
2k,0 6= 0.
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The map d2k
2k,0 fits into a commutative diagram

π2k(S2k)
∂ //

∼=h
��

π2k−1(S2k−1)

∼= h
��

H2k(S2k)
d2k // H2k−1(S2k−1)

where ∂ is the connecting homomorphism in the homotopy long exact
sequence of the fibration, and h denotes the Hurewicz maps. Hence,
d2k 6= 0 if and only if ∂ 6= 0. If, by contradiction, ∂ = 0, then the
homotopy long exact sequence of the fibration π contains the exact
sequence

π2k(E) π∗−→ π2k(S2k)
∂−→ 0.

In particular, there is [φ] ∈ π2k(E) so that π∗([φ]) = [id], i.e., the
diagram

E

π
��

S2k
id

φ
==

S2k

commutes up to homotopy. By the homotopy lifting property of the
fibration, there is then a map ψ : S2k → E so that π ◦ ψ = id. In other
words, ψ is a section of the bundle π. This implies the existence of a
nowhere-vanishing vector field on S2k, which is a contradiction.

Remark 2.11.2. Serre’s original proof of Theorem 2.11.1 used the White-
head tower approximation of a sphere, together with the computation
of the rational cohomology of K(Z, n) (see Exercise 13).

2.12 Computing cohomology rings via spectral sequences

The following computation will be useful when discussing about char-
acteristic classes:

Example 2.12.1. In this example, we show that the cohomology ring
H∗(U(n); Z) is a free Z-algebra on odd degree generators x1, · · · , x2n−1,
with deg(xi) = i, i.e.,

H∗(U(n); Z) = ΛZ[x1, · · · , x2n−1].

We will prove this fact by induction on n, by using the Leray-Serre
cohomology spectral sequence for the fibration

U(n− 1) ↪→ U(n)→ S2n−1.

For the base case, note that U(1) = S1, so H∗(U(1)) = ΛZ[x1] with
deg(x1) = 1. For the induction step, we will show that

H∗(U(n)) = H∗(S2n−1)⊗ H∗(U(n− 1)). (2.12.1)
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Since H∗(S2n−1) = ΛZ[x2n−1] with deg(x2n−1) = 2n− 1, this will then
give recursively that H∗(U(n)) = ΛZ[x1, . . . , x2n−3]⊗Z ΛZ[x2n−1] =

ΛZ[x1, · · · , x2n−1], with odd-degree generators x1, · · · , x2n−1, with

deg(xi) = i.

Assume by induction that H∗(U(n− 1)) = ΛZ[x1, · · · , x2n−3], with
deg(xi) = i, and for n ≥ 2 consider the cohomology spectral sequence

Ep,q
2 = Hp(S2n−1, Hq(U(n− 1)))V H∗(U(n)).

By the universal coefficient theorem, we have that

Ep,q
2 = Hp(S2n−1)⊗ Hq(U(n− 1)) = 0 if p 6= 0, 2n− 1.

So all the nonzero entries on the E2-page are concentrated on the
columns p = 0 (i.e., q-axis) and p = 2n− 1. In particular,

d1 = · · · = d2n−2 = 0,

so
E2 = · · · = E2n−1.

Furthermore, higher differentials starting with d2n are also zero (since
either their domain or target is zero), so

E2n = · · · = E∞.

Recall now that x1, · · · , x2n−3 generate the cohomology of the fiber
U(n− 1) and note that, due to their position on E2n−1, we have that
d2n−1(x1) = · · · = d2n−1(x2n−3) = 0. Since d2n−1(x2n−1) = 0, we
conclude by the Leibnitz rule that

d2n−1 = 0.

(Here, x2n−1 denotes the generator of H∗(S2n−1).) Thus, E2n−1 = E2n,
so in fact the spectral sequence degenerates at the E2-page, i.e.,

E2 = · · · = E∞.

Since the E∞-term is a free, graded-commutative, bigraded algebra, it
is a standard fact (e.g., see Example 1.K in McCleary’s “A User’s guide
to spectral sequences”) that the abutement H∗(U(n)) of the spectral
sequence is also a free, graded commutative algebra isomorphic to the
total complex associated to E∗,∗∞ , i.e.,

Hi(U(n)) ∼=
⊕

p+q=i
Ep,q

∞ ,

as desired.
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Example 2.12.2. We can similarly compute H∗(SU(n)) either directly
by induction from the fibration SU(n − 1) ↪→ SU(n) → S2n−1 and
the base case SU(2) = S3, or by using our computation of H∗(U(n))
together with the diffeomorphism

U(n) ∼= SU(n)× S1 (2.12.2)

given by A 7→
(

1
n
√

det A
A, det A

)
. In particular, (2.12.2) yields by the

Künneth formula:

H∗(U(n)) = H∗(SU(n))⊗ H∗(S1),

hence
H∗(SU(n)) = ΛZ[x3, . . . , x2n−1]

with deg xi = i.

2.13 Exercises

1. Show that πi(ΣRP2) are finitely generated abelian groups for any i ≥
0. (Hint: Use Theorem 2.4.5, with C the category of finitely generated
2-groups.

2. Compute the homology of ΩS1. (Hint: Use the fibration ΩS1 ↪→
Z → R obtained by “looping” the covering Z ↪→ R → S1, together
with the Leray-Serre spectral sequence.)

3. Prove Wang’s Theorem 2.5.2.

4. Let π : E → B be a fibration with fiber F, let K be a field, and
assume that π1(B) acts trivially on H∗(F; K). Assume that the Euler
characteristics χ(B), χ(F) are defined (e.g., if B and F are finite CW
complexes). Then χ(E) is defined and

χ(E) = χ(B) · χ(F).

5. Use a spectral sequence argument to show that Sm ↪→ Sn → Sl is a
fiber bundle, then n = m + l and l = m + 1.

6. Prove that H5(K(π4, 3)) = Z/2. (Hint: consider the two fibrations
K(Z/2, 2) = ΩK(Z/2, 3) ↪→ ∗ → K(Z/2, 3), and RP∞ = K(Z/2, 1) ↪→
∗ → K(Z/2, 2). Then compute H∗(K(Z/2, 2)) via the spectral sequence
of the second fibration, and use it in the spectral sequence of the first
fibration to compute H∗(K(Z/2, 3)).)

7. Compute the cohomology of the space of continuous maps f :
S1 → S3. (Hint: Let X := { f : S1 → S3, f is continuous} and define
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π : X → S3 by f 7→ f (1). Then π is a fibration with fiber ΩS3. Apply
the cohomology spectral sequence for the fibration ΩS3 ↪→ X → S3 to
conclude that H∗(X) ∼= H∗(S3)⊗ H∗(ΩS3).)

8. Compute the cohomology of the space of continuous maps f : S1 →
S2.

9. Compute the cohomology of the space of continuous maps f : S1 →
CPn.

10. Compute the cohomology ring H∗(SO(n); Z/2).

11. Compute the cohomology ring H∗(Vk(C
n); Z).

12. Show that H∗(SO(4)) ∼= H∗(S3)⊗ H∗(RP3).

13. Show that

H∗(K(Z, n); Q) =

Q[zn] , if n is even

Λ(zn) , if n is odd,

with deg(zn) = n. Here, Λ(zn) := Q[zn]/(z2
n).

(Hint: Consider the spectral sequence for the path fibration

K(Z, n− 1) ↪→ ∗ → K(Z, n)

and induction.)

14. Compute the ring structure on H∗(ΩSn).

15. Show that the p-torsion in πi(S3) appears first for i = 2p, in which
case it is Z/p. (Hint: use the Whitehead tower of S3, the homology
spectral sequence of the relevant fibration, together with Hurewicz mod
Cp, where Cp is the class of torsion abelian groups whose p-primary
subgroup is trivial.)

16. Where does the 7-torsion appear first in the homotopy groups of
Sn?
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3
Fiber bundles. Classifying spaces. Applications

3.1 Fiber bundles

Let G be a topological group (i.e., a topological space endowed with
a group structure so that the group multiplication and the inversion
map are continuous), acting continuously (on the left) on a topological
space F. Concretely, such a continuous action is given by a continuous
map ρ : G × F → F, (g, m) 7→ g · m, which satisfies the conditions
(gh) ·m = g · (h ·m)) and eG ·m = m, for eG the identity element of G.

Any continuous group action ρ induces a map

Adρ : G −→ Homeo(F)

given by g 7→ ( f 7→ g · f ), with g ∈ G, f ∈ F. Note that Adρ is a group
homomorphism since

(Ad ρ)(gh)( f ) := (gh) · f = g · (h · f ) = Adρ(g)(Adρ(h)( f )).

Note that for nice spaces F (e.g., CW complexes), if we give Homeo(F)
the compact-open topology, then Adρ : G → Homeo(F) is a continuous
group homomorphism, and any such continuous group homomor-
phism G → Homeo(F) induces a continuous group action G× F → F.

We assume from now on that ρ is an effective action, i.e., that Adρ is
injective.

Definition 3.1.1 (Atlas for a fiber bundle with group G and fiber F).
Given a continuous map π : E→ B, an atlas for the structure of a fiber bundle
with group G and fiber F on π consists of the following data:

a) an open cover {Uα}α of B,

b) homeomorphisms hα : π−1(Uα) → Uα × F (called trivializing charts or
local trivializations) for each α so that the diagram

π−1(Uα)
hα //

π
##

Uα × F

pr1
{{

Uα
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commutes,

c) continuous maps (called transition functions) gαβ : Uα ∩Uβ → G so that
the horizontal map in the commutative diagram

π−1(Uα ∩Uβ)

hα

vv

hβ

((

(Uα ∩Uβ)× F
hβ◦h−1

α

// (Uα ∩Uβ)× F

is given by

(x, m) 7→ (x, gβα(x) ·m).

(By the effectivity of the action, if such maps gαβ exist, they are unique.)

Definition 3.1.2. Two atlases A and B on π are compatible if A∪ B is an
atlas.

Definition 3.1.3 (Fiber bundle with group G and fiber F). A structure of
a fiber bundle with group G and fiber F on π : E→ B is a maximal atlas for
π : E→ B.

Example 3.1.4.

1. When G = {eG} is the trivial group, π : E → B has the structure
of a fiber bundle if and only if it is a trivial fiber bundle. Indeed,
the local trivializations hα of the atlas for the fiber bundle have
to satisfy hβ ◦ h−1

α : (x, m) 7→ (x, eG · m) = (x, m), which implies
hβ ◦ h−1

α = id, so hβ = hα on Uα ∩Uβ. This allows us to glue all
the local trivializations hα together to obtain a global trivialization
h : π−1(B) = E ∼= B× F.

2. When F is discrete, Homeo(F) is also discrete, so G is discrete by
the effectiveness assumption. So for the atlas of π : E→ B we have
π−1(Uα) ∼= Uα × F =

⋃
m∈F Uα × {m}, so π is in this case a covering

map.

3. A locally trivial fiber bundle, as introduced in earlier chapters, is just
a fiber bundle with structure group Homeo(F).

Lemma 3.1.5. The transition functions gαβ satisfy the following properties:

(a) gαβ(x)gβγ(x) = gαγ(x), for all x ∈ Uα ∩Uβ ∩Uγ.

(b) gβα(x) = g−1
αβ (x), for all x ∈ Uα ∩Uβ.

(c) gαα(x) = eG.
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Proof. On Uα ∩Uβ ∩Uγ, we have: (hα ◦ h−1
β ) ◦ (hβ ◦ h−1

γ ) = hα ◦ h−1
γ .

Therefore, since Adρ is injective (i.e., ρ is effective), we get that

gαβ(x)gβγ(x) = gαγ(x)

for all x ∈ Uα ∩Uβ ∩Uγ.
Note that (hα ◦ h−1

β ) ◦ (hβ ◦ h−1
α ) = id, which translates into

(x, gαβ(x)gβα(x) ·m) = (x, m).

So, by effectiveness, gαβ(x)gβα(x) = eG for all x ∈ Uα ∩Uβ, whence
gβα(x) = g−1

αβ (x).
Take γ = α in Property (a) to get gαβ(x)gβα(x) = gαα(x). So by

Property (b), we have gαα(x) = eG.

Transition functions determine a fiber bundle in a unique way, in
the sense of the following theorem.

Theorem 3.1.6. Given an open cover {Uα} of B and continuous functions
gαβ : Uα ∩Uβ → G satisfying Properties (a)-(c), there is a unique structure
of a fiber bundle over B with group G, given fiber F, and transition functions
{gαβ}.

Proof Sketch. Let Ẽ =
⊔

α Uα × F× {α}, and define an equivalence rela-
tion ∼ on Ẽ by

(x, m, α) ∼ (x, gαβ(x) ·m, β),

for all x ∈ Uα ∩Uβ, and m ∈ F. Properties (a)-(c) of {gαβ} are used
to show that ∼ is indeed an equivalence relation on Ẽ. Specifically,
symmetry is implied by property (b), reflexivity follows from (c) and
transitivity is a consequence of the cycle property (a).

Let
E = Ẽ/ ∼

be the set of equivalence classes in E, and define π : E→ B locally by
[(x, m, α)] 7→ x for x ∈ Uα. Then it is clear that π is well-defined and
continuos (in the quotient topology), and the fiber of π is F.

It remains to show the local triviality of π. Let p : Ẽ → E be the
quotient map, and let pα := p|Uα×F×{α} : Uα × F × {α} → π−1(Uα).
It is easy to see that pα is a homeomorphism. We define the local
trivializations of π by hα := p−1

α .

Example 3.1.7.

1. Fiber bundles with fiber F = Rn and group G = GL(n, R) are called
rank n real vector bundles. For example, if M is a differentiable real
n-manifold, and TM is the set of all tangent vectors to M, then
π : TM→ M is a real vector bundle on M of rank n. More precisely,

if ϕα : Uα
∼=→ Rn are trivializing charts on M, the transition functions

for TM are given by gαβ(x) = d(ϕα ◦ ϕ−1
β )ϕβ(x).
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2. If F = Rn and G = O(n), we get real vector bundles with a Rieman-
nian structure.

3. Similarly, one can take F = Cn and G = GL(n, C) to get rank n
complex vector bundles. For example, if M is a complex manifold, the
tangent bundle TM is a complex vector bundle.

4. If F = Cn and G = U(n), we get real vector bundles with a hermitian
structure.

We also mention here the following fact:

Theorem 3.1.8. A fiber bundle has the homotopy lifting property with respect
to all CW complexes (i.e., it is a Serre fibration). Moreover, fiber bundles over
paracompact spaces are fibrations.

Definition 3.1.9 (Bundle homomorphism). Fix a topological group G

acting effectively on a space F. A homomorphism between bundles E′ π′−→ B′

and E π−→ B with group G and fiber F is a pair ( f , f̂ ) of continuous maps,
with f : B′ → B and f̂ : E′ → E, such that:

1. the diagram

E′
f̂

//

π′
��

E

π

��

B′
f

// B

commutes, i.e., π ◦ f̂ = f ◦ π′.

2. if {(Uα, hα)}α is a trivializing atlas of π and {(Vβ, Hβ)}β is a trivializing
atlas of π′, then the following diagram commutes:

(Vβ ∩ f−1(Uα))× F

pr1
((

π′−1(Vβ ∩ f−1(Uα))
Hβ
oo

π′

��

f̂
// π−1(Uα)

π

��

hα // Uα × F

pr1
zz

Vβ ∩ f−1(Uα)
f

// Uα

and there exist functions dαβ : Vβ ∩ f−1(Uα) → G such that for x ∈
Vβ ∩ f−1(Uα) and m ∈ F we have:

hα ◦ f̂| ◦ H−1
β (x, m) = ( f (x), dαβ(x) ·m).

An isomorphism of fiber bundles is a bundle homomorphism ( f , f̂ ) which
admits a map (g, ĝ) in the reverse direction so that both composites are the
identity.

Remark 3.1.10. Gauge transformations of a bundle π : E→ B are bundle
maps from π to itself over the identity of the base, i.e., corresponding
to continuous map g : E→ E so that π ◦ g = π. By definition, such g
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restricts to an isomorphism given by the action of an element of the
structure group on each fiber. The set of all gauge transformations
forms a group.

Proposition 3.1.11. Given functions dαβ : Vβ ∩ f−1(Uα) → G and dα′β′ :
Vβ′ ∩ f−1(Uα′)→ G as in (2) above for different trivializing charts of π and
resp. π′, then for any x ∈ Vβ ∩Vβ′ ∩ f−1(Uα ∩Uα′) 6= ∅, we have

dα′β′(x) = gα′α( f (x)) dαβ(x) gββ′(x) (3.1.1)

in G, where gα′α are transition functions for π and gββ′ are transition functions
for π′,

Proof. Exercise.

The functions {dαβ} determine bundle maps in the following sense:

Theorem 3.1.12. Given a map f : B′ → B and bundles E π−→ B, E′ π′−→ B′, a
map of bundles ( f , f̂ ) : π′ → π exists if and only if there exist continuous
maps {dαβ} as above, satisfying (3.1.1).

Proof. Exercise.

Theorem 3.1.13. Every bundle map f̂ over f = idB is an isomorphism. In
particular, gauge transformations are automorphisms.

Proof Sketch. Let dαβ : Vβ ∩Uα → G be the maps given by the bundle
map f̂ : E′ → E. So, if dα′β′ : Vβ′ ∩Uα′ → G is given by a different choice
of trivializing charts, then (3.1.1) holds on Vβ ∩Vβ′ ∩Uα ∩Uα′ 6= ∅, i.e.,

dα′β′(x) = gα′α(x) dαβ(x) gββ′(x) (3.1.2)

in G, where gα′α are transition functions for π and gββ′ are transition
functions for π′. Let us now invert (3.1.2) in G, and set

dβα(x) = d−1
αβ (x)

to get:
dβ′α′(x) = gβ′β(x) dβα(x) gαα′(x).

So {dβα} are as in Definition 3.1.9 and satisfy (3.1.1). Theorem 3.1.12

implies that there exists a bundle map ĝ : E→ E′ over idB.
We claim that ĝ is the inverse f̂−1 of f̂ , and this can be checked

locally as follows:

(x, m)
f̂7→ (x, dαβ(x) ·m)

ĝ7→ (x, dβα(x) · (dαβ(x) ·m))

= (x, dβα(x)dαβ(x)︸ ︷︷ ︸
eG

·m)

= (x, m).

So ĝ ◦ f̂ = idE′ . Similarly, f̂ ◦ ĝ = idE
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One way in which fiber bundle homomorphisms arise is from the
pullback (or the induced bundle) construction.

Definition 3.1.14 (Induced Bundle). Given a bundle E π−→ B with group G
and fiber F, and a continuous map f : X → B, we define

f ∗E := {(x, e) ∈ X× E | f (x) = π(e)},

with projections f ∗π : f ∗E→ X, (x, e) 7→ x, and f̂ : f ∗E→ E, (x, e) 7→ e,
so that the following diagram commutes:

f ∗E

X

x

E

B

f (x)

e

f ∗π

f

π

f ∗π is called the induced bundle under f or the pullback of π by f , and as we
show below it comes equipped with a bundle map ( f , f̂ ) : f ∗π → π.

The above definition is justified by the following result:

Theorem 3.1.15.

(a) f ∗π : f ∗E→ X is a fiber bundle with group G and fiber F.

(b) ( f , f̂ ) : f ∗π → π is a bundle map.

Proof Sketch. Let {(Uα, hα)}α be a trivializing atlas of π, and consider
the following commutative diagram:

( f ∗π)−1( f−1(Uα)) π−1(Uα) Uα × F

f−1(Uα) Uα

hα

f

We have

( f ∗π)−1( f−1(Uα)) = {(x, e) ∈ f−1(Uα)× π−1(Uα)︸ ︷︷ ︸
∼=Uα×F

| f (x) = π(e)}.

Define
kα : ( f ∗π)−1( f−1(Uα)) −→ f−1(Uα)× F

by
(x, e) 7→ (x, pr2(hα(e))).

Then it is easy to check that kα is a homeomorphism (with inverse
k−1

α (x, m) = (x, h−1
α ( f (x), m)), and in fact the following assertions hold:
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(i) {( f−1(Uα), kα)}α is a trivializing atlas of f ∗π.

(ii) the transition functions of f ∗π are f ∗gαβ := gαβ ◦ f , i.e., f ∗gαβ(x) =
gαβ( f (x)) for any x ∈ f−1(Uα ∩Uβ).

Remark 3.1.16. It is easy to see that ( f ◦ g)∗π = g∗( f ∗π) and (idB)
∗π =

π. Moreover, the pullback of a trivial bundle is a trivial bundle.

As we shall see later on, the following important result holds:

Theorem 3.1.17. Given a fibre bundle π : E → B with group G and fiber
F, and two homotopic maps f ' g : X → B, there is an isomorphism
f ∗π ∼= g∗π of bundles over X. (In short, induced bundles under homotopic
maps are isomorphic.)

As a consequence, we have:

Corollary 3.1.18. A fiber bundle over a contractible space B is trivial.

Proof. Since B is contractible, idB is homotopic to the constant map ct.
Let

b := Image(ct)
i
↪→ B,

so i ◦ ct ' idB. We have a diagram of maps and induced bundles:

ct∗i∗E

ct∗i∗π
��

// i∗E

i∗π
��

// E

π

��

B ct //

idB

>>{b} i // B

Theorem 3.1.17 then yields:

π ∼= (idB)
∗π ∼= ct∗i∗π.

Since any fiber bundle over a point is trivial, we have that i∗π ∼= {b}× F
is trivial, hence π ∼= ct∗i∗π ∼= B× F is also trivial.

Proposition 3.1.19. If

E′
f̃

//

π′
��

E

π

��

B′
f

// B

is a bundle map, then π′ ∼= f ∗π as bundles over B′.



86 homotopy theory and applications

Proof. Define h : E′ → f ∗E by e′ 7→ (π′(e′), f̃ (e′)) ∈ B′ × E. This is
well-defined, i.e., h(e′) ∈ f ∗E, since f (π′(e′)) = π( f̃ (e′)).

It is easy to check that h provides the desired bundle isomorphism
over B′.

E′
f̃

**

h

!!

π′

��

f ∗E
f̂

//

π′

��

E

π

��

B′
f

// B

Example 3.1.20. We can now show that the set of isomorphism classes
of bundles over Sn with group G and fiber F is isomorphic to πn−1(G).
Indeed, let us cover Sn with two contractible sets U+ and U− obtained
by removing the south, resp., north pole of Sn. Let i± : U± ↪→ Sn be
the inclusions. Then any bundle π over Sn is trivial when restricted
to U±, that is, i∗±π ∼= U± × F. In particular, U± provides a trivializing
cover (atlas) for π, and any such bundle π is completely determined by
the transition function g± : U+ ∩U− ' Sn−1 → G, i.e., by an element
in πn−1(G).

More generally, we aim to “classify” fiber bundles on a given topo-
logical space. Let B (X, G, F, ρ) denote the isomorphism classes (over
idX) of fiber bundles on X with group G and fiber F, and G-action
on F given by ρ. If f : X′ → X is a continuous map, the pullback
construction defines a map

f ∗ : B (X, G, F, ρ) −→ B
(
X′, G, F, ρ

)
so that (idX)

∗ = id and ( f ◦ g)∗ = g∗ ◦ f ∗.

3.2 Principal Bundles

As we will see later on, the fiber F doesn’t play any essential role in the
classification of fiber bundle, and in fact it is enough to understand the
set

P (X, G) := B (X, G, G, mG)

of fiber bundles with group G and fiber G, where the action of G on
itself is given by the multiplication mG of G. Elements of P (X, G) are
called principal G-bundles. Of particular importance in the classification
theory of such bundles is the universal principal G-bundle G ↪→ EG →
BG, with contractible total space EG.
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Example 3.2.1. Any regular cover p : E → X is a principal G-bundle,

with group G = π1(X)�p∗π1(E). Here G is given the discrete topology.

In particular, the universal covering X̃ → X is a principal π1(X)-bundle.

Example 3.2.2. Any free (right) action of a finite group G on a (Haus-
dorff) space E gives a regular cover and hence a principal G-bundle
E→ E/G.

More generally, we have the following:

Theorem 3.2.3. Let π : E→ X be a principal G-bundle. Then G acts freely
and transitively on the right of E so that E�G

∼= X. In particular, π is the
quotient (orbit) map.

Proof. We will define the action locally over a trivializing chart for π.
Let Uα be a trvializing open in X with trivializing homeomorphism

hα : π−1 (Uα)
∼=→ Uα × G. We define a right action on G on π−1 (Uα) by

π−1 (Uα)× G → π−1 (Uα) ∼= Uα × G

(e, g) 7→ e · g := h−1
α (π (e) , pr2 (hα (e)) · g)

Let us show that this action can be globalized, i.e., it is independent of
the choice of the trivializing open Uα. If (Uβ, hβ) is another trivializing
chart in X so that e ∈ π−1(Uα ∩ Uβ), we need to show that e · g =

h−1
β

(
π (e) , pr2

(
hβ (e)

)
· g
)
, or equivalently,

h−1
α (π (e) , pr2 (hα (e)) · g) = h−1

β

(
π (e) , pr2

(
hβ (e)

)
· g
)

. (3.2.1)

After applying hα and using the transition function gαβ for π(e) ∈
Uα ∩Uβ, (3.2.1) becomes

(π (e) , pr2 (hα (e)) · g) = hαh−1
β

(
π (e) , pr2

(
hβ (e)

)
· g
)

=
(
π (e) , gαβ(π(e)) · (pr2

(
hβ (e)

)
· g)
)

,

which is guaranteed by the definition of an atlas for π.
It is easy to check locally that the action is free and transitive. More-

over, E�G is locally given as Uα × G�G
∼= Uα, and this local quotient

globalizes to X.

The converse of the above theorem holds in some important cases.

Theorem 3.2.4. Let E be a compact Hausdorff space and G a compact Lie
group acting freely on E. Then the orbit map E → E/G is a principal
G-bundle.

Corollary 3.2.5. Let G be a Lie group, and let H < G be a compact subgroup.
Then the projection onto the orbit space π : G → G/H is a principal H-
bundle.
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Let us now fix a G-space F. We define a map

P (X, G)→ B (X, G, F, ρ)

as follows. Start with a principal G bundle π : E→ X, and recall from
the previous theorem that G acts freely on the right on E. Since G acts
on the left on F, we have a left G-action on E× F given by:

g · (e, f ) 7→ (e · g−1, g · f ).

Let
E×G F := E× F�G

be the corresponding orbit space, with projection map ω : E×G F →
E�G
∼= X fitting into a commutative diagram

E× F

$$pr1
}}

E
π

!!

E× F�G

ω
zz

X

(3.2.2)

Definition 3.2.6. The projection ω := π ×G F : E×G F → X is called the
associated bundle with fiber F.

The terminology in the above definition is justified by the following
result.

Theorem 3.2.7. ω : E ×G F → X is a fiber bundle with group G, fiber
F, and having the same transition functions as π. Moreover, the assign-
ment π 7→ ω := π ×G F defines a one-to-one correspondence P (X, G) →
B (X, G, F, ρ).

Proof. Let hα : π−1 (Uα)→ Uα × G be a trivializing chart for π. Recall
that for e ∈ π−1 (Uα), f ∈ F and g ∈ G, if we set hα(e) = (π(e), h) ∈
Uα × G, then G acts on the right on π−1 (Uα) by acting on the right on
h = pr2(hα(e)). Then we have by the diagram (3.2.2) that

ω−1 (Uα) ∼= π−1 (Uα)× F�(e, f ) ∼ (e · g−1, g · f )
∼= Uα × G× F�(u, h, f ) ∼ (u, hg−1, g · f ).

Let us define
kα : ω−1 (Uα)→ Uα × F

by
[(u, h, f )] 7→ (u, h · f ).
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This is a well-defined map since

[(u, hg−1, g · f )] 7→ (u, hg−1g · f ) = (u, h · f ).

It is easy to check that kα is a trivializing chart for ω with inverse
induced by Uα × F → Uα × G× F, (u, f ) 7→ (u, idG, f ). It is clear that
ω and π have the same transition functions as they have the same
trivializing opens.

The associated bundle construction is easily seen to be functorial in
the following sense.

Proposition 3.2.8. If

E′
f̂

//

π′
��

E

π

��

X′
f

// X

is a map of principal G-bundles (so f̂ is a G-equivariant map, i.e., f̂ (e · g) =
f̂ (e) · g), then there is an induced map of associated bundles with fiber F,

E′ ×G F
f̂×G idF

//

π′

��

E×G F

π

��

X′
f

// X

Example 3.2.9. Let π : S1 → S1, z 7→ z2 be regarded as a principal
Z/2-bundle, and let F = [−1, 1]. Let Z/2 = {1,−1} act on F by
multiplication. Then the bundle associated to π with fiber F = [−1, 1]

is the Möbius strip S1 ×Z/2 [−1, 1] = S1 × [−1, 1]�(x, t) ∼ (a(x),−t),

with a : S1 → S1 denoting the antipodal map. Similarly, the bundle
associated to π with fiber F = S1 is the Klein bottle.

Let us now get back to proving the following important result.

Theorem 3.2.10. Let π : E→ Y be a fiber bundle with group G and fiber F,
and let f ' g : X → Y be two homotopic maps. Then f ∗π ∼= g∗π over idX .

It is of course enough to prove the theorem in the case of principal
G-bundles. The idea of proof is to construct a bundle map over idX

between f ∗π and g∗π:

f ∗E ? //

  

g∗E

~~

X
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So we first need to understand maps of principal G-bundles, i.e., to
solve the following problem: given two principal G-bundles bundles
E1

π1−→ X and E2
π2−→ Y, describe the set maps(π1, π2) of bundle maps

E1
f̂
//

π1
��

E2

π2
��

X
f
// Y

Since G acts on the right of E1 and E2, we also get an action on the left
of E2 by g · e2 := e2 · g−1. Then we get an associated bundle of π1 with
fiber E2, namely

ω := π1 ×G E2 : E1 ×G E2 −→ X.

We have the following result:

Theorem 3.2.11. Bundle maps from π1 to π2 are in one-to-one correspon-
dence to sections of ω.

Proof. We work locally, so it suffices to consider only trivial bundles.
Given a bundle map ( f , f̂ ) : π1 7→ π2, let U ⊂ Y open, and V ⊂

f−1(U) open, so that the following diagram commutes (this is the
bundle maps in trivializing charts)

V × G U × G

V U

f̂

π1 π2

f

We define a section σ in

(V × G)×G (U × G)

V

ωσ

as follows. For e1 ∈ V × G, with x = π1(e1) ∈ V, we set

σ(x) = [e1, f̂ (e1)].

This map is well-defined, since for any g ∈ G we have:

[e1 · g, f̂ (e1 · g)] = [e1 · g, f̂ (e1) · g] = [e1 · g, g−1 · f̂ (e1)] = [e1, f̂ (e1)].

Now, it is an exercise in point-set topology (using the local definition
of a bundle map) to show that σ is continuous.

Conversely, given a section of E1 ×G E2
ω7→ X, we define a bundle

by ( f , f̂ ) by
f̂ (e1) = e2,
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where σ(π1(e1)) = [(e1, e2)]. Note that this is an equivariant map
because

[e1 · g, e2 · g] = [e1 · g, g−1 · e2] = [e1, e2],

hence f̂ (e1 · g) = e2 · g = f̂ (e1) · g. Thus f̂ descends to a map f : X → Y
on the orbit spaces. We leave it as an exercise to check that ( f , f̂ ) is
indeed a bundle map, i.e., to show that locally f̂ (v, g) = ( f (v), d(v)g)
with d(v) ∈ G and d : V → G a continuous function.

The following result will be needed in the proof of Theorem 3.2.10.

Lemma 3.2.12. Let π : E → X × I be a bundle, and let π0 := i∗0π :
E0 → X be the pullback of π under i0 : X → X × I, x 7→ (x, 0). Then
π ∼= (pr1)

∗π0 ∼= π0 × idI , where pr1 : X× I → X is the projection map.

Proof. It suffices to find a bundle map (pr1, p̂r1) so that the following
diagram commutes

E0
î0 //

π0
��

E
p̂r1 //

π

��

E0

π0
��

X �
� i0 // X× I

pr1 // X

By Theorem 3.2.11, this is equivilant to the existence of a section σ of ω :
E×G E0 → X× I. Note that there exists a section σ0 of ω0 : E0×G E0 →
X = X× {0}, corresponding to the bundle map (idX , idE0) : π0 → π0.
Then composing σ0 with the top inclusion arrow, we get the following
diagram

X× {0}
σ0 //

� _

��

E×G E0

ω

��

X× I

s
99

id // X× I

Since ω is a fibration, by the homotopy lifting property one can extend
sσ0 to a section σ of ω.

We can now finish the proof of Theorem 3.2.10.

Proof of Theorem 3.2.10. Let H : X × I → Y be a homotopy between f
and g, with H(x, 0) = f (x) and H(x, 1) = g(x). Consider the induced
bundle H∗π over X× I. Then we have the following diagram.
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f ∗E //

f ∗π

��

H∗E Ĥ //

H∗π

��

E

π

��

g∗E

::

g∗π

��

X× {0} �
� i0 // X× I H //

pr1

!!

Y

X× {1}
, �

i1
::

X

Since f = H (−, 0), we get f ∗π = i∗0 H∗π. By Lemma 3.2.12, H∗π ∼=
pr∗1 ( f ∗π) ∼= pr∗1 (g∗π), and thus f ∗π = i∗0 H∗π = i∗0 pr∗1 g∗π = g∗π.

We conclude this section with the following important consequence
of Theorem 3.2.11

Corollary 3.2.13. A principle G-bundle π : E → X is trivial if and only if
π has a section.

Proof. The bundle π is trivial if and only if π = ct∗π′, with ct : X →
point the constant map, and π′ : G → point the trvial bundle over a
point space. This is equivalent to saying that there is a bundle map

E //

π

��

G

π′

��

X ct // point

or, by Theorem 3.2.11, to the existence of a section of the bundle
ω : E×G G → X. On the other hand, ω ∼= π, since E×G G → X looks
locally like

π−1(Uα)× G�∼ ∼= Uα × G× G�(u, g1, g2) ∼ (u, g1g−1, gg2)
∼= Uα × G,

with the last homeomorphism defined by [(u, g1, g2)] 7→ (u, g1g2).
Altogether, π is trivial if and only if π : E 7→ X has a section.

3.3 Classification of principal G-bundles

Let us assume for now that there exists a principal G-bundle πG :
EG → BG, with contractible total space EG. As we will see below, such
a bundle plays an essential role in the classification theory of principal
G-bundles. Its base space BG turns out to be unique up to homotopy,
and it is called the classifying space for principal G-bundles due to the
following fundamental result:
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Theorem 3.3.1. If X is a CW-complex, there exists a bijective correspondence

Φ : P(X, G)
∼=−→ [X, BG]

f ∗πG ← [ f

Proof. By Theorem 3.2.10, Φ is well-defined.
Let us next show that Φ is onto. Let π ∈ P(X, G), π : E → X. We

need to show that π ∼= f ∗πG for some map f : X → BG, or equivalently,
that there is a bundle map ( f , f̂ ) : π → πG. By Theorem 3.2.11, this
is equivalent to the existence of a section of the bundle E×G EG → X
with fiber EG. Since EG is contractible, such a section exists by the
following:

Lemma 3.3.2. Let X be a CW complex, and π : E → X ∈ B (X, G, F, ρ)

with πi(F) = 0 for all i ≥ 0. If A ⊆ X is a subcomplex, then every section
of π over A extends to a section defined on all of X. In particular, π has a
section. Moreover, any two sections of π are homotopic.

Proof. Given a section σ0 : A→ E of π over A, we extend it to a section
σ : X → E of π over X by using induction on the dimension of cells in
X− A. So it suffices to assume that X has the form

X = A ∪φ en,

where en is an n-cell in X− A, with attaching map φ : ∂en → A. Since
en is contractible, π is trivial over en, so we have a commutative diagram

π−1 (en)

π

��

h

∼= // en × F
pr1

yy
∂en � � //

σ0
::

en σ

FF

with h : π−1 (en) → en × F the trivializing chart for π over en, and σ

to be defined. After composing with h, we regard the restriction of σ0

over ∂en as given by

σ0(x) = (x, τ0(x)) ∈ en × F,

with τ0 : ∂en ∼= Sn−1 → F. Since πn−1(F) = 0, τ0 extends to a map
τ : en → F which can be used to extend σ0 over en by setting

σ(x) = (x, τ(x)).

After composing with h−1, we get the desired extension of σ0 over en.
Let us now assume that σ and σ′ are two sections of π. To find

a homotopy between σ and σ′, it suffices to construct a section Σ of
π × idI : E × I → X × I. Indeed, if such Σ exists, then Σ(x, t) =

(σt(x), t), and σt provides the desired homotopy. Now, by regarding
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σ as a section of π × idI over X × {0}, and σ′ as a section of π × idI

over X× {1}, the question reduces to constructing a section of π × idI ,
which extends the section over X× {0, 1} defined by (σ, σ′). This can
be done as in the first part of the proof.

In order to finish the proof of Theorem 3.3.1, it remains to show that
Φ is a one-to-one map. If π0 = f ∗πG ∼= g∗πG = π1, we will show that
f ' g. Note that we have the following commutative diagrams:

E0 = f ∗EG
f̂−−−−→ EGyπ0

yπG

X = X× {0} f−−−−→ BG

E0 ∼= E1 = g∗EG
ĝ−−−−→ EGyπ0

yπG

X = X× {1} g−−−−→ BG

where we regard ĝ as defined on E0 via the isomorphism π0 ∼= π1. By
putting together the above diagrams, we have a commutative diagram

E0 × I ←↩←−−−− E0 × {0, 1} α̂=( f̂ ,0)∪(ĝ,1)−−−−−−−−→ EGyπ0×Id
yπ0×{0,1}

yπG

X× I ←↩←−−−− X× {0, 1} α=( f ,0)∪(g,1)−−−−−−−−→ BG

Therefore, it suffices to extend (α, α̂) to a bundle map (H, Ĥ) : π0 ×
Id→ πG, and then H will provide the desired homotopy f ' g.

By Theorem 3.2.11, such a bundle map (H, Ĥ) corresponds to a
section σ of the fiber bundle

ω : (E0 × I)×G EG→X× I.

On the other hand, the bundle map (α, α̂) already gives a section σ0 of
the fiber bundle

ω0 : (E0 × {0, 1})×G EG → X× {0, 1},

which under the obvious inclusion (E0 × {0, 1})×G EG ⊆ (E0 × I)×G

EG can be regarded as a section of ω over the subcomplex X× {0, 1}.
Since EG is contractible, Lemma 3.3.2 allows us to extend σ0 to a section
σ of ω defined on X× I, as desired.

Example 3.3.3. We give here a more conceptual reasoning for the asser-
tion of Example 3.1.20. By Theorem 3.3.1, we have

B(Sn, G, F, ρ) ∼= P(Sn, G) ∼= [Sn, BG] = πn(BG) ∼= πn−1(G),
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where the last isomorphism follows from the homotopy long exact
sequence for πG, since EG is contractible.

Back to the universal principal G-bundle, we have the following

Theorem 3.3.4. Let G be a locally compact topological group. Then a univer-
sal principal G-bundle πG : EG → BG exists (i.e., satisfying πi(EG) = 0
for all i ≥ 0), and the construction is functorial in the sense that a continuous
group homomorphism µ : G → H induces a bundle map (Bµ, Eµ) : πG →
πH . Moreover, the classifying space BG is unique up to homotopy.

Proof. To show that BG is unique up to homotopy, let us assume that
πG : EG → BG and π′G : E′G → B′G are universal principal G-bundles.
By regarding πG as the universal principal G-bundle for π′G, we get a
map f : B′G → BG such that π′G = f ∗πG, i.e., a bundle map:

E′G
f̂−−−−→ EGyπ′G

yπG

B′G
f−−−−→ BG

Similarly, y regarding π′G as the universal principal G-bundle for πG,
there exists a map g : BG → B′G such that πG = g∗π′G. Therefore,

πG = g∗π′G = g∗ f ∗πG = ( f ◦ g)∗πG.

On the other hand, we have πG = (idBG )
∗πG, so by Theorem 3.3.1

we get that f ◦ g ' idBG . Similarly, we get g ◦ f ' idB′G
, and hence

f : B′G → BG is a homotopy equivalence.
We will not discuss the existence of the universal bundle here,

instead we will indicate the universal G-bundle, as needed, in specific
examples.

Example 3.3.5. Recall from Section 1.12 that we have a fiber bundle

O(n) �
�

// Vn(R∞) // Gn(R∞), (3.3.1)

with Vn(R∞) contractible. In particular, the uniqueness part of Theorem
3.3.4 tells us that BO(n) ' Gn(R∞) is the classifying space for rank n
real vector bundles. Similarly, there is a fiber bundle

U(n) �
�

// Vn(C∞) // Gn(C∞), (3.3.2)

with Vn(C∞) contractible. Therefore, BU(n) ' Gn(C∞) is the classify-
ing space for rank n complex vector bundles.

Before moving to the next example, let us mention here without
proof the following useful result:
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Theorem 3.3.6. Let G be an abelian group, and let X be a CW complex. There
is a natural bijection

T : [X, K(G, n)] −→ Hn(X, G)

[ f ] 7→ f ∗(α)

where α ∈ Hn(K(G, n), G) ∼= Hom(Hn(K(G, n), Z), G) is given by the
inverse of the Hurewicz isomorphism G = πn(K(G, n))→ Hn(K(G, n), Z).

Example 3.3.7 (Classification of real line bundles). Let G = Z/2 and
consider the principal Z/2-bundle Z/2 ↪→ S∞ → RP∞. Since S∞ is
contractible, the uniqueness of the universal bundle yields that BZ/2 ∼=
RP∞. In particular, we see that RP∞ classifies the real line (i.e., rank-
one) bundles. Since we also have that RP∞ = K(Z/2, 1), we get:

P(X, Z/2) = [X, BZ/2] = [X, K(Z/2, 1)] ∼= H1(X, Z/2)

for any CW complex X, where the last identification follows from
Theorem 3.3.6. Let now π be a real line bundle on a CW complex X,
with classifying map fπ : X → RP∞. Since H∗(RP∞, Z/2) ∼= Z/2[w],
with w a generator of H1(RP∞, Z/2), we get a well-defined degree one
cohomology class

w1(π) := f ∗π(w)

called the first Stiefel-Whitney class of π. The bijection P(X, Z/2)
∼=−→

H1(X, Z/2) is then given by π 7→ w1(π), so real line bundles on X are
classified by their first Stiefel-Whitney classes.

Example 3.3.8 (Classification of complex line bundles). Let G = S1

and consider the principal S1-bundle S1 ↪→ S∞ → CP∞. Since S∞ is
contractible, the uniqueness of the universal bundle yields that BS1 ∼=
CP∞. In particular, as S1 = GL(1, C), we see that CP∞ classifies
the complex line (i.e., rank-one) bundles. Since we also have that
CP∞ = K(Z, 2), we get:

P(X, S1) = [X, BS1] = [X, K(Z, 2)] ∼= H2(X, Z)

for any CW complex X, where the last identification follows from
Theorem 3.3.6. Let now π be a complex line bundle on a CW complex
X, with classifying map fπ : X → CP∞. Since H∗(CP∞, Z) ∼= Z[c],
with c a generator of H2(CP∞, Z), we get a well-defined degree two
cohomology class

c1(π) := f ∗π(c)

called the first Chern class of π. The bijection P(X, S1)
∼=−→ H2(X, Z) is

then given by π 7→ c1(π), so complex line bundles on X are classified
by their first Chern classes.
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Remark 3.3.9. If X is any orientable closed oriented surface, then
H2(X, Z) ∼= Z, so Example 3.3.8 shows that isomorphism classes of
complex line bundles on X are in bijective correspondence with the set
of integers. On the other hand, if X is a non-orientable closed surface,
then H2(X, Z) ∼= Z/2, so there are only two isomorphism classes of
complex line bundles on such a surface.

3.4 Exercises

1. Let p : S2 → RP2 be the (oriented) double cover of RP2. Since RP2

is a non-orientable surface, we know by Remark 3.3.9 that there are
only two isomorphism classes of complex line bundles on RP2: the
trivial one, and a non-trivial complex line bundle which we denote
by π : E → RP2. On the other hand, since S2 is a closed orientable
surface, the isomorphism classes of complex line bundles on S2 are in
bijection with Z. Which integer corresponds to complex line bundle
p∗π : p∗E→ S2 on S2?

2. Consider a locally trivial fiber bundle S2 ↪→ E π→ S2. Recall
that such π can be regarded as a fiber bundle with structure group
G = Homeo(S2) ∼= SO(3). By the classification Theorem 3.3.1, SO(3)-
bundles over S2 correspond to elements in

[S2, BSO(3)] = π2(BSO(3)) ∼= π1(SO(3)).

(a) Show that π1(SO(3)) ∼= Z/2. (Hint: Show that SO(3) is homeo-
morphic to RP3.)

(b) What is the non-trivial SO(3)-bundle over S2?

3. Let π : E → X be a principal S1-bundle over the simply-connected
space X. Let a ∈ H1(S1, Z) be a generator. Show that

c1(π) = d2(a),

where d2 is the differential on the E2-page of the Leray-Serre spectral
sequence associated to π, i.e., Ep,q

2 = Hp(X, Hq(S1))V Hp+q(E, Z).

4. By the classification Theorem 3.3.1, (isomorphism classes of) S1-
bundles over S2 are given by

[S2, BS1] = π2(BS1) ∼= π1(S1) ∼= Z

and this correspondence is realized by the first Chern class, i.e., π 7→
c1(π).

(a) What is the first Chern class of the Hopf bundle S1 ↪→ S3 → S2?
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(b) What is the first Chern class of the sphere (or unit) bundle of the
tangent bundle TS2?

(c) Construct explicitely the S1-bundle over S2 corresponding to n ∈
Z. (Hint: Think of lens spaces, and use the above Exercise 3 and
Example 2.8.2.)
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4
Vector Bundles. Characteristic classes.
Cobordism. Applications.

4.1 Chern classes of complex vector bundles

We begin with the following

Proposition 4.1.1.

H∗ (BU(n); Z) ∼= Z [c1, · · · , cn] ,

with deg ci = 2i

Proof. Recall from Example 2.12.1 that H∗(U(n); Z) is a free Z-algebra
on odd degree generators x1, · · · , x2n−1, with deg(xi) = i, i.e.,

H∗(U(n); Z) ∼= ΛZ[x1, · · · , x2n−1].

Then using the Leray-Serre spectral sequence for the universal U(n)-
bundle, and using the fact that EU(n) is contractible, yields the desired
result.

Alternatively, the functoriality of the universal bundle construction
yields that for any subgroup H < G of a topological group G, there
is a fibration G/H ↪→ BH → BG. In our case, consider U(n− 1) as a

subgroup of U(n) via the identification A 7→
(

A 0
0 1

)
. Hence, there

exists fibration

U(n)/U(n− 1) ∼= S2n−1 ↪→ BU(n− 1)→ BU(n).

Then the Leray-Serre spectral sequence and induction on n gives
the desired result, where we use the fact that BU(1) ' CP∞ and
H∗(CP∞; Z) ∼= Z[c] with deg c = 2.

Definition 4.1.2. The generators c1, · · · , cn of H∗ (BU(n); Z) are called the
universal Chern classes of U(n)-bundles.
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Recall from the classification theorem 3.3.1, that given π : E→ X a
principal U(n)-bundle, there exists a “classifying map” fπ : X → BU(n)
such that π ∼= f ∗ππU(n).

Definition 4.1.3. The i-th Chern class of the U(n)-bundle π : E→ X with
classifying map fπ : X → BU(n) is defined as

ci(π) := f ∗π(ci) ∈ H2i(X; Z).

Remark 4.1.4. Note that if π is a U(n)-bundle, then by definition we
have that ci(π) = 0, if i > n.

Let us now discuss important properties of Chern classes.

Proposition 4.1.5. If E denotes the trivial U(n)-bundle on a space X, then
ci(E) = 0 for all i > 0.

Proof. Indeed, the trivial bundle is classified by the constant map ct :
X → BU(n), which induces trivial homomorphisms in positive degree
cohomology.

Proposition 4.1.6 (Functoriality of Chern classes). If f : Y → X is a
continuous map, and π : E→ X is a U(n)-bundle, then ci( f ∗π) = f ∗ci(π),
for any i.

Proof. We have a commutative diagram

f ∗E
f̂
//

f ∗π
��

E //

π

��

EU (n)

πU(n)

��

Y
f
// X

fπ
// BU (n)

which shows that fπ ◦ f classifies the U(n)-bundle f ∗π on Y. Therefore,

ci( f ∗π) = ( fπ ◦ f )∗ci

= f ∗ ( f ∗πci)

= f ∗ci (π) .

Definition 4.1.7. The total Chern class of a U(n)-bundle π : E → X is
defined by

c(π) = c0(π) + c1(π) + · · · cn(π) = 1 + c1(π) + · · · cn(π) ∈ H∗(X; Z),

as an element in the cohomology ring of the base space.

Definition 4.1.8 (Whitney sum). Let π1 ∈ P(X, U(n)), π2 ∈ P(X, U(m)).
Consider the product bundle π1 × π2 ∈ P(X × X, U(n)×U(m)), which
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can be regarded as a U(n + m)-bundle via the canonical inclusion U(n)×

U(m) ↪→ U(n + m), (A, B) 7→
(

A 0
0 B

)
. The Whitney sum of the

bundles π1 and π2 is defined as:

π1 ⊕ π2 := ∆∗(π1 × π2),

where ∆ : X → X× X is the diagonal map given by x 7→ (x, x).

Remark 4.1.9. The Whitney sum π1 ⊕ π2 of π and πs is the U(n + m)-
bundle on X with transition functions (in a common refinement of the

trvialization atlases for π1 and π2) given by

(
g1

αβ 0

0 g2
αβ

)
where gi

αβ

are the transition function of πi, i = 1, 2.

Proposition 4.1.10 (Whitney sum formula). If π1 ∈ P(X, U(n)) and
π2 ∈ P(X, U(m)), then

c(π1 ⊕ π2) = c(π1) ∪ c(π2).

Equivalently, ck(π1 ⊕ π2) = ∑i+j=k ci(π1) ∪ cj(π2)

Proof. First note that

B(U(n)×U(m)) ' BU(n)× BU(m). (4.1.1)

Indeed, by taking the product of the universal bundles for U(n) and
U(m), we get a U(n)×U(m)-bundle over BU(n)× BU(m), with total
space EU(n)× EU(m):

U(n)×U(m) ↪→ EU(n)× EU(m)→ BU(n)× BU(m). (4.1.2)

Since πi(EU(n) × EU(m)) ∼= πi(EU(n)) × πi(EU(m)) ∼= 0 for all i,
it follows that (4.1.2) is the universal bundle for U(n) ×U(m), thus
proving (4.1.1).

Next, the inclusion U(n)×U(m) ↪→ U(n + m) yields a map

ω : B(U(n)×U(m)) ' BU(n)× BU(m) −→ BU(n + m).

By using the Künneth formula, one can show (e.g., see Milnor’s book,
p.164) that:

ω∗ck = ∑
i+j=k

ci × cj.

Therefore,

ck(π1 ⊕ π2) = ck(∆
∗(π1 × π2))

= ∆∗ck(π1 × π2)

= ∆∗( f ∗π1×π2
(ck))
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= ∆∗( f ∗π1
× f ∗π2

)(ω∗ck)

= ∑
i+j=k

∆∗( f ∗π1
(ci)× f ∗π2

(cj))

= ∑
i+j=k

∆∗(ci(π1)× cj(π2))

= ∑
i+j=k

ci(π1) ∪ cj(π2).

Here, we use the fact that the classifying map for π1 × π2, regarded as
a U(n + m)-bundle is ω ◦ ( fπ1 × fπ2).

Since the trivial bundle has trivial Chern classes in positive degrees,
we get

Corollary 4.1.11 (Stability of Chern classes). Let E1 be the trivial U(1)-
bundle. Then

c(π ⊕ E1) = c(π).

4.2 Stiefel-Whitney classes of real vector bundles

As in Proposition 4.1.1, one easily obtains the following

Proposition 4.2.1.

H∗ (BO(n); Z/2) ∼= Z/2 [w1, · · · , wn] ,

with deg wi = i.

Proof. This can be easily deduced by induction on n from the Leray-
Serre spectral sequence of the fibration

O(n)/O(n− 1) ∼= Sn−1 ↪→ BO(n− 1)→ BO(n),

by using the fact that BO(1) ' RP∞ and H∗(RP∞; Z/2) ∼= Z/2[w1].

Definition 4.2.2. The generators w1, · · · , wn of H∗ (BO(n); Z/2) are called
the universal Stiefel-Whitney classes of O(n)-bundles.

Recall from the classification theorem 3.3.1 that, given π : E→ X a
principal O(n)-bundle, there exists a “classifying map” fπ : X → BO(n)
such that π ∼= f ∗ππU(n).

Definition 4.2.3. The i-th Stiefel-Whitney class of the O(n)-bundle π : E→
X with classifying map fπ : X → BO(n) is defined as

wi(π) := f ∗π(wi) ∈ Hi(X; Z/2).

The total Stiefel-Whitney class of π is defined by

w(π) = 1 + w1(π) + · · ·wn(π) ∈ H∗(X; Z/2),

as an element in the cohomology ring with Z/2-coefficients.
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Remark 4.2.4. If π is a O(n)-bundle, then by definition we have that
wi(π) = 0, if i > n. Also, since the trivial bundle is classified by the
constant map, it follows that the positive-degree Stiefel-Whitney classes
of a trivial O(n)-bundle are all zero.

Stiefel-Whitney classes of O(n)-bundles enjoy similar properties as
the Chern classes.

Proposition 4.2.5. The Stiefel-Whitney classes satisfy the functoriality prop-
erty and the Whitney sum formula.

4.3 Stiefel-Whitney classes of manifolds and applications

If M is a smooth manifold, its tangent bundle TM can be regarded as
an O(n)-bundle.

Definition 4.3.1. The Stiefel-Whitney classes of a smooth manifold M are
defined as

wi(M) := wi(TM).

Theorem 4.3.2 (Wu). Stiefel-Whitney classes are homotopy invariants, i.e.,
if h : M1 → M2 is a homotopy equivalence then h∗wi(M2) = wi(M1), for
any i ≥ 0.

Characteristic classes are particularly useful for solving a wide range
of topological problems, including the following:

(a) Given an n-dimensional smooth manifold M, find the minimal inte-
ger k such that M can be embedded/immersed in Rn+k.

(b) Given an n-dimensional smooth manifold M, is there an (n + 1)-
dimensional smooth manifold W such that ∂W = M?

(c) Given a topological manifold M, classify/find exotic smooth struc-
tures on M.

The embedding problem

Let f : Mm → Nm+k be an embedding of smooth manifolds. Then

f ∗TN = TM⊕ ν, (4.3.1)

where ν is the normal bundle of M in N. In particular, ν is of rank
k, hence wi(ν) = 0 for all i > k. The Whitney product formula for
Stiefel-Whitney classes, together with (4.3.1), yields that

f ∗w(N) = w(M) ∪ w(ν). (4.3.2)

Note that w(M) = 1 + w1(M) + · · · is invertible in H∗(M; Z/2), hence

w(ν) = w(M)−1 ∪ f ∗w(N).
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In particular, if N = Rm+k, one gets w(ν) = w(M)−1.
The same considerations apply in the case when f : Mm → Nm+k

is required to be only an immersion. In this case, the existence of the
normal bundle ν is guaranteed by the following simple result:

Lemma 4.3.3. Let

E1
i //

π1
  

E2

π2
~~

X

be a linear monomorphism of vector bundles, i.e., in local coordinates, i is
given by U ×Rn → U ×Rm (n ≤ m), (u, v) 7→ (u, `(u)v), where `(u)
is a linear map of rank n for all u ∈ U. Then there exists a vector bundle
π⊥1 : E⊥1 → X so that π2 ∼= π1 ⊕ π⊥1 .

To summarize, we showed that if f : Mm → Nm+k is an embedding
or an immersion of smooth manifolds, than one can solve for w(ν) in
(4.3.2), where ν is the normal bundle of M in N. Moreover, since ν has
rank k, we must have that wi(ν) = 0 for all i > k.

The following result of Whitney states that one can always solve for
w(ν) if the codimension k is large enough. More precisely, we have:

Theorem 4.3.4 (Whitney). Any smooth map f : Mm → Nm+k is homotopic
to an embedding for k ≥ m + 1.

Let us now consider the problem of embedding (or immersing) RPm

into Rm+k. If ν is the corresponding normal bundle of rank k, we have
that w(ν) = w(RPm)−1.

We need the following calculation:

Theorem 4.3.5.
w(RPm) = (1 + x)m+1, (4.3.3)

where x ∈ H1(RPm; Z/2) is a generator.

Before proving Theorem 4.3.5, let us discuss some examples.

Example 4.3.6. Let us investigate constraints on the codimension k of
an embedding of RP9 into R9+k. By Theorem 4.3.5, we have:

w(RP9) = (1+ x)10 = (1+ x)8(1+ x)2 = (1+ x8)(1+ x2) = 1+ x2 + x8,

since x10 = 0 in H∗(RP9; Z/2). Therefore,

w(RP9)−1 = 1 + x2 + x4 + x6.

If an embedding (or immersion) f of RP9 into R9+k exists, then w(ν) =

w−1(RP9), where ν is the corresponding rank k normal bundle. In
particular, w6(ν) 6= 0. Since we must have wi(ν) = 0 for i > k, we
conclude that k ≥ 6. For example, this shows that RP9 cannot be
embedded into R14.
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Example 4.3.7. Similarly, if m = 2r then

w(RP2r
) = (1 + x)2r+1 = (1 + x)2r

(1 + x) = 1 + x + x2r
.

If there exists an embedding or immersion RP2r
↪→ R2r+k with normal

bundle ν, then

w(ν) = w(RP2r
)−1 = 1 + x + x2 + · · ·+ x2r−1,

hence k ≥ 2r − 1 = m− 1. In particular, RP8 cannot be immersed in
R14. In this case, one can actually construct an immersion of RP2r

into
R2r+k for any k ≥ 2r − 1, due to the following result:

Theorem 4.3.8 (Whitney). An m-dimensional smooth manifold can be em-
bedded in R2m and immersed in R2m−1.

Definition 4.3.9. A smooth manifold is parallelizable if its tanget bundle TM
is trivial.

Example 4.3.10. Lie groups, hence in particular S1, S3 and S7, are
parallelizable.

Theorem 4.3.5 can be used to prove the following:

Theorem 4.3.11. w(RPm) = 1 if and only if m + 1 = 2r for some r. In
particular, if RPm is parallelizable, then m + 1 = 2r for some r.

Proof. Note that if RPm is parallelizable, then w(RPm) = 1 since TRPm

is a trivial bundle. If m + 1 = 2r, then w(RPm) = (1 + x)2r
= 1 + x2r

=

1+ xm+1 = 1. On the other hand, if m + 1 = 2rk, where k > 1 is an odd
integer, we have

w(RPm) = [(1 + x)2r
]k = (1 + x2r

)k = 1 + kx2r
+ · · · 6= 1,

since x2r 6= 0 (indeed, 2r < 2rk = m + 1).

In fact, the following result holds:

Theorem 4.3.12 (Adams). RPm is parallelizable if and only if m ∈ {1, 3, 7}.

Let us now get back to the proof of Theorem 4.3.5

Proof of Theorem 4.3.5. The idea is to find a splitting of (a stabilization
of) TRPm into line bundles, then to apply the Whitney sum formula.

Recall that O(1)-bundles on RPm are classified by

[RPm, BO(1)] = [RPm, K(Z/2, 1)] ∼= H1(RPm; Z/2) ∼= Z/2.

We’ll denote by E1 the trivial O(1)-bundle, and let π be the non-trivial
O(1)-bundle on RPm. Since O(1) ∼= Z/2, O(1)-bundles are regular
double coverings. It is then clear that π corresponds to the 2-fold cover
Sm → RPm.
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We have w(E1) = 1 ∈ H∗(RPn; Z/2). To calculate w(π), we notice
that the inclusion map i : RPn → RP∞ classifies the bundle π, as
the universal bundle S∞ → RP∞ pulls back under the inclusion to
Sm → RPm. In particular,

w1(π) = i∗w1 = i∗x = x,

where x is the generator of H1(RP∞; Z/2) = H1(RPm; Z/2). There-
fore,

w(π) = 1 + x.

We next show that

TRPm ⊕ E1 ∼= π ⊕ · · · ⊕ π︸ ︷︷ ︸
m+1 times

, (4.3.4)

from which the computation of w(RPm) follows by an application of
the Whitney sum formula.

To prove (4.3.4), start with Sm ↪→ Rm+1 with (rank one) normal
bundle denoted by Eν. Note that Eν is a trivial line bundle on Sm, as it
has a global non-zero section (mapping y ∈ Sm to the normal vector νy

at y). We then have

TSm ⊕ Eν
∼= TRm+1|Sm = Em+1 ∼= E1 ⊕ · · · ⊕ E1︸ ︷︷ ︸

m+1 times

,

with Em+1 the trivial bundle of rank n + 1 on Sm, i.e., the Whitney sum
of m + 1 trivial line bundles E1 on Sm, each of which is generated by
the global non-zero section y 7→ d

dxi
|y, i = 1, · · · , m + 1.

Let a : Sm → Sm be the antipodal map, with differential da : TSm →
TSm. Let γ : (−ε, ε) → Sm, γ(0) = y, v = γ′(0) ∈ TySm. Then
da(v) = d

dt (a ◦ γ(t))|t=0 = −γ′(0) = −v ∈ Ta(y)Sm. Therefore da is an
involution on TSm, commuting with a, and hence

TSm/da = TRPm.

Next note that the normal bundle Eν on Sm is invariant under the
antipodal action (as da(νy) = νa(y)), so it descends to the trivial line
bundle on RPm, i.e.,

Eν/da ∼= E1.

Finally,

Sm ×R/da ∼= Sm ×R/(y, t
d

dxi
) ∼ (−y,−t

d
dxi

) ∼= Sn ×Z/2 R,

which is the associated bundle of π with fiber R. So,

E1/da ∼= π.

This concludes the proof of (4.3.4) and of the theorem.
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Remark 4.3.13. Note that RP3 ∼= SO(3) is a Lie group, so its tangent
bundle is trivial. In this case, once can conclude directly that w(RP3) =

1, but this fact can also be seen from formula (4.3.3).

Boundary Problem.

For a closed manifold Mn, let µM ∈ Hn(M, Z/2) be the fundamental
class. We will associate to M certain Z/2-invariants, called its Stiefel-
Whitney numbers.

Definition 4.3.14. Let α = (α1, . . . , αn) be a tuple of non-negative integers
such that ∑n

i=1 iαi = n. Set

w[α](M) := w1(M)α1 ∪ · · · ∪ wn(M)αn ∈ Hn(M; Z/2).

The Stiefel-Whitney number of M with index α is defined as

w(α)(M) := 〈w[α](M), µM〉 ∈ Z/2,

where 〈−,−〉 : Hn(M; Z/2) × Hn(M; Z/2) → Z/2 is the Kronecker
evaluation pairing.

We have the following result:

Theorem 4.3.15 (Pontrjagin-Thom). A closed n-dimensional manifold M
is the boundary of a smooth compact (n + 1)-dimensional manifold W if and
only if all Stiefel-Whitney numbers of M vanish.

Proof. We only show here one implication (due to Pontrjagin), namely
that if M = ∂W then w(α)(M) = 0, for any α = (α1, . . . , αn) with
∑n

i=1 iαi = n.
If i : M ↪→W denotes the boundary embedding, then

i∗TW ∼= TM⊕ ν1,

where ν1 is the rank-one normal bundle of M in W.
Assume that TW has a Euclidean metric. Then the normal bundle

ν1 is trivialized by picking the inward unit normal vector at every point
in M. Hence

i∗TW ∼= TM⊕ E1,

where E1 is the trivial line bundle on M. In particular, the Whitney
sum formula yields that

wk(M) = i∗wk(W),

for k = 1, · · · , n, so w[α](M) = i∗w[α](W) for any α as above.
Let µW be the fundamental class of (W, M) i.e., the generator of

Hn+1(W, M; Z/2), and let µM be the fundamental class of M as above.
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From the long exact homology sequence for the pair (W, M) and
Poincaré duality, we have that

∂(µW) = µM.

Let δ : Hn(M; Z/2)→ Hn+1(W, M; Z/2) be the map adjoint to ∂. The
naturality of the cap product yields the identity:

〈y, µM〉 = 〈y, ∂µW〉 = 〈δy, µW〉

for any y ∈ Hn(M; Z/2). Putting it all together we have:

w(α)(M) = 〈w[α](M), µM〉

= 〈i∗w[α](W), ∂µW〉

= 〈δ(i∗w[α](W)), µW〉
= 〈0, µW〉
= 0,

since δ ◦ i∗ = 0, as can be seen from the long exact cohomology sequence
for the pair (W, M).

Example 4.3.16. Suppose M = X t X, i.e., M is the disjoint union of
two copies of a closed n-dimensional manifold X. Then for any α,
w(α)(M) = 2w(α)(X) = 0. This is consistent with the fact that X t X is
the boundary of the cylinder X× [0, 1].

Example 4.3.17. Every RP2k−1 is a boundary. Indeed, the total Stiefel-
Whitney class of RP2k−1 is (1 + x)2k = (1 + x2)k, with x the generator
of H1(RP2k−1; Z/2). Thus, all the odd degree Stiefel-Whitney classes
of RP2k−1 are 0. Since every monomial in the Stiefel-Whitney classes of
RP2k−1 of total degree 2k− 1 must contain a factor wj with j odd, all
Stiefel-Whitney numbers of RP2k−1 vanish. This implies the claim by
the Pontrjagin-Thom Theorem 4.3.15.

Example 4.3.18. The real projective space RP2k is not a boundary, for
any integer k ≥ 0. Indeed, the total Stiefel-Whitney class of RP2k is

w(RP2k) = (1 + x)2k+1 = 1 +
(

2k + 1
1

)
x + · · ·+

(
2k + 1

2k

)
x2k

= 1 + x + · · ·+ x2k

In particular, w2k(RP2k) = x2k. It follow that for α = (0, 0, . . . , 1) we
have

w(α)(RP2k) = 1 6= 0.



vector bundles. characteristic classes. cobordism. applications. 109

4.4 Pontrjagin classes

In this section, unless specified, we use the symbol π to denote real
vector bundles (or O(n)-bundles), and use ω for complex vector bundles
(or U(n)-bundles) on a topological space X.

Given a real vector bundle π, we can consider its complexification
π ⊗C, i.e., the complex vector bundle with same transition functions
as π:

gαβ : Uα ∩Uβ → O(n) ⊂ U(n),

and fiber Rn ⊗C ∼= Cn.
Given a complex vector bundle ω, we can consider its realization

ωR, obtained by forgeting the complex structure, i.e., with transition
functions

gαβ : Uα ∩Uβ → U(n) ↪→ O(2n).

Given a complex vector bundle ω, its conjugation ω is defined by
transition functions

gαβ : Uα ∩Uβ

gαβ→ U(n) ·̄→ U(n),

with the second homomorphism given by conjugation. ω has the same
underlying real vector bundle as ω, but the opposite complex structure
on its fibers.

Lemma 4.4.1. If ω is a complex vector bundle, then

ωR ⊗C ∼= ω⊕ω.

Proof. Let  be the linear transformation on FR ⊗C given by multiplica-
tion by i. Here F is the fiber of complex vector bundle ω, and FR is the
fiber of its realization ωR. Then 2 = −id, so we have

FR ⊗C ∼= Eigen(i)⊕ Eigen(−i),

where  acts as multiplication by i on Eigen(i), and it acts as multipli-
cation by −i on Eigen(−i). Moreover, we have F ⊆ Eigen(i) and F ⊆
Eigen(−i). By a dimension count we then get that FR ⊗C ∼= F⊕ F.

Lemma 4.4.2. Let π be a real vector bundle. Then

π ⊗C ∼= π ⊗C.

Proof. Indeed, since the transition functions of π ⊗C are real-values
(same as those of π), they are also the transition functions for π ⊗C.

Lemma 4.4.3. If ω is a rank n complex vector bundle, the Chern classes of
its conjugate ω are computed by

ck(ω) = (−1)k · ck(ω),

for any k = 1, · · · , n.
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Proof. Recall that one way to define (universal) Chern classes is by
induction by using the fibration

S2k−1 ↪→ BU(k− 1)→ BU(k).

In fact,
ck = d2k(a),

where a is the generator of H2k−1(S2k−1; Z).
The complex conjugation on the fiber S2k−1 of the above fibration

is a map of degree (−1)k (it keeps k out of 2k real basis vectors in-
variant, and it changes the sign of the other k; each sign change is a
reflection and it has degree −1). In particular, the homomorphism
H2k−1(S2k−1; Z)→ H2k−1(S2k−1; Z) induced by conjugation is defined
by a 7→ (−1)k · a. Altogether, this gives ck(ω) = (−1)k · ck(ω).

Combining the results from Lemma 4.4.2 and Lemma 4.4.3, we have
the following:

Corollary 4.4.4. For any real vector bundle π,

ck(π ⊗C) = ck(π ⊗C) = (−1)kck(π ⊗C).

In particular, for any odd integer k, ck(π⊗C) is an integral cohomology class
of order 2.

Definition 4.4.5 (Pontryagin classes of real vector bundles). Let π : E→
X be a real vector bundle of rank n. The i-th Pontrjagin class of π is defined
as:

pi(π) := (−1)ic2i(π ⊗C) ∈ H4i(X; Z).

If ω a complex vector bundle of rank n, we define its i-th Pontryagin class as

pi(ω) := pi(ωR) = (−1)ic2i(ω⊕ω).

Remark 4.4.6. Note that pi(π) = 0 for all i > n
2 .

Definition 4.4.7. If π is a real vector bundle on X, its total Pontrjagin class
is defined as

p(π) = p0 + p1 + · · · ∈ H∗(X; Z).

Theorem 4.4.8 (Product formula). If π1 and π2 are real vector bundles on
X, then

p(π1 ⊕ π2) = p(π1) ∪ p(π2) mod 2-torsion.

Proof. We have (π1 ⊕ π2)⊗C ∼= (π1 ⊗C)⊕ (π2 ⊗C). Therefore,

pi(π1 ⊕ π2) = (−1)ic2i((π1 ⊕ π2)⊗C)

= (−1)i ∑
k+l=2i

ck(π1 ⊗C) ∪ cl(π2 ⊗C)
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= (−1)i ∑
a+b=i

c2a(π1 ⊗C) ∪ c2b(π2 ⊗C) + {elements of order 2}

= ∑
a+b=i

pa(π1) ∪ pb(π2) + {elements of order 2},

thus proving the claim.

Definition 4.4.9. If M is a real smooth manifold, we define

p(M) := p(TM).

If M is a complex manifold, we define

p(M) := p((TM)R).

Here TM is the tangent bundle of the manifold M.

In order to give applications of Pontrjagin classes, we need the
following computational result:

Theorem 4.4.10 (Chern and Pontrjagin classes of complex projective
space). The total Chern and Pontrjagin classes of the complex projective space
CPn are computed by:

c(CPn) = (1 + c)n+1, (4.4.1)

p(CPn) = (1 + c2)n+1, (4.4.2)

where c ∈ H2(CPn; Z) is a generator.

Proof. The arguments involved in the computation of c(CPn) are very
similar to those of Theorem 4.3.5. Indeed, one first shows that there is
a splitting

TCPn ⊕ E1 = γ⊕ · · · ⊕ γ︸ ︷︷ ︸
n+1 times

,

were E1 is the trivial complex line bundle on CPn and γ is the complex
line bundle associated to the principle S1-bundle S1 ↪→ S2n+1 → CPn.
Then γ is classified by the inclusion

S2n+1

��

� � // S∞

��

CPn � � // CP∞ = BU(1)

and hence c1(γ) = c, the generator of H2(CP∞; Z) = H2(CPn; Z). The
Whitney sum formula for Chern classes then yields:

c(CPn) = c(TCPn) = c(γ)n+1 = (1 + c)n+1.



112 homotopy theory and applications

By conjugation, one gets

c(TCPn) = (1− c)n+1.

Therefore,

c((TCPn)R ⊗C) = c(TCPn ⊕ TCPn)

= c(TCPn) ∪ c(TCPn)

= (1− c2)n+1,

from which one can readily deduce that p(CPn) = (1 + c2)n+1.

Applications to the embedding problem

After forgetting the complex structure, CPn is a 2n-dimensional real
smooth manifold. Suppose that there is an embedding

CPn ↪→ R2n+k,

and we would like to find contraints on the embedding codimension k
by means of Pontrjagin classes.

Let (TCPn)R be the realization of the tangent bundle for CPn. Then
the existence of an embedding as above implies that there exists a
normal (real) bundle νk of rank k such that

(TCPn)R ⊕ νk ∼= TR2n+k|CPn ∼= E2n+k, (4.4.3)

with E2n+k denoting the trivial real vector bundle of rank 2n + k.
By applying the Pontrjagin class p to (4.4.3) and using the product

formula of Theorem 4.4.8 together with the fact that there are no
elements of order 2 in H∗(CPn; Z), we have

p(CPn) · p(νk) = 1.

Therefore, we get
p(νk) = p(CPn)−1. (4.4.4)

And by the definition of the Pontryagin classes, we know that if
pi(ν

k) 6= 0, then i ≤ k
2 .

Example 4.4.11. In this example, we use Pontrjagin classes to show that CP2

does not embed in R5. First,

p(CP2) = (1 + c2)3 = 1 + 3c2,

with c ∈ H2(CP2; Z) a generator (hence c3 = 0). If there is an embedding
CP2 ↪→ R4+k with normal bundle νk, then

p(νk) = p(CP2)−1 = 1− 3c2.

Hence p1(ν
k) 6= 0, which implies that k ≥ 2.
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4.5 Oriented cobordism and Pontrjagin numbers

If M is a smooth oriented manifold, we denote by −M the same mani-
fold but with the opposite orientation.

Definition 4.5.1. Let Mn and Nn be smooth, closed, oriented real manifolds
of dimension n. We say M and N are oriented cobordant if there exists a
smooth, compact, oriented (n + 1)-dimensional manifold Wn+1, such that
∂W = M t (−N).

Remark 4.5.2. Let us say a word of convention about orienting a bound-
ary. For any x ∈ ∂W, there exist an inward normal vector ν+(x) and an
outward normal vector ν−(x) to the boundary at x. By using a partition
of unity, one can construct an inward/outward normal vector field
ν± : ∂W → TW|∂W . By convention, a frame {e1, · · · , en} on Tx(∂W) is
positive if {e1, · · · , en, ν−(x)} is a positive frame for TxW.

Lemma 4.5.3. Oriented cobordism is an equivalence relation.

Proof. M and −M are clearly oriented cobordant because M t (−M) is
diffeomorphic to the boundary of M× [0, 1]. Hence oriented cobordism
is reflexive. The symmetry can be deduced from the fact that, if M t
(−N) ' ∂W, then N t (−M) ' ∂(−W). Finally, if M1 t (−M2) ' ∂W,
and M2t (−M3) ' ∂W ′, then we can glue W and W ′ along the common
boundary and get a new manifold with boundary M1 t (−M3). Hence
oriented cobordism is also transitive.

Definition 4.5.4. Let Ωn be the set of cobordism classes of closed, oriented,
smooth n-manifolds.

Corollary 4.5.5. The set Ωn is an abelian group with the disjoint union
operation.

Proof. This is an immediate consequence of Lemma 4.5.3. The zero
element in Ωn is the class of ∅, or equivalently, [M] = 0 ∈ Ωn if and
only if M = ∂W, for some compact manifold W. The inverse of [M] is
[−M], since M t (−M) is a boundary.

A natural problem to investigate is to describe the group Ωn by
generators and relations. For example, both [CP4] and [CP2 × CP2]

are elements of Ω8. Do they represent the same element, i.e., are CP4

and CP2 ×CP2 oriented cobordant? A lot of insight is gained by using
Pontrjagin numbers.

Definition 4.5.6. Let Mn be a smooth, closed, oriented real n-manifold, with
fundamental class µM ∈ Hn(M; Z). Let k = [ n

4 ] and choose a partition
α = (α1, · · · , αk) ∈ Zk such that ∑k

j=1 4jαj = n. The Pontrjagin number of
M associated to the partition α is defined as:

p(α)(M) = 〈p1(M)α1 ∪ · · · ∪ pk(M)αk , µM〉 ∈ Z.
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Remark 4.5.7. If n is not divisible by 4, then p(α)(M) = 0 by definition.

Theorem 4.5.8. For n = 4k, each p(α) defines a homomorphism

Ωn −→ Z, [M] 7→ p(α)(M).

Hence oriented cobordant manifolds have the same Pontrjagin numbers. In
particular, if Mn = ∂Wn+1, then p(α)(M) = 0 for any partition α.

Proof. If M = M1 t M2, then [M] = [M1] + [M2] ∈ Ωn and µM =

µM1 + µM2 ∈ Hn(M; Z). It follows readily that p(α)(M) = p(α)(M1) +

p(α)(M2).
If M = ∂N, then it can be shown as in the proof of Theorem 4.3.15

that p(α)(M) = 0 for any partition α.

Example 4.5.9. By Theorem 4.4.10, we have that p(CP2n) = (1 +

c2)2n+1, where c is a generator of H2(CP2n; Z). Hence pi(CP2n) =

(2n+1
i )c2i. For the partition α = (0, . . . , 0, 1), we find that p(α)(CP2n) =〈

(2n+1
n )c2n, µCP2n

〉
= (2n+1

n ) 6= 0. We conclude that CP2n is not an
oriented boundary.

Remark 4.5.10. If we reverse the orientation of a manifold M of real
dimension n = 4k, the Pontrjagin classes remain unchanged, but the
fundamental class µM changes sign. Therefore, all Pontrjagin numbers
p(α)(M) change sign. This shows that, if some Pontrjagin number
p(α)(M) is nonzero, then M cannot have any orientation-reversing
diffeomorphism.

Example 4.5.11. The above remark and Example 4.5.9 show that CP2n

does not have any orientation-reversing diffeomorphism. However,
CP2n+1 has an orientation-reversing diffeomorphism induced by com-
plex conjugation.

Example 4.5.12. Let us consider Ω4. As CP2 is not an oriented bound-
ary by Example 4.5.9, we have [CP2] 6= 0 ∈ Ωn. Recall that p(CP2) =

1 + 3c2, so p1(CP2) = 3c2. For the partition α = (1), we then get that
p(1)(CP2) = 3. So

Ω4
p(1)−→ 3Z −→ 0

is exact, thus rank(Ω4) ≥ 1.

Example 4.5.13. We next consider Ω8. The partitions to work with in
this case are α1 = (2, 0) and α2 = (0, 1), and Theorem 4.5.8 yields a
homomorphism

Ω8
(p(α1)

,p(α2)
)

−−−−−−−→ Z⊕Z.

We aim to show that

rank(Ω8) = dimQ(Ω8 ⊗Q) ≥ 2.



vector bundles. characteristic classes. cobordism. applications. 115

We start by noting that both CP4 and CP2 ×CP2 are compact oriented
8-manifolds which are not boundaries. We calculate the Pontrjagin
numbers of these two spaces. First,

p(CP4) = (1 + c2)5 = 1 + 5c2 + 10c4,

where c is a generator of H2(CP4; Z). Hence, p1(CP4) = 5c2 and
p2(CP4) = 10c4. The Pontrjagin numbers of CP4 corresponding to the
partitions α1 = (2, 0) and α2 = (0, 1) are given as:

p(α1)
(CP4) = 〈p1(CP4)2, µCP4〉 = 25,

p(α2)
(CP4) = 〈p2(CP4), µCP4〉 = 10.

In order to compute the corresponding Pontrjagin numbers for CP2 ×
CP2, let pri : CP2 ×CP2 → CP2, i = 1, 2, be the projections on factors.
Then

T(CP2 ×CP2) ∼= pr∗1 T(CP2)⊕ pr∗2 T(CP2),

so Theorem 4.4.8 yields that

p(CP2 ×CP2) = pr∗1 p(CP2) ∪ pr∗2 p(CP2) = p(CP2)× p(CP2),

where × denotes the external product. Let c1 and c2 denote the genera-
tors of the second integral cohomology of the two CP2 factors. Then:

p(CP2 ×CP2) = (1 + c2
1)

3 · (1 + c2
2)

3 = (1 + 3c2
1) · (1 + 3c2

2)

= 1 + 3c2
1 + 3c2

2 + 9c2
1c2

2.

Hence, p1(CP2×CP2) = 3(c2
1 + c2

2) and p2(CP2×CP2) = 9c2
1c2

2. There-
fore, the Pontrjagin numbers of CP2 ×CP2 corresponding to the parti-
tions α1 and α2 are computed by (here we use the fact that c4

1 = 0 = c4
2):

p(α1)
(CP2 ×CP2) = 18, p(α2)

(CP2 ×CP2) = 9.

The values of the homomorphism (p(α1)
, p(α2)

) : Ω8 −→ Z⊕Z on

CP4 and CP2 × CP2 fit into the 2× 2 matrix

[
25 18
10 9

]
with nonzero

determinant. Hence rank(Ω8) ≥ 2.

More generally, we the following qualitative description of Ωn,
which we mention here without proof.

Theorem 4.5.14 (Thom). The oriented cobordism group Ωn is finitely gener-
ated of rank |I|, where I is the collection of partitions α satisfying ∑j 4jαj = n.
In fact, modulo torsion, Ωn is generated by products of even complex projective
spaces. Moreover,

⊕
α∈I

p(α) : Ωn → Z|I| is an injective homomorphism onto a

subgroup of the same rank.

Example 4.5.15. Our computations from Examples 4.5.12 and 4.5.13

together with Theorem 4.5.14 yield that in fact we have: rank(Ω4) = 1
and rank(Ω8) = 2.
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4.6 Signature as an oriented cobordism invariant

Recall that if M4k is a closed, oriented manifold of real dimension
n = 4k, then we can define its signature σ(M) as the signature of the
bilinear symmetric pairing

H2k(M; Q)× H2k(M; Q)→ Q,

which is non-degenerate by Poincaré duality. Recall also that if M is an
oriented boundary then σ(M) = 0. This suffices to deduce the folowing
result:

Theorem 4.6.1 (Thom). σ : Ω4k → Z is a homomorphism.

It follows from Theorems 4.5.14 and 4.6.1 that the signature is a
rational combination of Pontrjagin numbers, i.e.,

σ = ∑
α∈I

aα p(α) (4.6.1)

for some coefficients aα ∈ Q. The Hirzebruch signature theorem provides
an explicit formula for these coefficients aα. In what follows we compute
by hand the coefficients aα in the cases of Ω4 and Ω8.

Example 4.6.2. On closed oriented 4-manifolds, the signature is com-
puted by

σ = ap(1), (4.6.2)

with a ∈ Q to be determined. Since a is the same for any [M] ∈ Ω4,
we will determine it by performing our calculations on M = CP2.
Recall that σ(CP2) = 1, and if c ∈ H2(CP2; Z) is a generator then
p1(CP2) = 3c2. Hence p(1)(CP2) = 3, and (4.6.2) implies that 1 = 3a,
or a = 1

3 . Therefore, for any closed oriented 4-manifold M4 we have
that

σ(M) = 〈1
3

p1(M), µM〉 =
1
3

p(1)(M) ∈ Z.

Example 4.6.3. On closed oriented 8-manifolds, the signature is com-
puted by (4.6.1) as

σ = a(2,0)p(2,0) + a(0,1)p(0,1), (4.6.3)

with a(2,0), a(0,1) ∈ Q to be determined. Since Ω8 is generated rationally
by CP4 and CP2 ×CP2, we can calculate a(2,0) and a(0,1) by evaluating
(4.6.3) on CP4 and CP2 ×CP2. Using our computations from Example
4.5.13, we have:

1 = σ(CP4) = 25a(2,0) + 10a(0,1), (4.6.4)

and
1 = σ(CP2 ×CP2) = 18a(2,0) + 9a(0,1). (4.6.5)
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Solving for a(2,0) and a(0,1) in (4.6.4) and (4.6.5), we get:

a(2,0) = −
1

45
, a(0,1) =

7
45

.

Altogether, the signature of a closed oriented manifold M8 is computed
by the following formula:

σ(M8) =
1

45
〈7p2(M)− p1(M)2, µM〉. (4.6.6)

4.7 Exotic 7-spheres

Now we turn to the construction of exotic 7-spheres. Start with M
a smooth, 3-connected orientable 8-manifold. Up to homotopy, M '
(S4 ∨ · · · ∨ S4)∪ f e8. Assume further that β4(M) = 1, i.e., M ' S4 ∪ f e8,
for some map f : S7 → S4. By Whitney’s embedding theorem, there is
a smooth embedding S4 ↪→ M. Let E be a tubular neighborhood of this
embedded S4 in M; in other words, E is a D4-bundle on S4 inside M.
Such D4-bundles on S4 are classified by

π3(SO(4)) ∼= π3(S3 × S3) ∼= Z⊕Z.

(Here we use the fact that S3 × S3 is a 2-fold covering of SO(4).) That
means that E corresponds to a pair of integers (i, j).

Let X7 be the boundary of E, so X is a S3-bundle over S4. If X is
diffeomorphic to a 7-sphere, one can recover M from E by attaching
an 8-cell to X = ∂E. So the question to investigate is: for which pairs of
integers (i, j) is X diffeomorphic to S7?

One can show the following:

Lemma 4.7.1. X is homotopy equivalent to S7 if and only if i + j = ±1.

Suppose i + j = 1. Then for each choice of i, we get an S3-bundle
over S4, namely X = ∂E, which has the homotopy type of S7. If X is in
fact diffeomorphic to S7, then we can recover M by attaching an 8-cell
to X, and in this case the signature of M is computed by

σ(M) =
1
45

(
7p(0,1)(M)− p(2,0)(M)

)
.

Moreover, one can show that:

Lemma 4.7.2. p(2,0)(M) = 4(i− j)2 = 4(2i− 1)2.

Note that σ(M) = ±1 since H4(M; Z) = Z, and let us fix the
orientation according to which σ(M) = 1. Our assumption that X was
diffeomorphic to S7 leads now to a contradiction, since

p(0,1)(M) =
4(2i− 1)2 + 45

7
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is by definition an integer for all i, which is contradicted e.g., for i = 2.
So far (for i = 2 and j = −1), we constructed a space X which is

homotopy equivalent to S7, but which is not diffeomorphic to S7. In
fact, one can further show the following:

Lemma 4.7.3. X is homeomorphic to S7, so in fact X is an exotic 7-sphere.

This latest fact can be shown by constructing a Morse function
g : X → R with only two nondegenerate critical points (a maximum
and a minimum). An application of Reeb’s theorem then yields that X
is homeomorphic to S7.

4.8 Exercises

1. Construct explicitly the bounding manifold for RP3.

2. Let ω be a rank n complex vector bundle on a topological space X,
and let ci(ω) ∈ H2i(X; Z) be its i-th Chern class. Via Z→ Z/2, ci(ω)

determines a cohomology class c̄i(ω) ∈ H2i(X; Z/2). By forgetting the
complex structure on the fibers of ω, we obtain the realization ωR of ω,
as a rank 2n real vector bundle on X.

Show that the Stiefel-Whitney classes of ωR are computed as follows:

(a) w2i(ωR) = c̄i(ω), for 0 ≤ i ≤ n.

(b) w2i+1(ωR) = 0 for any integer i.

3. Let M be a 2n-dimensional smooth manifold with tangent bundle
TM. Show that, if M admits a complex structure, then w2i(M) is
the mod 2 reduction of an integral class for any 0 ≤ i ≤ n, and
w2i+1(M) = 0 for any integer i. In particular, Stiefel-Whitney classes
give obstructions to the existence of a complex structure on an even-
dimensional real smooth manifold.

4. Show that a real smooth manifold M is orientable if and only if
w1(M) = 0.

5. Show that CP3 does not embed in R7.

6. Show that CP4 does not embed in R11.

7. Example 4.5.9 shows that CP2 is not the boundary on an oriented
compact 5-manifold. Can CP2 be the boundary on some non-orientable
compact 5-manifold?

8. Show that CP2n+1 is the boundary of a compact manifold.
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