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BASICS OF HOMOTOPY THEORY 1

1
Basics of Homotopy Theory

1.1 Homotopy Groups

Definition 1.1.1. For each n > 0 and X a topological space with xy € X, the
n-th homotopy group of X is defined as

(X, x0) = {f : (I",oI") = (X, x0) }/ ~
where I = [0,1] and ~ is the usual homotopy of maps.

Remark 1.1.2. Note that we have the following diagram of sets:

(1,31 f (X, x0)

(I /01", 01" /oI™)
with (I"/9I",9I" /oI") ~ (5", sg). So we can also define

(X, x0) = {g: (5",50) = (X, x0) }/ ~.

Remark 1.1.3. If n = 0, then 779(X) is the set of connected components
of X. Indeed, we have I° = pt and 9I° = @, so my(X) consists of
homotopy classes of maps from a point into the space X.

Now we will prove several results analogous to the case n = 1,
which corresponds to the fundamental group.

Proposition 1.1.4. If n > 1, then m,(X, x¢) is a group with respect to the
operation + defined as:

f(2s1,82,...,51)
(251 —1,89,...,51)

51

—_ N

(f+8)(51,52,---,50) = {

Ni— O
IN A
IN N

51
(Note that if n = 1, this is the usual concatenation of paths/loops.)

Proof. First note that since only the first coordinate is involved in this
operation, the same argument used to prove that 77; is a group is valid



2 HOMOTOPY THEORY AND APPLICATIONS

In—l

Y 1/2 1 5

here as well. Then the identity element is the constant map taking all
of I" to xg and the inverse element is given by

—f(s1,82,--.,5n) = f(1 —51,80,...,5n)-

Proposition 1.1.5. If n > 2, then 71, (X, x) is abelian.

Intuitively, since the + operation only involves the first coordinate, if
n > 2, there is enough space to “slide f past g”.

fle | =LA 8]

1
1

1
oq
—

Proof. Let n > 2 and let f,g € m,(X,x0). We wish to show that
f+ g~ g+ f. We first shrink the domains of f and g to smaller cubes
inside I" and map the remaining region to the base point x(. Note that
this is possible since both f and ¢ map to xp on the boundaries, so
the resulting map is continuous. Then there is enough room to slide
f past g inside I". We then enlarge the domains of f and g back to
their original size and get g + f. So we have “constructed” a homotopy
between f + g and ¢ + f, and hence 7, (X, xg) is abelian. O

Remark 1.1.6. If we view 71,(X,x9) as homotopy classes of maps
(S",50) — (X, xp), then we have the following visual representation
of f + g (one can see this by collapsing boundaries in the above cube
interpretation).

Figure 1.1: f + ¢

Figure 1.2: f+ g~ g+ f



N

Next recall that if X is path-connected and xg, x; € X, then there is
an isomorphism
57 st (X, xl) — 7T1(X, JCO)

where 7 is a path from x; to xg, i.e., 7 : [0,1] — X with ¢(0) = x1 and
(1) = xp. The isomorphism B, is given by

By(f]) = [7 % f+7]

for any [f] € (X, x1), where 7 = y1

tion. We next show a similar fact holds for all n > 1.

and * denotes path concatana-

Proposition 1.1.7. If n > 1 and X is path-connected, then there is an
isomorphism B, : 7, (X, x1) — m,(X, x0) given by

By(fD) =1v-f1,

where vy is a path in X from xq to xo, and y - f is constructed by first shrinking
the domain of f to a smaller cube inside 1", and then inserting the path y
radially from x1 to xy on the boundaries of these cubes.

T
xOExl f xlzxo
TS

Proof. It is easy to check that the following properties hold:

Ly (frg)=rft+rg

2. (y-n)-f~q-(y-f), for y a path from xg to x;

3. Cx, - f =~ f, where cy, denotes the constant path based at x.
4. B is well-defined with respect to homotopies of «y or f.

Note that (1) implies that 8, is a group homomorphism, while (2)
and (3) show that B is invertible. Indeed, if () = (1 —t), then
By = By =

BASICS OF HOMOTOPY THEORY 3

Figure 1.3: f + g, revisited

Figure 1.4: B4
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So, as in the case n = 1, if the space X is path-connected, then 7, is
independent of the choice of base point. Further, if xy = x1, then (2)
and (3) also imply that 711 (X, x¢) acts on 77, (X, x¢) as:

T X Ty — 7Ty

(v D) = [ fl

Definition 1.1.8. We say X is an abelian space if 71 acts trivially on 1, for
alln > 1.

In particular, this implies that 77 is abelian, since the action of 771 on
T is by inner-automorphisms, which must all be trivial.

We next show that 71, is a functor.

Proposition 1.1.9. A map ¢ : X — Y induces group homomorphisms
¢« (X, x0) = (Y, p(x0)) given by [f] — [¢po f], forall n > 1.

Proof. First note that, if f ~ g, then ¢ o f ~ ¢ og. Indeed, if ¢ is
a homotopy between f and g, then ¢ o ¢y is a homotopy between
¢ofand ¢og. So ¢, is well-defined. Moreover, from the definition
of the group operation on 7, it is clear that we have ¢ o (f + g) =

(@of)+(pog) So ¢:([f +8]) = ¢«([f]) + ¢«([g]). Hence ¢, is a

group homomorphism. O

The following is a consequence of the definition of the above induced
homomorphisms:

Proposition 1.1.10. The homomorphisms induced by ¢ : X — Y on higher
homotopy groups satisfy the following two properties:

1 (o). = .op..
2. (ldx)* = idr(n(X,xO)'
We thus have the following important consequence:

Corollary 1.1.11. If ¢ : (X, x0) — (Y, y0) is a homotopy equivalence, then
¢ 2 Tn (X, x0) — (Y, ¢(x0)) is an isomorphism, for all n > 1.

Example 1.1.12. Consider R” (or any contractible space). We have
m;(R") = 0 for all i > 1, since IR" is homotopy equivalent to a point.

The following result is very useful for computations:

Proposition 1.1.13. If p : X — X is a covering map, then p : (X, %) —
tn (X, p(X)) is an isomorphism for all n > 2.

Proof. First we show that p. is surjective. Let x = p(X) and consider
f:(8"%s9) — (X,x). Since n > 2, we have that 711(S") = 0, so



Fie(mm1(S™,50)) = 0 C pu(m(X,X)). So f admits a lift to X, i.e., there
exists f : (S",59) — (X, %) such that po f = f. Then [f] = [po f] =

p«([f])- So p« is surjective.
(X, %)

]

14

(8",50) —— (X, x)

Next, we show that p. is injective. Suppose [f] € ker p.. So p.([f]) =
[pof] = 0. Let pof = f. Then f ~ ¢, via some homotopy ¢; :
(S",50) — (X,x9) with ¢; = f and ¢y = c,. Again, by the lifting
criterion, there is a unique ¢; : (S",s9) — (X, X) with po ¢ = 1.

(X, %)

>
P

(S™,50) ——s (X, %)

Then we have po¢; = ¢y = f and pody = ¢p = cx, so by the
uniqueness of lifts, we must have ¢; = f and ¢y = cz. Then ¢ is a
homotopy between f and cz. So [f] = 0. Thus p, is injective. O

Example 1.1.14. Consider S' with its universal covering map p : R —
S! given by p(t) = 2. We already know that 711(S') = Z. If n > 2,
Proposition 1.1.13 yields that 7,(S!) = 71, (R) = 0.

Example 1.1.15. Consider T" = S! x S! x ... x S, the n-torus. We
have 711 (T") = Z". By using the universal covering map p : R* — T",
we have by Proposition 1.1.13 that 7;(T") = 7;(IR") = 0 for i > 2.

Definition 1.1.16. If 71,(X) = 0 for all n > 2, the space X is called aspheri-
cal.

Remark 1.1.17. As a side remark, the celebrated Singer-Hopf conjecture
asserts that if X is a smooth closed aspherical manifold of dimension
2k, then (—1)¥ - x(X) > 0, where x denotes the Euler characteristic.

Proposition 1.1.18. Let { X, } 4 be a collection of path-connected spaces. Then

Tty (HX,X> = ] (Xa)
for all n.

Proof. First note that a map f : Y — [, Xu is a collection of maps
fa Y = X,. For elements of 71, take Y = S" (note that since all spaces
are path-connected, we may drop the reference to base points). For
homotopies, take Y = 5" x I. O

BASICS OF HOMOTOPY THEORY 5
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Example 1.1.19. A natural question to ask is if there exist spaces X and
Y such that 77, (X) = 71, (Y) for all n, but with X and Y not homotopy
equivalent. Whitehead’s Theorem (to be discussed later on) states that
if a map of CW complexes f : X — Y induces isomorphisms on all 7,
then f is a homotopy equivalence. So for the above question to have a
positive answer, we must find X and Y so that there is no continuous
map f : X — Y inducing the isomorphisms on 7,,’s. Consider

X=562xRP3 and Y = RP? x $3.

Then 71, (X) = 7, (S? x RP?) = 7,(S?) x 7, (RP%). Since S is a cov-
ering of RP3, for all n > 2 we have that 7,(X) = 71,(S?) x 71,(S%).
We also have 711 (X) = m(S?) x 71 (RP?) = Z /2. Similarly, we have
T (Y) = 1, (RP? x S3) = 71, (RP?) x 71,(S?). And since S? is a cover-
ing of RP?, for n > 2 we have that 7,(Y) = 7,(S?) x 71,(S%). Finally,
m(Y) = 1 (RP?) x 11(S3) = Z /2. So

7 (X) = 1, (Y) for all n.

By considering homology groups, however, we see that X and Y are
not homotopy equivalent. Indeed, by the Kiinneth formula, we get that
Hs(X) = Z while H5(Y) = 0 (since RP? is oriented while RP? is not).

Just like there is a homomorphism 711 (X) — H;(X), we can also
construct Hurewicz homomorphisms

hy : (X)) — Hy(X)

defined by
[f 8" = X] > £iIS"],

where [S"] is the fundamental class of S". A very important result in
homotopy theory is the following;:

Theorem 1.1.20. (Hurewicz)
Ifn > 2and mj(X) = 0 for all i < n, then Hi(X) = 0 for i < n and
T (X) = Hy(X).

Moreover, there is also a relative version of the Hurewicz theorem
(see the next section for a definition of the relative homotopy groups),
which can be used to prove the following:

Corollary 1.1.21. If X and Y are CW complexes with 1t1(X) = my(Y) =0,
and a map f : X — Y induces isomorphisms on all integral homology groups
H,, then f is a homotopy equivalence.

We'll discuss all of these in the subsequent sections.



1.2 Relative Homotopy Groups

Given a triple (X, A, xo) where xg € A C X, we define relative homo-
topy groups as follows:

Definition 1.2.1. Let X be a space and let A C X and xy € A. Let
"t ={(s1,...,80) € I"| s, = 0}

and set
Jrt = o\ -1,

Then define the n-th homotopy group of the pair (X, A) with basepoint x as:
(X, A, x0) = {f : (I",aI", ]" 1) = (X, A, x0) }/ ~

where, as before, ~ is the homotopy equivalence relation.

SnT ]nfl

= 1
Alternatively, by collapsing ]! to a point, we obtain a commutative
diagram
(In/aln/]nil) (X,A,XO)

T

(Dn, Sn—l, SO)

where g is obtained by collapsing J"~!. So we can take

ma(X, A, x0) = {g: (D", ", 50) = (X, A, x0)}/ ~.

A sum operation is defined on 7, (X, A, x9) by the same formulas
as for 71, (X, xp), except that the coordinate s, now plays a special role
and is no longer available for the sum operation. Thus, we have:

Proposition 1.2.2. If n > 2, then m,(X, A, xo) forms a group under the
usual sum operation. Further, if n > 3, then 11,(X, A, xo) is abelian.

BASICS OF HOMOTOPY THEORY 7
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X0

X0 X0

A

Remark 1.2.3. Note that the proposition fails in the case n = 1. Indeed,
we have that

(X, A,x0) = {f: (L{0,1},{1}) = (X, A, x0)}/ ~.

Then 711(X, A, x¢) consists of homotopy classes of paths starting any-
where A and ending at x(, so we cannot always concatenate two paths.

v

Just as in the absolute case, a map of pairs ¢ : (X, A, x9) — (Y, B, o)

induces homomorphisms ¢.. : 77, (X, A, x0) — (Y, B,yo) for all n > 2.

A very important feature of the relative homotopy groups is the
following:

Proposition 1.2.4. The relative homotopy groups of (X, A, xo) fit into a long
exact sequence

<o = (A, x0) Ly (X, x0) LS (X, A, xp) Ony ty_1(A, x0) — -+

e — No(X,xO) — 0,

where the map 9y, is defined by 0,,[f] = [f|n—1] and all others are induced by
inclusions.

Remark 1.2.5. Near the end of the above sequence, where group struc-
tures are not defined, exactness still makes sense: the image of one map
is the kernel of the next, which consists of those elements mapping to
the homotopy class of the constant map.

Example 1.2.6. Let X be a path-connected space, and

CX := X x [0,1]/X x {0}



be the cone on X. We can regard X as a subspace of CX via X x {1} C
CX. Since CX is contractible, the long exact sequence of homotopy
groups gives isomorphisms

7-[1/1 (CX/ X/ xO) g 7'[,1,1 (X/ xo)'

In what follows, it will be important to have a good description of
the zero element 0 € 71,(X, A, xp).

Lemma 1.2.7. Let [f] € 7, (X, A, x0). Then [f] = 0 if, and only if, f ~ g
for some map g with image contained in A.

Proof. (<) Suppose f ~ g for some g with Image ¢ C A.

X0
%o A xo —— X
11
A

Then we can deform I" to J"~! as indicated in the above picture, and
SO ¢ =~ Cy,. Since homotopy is a transitive relation, we then get that
f o Cxp-

(=) Suppose [f] = 0in 7, (X, A, xp). SO f =~ cx,. Take g = cy,. O

Recall that if X is path-connected, then 77,,(X, x¢) is independent of
our choice of base point, and 771 (X) acts on 77, (X) for all n > 1. In the
relative case, we have:

Lemma 1.2.8. If A is path-connected, then B, : 1,(X, A, x1) = m,(X, A, x0)
is an isomorphism, where <y is a path in A from x1 to x.

M/

Remark 1.2.9. In particular, if xop = x;, we get an action of 7r1(A) on
(X, A).

It is easy to see that the following three conditions are equivalent:

BASICS OF HOMOTOPY THEORY ¢
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1. every map S' — X is homotopic to a constant map,

2. every map S' — X extends to a map D'*! — X, with S’ = 9D+,
3. (X, x9) =0 for all xy € X.

In the relative setting, the following are equivalent for any i > 0:

1. every map (D?,dD?) — (X, A) is homotopic rel. dD' to a map
DI — A,

2. every map (D,dD") — (X, A) is homotopic through such maps to a
map DI — A,

3. every map (D,dD!) — (X, A) is homotopic through such maps to a
constant map D' — A,

4. (X, A, x0) =0 forall xg € A.

Remark 1.2.10. As seen above, if « : S" = 9¢"t! — X represents an
element [o] € 7, (X, xp), then [a] = 0 if and only if a extends to a map
"1 — X. Thus if we enlarge X to a space X’ = X U, e"*! by adjoining
an (n + 1)-cell e"! with « as attaching map, then the inclusion j :
X — X’ induces a homomorphism j, : 71, (X, x0) — 7. (X', x9) with
j«[a] = 0. We say that [a] “has been killed”.

The following is left as an exercise:

Lemma 1.2.11. Let (X, xg) be a space with a basepoint, and let X' = X U,
"1 be obtained from X by adjoining an (n + 1)-cell. Then the inclusion
j: X < X' induces a homomorphism j, : 7;(X, x0) — 7;(X’, x), which is
an isomorphism for i < n and surjective for i = n.

Definition 1.2.12. We say that the pair (X, A) is n-connected if 1;(X, A) =
0 for i < nand X is n-connected if 7t;(X) = 0 for i < n.

In particular, X is 0-connected if and only if X is connected. More-
over, X is 1-connected if and only if X is simply-connected.

1.3 Homotopy Extension Property

Definition 1.3.1 (Homotopy Extension Property). Given a pair (X, A),
amap Fy : X — Y, and a homotopy f; : A — Y such that fy = Fy|a, we
say that (X, A) satisfies the homotopy extension property (HEP) if there is
a homotopy Fy : X — Y extending f; and Fy. In other words, (X, A) has
homotopy extension property if any map X x {0} U A x I — Y extends to a
map X x I =Y.

Proposition 1.3.2. Any CW pair has the homotopy extension property. In
fact, for every CW pair (X, A), there is a deformation retract v : X x I —
X x {0} UA X I, hence X x I — Y can be defined by the composition
XxI5HXx{0JUAXT =Y.



Proof. We have an obvious deformation retract D" x [ —— D" x {0} U
$"-1 % I. For every n, consider the pair (X, A, U X;,_1), where X,
denotes the n-skeleton of X. Then

Xp x 1= [Xyx{0}U(AyUXy,_1)xIJUD" x I,

where the cylinders D" x [ corresponding to n-cells D" in X\ A are
glued along D" x {0} US"~! x I to the pieces X, x {0} U (A, UX,_1) X
I. By deforming these cylinders D" x I we get a deformation retraction

tn: Xy X T — Xy x {0} U (A UXp—1) X L

Concatenating these deformation retractions by performing r,, over [1 —
1 1
ST
A x I. Continuity follows since CW complexes have the weak topology

, we get a deformation retraction of X x I onto X x {0} U

with respect to their skeleta, so a map of CW complexes is continuous
if and only if its restriction to each skeleton is continuous. O

1.4 Cellular Approximation

All maps are assumed to be continuous.

Definition 1.4.1. Let X and Y be CW-complexes. Amap f : X — Y is called
cellular if f(X,) C Yy for all n, where X,, denotes the n-skeleton of X and
similarly for Y.

Definition 1.4.2. Let f : X — Y be a map of CW complexes. A map
f'+ X = Yisa cellular approximation of f if " is cellular and f is homotopic

to f'.

Theorem 1.4.3 (Cellular Aproximation Theorem). Any map f : X — Y
between CW-complexes has a cellular approximation f' : X — Y. Moreover,
if f is already cellular on a subcomplex A C X, we can take f'|4 = f|a.

The proof of Theorem 1.4.3 uses the following key technical result.

Lemma 1.4.4. Let f: XUe" — Y U ek be a map of CW complexes, with e",
ek denoting an n-cell and, resp., k-cell attached to X and, resp., Y. Assume

that f(X) C Y, fl|x is cellular, and n < k. Then f £ f' (rel. X) , with
Image(f') C Y.

Remark 1.4.5. If in the statement of Lemma 1.4.4 we assume that X
and Y are points, then we get that the inclusion 5" — Sk (n < k)is
homotopic to the constant map S" — {sq} for some point sy € S*.

Lemma 1.4.4 is used along with induction on skeleta to prove the
cellular approximation theorem as follows.

BASICS OF HOMOTOPY THEORY
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Proof of Theorem 1.4.3. Suppose f|x, is cellular, and let e be an (open)
n-cell of X. Since e is compact, f(e") (hence also f(e")) meets only
finitely many open cells of Y. Let ¢f be an open cell of maximal
dimension in Y which meets f(e"). If k < n, f is already cellular on
en. If n < k, Lemma 1.4.4 can be used to homotop f|x, ,ue (rel. X,,_1)

to a map whose image on e" misses e

. By finitely many iterations
of this process, we eventually homotop f|x, ,uer (rel. X,,_1) to a map
fl: Xy—qUe" — Yy, ie., whose image on e misses all cells in Y of
dimension > n. Doing this for all n-cells of X, staying fixed on n-cells
in A where f is already cellular, we obtain a homotopy of f|x, (rel.
Xp—1UAy) to a cellular map. By the homotopy extension property 1.3.2,
we can extend this homotopy (together with the constant homotopy on
A) to a homotopy defined on all of X. This completes the induction
step.

For varying n — oo, we concatenate the above homotopies to define
a homotopy from f to a cellular map f’ (rel. A) by performing the above
construction (i.e., the n-th homotopy) on the t-interval [1 —1/2",1 —
1/2"+1. O

We also have the following relative version of Theorem 1.4.3:

Theorem 1.4.6 (Relative cellular approximation). Any map f: (X, A) —
(Y, B) of CW pairs has a cellular approximation by a homotopy through such
maps of pairs.

Proof. First we use the cellular approximation for f|4 : A — B. Let
f': A — B be a cellular map, homotopic to f|4 via a homotopy H. By
the Homotopy Extension Property 1.3.2, we can regard H as a homotopy
on all of X, so we get a map f' : X — Y such that f’|, is a cellular
map. By the second part of the cellular approximation theorem 1.4.3,
f! £ f", with f” : X — Y a cellular map satisfying f'|4 = f”| 4. The
map f” provides the required cellular approximation of f. O

Corollary 1.4.7. Let A C X be CW complexes and suppose that all cells of
X\ A have dimension > n. Then 11;(X, A) =0 fori < n.

Proof. Let [f] € m;(X, A). By the relative version of the cellular approxi-
mation, the map of pairs f : (D?,S"1) — (X, A) is homotopic to a map
g with ¢(D') C X;. But for i < n, we have that X; C A, so Image g C A.
Therefore, by Lemma 1.2.7, [f] = [g] = 0. O
Corollary 1.4.8. If X is a CW complex, then 1t;(X, X,) = 0 for all i < n.

Therefore, the long exact sequence for the homotopy groups of the
pair (X, X;) yields the following:

Corollary 1.4.9. Let X be a CW complex. For i < n, we have 1;(X) =
7 (Xn).-



1.5 Excision for homotopy groups. The Suspension Theorem

We state here the following useful result without proof:

Theorem 1.5.1 (Excision). Let X be a CW complex which is a union of
subcomplexes A and B, such that C = AN B is path connected. Assume
that (A, C) is m-connected and (B, C) is n-connected, with m,n > 1. Then
the map 1;(A,C) — m;(X, B) induced by inclusion is an isomorphism if
i < m+ nand a surjection for i = m + n.

The following consequence is very useful for itering homotopy
groups of spheres:

Theorem 1.5.2 (Freudenthal Suspension Theorem). Let X be an (n — 1)-
connected CW complex. For any map f : S' — X, consider its suspension,

Tf: S =5* L vX.

The assignment
[l € mi(X) = [Zf] € i1 (2X)

defines a homomorphism 1;(X) — 7t;11(XX), which is an isomorphism for
i < 2n — 1 and a surjection for i = 2n — 1.

Proof. Decompose the suspension XX as the union of two cones C X
and C_X intersecting in a copy of X. By using long exact sequences
of pairs and the fact that the cones C X and C_X are contractible, the
suspension map can be written as a composition:

7T1'(X) = T4 (C+, X) — 7'[1'+1(ZX, CLX) = 7'[i+1(ZX),

with the middle map induced by inclusion.

Since X is (n — 1)-connected, from the long exact sequence of
(CiX, X), we see that the pairs (C+X, X) are n-connected. Therefore,
the Excision Theorem 1.5.1 yields that 77,1 (C4, X) — ;11 (XX, C_X)
is an isomorphism for i +1 < 2n and it is surjective for i +1 = 2n. [

1.6 Homotopy Groups of Spheres

We now turn our attention to computing (some of) the homotopy
groups 77;(S"). Fori <mn,i=n+1,n+2,n+ 3 and a few more cases,
these homotopy groups are known (and we will work them out later
on). In general, however, this is a very difficult problem. For i = n, we
would expect to have 77, (S") = Z by associating to each (homotopy
class of a) map f : S" — S" its degree. For i < n, we will show that
m;(S") = 0. Note that if f : St — S" is not surjective, i.e., there is
y € S"\f(S'), then f factors through R", which is contractible. By
composing f with the retraction R" — xo we get that f ~ c,,. However,

BASICS OF HOMOTOPY THEORY
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14 HOMOTOPY THEORY AND APPLICATIONS

there are surjective maps S' — S" for i < n, in which case the above
“proof” fails. To make things work, we “alter” f to make it cellular, so
the following holds.

Proposition 1.6.1. For i < n, we have 7t;(S") = 0.

Proof. Choose the standard CW-structure on S’ and S". For [f] €
7;(S"), we may assume by Theorem 1.4.3 that f : S’ — S" is cellular.
Then f(S') C (S");. But (S"); is a point, so f is a constant map. O

Recall now the following special case of the Suspension Theorem
1.5.2 for X = S§™:

Theorem 1.6.2. Let f : S' — S" be a map, and consider its suspension,
Tf 28 =gt 5 3gn = gt
The assignment
[f] € mi(8") = [Bf] € i (8"

defines a homomorphism 7;(S™) — 71;,1(S"*1), which is an isomorphism
7 (S") = ;1 (S™Y) for i < 2n — 1 and a surjection for i = 2n — 1.

Corollary 1.6.3. 71,(S") is either Z or a finite quotient of Z (for n > 2),
generated by the degree map.

Proof. By the Suspension Theorem 1.6.2, we have the following:
Z = () » my(8?) = 7m3(S°) = my(sh) = -
O

To show that 711 (S') =2 71,(S?), we can use the long exact sequence for
the homotopy groups of a fibration, see Theorem 1.11.8 below. For any
fibration (e.g., a covering map)

F—E-—B
there is a long exact sequence
oo — ;(F) — m;(E) — mi(B) — m;1(F) — -+ (1.6.1)
Applying the above long exact sequence to the Hopf fibration S! —
S3 — §2 we obtain:
s ma(SY) — mp(S%) — m(S?) — m(SY) — m(SP) — -
Using the fact that 775(S%) = 0 and 711(S%) = 0, we therefore have an

isomorphism:
7'[2(52) = 711(51) = 7.

Note that by using the vanishing of the higher homotopy groups of S!,
the long exact sequence (1.11.8) also yields that

7'[3(52) = 7'[2(52) =7Z.



Remark 1.6.4. Unlike the homology and cohomology groups, the ho-
motopy groups of a finite CW-complex can be infinitely generated. This
fact is discussed in the next example.

Example 1.6.5. For nn > 2, consider the finite CW complex S v ™. We
then have that o
7, (ST Vv S™) = 7, (ST v Sn),

where SV §" is the universal cover of SV §", as depicted in the
attached figure. By contracting the segments between consecutive

integers, we have that
Stvst~ \/ St
keZ
with S} denoting the n-sphere corresponding to the integer k. So for
any n > 2, we have:

7'(71(51 V Sn) = 7'[1/1( \/ S]’Z)/
kez
which is the free abelian group generated by the inclusions S} —
Viez S+ Indeed, we have the following:

Lemma 1.6.6. 71,,(\/, S}i) is free abelian and generated by the inclusions of
factors.

Proof. Suppose first that there are only finitely many S}’s in the wedge
V4 Sk Then we can regard \/, S} as the n-skeleton of [, S;. The cell
structure of a particular S? consists of a single o-cell ¢J and a single
n-cell, ¢. Thus, in the product [], S” there is one o-cell e = [, €Y,
which, together with the n-cells

U] eg) x el

a BFa
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16 HOMOTOPY THEORY AND APPLICATIONS

form the n-skeleton V, S!. Hence [, S¥ \ V, SI has only cells of di-
mension at least 2nn, which by Corollary 1.4.8 yields that the pair
(I'Ta S¥, V4 SE) is (2n — 1)-connected. In particular, as n > 2, we get:

(V) = o (TTSE) = TTma(Sh) = D a(Sh) = DZ.

To reduce the case of infinitely many summands Sj; to the finite case,
consider the homomorphism ® : @, 71,,(S;) — 7, (V, Si) induced
by the inclusions S < V/, Si. Then & is onto since any map f : S" —
V4 Si has compact image contained in the wedge sum of finitely many
S%’s, so by the above finite case, [f] is in the image of ®. Moreover, a
nullhomotopy of f has compact image contained in the wedge sum of
finitely many S;;’s, so by the above finite case we have that ® is also
injective. O

To conclude our example, we showed that 71, (S' V §") = 7, (Viez ST),
and 71, (\Vez Sy ) is free abelian generated by the inclusion of each of
the infinite number of n-spheres. Therefore, m,(Sl V' §") is infinitely
generated.

Remark 1.6.7. Under the action of 71; on 71, we can regard 7, as a
Z[m]-module. Here Z[1] is the group ring of 711 with Z-coefficients,
whose elements are of the form ), 1,7, with n, € Z and only finitely
many non-zero, and 7y, € 711. Since all the n-spheres S}! in the universal
cover ez Si are identified under the my-action, 7, is a free Z[m]-
module of rank 1, i.e.,

T, = Z[m) = Z(Z2) = Z[HL Y,
1—t
—1s ¢t

n— t",

which is infinitely generated (by the powers of t) over Z (i.e., as an
abelian group).

Remark 1.6.8. If we consider the class of spaces for which 7; acts
trivially on all of m,’s, a result of Serre asserts that the homotopy
groups of such spaces are finitely generated if and only if homology
groups are finitely generated.

1.7 Whitehead’s Theorem

Definition 1.7.1. A map f : X — Y is a weak homotopy equivalence if it
induces isomorphisms on all homotopy groups 1.



Notice that a homotopy equivalence is a weak homotopy equiva-
lence. The following important result provides a converse to this fact in
the world of CW complexes.

Theorem 1.7.2 (Whitehead). If X and Y are CW complexes and f : X =Y
is a weak homotopy equivalence, then f is a homotopy equivalence. Moreover,
if X is a subcomplex of Y, and f is the inclusion map, then X is a deformation
retract of Y.

The following consequence is very useful in practice:

Corollary 1.7.3. If X and Y are CW complexes with m1(X) = m1(Y) =0,
and f : X — Y induces isomorphisms on homology groups Hy, for all n, then
f is a homotopy equivalence.

The above corollary follows from Whitehead’s theorem and the fol-
lowing relative version of the Hurewicz Theorem 1.10.1 (to be discussed
later on):

Theorem 1.7.4 (Hurewicz). If n > 2, and m;(X, A) = 0 for i < n, with
A simply-connected and non-empty, then H;(X,A) = 0 for i < n and
(X, A) = Hy(X, A).

Before discussing the proof of Whitehead’s theorem, let us give
an example that shows that having induced isomorphisms on all ho-
mology groups is not sufficient for having a homotopy equivalence
(so the simply-connectedness assumption in Corollary 1.7.3 cannot be
dropped):

Example 1.7.5. Let
f:X=8 < (stvsyuetl=y (n>2)

be the inclusion map, with the attaching map for the (n + 1)-cell of
Y described below. We know from Example 1.6.5 that 77,,(S! VV ") =
Z[t,t71]. We define Y by attaching the (1 + 1)-cell ¢"*! to S' v S" by a
map g : S" = de" ! — S' Vv S" so that [g] € 71, (S' V S") corresponds to
the element 2t — 1 € Z[t,t~!]. We then see that

ma(Y) = Z[t, 71/ (2t = 1) £ 0 = m,(X),

since by setting t = § we get that Z[t,t71]/(2t — 1) 2 Z[}] = {or [ ke
Z>o} C Q. In particular, f is not a homotopy equivalence. Moreover,
from the long exact sequence of homotopy groups for the (n —1)-
connected pair (Y, X), the inclusion X < Y induces an isomorphism
on homotopy groups 7; for i < n. Finally, this inclusion map also
induces isomorphisms on all homology groups, H,(X) = H,(Y) for all
1, as can be seen from cellular homology. Indeed, the cellular boundary
map
Hn+1 (Yn+1/ Yn) — Hy (an Ynfl)

BASICS OF HOMOTOPY THEORY
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18 HOMOTOPY THEORY AND APPLICATIONS

is an isomorphism since the degree of the composition of the attaching
map S" — S'V S" of ¢"*! with the collapse map S' Vv S" — S" is
2-1=1

Let us now get back to the proof of Whitehead’s Theorem 1.7.2. To
prove Whitehead’s theorem, we will use the following:

Lemma 1.7.6 (Compression Lemma). Let (X, A) be a CW pair, and (Y, B)
be a pair with Y path-connected and B # Q. Suppose that for each n > 0 for
which X \ A has cells of dimension n, 7t,(Y, B, by) = 0 for all by € B. Then
any map f : (X, A) — (Y, B) is homotopic to some map f' : X — B fixing
A (i.e., wzth f/‘A = f|A)

Proof. Assume inductively that f(X;_, U A) C B. Let ¢f be a k-cell in
X\ A, with characteristic map a : (D, S¥=1) — X. Ignoring basepoints,
we regard « as an element [o] € (X, X1 UA). Then fila] = [fo
] € m(Y,B) = 0 by our hypothesis, since e is a k-cell in X\ A. By
Lemma 1.2.7, there is a homotopy H : (DX,S¥"1) x I — (Y, B) such
that Hy = f o« and Image(H;) C B.

Performing this process for all k-cells in X\ A simultaneously, we get
a homotopy from f to f’ such that f'(X; U A) C B. Using the homotopy
extension property 1.3.2, we can regard this as a homotopy on all of X,
ie, f~ f' asmaps X — Y, so the induction step is completed.

Finitely many applications of the induction step finish the proof if
the cells of X \ A are of bounded dimension. In general, we have

fH: fl/ with fl(XlLJA) CB,
1

fl 5 fz, with fZ(XzUA) C B,
2

fnfl H: fn/ with fn(XnUA) C B,

and so on. Any finite skeleton is eventually fixed under these homo-
topies.
Define a homotopy H: X x I — Y as

H=Hon [1—54,1- 3]

2i—17

Note that H is continuous by CW topology, so it gives the required
homotopy. O

Proof of Whitehead’s theorem. We can split the proof of Theorem 1.7.2
into two cases:

Case 1: If f is an inclusion X < Y, since 71,,(X) = 7, (Y) for all n, we
get by the long exact sequence for the homotopy groups of the pair
(Y, X) that 7, (Y, X) = 0 for all n. Applying the above compression



lemma 1.7.6 to the identity map id : (Y, X) — (Y, X) yields a deforma-
tion retraction 7 : Y — X of Y onto X.

Case 2: The general case of a map f : X — Y can be reduced to the
above case of an inclusion by using the mapping cylinder of f, i.e.,

My = (X x ) UY/(x,1) ~ f().

X x1
X x {1}

Note that My contains both X = X x {0} and Y as subspaces, and My
deformation retracts onto Y. Moreover, the map f can be written as the
composition of the inclusion i of X into My, and the retraction r from
M f to Y:

FrX=Xx {0} M5y,

Since My is homotopy equivalent to Y via 7, it suffices to show that My
deformation retracts onto X, so we can replace f with the inclusion
map i. If f is a cellular map, then My is a CW complex having X as
a subcomplex. So we can apply Case 1. If f is not cellular, than f is
homotopic to some cellular map g, so we may work with ¢ and the
mapping cylinder M, and again reduce to Case 1. O

We can now prove Corollary 1.7.3:

Proof. After replacing Y by the mapping cylinder My, we may assume
that f is an inclusion X < Y. As H,(X) = H,(Y) for all n, we have
by the long exact sequence for the homology groups of the pair (Y, X)
that H, (Y, X) = 0 for all n.

Since X and Y are simply-connected, we have 771 (Y, X) = 0. So by
the relative Hurewicz Theorem 1.10.1, the first non-zero 7, (Y, X) is
isomorphic to the first non-zero H, (Y, X). So 7, (Y, X) = 0 for all n.
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20 HOMOTOPY THEORY AND APPLICATIONS

Then, by the homotopy long exact sequence for the pair (Y, X), we get
that
7 (X) = 70 (Y)

for all n, with isomorphisms induced by the inclusion map f. Finally,
Whitehead’s theorem 1.7.2 yields that f is a homotopy equivalence. [

Example 1.7.7. Let X = RP? and Y = S x RP®. First note that
m(X) = m(Y) = Z/2. Also, since S? is a covering of RP?, we have
that

m(X) =2 m(S?), i>2.

Moreover, 7;(Y) = 71;(S?) x 7;(IRP®), and as RP® is covered by S =
Un>0S", we get that

m;(Y) 2 i(S?) x m;(S®), i>2.

To calculate 77;(S%), we use cellular approximation. More precisely,
we can approximate any f : S’ — S® by a cellular map g so that
Image g C S" for i < n. Thus, [f] = [g] € 7;(S") =0, and we see that

TFi(X) = 7'[,'(52) = ﬂi(Y), i>2.

Altogether, we have shown that X and Y have the same homotopy
groups. However, as can be easily seen by considering homology
groups, X and Y are not homotopy equivalent. In particular, by White-
head’s theorem, there cannot exist a map f : RP? — S? x RP* inducing
isomorphisms on 7, for all n. (If such a map existed, it would have to
be a homotopy equivalence.)

Example 1.7.8. As we will see later on, the CW complexes S? and S3 x
CP* have isomorphic homotopy groups, but they are not homotopy
equivalent.

1.8 CW approximation

Recall that map f : X — Y is a weak homotopy equivalence if it induces
isomorphisms on all homotopy groups 7,. As seen in Theorem 1.10.3,
a weak homotopy equivalence induces isomorphisms on all homol-
ogy and cohomology groups. Furthermore, Whitehead’s Theorem
1.7.2 shows that a weak homotopy equivalence of CW complexes is a
homotopy equivalence.

In this section we show that given any space X, there exists a (unique
up to homotopy) CW complex Z and a weak homotopy equivalence
f:Z — X.Suchamap f: Z — Xis called a CW approximation of X.

Definition 1.8.1. Given a pair (X, A), with @ # A a CW complex, an
n-connected CW model of (X, A) is an n-connected CW pair (Z, A), together



withamap f : Z — X with f|4 = ida, so that f, : 7;(Z) — m;(X) is an
isomorphism for i > n and an injection for i = n (for any choice of basepoint).

Remark 1.8.2. If such models exist, by letting A consist of one point in
each path-component of X and n = 0, we get a CW approximation Z
of X.

Theorem 1.8.3. For any pair (X, A) with A a nonempty CW complex such n-
connected models (Z, A) exist. Moreover, Z can be built from A by attaching
cells of dimension greater than n. (Note that by cellular approximation this
implies that 71;(Z, A) = 0 for i < n).

We will prove this theorem after discussing the following conse-
quences:

Corollary 1.8.4. Any pair of spaces (X, Xo) has a CW approximation (Z, Zy).

Proof. Let fy : Zo — Xo be a CW approximation of Xy, and consider
the map g : Zg — X defined by the composition of fy and the inclusion
map Xo — X. Let Mg be the mapping cylinder of g. Hence we get
the sequence of maps Zy — Mg — X, where the map r: My — X is a
deformation retract.

Now, let (Z, Zg) be a o-connected CW model of (M, Zp). Consider
the composition:

(o) + (2,20) — (Mg Z0) ¥ (X, 0)

So the map f : Z — X is obtained by composing the weak homotopy
equivalence Z — M, and the deformation retract (hence homotopy
equivalence) My — X. In other words, f is a weak homotopy equiva-
lence and f|z, = fo, thus proving the result. O

Corollary 1.8.5. For each n-connected CW pair (X, A) there is a CW pair
(Z, A) that is homotopy equivalent to (X, A) relative to A, and such that Z
is built from A by attaching cells of dimension > n.

Proof. Let (Z, A) be an n-connected CW model of (X, A). By Theorem
1.8.3, Z is built from A by attaching cells of dimension > n. We

claim that Z " ox (rel. A). First, by definition, the map f : Z — X
has the property that f, is an isomorphism on 77; for i > n and an
injection on 71,,. For i < n, by the n-connectedness of the given model,
mi(X) = mi(A) = m;j(Z) where the isomorphisms are induced by f
since the following diagram commutes,

)

f
—

id
—
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(with A — Z and A — X the inclusion maps.) For i = n, by n-
connectedness of (X, A) the composition

T (A) = 7tn(Z) — 10 (X)

is onto. So the induced map f. : 7m,(Z) — m,(X) is surjective. Alto-
gether, f, induces isomorphisms on all 77;, so by Whitehead’s Theorem
we conclude that f : Z — X is a homotopy equivalence.

We make f stationary on A as follows. Define the quotient space

Wg = M¢/{{a} x I ~ pt,Va € A}

of the mapping cylinder My obtained by collapsing each segment
{a} x I to a point, for any a € A. Assuming f has been made cellular,
Wy is a CW complex containing X and Z as subcomplexes, and W¢
deformation retracts onto X just as My does.

Consider the map h : Z — X given by the composition Z —
Wf — X, where Wf — X is the deformation retract. We claim that
Z is a deformation retract of Wy, thus giving us that 1 is a homotopy
equivalence relative to A. Indeed, 7;(Wy) = 7m;(X) (since Wy is a
deformation retract of X) and 7m;(X) = m;(Z) since X is homotopy
equivalent to Z. Using Whitehead’s theorem, we conclude that Z is a
deformation retract of Wr. O

Proof of Theorem 1.8.3. We will construct Z as a union of subcomplexes
A=ZyCZy1 C---

such that for each k > n + 1, Z; is obtained from Z;_; by attaching
k-cells.

We will show by induction that we can construct Z; together with
amap fi : Zr — X such that fi|4 = id4 and fy, is injective on 7; for
n < i < k and onto on 71; for n < i < k. We start the induction at k = n,
with Z,, = A, in which case the conditions on 7r; are void.

For the induction step, k — k + 1, consider the set {¢, }» of genera-
tors ¢y : SK — Z of ker (fr, : m(Zx) — mi(X)). Define

Yk+1 = Zy Uy U%e];Jrl,

where ef*1 is a (k + 1)-cell attached to Z; along ¢.

Then f; : Zx — X extends to Yj,1. Indeed, fyo ¢, : SK — Zx — X
is nullhomotopic, since [fx © ¢u] = fis[Pa] = 0. So we get a map ¢ :
Yy1 — X. Itis easy to check that the g, is injective on 7t; for n <i <k,
and onto on 77x. In fact, since we extend fi on (k + 1)-cells, we only need
to check the effect on 7. The elements of ker(gx) on 77y are represented
by nullhomotopic maps (by construction) Sk 7, C Yir1 — X. So g«
is one-to-one on 7. Moreover, g, is onto on 7 since, by hypothesis,
the composition 7 (Zy) — (Y1) = 7 (X) is onto.



Let {¢p : Sk+1 5 X} be a set of generators of 1m;,1(X, xo) and let
Ziy1 = Yei1 \['{ S’é“. We extend g to a map fy1 : Zxr1 — X by defining

frs1 |51'§+1 = ¢p. This implies that f; 1 induces an epimorphism on 77y 1.

The remaining conditions on homotopy groups are easy to check. [

Remark 1.8.6. If X is path-connected and A is a point, the construction
of a CW model for (X, A) gives a CW approximation of X with a single
0-cell. In particular, by Whitehead’s Theorem 1.7.2, any connected CW
complex is homotopy equivalent to a CW complex with a single 0-cell.

Proposition 1.8.7. Let ¢ : (X, A) — (X', A’) be a map of pairs, where
A, A’ are nonempty CW complexes. Let (Z, A) be an n-connected CW model
of (X, A) with associated map f : (Z,A) — (X, A), and let (Z', A") be an
n'-connected model of (X', A") with associated map f': (Z',A") — (X', A").
Assume that n > n'. Then there exists a map h : Z — Z', unique up to
homotopy, such that h| 4 = g| 4 and,

(z,4) —L (x,4)

' !
(Z/, A/) f (X/l A/)
commutes up to homotopy.

Proof. The proof is a standard induction on skeleta. We begin with the
map g: A — A’ C Z/, and recall that Z is obtained from A by attaching
cells of dimension > n. Let k be the smallest dimension of such a cell,
thus (AU Z, A) has a k-connected model, f; : (Z¥,A) — (AU Z, A)
such that fi|4 = id4. Composing this new map with g allows us to
consider g as having been extended to the k skeleton of Z. Iterating
this process produces our map. O

Corollary 1.8.8. CW-approximations are unique up to homotopy equivalence.
More generally, n-connected models of a pair (X, A) are unique up to homotopy
relative to A.

Proof. Assume that f: (Z,A) = (X,A) and f': (Z',A) — (X, A) are
two n-connected models of (X, A). Then we may take (X, A) = (X', A")
and g = id in the above lemma twice, and conclude that there are two
maps hy : Z — Z' and hy : Z' — Z, such that foh; ~ f' (rel. A)
and f'ohy ~ f (rel. A). In particular, f o (hy o hg) ~ f (rel. A) and
flo(hgohy) >~ f' (rel. A). The uniqueness in Proposition 1.8.7 then
implies that 1 o hg and hg o h; are homotopic to the respective identity
maps (rel. A). O

Remark 1.8.9. By taking n = n’ is Proposition 1.8.7, we get a functorial-
ity property for n-connected CW models. For example, a map X — X’
of spaces induces a map of CW approximations Z — Z'.
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Remark 1.8.10. By letting n vary, and by letting (Z", A) be an n-
connected CW model for (X, A), then Proposition 1.8.7 gives a tower of
CW models

ZZ
Zl

/

A—— 70 — X

with commutative triangle on the left, and homotopy-commutative
triangles on the right.

Example 1.8.11 (Whitehead towers). Assume X is an arbitrary CW
complex with A C X a point. Then the resulting tower of n-connected
CW modules of (X, A) amounts to a sequence of maps

RN A ¢ ) A ¢

with Z" n-connected and the map Z" — X inducing isomorphisms on
all homotopy groups 71; with i > n. The space Z° is path-connected
and homotopy equivalent to the component of X containing A, so one
may assume that Z° equals this component. The space Z! is simply-
connected, and the map Z! — X has the homotopy properties of the
universal cover of the component Z° of X. In general, if X is connected
the map Z" — X has the homotopy properties of an n-connected cover
of X. An example of a 2-connected cover of S? is the Hopf map S — S2.

Example 1.8.12 (Postnikov towers). If X is a connected CW complex,
the tower of n-connected models for the pair (CX, X), with CX the
cone on X, is called the Postnikov tower of X. Relabeling Z" as xn-1
the Postnikov tower gives a commutative diagram

X3
XZ

/

X—— X!

where the induced homomorphism 77;(X) — 77;(X") is an isomorphism
for i < nand m;(X") = 0if i > n. Indeed, by Definition 1.8.1 we get
(X" = m (2 2 m(CX) =0fori >n+ 1.



1.9 Eilenberg-MacLane spaces

Definition 1.9.1. A space X having just one nontrivial homotopy group
74(X) = G is called an Eilenberg-MacLane space K(G, n).

Example 1.9.2. We have already seen that S! is a K(Z,1) space, and
RP® is a K(Z/2Z,1) space. The fact that CP* is a K(Z,2) space will
be discussed in Example 1.11.16 by making use of fibrations and the
associated long exact sequence of homotopy groups.

Lemma 1.9.3. If a CW-pair (X, A) is r-connected (r > 1) and A is s-
connected (s > 0), then the map m;(X,A) — m;(X/A) induced by the

quotient map X — X/ A is an isomorphism if i < r + s and onto if i =
r+s+1.

Proof. Let CA be the cone on A and consider the complex
Y =XUyuCA

obtained from X by attaching the cone CA along A C X. Since CA is a
contactible subcomplex of Y, the quotient map

g:Y —Y/CA=X/A

is obtained by deforming CA to the cone point inside Y, so it is a
homotopy equivalence. So we have a sequence of homomorphisms

(X, A) — m(Y,CA) +— m(Y) — m(X/A),

where the first and second maps are induced by the inclusion of pairs,
the second map is an isomorphism by the long exact sequence of the
pair (Y,CA)

0= ﬂi(CA) — ﬂi(Y) — 7Tl‘(Y, CA) — T (CA) =0,

and the third map is the isomorphism g,. It therefore remains to
investigate the map 7;(X, A) — m;(Y,CA). We know that (X, A) is
r-connected and (CA, A) is (s + 1)-connected. The second fact once
again follows from the long exact sequence of the pair and the fact that
A is s-connected. Using the Excision Theorem 1.5.1, the desired result
follows immediately. O

Lemma 1.9.4. Assume n > 2. If X = (V,S§) U Up eg+1 is obtained
from \/, S} by attaching (n + 1)-cells egﬂ via basepoint-preserving maps
$p: Sg — Vy Sy, then

a(X) = 7 (\/ S2)/ () = (D Z)/ (¢p)-
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Proof. Consider the following portion of the long exact sequence for
the homotopy groups of the n-connected pair (X, \/, S):

d
Tus1(X, \/ i) — ma(\/ S§) — ma(X) — ma(X, \/ Si) =0,
14 14 o

where the fact that 77,(X,\/, S%) = 0 follows by Corollary 1.4.8 of the
Cellular Approximation theorem. So 71, (X) = 7, (\V/, S¥)/Image(9).
We have the identification X/ \/, S§ ~ Vg Sg“, so by Lemma 1.9.3

and Lemma 1.6.6 we get that 71,41(X, V, S§) = 7041(Vp Sg“) is free

with a basis consisting of the characteristic maps ®g of the cells egﬂ.

Since 0([®g]) = [¢p], the claim follows. O

Example 1.9.5. Any abelian group G can be realized as 71, (X) with
n > 2 for some space X. In fact, given a presentation G = (g, | rﬁ>, we

X = (\/s) ULﬁJeE“,

can can take

with the $%’s corresponding to the generators of G, and with ¢t

attached to V, Sj by amap f : Sg — V, Sy satisfying [f] = r. Note
also that by cellular approximation, 77;(X) = 0 for i < n, but nothing
can be said about 77;(X) with i > n.

Theorem 1.9.6. For any n > 1 and any group G (which is assumed abelian
if n > 2) there exists an Eilenberg-MacLane space K(G,n).

Proof. Let Xy11 = (Vo Si) U Up egﬂ be the (n — 1)-connected CW
complex of dimension n + 1 with 7,(X,,11) = G, as constructed in

Example 1.9.5. Enlarge X, 1 to a CW complex X, obtained from

n+2
v

generators of 71,41 (X,11). Since (Xy42, Xp41) is (n + 1)-connected (by

X, +1 by attaching (1 + 2)-cells e via maps representing some set of
Corollary 1.4.8), the long exact sequence for the homotopy groups of
the pair (Xy4+2, X;+1) yields isomorphisms 7;(X,42) = 7;(Xy41) for
i < n, together with the exact sequence

?
o= T2 (X2, Xng1) = 71 (Xng1) = g1 (Xug2) — 0.

Next note that 0 is an isomorphism by construction and Lemma 1.9.3.
Indeed, Lemma 1.9.3 yields that the quotient map X,+2 — Xp42/ X, 11
induces an epimorphism

Tn+2(Xn+2, Xn1) = T2 (Xnt2/ Xny1) = nn—«—Z(\/ 52“),
v

which is an isomorphism for n > 2. Moreover, we also have an epimor-
phism 77, 12(V,, S,’;”) — Ty41(Xy41) by our construction of X;,45. As
d is onto, we then get that 71,11 (X;42) = 0.



Repeat this construction inductively, at the k-th stage attaching
(n+k+1)-cells to X, to create a CW complex X, ;1 with vanishing
7,4+ and without changing the lower homotopy groups. The union of
this increasing sequence of CW complexes is then a K(G, n) space. [

Corollary 1.9.7. For any sequence of groups { Gy, }nen, with G, abelian for
n > 2, there exists a space X such that 7, (X) = G, for any n.

Proof. Call X" = K(Gy,n). Then X =[], X" has the desired prescribed
homotopy groups. O

Lemma 1.9.8. Let X be a CW complex of the form (V, Si) UUg eg“ for
some n > 1. Then for every homomorphism ¥ : 71, (X) — 1,(Y) with Y a
path-connected space, there exists a map f : X — Y such that f, = ¢ on my.

Proof. Recall from Lemma 1.9.4 that 71,(X) is generated by the inclu-
sions iy : S; — X. Let f send the wedge point of X to a basepoint
of Y, and extend f onto S} by choosing a fixed representative for
Y([ia]) € mu(Y). This then allows us to define f on the n-skeleton
Xn = V, Sk of X, and we notice that, by construction of f : X;, = Y,
we have that

fe(lia]) = [f o ia] = [flsz] = $(lia])-

Because the i, generate 77, (X,), we then get that f, = ¢

To extend f over a cell eZH
of the attaching map ¢ : S" — X, for this cell with f is nullhomotopic
in Y. We have [f o ] = f.([¢p]) = ¢([¢p]) = 0, as the ¢4 are precisely

the relators in 71,(X) by Example 1.9.5. Thus we obtain an extension

, we need to show that the composition

f: X — Y. Moreover, f. = ¢ since the elements [i,] generate 77, (X,) =
0 (X). O

Proposition 1.9.9. The homotopy type of a CW complex K(G, n) is uniquely
determined by G and n.

Proof. Let K and K’ be K(G,n) CW complexes, and assume without loss
of generality (since homotopy equivalence is an equivalence relation)
that K is the particular K(G, n) constructed in Theorem 1.9.6, i.e., built
from a space X as in Lemma 1.9.8 by attaching cells of dimension n 4 2
and higher. Since X = Kj,;.1, we have that 7,(X) = 71,(K) = 7, (K'),
and call the composition of these isomorphisms ¥ : 71,(X) — 71, (K').
By Lemma 1.9.8, there is a map f : X — K’ inducing ¢ on m,. To
extend this map over K, we proceed inductively, first extending it over
the (n + 2)-cells, than over the (n + 3)-cells, and so on.

Let e//*2 be an (1 + 2)-cell of K, with attaching map ¢, : S"*1 — X.
Then f o ¢, : S"*1 — K’ is nullhomotopic since 77, 41(K’) = 0. There-
fore, f extends over e’vH'z. Proceed similarly for higher dimensional

BASICS OF HOMOTOPY THEORY 27



28 HOMOTOPY THEORY AND APPLICATIONS

cells of K to get a map f : K — K’ which is a weak homotopy equiva-
lence. By Whitehead’s Theorem 1.7.2, we conclude that f is a homotopy
equivalence. O

1.10 Hurewicz Theorem

Theorem 1.10.1 (Hurewicz). If a space X is (n — 1)-connected and n > 2,
then H;(X) = 0 for i < n and m,(X) = H,(X). Moreover, if a pair (X, A)
is (n — 1)-connected with n > 2, and 17w1(A) = 0, then H;(X, A) = 0 for all
i <mnand m,(X,A) = Hy(X, A).

Proof. First, since all hypotheses and assertions in the statement deal
with homology and homotopy groups, if we prove the statement for
a CW approximation of X (or (X, A)) then the results will also hold
for the original space (or pair). Hence, we assume without loss of
generality that X is a CW complex and (X, A) is a CW-pair.

Secondly, the relative case can be reduced to the absolute case. In-
deed, since (X, A) is (n — 1)-connected and that A is 1-connected,
Lemma 1.9.3 implies that m;(X,A) = m;(X/A) for i < n, while
H;(X,A) = H;j(X/A) always holds for CW-pairs.

In order to prove the absolute case of the theorem, let xy be a O-cell
in X. Since X, hence also (X, xp), is (n — 1)-connected, Corollary 1.8.5
tells us that we can replace X by a homotopy equivalent CW complex
with (n — 1)-skeleton a point, i.e., X;,_1 = x¢. In particular, Hi(X)=0
for i < n. For showing that 7,(X) = H,(X), we may disregard any
cells of dimension greater than n + 1 since these have no effect on 7,
or Hy. Thus we may assume that X has the form (V, S§) UUg egH. By
Lemma 1.9.4, we then have that 77, (X) = (@, Z)/(¢p). On the other
hand, cellular homology yields the same calculation for H,(X), so we
are done. O

Remark 1.10.2. One cannot expect any sort of relationship between
7;(X) and H;(X) beyond n. For example, S has trivial homology in
degrees > n, but many nontrivial homotopy groups in this range, if
n > 2. On the other hand, CP* has trivial higher homotopy groups
in the range > 2 (as a K(Z,2) space), but many nontrivial homology
groups in this range.

Recall the Hurewicz Theorem has been already used for proving the
important Corollary 1.7.3. Here we give another important application
of Theorem 1.10.1:

Theorem 1.10.3. If f : X — Y induces isomorphisms on homotopy groups
1ty for all n, then it induces isomorphisms on homology and cohomology
groups with G coefficients, for any group G.



Proof. By the universal coefficient theorems, it suffices to show that f
induces isomorphisms on integral homology groups H.(—; Z).

We only prove here the assertion under the extra condition that
X is simply connected (the general case follows easily from spectral
sequence theory, and it will be dealt with later on). As before, after re-
placing Y with the homotopy equivalent space defined by the mapping
cylinder My of f, we can assume that f is an inclusion. Since by the
hypothesis, 7,(X) = 7, (Y) for all n, with isomorphisms induced by
the inclusion f, the homotopy long exact sequence of the pair (Y, X)
yields that 71, (Y, X) = 0 for all n. By the relative Hurewicz theorem (as
m1(X) = 0), this gives that H, (Y, X) = 0 for all n. Hence, by the long
exact sequence for homology, H,(X) = H,(Y) for all n, and the proof
is complete. O

Example 1.10.4. Take X = RP? x S® and Y = S? x RP3. As seen in
Example 1.1.19, X and Y have isomorphic homotopy groups 7, for
all n, but H5(X) 2 Hs(Y). So there cannot existamap f : X — Y
inducing the isomorphisms on the 7;,.

1.11 Fibrations. Fiber bundles

Definition 1.11.1 (Homotopy Lifting Property). A map p : E — B has
the homotopy lifting property (HLP) with respect to a space X if, given a
homotopy gt + X — B, and a lift 3y : X — E of go, there exists a homotopy
gt X — E lifting g; and extending .

Definition 1.11.2 (Lift Extension Property). A map p : E — B has the
lift extension property (LEP) with respect to a pair (Z, A) if for all maps
f:Z— Band g: A — E, there exists a lift f : Z — E of f extending g.

Remark 1.11.3. (HLP) is a special case of (LEP), with Z = X x [0,1],
and A = X x {0}.
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Definition 1.11.4. A fibration p : E — B is a map having the homotopy
lifting property with respect to all spaces X.

Definition 1.11.5 (Homotopy Lifting Property with respect to a pair).
A map p : E — B has the homotopy lifting property with respect to a pair
(X, A) if each homotopy g; : X — B lifts to a homotopy gt : X — E starting
with a given lift §g and extending a given lift g : A — E.

Remark 1.11.6. The homotopy lifting property with respect to the pair
(X, A) is the lift extension property for (X x I, X x {0} U A x I).

Remark 1.11.7. The homotopy lifting property with respect to a disk
D" is equivalent to the homotopy lifting property with respect to the
pair (D",9D"), since the pairs (D" x I, D" x {0}) and (D" x I, D" x
{0} U9D" x I) are homeomorphic. This implies that a fibration has
the homotopy lifting property with respect to all CW pairs (X, A). Indeed,
the homotopy lifting property for disks is in fact equivalent to the
homotopy lifting property with respect to all CW pairs (X, A). This
can be easily seen by induction over the skeleta of X, so it suffices to
construct a lifting g; one cell of X \ A at a time. Composing with the
characteristic map D" — X of a cell then gives the reduction to the case
(X,A) = (D",0D").

Theorem 1.11.8 (Long exact sequence for homotopy groups of a fibra-
tion). Given a fibration p : E — B, points b € Band e € F := p~(b), there
is an isomorphism p. : 70, (E, F,e) = 71, (B, b) for all n > 1. Hence, if B is
path-connected, there is a long exact sequence of homotopy groups:

<o+ —> 7, (F,e) — m,(E,e) Py 7, (B,b) — 1, _1(F,e) — - - -

o —> mo(E,e) — 0

Proof. To show that p, is onto, represent an element of 7t,(B, b) by a
map f : (I",dI") — (B,b), and note that the constant map to e is a
lift of f to E over J"~! C I". The homotopy lifting property for the
pair (I"1,91"1) extends this to a lift f: I'" — E. This lift satisfies
f(a1") ¢ F since f(aI") = b. So f represents an element of 7, (E, F, )
with p.([f]) = [f since pf = f.

To show the injectivity of p, let fo, f1 : (I”,BI”,]”_l) — (E,F,e)
be so that p.(fo) = p«(f1). Let H : (I" x I,daI" x I) — (B,b) be a
homotopy from pfy to pf;. We have a partial lift given by fo on I" x {0},
fi on I" x {1} and the constant map to e on J"~1 x I. The homotopy
lifting property for CW pairs extends this to a lift H : I" x I — E giving
a homotopy f; : (I",d1",]"~1) — (E, F,e) from fy to f1.

Finally, the long exact sequence of the fibration follows by plugging
7, (B,b) in for 71, (E, F,e) in the long exact sequence for the pair (E, F).
The map 7m,(E,e) — m,(E, F,e) in the latter sequence becomes the



composition 7, (E,e) — 7, (E, F,e) Py 7,(B,b), which is exactly p. :
mtu(E,e) — m,(B,b). The surjectivity of rro(F,e) — mo(E,e) follows
from the path-connectedness of B, since a path in E from an arbitrary
point x € E to F can be obtained by lifting a path in B from p(x) to
b. O

Definition 1.11.9. Given two fibrations p; : E; — B, i = 1,2, a map
f : E1 — Ej is fiber-preserving if the diagram

E1$)E2

N A

commutes. Such a map f is called a fiber homotopy equivalence if f is both
fiber-preserving and a homotopy equivalence, i.e., there is a map g : E» — Eq
such that f and g are fiber-preserving and f o g and g o f are homotopic to
the identity maps by fiber-preserving maps.

Definition 1.11.10 (Fiber Bundle). A map p : E — B is a fiber bundle
with fiber F if, for any point b € B, there exists a neighborhood Uy, of b with
a homeomorphism h : p~'(U,) — Uy, x F so that the following diagram
commutes:

pH(Uy) Uy x F

Up

Remark 1.11.11. Fibers of fibrations are homotopy equivalent, while
fibers of fiber bundles are homeomorphic.

Theorem 1.11.12 (Hurewicz). Fiber bundles over paracompact spaces are
fibrations.

Here are some easy examples of fiber bundles.

Example 1.11.13. If F is discrete, a fiber bundle with fiber F is a covering
map. Moreover, the long exact sequence for the homotopy groups
yields that p, : 7;(E) — m;(B) is an isomorphism if i > 2 and a
monomorphism for i = 1.

Example 1.11.14. The Mobius band I'x [_1'1]/(0 y) ~ (1,—y) — St
is a fiber bundle with fiber [—1, 1], induced from the projection map
Ix[-1,1] = L
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Example 1.11.15. By glueing the unlabeled edges of a Mobius band,
we get K — S! (where K is the Klein bottle), a fiber bundle with fiber
st

Example 1.11.16. The following is a fiber bundle with fiber S!:
Sl SN 52n+1(c Cn+1) — s Cp"
(zoy- -, zZn) > (200 .o 2] = [2]

For [z] € CP", there is an i such that z; # 0. Then we have a neighbor-
hood
Ug ={[zo:...:1:...:zq]} =C"

(with the entry 1 in place of the ith coordinate) of [;], with a homeo-
morphism

Pil(u[;]) — Upy % s!
(zo, .-, zn) > ([zo: - .-t zn), 2i/|2i]).

By letting n go to infinity, we get a diagram of fibrations

Sl\ = Sl\ = - — Sl\
§2n+1 C §2n+3 C ... C S
cpr C cprtl C ... C Ccp>

In particular, from the long exact sequence of the fibration
St §® — CP™
with S® contactible, we obtain that

Z i=2

mi(CP®) = m;_1(S') = { 0 i42

ie.,
CP* =K(Z,2),



as already mentioned in our discussion about Eilenberg-MacLane
spaces.

Remark 1.11.17. As we will see later on, for any topological group
G there exists a “universal fiber bundle” G < EG —% BG with EG
contractible, classifying the space of (principal) G-bundles. That is, any
G-bundle v : E — B over a space B is determined by (the homotopy
class of) a classifying map f : B — BG by pull-back: 7w = f*mg:

E EG ~ {pt}
{1 I
B—— BG
f

From this point of view, CP* can be identified with the clasifying space
BS! of (principal) S'-bundles.

Example 1.11.18. By letting n = 1 in the fibration of Example 1.11.16,
the corresponding bundle

Stes §3 — cpl=g? (1.11.1)

is called the Hopf fibration. The long exact sequence of homotopy group
for the Hopf fibration gives: 7t2(S?) =2 711(S!) and 7,(S®) = 7,,(S?) for
all n > 3. Together with the fact that CP® = K(Z,2), this shows that s?
and S3 x CP® are simply-connected CW complexes with isomorphic
homotopy groups, though they are not homotopy equivalent as can be
easily seen from cellular homology.

Example 1.11.19. A fiber bundle similar to that of Example 1.11.16 can
be obtained by replacing C with the quaternions H, namely:

§3 ey g3 s 1P

(Note that $%*3 can be identified with the unit sphere in H"*1.) In
particular, by letting n = 1 we get a second Hopf fiber bundle

$3 s §7 — HP' =~ 54, (1.11.2)
A third example of a Hopf bundle
§7 s g8 (1.11.3)

can be constructed by using the nonassociative 8-dimensional algebra
O of Cayley octonions, whose elements are pair of quaternions (a1, a3)
with multiplication defined by

(a1,a2) - (b1, b2) = (a1by — bpag, axby + bpay).
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Here we regard S'° as the unit sphere in the 16-dimensional vector space
02, and the projection map S — S8 = O U {0} is (20, 21) > 2oz
(just like for the other Hopf bundles). There are no fiber bundles
with fiber, total space and base spheres, other than those provided by
the Hopf bundles of (1.11.1), (1.11.2) and (1.11.3). Finally, note that
there is an “octonion projective plane” OP? obtained by glueing a cell
e'® to S® via the Hopf map S'°> — S%; however, there is no octonion
analogue of RP", CP" or HP" for higher n, since the associativity of
multiplication is needed for the relation (zg, - - - ,zn) ~ A(zo,- -+ ,2n) tO
be an equivalence relation.

Example 1.11.20. Other examples of fiber bundles are provided by the
orthogonal and unitary groups:

O(n—1) = O(n) = §"!
A — Ax,

where x is a fixed unit vector in R”. Similarly, there is a fibration

U(n—1) — U(n) — s> 1
A — Ax,

with x a fixed unit vector in C". These examples will be discussed in
some detail in the next section.

1.12  More examples of fiber bundles

Definition 1.12.1. For n < k, the n-th Stiefel manifold associated to R¥ is
defined as
Vi (R¥) := {n-frames in R¥},

where an n-frame in R¥ is an n-tuple {v, ..., v, } of orthonormal vectors in
RX, ie., v1,...,0y are pairwise orthonormal: (v;, U]'> = (51-]-.

We assign V;,(IR¥) the subspace topology induced from

Vn(]Rk) cSlx. ... x gkl

n times

where S¥=1 x ... x k=1 has the usual product topology.
Example 1.12.2. V;(RF) = k-1,
Example 1.12.3. V,,(R") = O(n).

Definition 1.12.4. The n-th Grassmann manifold associated to R* is defined
as:
Gn(RY) := {n-dimensional vector subspaces in R¥}.



Example 1.12.5. G;(Rf) = RPF-!
There is a natural surjection
p: Vu(RF) — G (IRF)

given by

{v1,..., 00} = span{vy,..., v, }.
The fact that p is onto follows by the Gram-Schmidt procedure. So
Gn(RF) is endowed with the quotient topology via p.

Lemma 1.12.6. The projection p is a fiber bundle with fiber V,,(R") = O(n).

Proof. Let V € G,(RF) be fixed. The fiber p~!(V) consists on n-frames
in V= R", so it is homeomorphic to V;,(IR"). Let us now choose an
orthonormal frame on V. By projection and Gram-Schmidt, we get
orthonormal frames on all “nearby” (in some neighborhood U of V)
vector subspaces V'. Indeed, by projecting the frame of V orthogo-
nally onto V' we get a (non-orthonormal) basis for V', then apply the
Gram-Schmidt process to this basis to make it orthonormal. This is a
continuous process. The existence of such frames on all n-planes in
U allows us to identify them with R", so p~1(U) is identified with
U x V,(R"). O

To conclude this discussion, we have shown that for k > n, there are
fiber bundles:

O(n)——— V,(RF) —— G, (RF) (1.12.1)

A similar method gives the following fiber bundle for all triples
m<n<k:

Vi (R V, (RF) —r 5 Vi (RK) (1.12.2)
{v1,...,on} ——{v1,...,0m}

Here, the projection p sends an n-frame onto the m-frame formed
by its first m vectors, so the fiber consists of (n — m)-frames in the
(k — m)-plane orthogonal to the given frame.

Example 1.12.7. If k = 1 in the bundle (1.12.2), we get the fiber bundle
O(n—m)—— O(n) —— V,u(R"). (1.12.3)

Here, O(n — m) is regarded as the subgroup of O(n) fixing the first m
standard basis vectors. So V;,;(IR") is identifiable with the coset space

O(n)/O(n —m) OF the orbit space of the free action of O(n —m) on
O(n) by right multiplication. Similarly,

Gm(R") = O(n)/o(m) x O(n —m)’
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where O(m) x O(n — m) consists of the orthogonal transformations of
R" taking the m-plane spanned by the first m standard basis vectors to
itself.

If, moreover, we take m = 1 in (1.12.3), we get the fiber bundle

O(n —1)¢ O(n) sn-1 (1.12.4)

M (A o)
0 1

B+— Bu

with u € §"~! some fixed unit vector. In particular, this identifies S"~!
as an orbit (or homogeneous) space:

Sn—l ~ O(Tl)/o(n _ 1)‘

Example 1.12.8. If m = 1 in the bundle (1.12.2), we get the fiber bundle
V1 (RF1)C—— v, (RF) —— k-1, (1.12.5)

By using the long exact sequence for bundle (1.12.5) and induction on
n, it follows readily that Vj,(R¥) is (k — n — 1)-connected.

Remark 1.12.9. The long exact sequence of homotopy groups for the
bundle (1.12.4) shows that 71;(O(n)) is independent of n for n large. We
call this the stable homotopy group 7;(O). Bott Periodicity shows that
7;(O) is periodic in i with period 8. Its values are:

i‘1 2 3 4 5 6 7 8
ni(O)‘Z/Z Z/2 0 Z 0 0 0 Z

Definition 1.12.10.
Vu(R®) := | J Vu(RF) Gu(R%) := | Gu(R¥)
k=1 k=1

The infinite grassmanian G, (IR*) carries a lot of topological infor-
mation. As we will see later on, the space G,(R%) is the classifying
space for rank-n real vector bundles. In fact, we get a “limit” fiber
bundle:

O(n)—— V,(R*®) —— G, (R%). (1.12.6)
Moreover, we have the following;:
Proposition 1.12.11. V,,(IR®) is contractible.

Proof. By using the bundle (1.12.5) for k — oo, we see that 77;(V;,(R%)) =
0 for all i. Using the CW structure and Whitehead’s Theorem 1.7.2
shows that V;,(IR®) is contractible.



Alternatively, we can define an explicit homotopy h; : R*® — R* by
ht(xl,xz, .. ) = (1 — t)(xl,JQ, .. ) + t(O, X1,%X2,.. )

Then h; is linear for each t with kerh; = {0}. So h; preserves inde-
pendence of vectors. Applying /; to an n-frame we get an n-tuple of
independent vectors, which can be made orthonormal by the Gram-
Schmidt (G-S, for short) process. We then get a deformation retraction
of Vn(]R"") onto the subspace of n-frames with first coordinate zero.
Repeating this procedure n times, we get a deformation of V;,(R*) to
the subspace of n-frames with first n coordinates zero.

Let {eq,...,en} be the standard n-frame in R®. For an n-frame
{v1,...,v,} of vectors with first n coordinates zero, define a homotopy
ki : Vy(R®) — V,(R*®) by

ki ({01,...,00}) == [(1 =) {v1,...,on} +H{er,...,en}] 0 (G—5).

Then k; preserves linear independence and orthonormality by Gram-

Schmidt.
Composing h; and k;, any n-frame is moved continuously to the
standard n-frame {ey, ..., e, }. Thus k; o h; is a contraction of V;,(R®).
O

Similar considerations apply if we use C or H instead of R, so we
can define complex or quaternionic Stiefel and Grasmann manifolds,
by using the usual hermitian inner products in C* and HF, respectively.
In particular, O(n) gets replaced by U(n) if C is used, and Sp(n) is
the quaternionic analog of this. Then similar fiber bundles can be
constructed in the complex and quaternionic setting. For example, over
C we get fiber bundles

U(n)—— V,(CK) BN Ga(CH), (1.12.7)

with V,,(C¥) a (2k — 2n)-connected space. As k — co, we get a fiber
bundle

U((n)—— V,(C®) —— G,(C*), (1.12.8)

with V;,(C*) contractible. As we will see later on, this means that
V1 (C®) is the classifying space for rank-n complex vector bundles. We
also have a fiber bundle similar to (1.12.4)

U(n —1)C U(n) san-1 (1.12.9)

whose long exact sequence of homotopy groups then shows that
mi(U(n)) is stable for large n. Bott periodicity shows that this sta-
ble group 71;(U) repeats itself with period 2: the relevant groups are
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0 for i even, and Z for i odd. Note that by (1.12.9), odd-dimensional
spheres can be realized as complex homogeneous spaces via

g2n—1 o U(n)/u(n 1y

Many of these fiber bundles will become essential tools in the next
chapter for computing (co)homology of matrix groups, with a view
towards classifying spaces and characteristic classes of manifolds.

1.13 Turning maps into fibration

In this section, we show that any map is homotopic to a fibration.
Given a map f : A — B, define

Ef:={(a,v)|a€ A, v:[0,1] — B with y(0) = f(a)}.

Ef is a topological space with respect to the compact-open topology.
Then A can be regarded as a subset of E¢, by mapping 4 € A to
(a,c F(a) ), where ¢ f(a) 1s the constant path based at the image of 2 under
f. Define

Ef "5 B
(@,7) = (1)
Then p|4 = f,so f = poi where i is the inclusion of A in E;. Moreover,
i: A — Ey is a homotopy equivalence, and p : E; — B is a fibration

with fiber A. So f can be factored as a composition of a homotopy
equivalence and a fibration:

h.e. fibration
i Ef p B
f
Example 1.13.1. If A = {b} — B and f is the inclusion of b in B, then
Ef =: PB is the contractible space of paths in B starting at b (called the

AC

path-space of B):
In this case, the above construction yields the path fibration

OB =p'(b) — PB — B,

where B is the space of all loops in B based at b, and PB — B is
given by v — (1). Since PB is contractible, the associated long exact
sequence of the fibration yields that

mi(B) = m;_1(QB) (1.13.1)

for all i.

The isomorphism (1.13.1) suggests that the Hurewicz Theorem 1.10.1
can also be proved by induction on the degree of connectivity. Indeed,
if B is n-connected then QB is (n — 1)-connected. We'll give the details
of such an approach by using spectral sequences.



The following result is useful for computations:

Proposition 1.13.2 (Puppé sequence). Given a fibration F — E — B,
there is a sequence of maps

i — OPB—QF —QFE —0OB—3F—E—B

with any two consecutive maps forming a fibration.

1.14 Exercises

1. Let f : X — Y be a homotopy equivalence. Let Z be any other space.
Show that f induces bijections:

£oi1Z,X] = [Z,Y] and f:[Y,Z] = [X,2],

where [A, B] denotes the set of homotopy classes of maps from the
space A to B.

2. Find examples of spaces X and Y which have the same homology
groups, cohomology groups, and cohomology rings, but with different
homotopy groups.

3. Use homotopy groups in order to show that there is no retraction
RIP" — RIP* if n > k > 0.

4. Show that an n-connected, n-dimensional CW complex is con-
tractible.

5. (Extension Lemma)

Given a CW pair (X, A) and amap f : A — Y with Y path-connected,
show that f can be extended to a map X — Y if r,,_1(Y) =0 forall n
such that X \ A has cells of dimension 7.
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6. Show that a CW complex retracts onto any contractible subcomplex.
(Hint: Use the above extension lemma.)

7. 1fp: (X, A, %) — (X,A, x) is a covering space with A = p~1(A),
show that the map p. : 7, (X, 4, %) — 74(X, A, x¢) is an isomorphism
for all n > 1.

8. Show that a CW complex is contractible if it is the union of an
increasing sequence of subcomplexes X; C X, C --- such that each
inclusion X; < X1 is nullhomotopic. Conclude that S* is contractible,
and more generally, this is true for the infinite suspension £*(X) :=
Uns>0 2" (X) of any CW complex X.

9. Use cellular approximation to show that the n-skeletons of homotopy
equivalent CW complexes without cells of dimension n + 1 are also
homotopy equivalent.

10. Show that a closed simply-connected 3-manifold is homotopy
equivalent to S3. (Hint: Use Poincaré Duality, and also the fact that
closed manifolds are homotopy equivalent to CW complexes.)

11. Show that a map f : X — Y of connected CW complexes is a
homotopy equivalence if it induces an isomorphism on 7r; and if a
lift f : X — Y to the universal covers induces an isomorphism on
homology.

12. Show that 777(S%) is non-trivial. [Hint: It contains a Z-summand.]

13. Prove that the space SO(3) of orthogonal 3 x 3 matrices with
determinant 1 is homeomorphic to RIP>.

14. Show that if SK — §™ — S" is a fiber bundle, then k = n — 1 and
m=2n—1.

15. Show that if there were fiber bundles S"~! — §2"~1 — §" for all n,
then the groups 71;(S") would be finitely generated free abelian groups
computable by induction, and non-zero if i > n > 2.

16. Let U(n) be the unitary group. Find 7 (U(n)) for k = 1,2,3 and
n>2.

17. If p: E — B is a fibration over a contractible space B, then p is fiber
homotopy equivalent to the trivial fibration B x F — B.
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2
Spectral Sequences. Applications

Most of our considerations involving spectral sequences will be applied
to fibrations. If F < E — B is such a fibration, then a spectral sequence
can be regarded as a machine which takes as input the (co)homology
of the base B and fiber F and outputs the (co)homology of the total
space E. Our emphasis here is on applications of the theory of spectral
sequences, and not so much on developing the theory itself.

2.1 Homological spectral sequences. Definitions

We begin with a discussion of homological spectral sequences.

Definition 2.1.1. A (homological) spectral sequence is a sequence
{Ei,*/ d:k,* }rZO
of chain complexes of abelian groups, such that
ELL = Ha(EL).
In more detail, we have abelian groups {E}, ; } and maps (called “differentials”)

T . r r
dpq: Epg = Eprgira

such that (d")? = 0 and

r . r r
pril._ ker (dp,q o Ep—r,q+r—1)

pa- r . r r '
Image (dp+r,q—r+1 : Ep+r,q—r+1 - Ep/q)

We will focus on the first quadrant spectral sequences, i.e., with
E, = 0 whenever p < 0 or g < 0. Hence, for any fixed (p,q) in
the first quadrant and for sufficiently large r, the differentials 4}, , and
d;+r,q—r+1 vanish, so that

ro _pr+l _ .. _ o
Ep’q—Ep,q B 7Epr‘7'



42 HOMOTOPY THEORY AND APPLICATIONS

dr
g+r—1 |- j}fr
p—rq+r—1
‘ @
g pommmmmmmmes Fomo e ’
| N
0 3 |
0 p—r p

In this case we say that the spectral sequence degenerates at page E'.
When it is clear from the context which differential we refer to, we
will simply write d’, instead of d, .

Definition 2.1.2. If { H, },, are groups, we say the spectral sequence converges
(or abuts) to H,, and we write

(EP’, d}’) 3 H*/
if for each n there is a filtration
Hy=Dno2Dy 112 -2D1u-12Dou 2D 1,,11=0

such that, for all p,q,

o _D
Epa = PV Dp1gir

\ Do

D1,,—1/ Do

Dy_11/Dp_32

Hy/Dy—11

~

Figure 2.1: r-th page E"

Figure 2.2: n-th diagonal of E®
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To read off H, from E*, we need to solve several extension problems.
But if E , and H. are vector spaces, then

Hi= @ Epy
p+q=n

since in this case all extension problems are trivial.

Remark 2.1.3. The following observation is very useful in practice:
. IfE;‘:q =0, forall p+q =n, then H, =0.

e If H, =0, then Ej, =0 forall p+q = n.

Before explaining in more detail what is behind the theory of spec-
tral sequences, we present the special case of a spectral sequence associ-
ated to fibrations, and discuss some immediate applications (including
to Hurewicz theorem).

Theorem 2.1.4 (Serre). If T : E — B is a fibration with fiber F, and with
m1(B) = 0 and mty(F) = O, then there is a first quadrant spectral sequence
with

E; . = Hy(B; Hy(F)) = H.(E) (2.1.1)

converging to Hy(E).

Remark 2.1.5. Fix some coefficient group K. Then, since B and F are
connected, we have:

* E5 = Hy(B;Hy(F;K)) = Hy(B;K),
* E}, = Ho(B; Hy(F;KK)) = Hy(F;K)

The remaining entries on the E2-page are computed by the universal
coefficient theorem.

Definition 2.1.6. The spectral sequence of the above theorem shall be referred
to as the Leray-Serre spectral sequence of a fibration, and any ring of coefficients
can be used.

Remark 2.1.7. If 711(B) # 0, then the coefficients H;(F) on B are acted
upon by 711 (B), i.e., these coefficients are “twisted” by the monodromy
of the fibration if it is not trivial. As we will see later on, in this case
the E?-page of the Leray-Serre spectral sequence is given by

E; . = Hp(B; Hy(F)),

i.e., the homology of B with local coefficients Hq(F).
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H. (F)

~

H,(B)

2.2 Immediate Applications: Hurewicz Theorem Redux

As a first application of the Lera-Serre spectral sequence, we can now
give a new proof of the Hurewicz Theorem in the absolute case:

Theorem 2.2.1 (Hurewicz Theorem). If X is (n — 1)-connected, n > 2,
then H;(X) =0 fori < n—1and m,(X) = Hy(X).

Proof. Consider the path fibration:
OX——PX—X, (2.2.1)

and recall that the path space PX is contractible. Note that the loop
space Q)X is connected, since 71p(QX) = 11(X) = 0. Moreover, since
m1(X) = 0, the Leray-Serre spectral sequence (2.1.1) for the path fibra-
tion has the E?-page given by

E} . = Hp(X, H;(QX)) = H.(PX).

We prove the statement of the theorem by induction on n. The
induction starts at n = 2, in which case we clearly have H;(X) = 0
since X is simply-connected. Moreover,

7T2(X) = ﬂl(QX) = Hl(QX),

where the first isomorphism follows from the long exact sequence of
homotopy groups for the path fibration, and the second isomorphism
is the abelianization since 71, (X), hence also 71 (Q2X), is abelian. So it
remains to show that we have an isomorphism

H1(QX) & Hy(X). (2.2.2)

Consider the E>-page of the Leray-Serre spectral sequence for the path
fibration. We need to show that

d*: B3y = Hy(X) — Ej; = Hi(QX)

Figure 2.3: p-axis and g-axis of E?
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is an isomorphism.

H.(OX
(zs ) E2
Hi(QX) ¢
d2
— o e H.(X)

Z Hi(X) H(X)

Since {Erz,,q} = H,(PX) and PX is contactible, we have by Remark
2.1.3 that Ej, = 0 for all p,q > 0. Hence, if d? : Hy(X) — Hi(QX)
is not an isomorphism, then Eg,l # 0 and Eg,o = kerd? # 0. But the
differentials d® and higher will not affect Eg,l and E%/O. So these groups
remain unchanged (hence non-zero) also on E*, contradicting the fact
that E® = 0 except for (p,q) = (0,0). This proves (2.2.2).

Now assume the statement of the theorem holds for n — 1 and prove
it for n. Since X is (n — 1)-connected, we have by the homotopy long
exact sequence of the path fibration that X is (n — 2)-connected. So
by the induction hypothesis applied to (2X (assuming now that n.geq3,
as the case n = 2 has been dealt with earlier), we have that H;(QX) =0
fori <n—1,and 1,1 (QX) = H,_1(QX).

Therefore, we have isomorphisms:

ﬂn(X) = anl(QX) = anl (QX),

where the first isomorphism follows from the long exact sequence
of homotopy groups for the path fibration, and the second is by the
induction hypothesis, as already mentioned. So it suffices to show that
we have an isomorphism

Hy1(QX) = Hy(X). (22.3)

Consider the Leray-Serre spectral sequence for the path fibration.
By using the universal coefficient theorem for homology, the terms on
the E2-page are given by

E; . = Hp(X, Hy(QX))
= Hp(X) ® Hy(QX) @ Tor(H,—1(X), Hy (QX))
=0

for 0 < g < n — 1, by the induction hypothesis for (1X.
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H*(i)x)
H, 1(QX) ¢
0
n
0
. . . — H.(X)
z Hi(X) Hy(X) 77 Hy(X) Ha(X)

Hence, the differentials d?, d> - - - d"~! acting on the entries on the p-axis
for p < n, do not affect these entries. The entries H,(X) and H,,_1(QX)
are affected only by the differential d". Also, higher differentials starting
with d"*1 do not affect these entries. But since the spectral sequence
converges to H,(PX) with PX contractible, all entries on the E*-page
(except at the origin) must vanish. In particular, this implies that
H;(X)=0for1<i<mn-—1,and d" : H,(X) — H,,_1(QX) must be an
isomorphism, thus proving (2.2.3). O

2.3 Leray-Serre Spectral Sequence

In this section, we give some more details about the Leray-Serre spectral
sequence. We begin with some general considerations about spectral
sequences.

Start off with a chain complex C, with a bounded increasing filtra-
tion F*C,, i.e., each FFC, is a subcomplex of Cs, Fr-1C, C FPC, for
any p, FPC, = C, for p very large, and FPC, = 0 for p very small. We
get an induced filtration on the homology groups H;(C.) by

FPH;(C,) := Image(H;(F’Cy) — H;(Cx)).

The general theory of spectral sequences (e.g., see Hatcher or Griffiths-
Harris), asserts that there exists a homological spectral sequence with
El-page given by:

E,q = Hpyq(FPC./FP7'C.) = H.(C.)
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and differential d' given by the connecting homomorphism in the long
exact sequence of homology groups associated to the triple

(FFC,, FP71C,, FP72C,).
Moreover, we have
Theorem 2.3.1.
Epq = FpHp+q(C*)/pral+q(C*)
So to reconstruct H, (Cy) one needs to solve a collection of extension
problems.

Back to the Leray-Serre spectral sequence, let F < E ©5 B be a
fibration with B a simply-connected finite CW-complex. Let C«(E) be
the singular chain complex of E, filtered by

FPC,(E) == Cu(m1(By)),
where B, is the p-skeleton of B. Then,
FPC.(E)/FPIC(E) = Cu(m ' (By))/Cu(rr ™ (By-1))
= C.(m ' (By), w (By)).
By excision,

H.(FPC.(E)/FP'C.(E)) = €D H. (7 (e?), 7 (3e"))

where the direct sum is over the p-cells e” in B. Since e” is contractible,
the fibration above it is trivial, so homotopy equivalent to e” x F. Thus,

H. (' (eF), m " (3e?)) =2 H.(e? x F,de, x F)
~ H,(DP x F,SP~1 x F)
= H.—p(F)
~ H,(D¥,SP~Y; H._p(F)),

where the third isomorphism follows by the Kiinneth formula. Alto-
gether, there is a spectral sequence with E!-page

Ehg = Hysq(FPC.(E)/FP7IC.(E)) = @D Hy(DP, SV~ Hy(F)).
ep

Here, d' takes E}W to D, , H,_1(DP~!,8P=2; H,(F)) by the boundary
map of the long exact sequence of the triple (Bp, B, 1, By—2). By cellular
homology, this is exactly a description of the boundary map of the CW-
chain complex of B with coefficients in Hq (F ), hence

E; . = Hp(B, Hy(F)).
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Remark 2.3.2. If the base B of the fibration is not simply-connected,
then the coefficients H,(F) on B in E? are acted upon by 7;(B), ie.,
these coefficients are “twisted” by the monodromy of the fibration if it
is not trivial, so taking the homology of the E!'-page yields

E} . = Hyp(B; Hy(F)),
regarded now as the homology of B with local coefficients ,(F).

The above considerations yield Serre’s theorem:

Theorem 2.3.3. Let F < E ™ Boe a fibration with 711(B) = 0 (or 7t1(B)
acts trivially on Hy(F)) and my(E) = 0. Then, there is a first quadrant
spectral sequence with E2-page

Ejq = Hy(B, Hy(F))
which converges to H, (E).
Therefore, there exists a filtration
Hy(E)=Dyo2Dy—112...2Dgy, 2D_1,41 =0

such that E;’,f’q =Dy,q/Dp-14+1-

n-th diagonal of E*

\ Do,

D1,,—1/Don

Dy_11/Dp_zp

Hy(E)/Dy—1,

~
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(a) We have the following diagram of groups and homomorphisms:

_ 2 2 _ 3 3 _ r4 P _ pptl
Hy(B) = Ep,0 D kerdp’0 = Ep,O D kerdp,O = E]y’0 D...D keralp/0 = Ep/0

Moreover, the above diagram commutes, i.e., the composition

Hy(E) - Ejy C E5 g = Hy(B), (2.3.1)

which is also called the edge homomorphism, coincides with 7, :
Hy(E) — Hp(B).

(b) We have the following diagram of groups and homomorphisms:

+2
Hy(F) = Ej, — Ej, = Hy(F)/Image(d?) Ej,

s

Furthermore, this diagram commutes.

(©

Theorem 2.3.4. The image of the Hurewicz map h : 7w,(B) — Hy(B)

is contained in EJ o, which is called the group of transgression elements.

49
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Furthermore, the following diagram commutes:

n

h
m(B) ———H,(B) =E2,2 ... 2 EIj

l.e.sia ld"
it

my1(F) —— Hy 1 (F) = E§,,_; —» ... —» Ej,

2.4 Hurewicz Theorem, continued

Under the assumptions of the Hurewicz theorem, consider the follow-
ing transgression diagram of Theorem 2.3.4:

hn

(X)) ———— Hy(X) =E2) = ... = EI'
| |
-1 (QX) h%) H, 1(OX)=Ej, =...=E}, 4
Ox

The Hurewicz homomorphism h?{xl is an isomorphism by the inductive
hypothesis, 9 is an isomorphism by the homotopy long exact sequence
associated to the path fibration for X, and 4" is an isomorphism by the
spectral sequence argument used in the proof of the Hurewicz theorem.
Therefore, h' : 71,(X) — Hy(X) is an isomorphism since the diagram
commutes.

Remark 2.4.1. It can also be shown inductively that under the assump-
tions of the Hurewicz theorem,

h?(ﬂ t 71 (X) — Hypp1(X)
is an epimorphism.
In what follows we give more general versions of the Hurewicz
theorem. Recall that even if X is a finite CW-complex the homotopy

groups 77;(X) are not necessarily finitely generated. However, we have
the following result:

Theorem 2.4.2 (Serre). If X is a finite CW-complex with 111(X) = 0 (or
more generally if X is abelian), then the homotopy groups 7;(X) are finitely
generated abelian groups for i > 2.

Definition 2.4.3. Let C be a category of abelian groups which is closed under
extension, i.e., whenever

0 A B C 0

is a short exact sequence of abelian groups with two of A, B, C contained in C,
then so is the third. A homomorphism ¢ : A — B is called a
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* monomorphism mod C if ker ¢ € C;
¢ epimorphism mod C if coker ¢ € C;
¢ isomorphism mod C if ker ¢, coker ¢ € C.
Example 2.4.4. Natural examples of categories C as above include
{finite abelian groups}, {finitely generated abelian groups}, as well as
{p-groups}.

We then have the following:
Theorem 2.4.5 (Hurewicz mod C). Given n > 2, if m;(X) € C for 1 <
i <n—1,then H(X) € Cfori <n—1,h% : my(X) = Hu(X) is an
isomorphism mod C, and W™ : 7,11(X) — Hyy1(X) is an epimorphism
mod C.

We need the following easy fact which guarantees that in the Leray-
Serre spectral sequence of the path fibration we have Ej, , € C.

Lemma 2.4.6. If G € C and X is a finite CW-complex, then H;(X;G) € C
for any i. More generally (even if X is not a CW complex), if A, B € C, then
Tor(A, B) € C.

Then the proof of Theorem 2.4.5 is the same as that of the classical
Hurewicz theorem, after replacing “=” by “= mod C”, and “0” by
I/Cll:

th

T (X) ——=—— Hy(X) = E2y=...=E,
Ela =~ mod CJ{d”
o d C
-1 (QX) :;‘jl H,1(QOX)=E}, ,=...=E}, 4
ax

Specifically, h"Q;g is an isomorphism mod C by the inductive hypothesis,

0 is an isomorphism by the long exact sequence associated to the path
fibration, and d" is an isomorphism mod C by a spectral sequence
argument similar to the one used in the proof of the Hurewicz theorem.
Therefore, 1% is an isomorphism mod C since the diagram commutes.

Proof of Serre’s Theorem 2.4.2. Let
C = {finitely generated abelian groups}.

Then, H;(X) € C since X is a finite CW-complex. By Theorem 2.4.5, we
have 71;(X) € C fori > 2. O

As another application, we can now prove the following result:

Theorem 2.4.7. Let X and Y be any connected spaces and f : X — Y a weak
homotopy equivalence (i.e., f induces isomorphisms on homotopy groups).
Then f induces isomorphisms on (co)homology groups with any coefficients.

51
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Proof. By universal coefficient theorems, it suffices to show that f
induces isomorphisms on integral homology. As such, we can assume
that f is a fibration, and let F denote its fiber.

Since f is a weak homotopy equivalence, the long exact sequence
of the fibration yields that 7;(F) = 0 for all i > 0. Hence, by the
Hurewicz theorem, ﬁi(F ) =0, for all i > 0. Also, Hy(F) = Z, since F
is connected.

Consider now the Leray-Serre spectral sequence associated to the
fibration f, with E?-page given by (see Remark 2.1.7):

B2, = Hy(Y, Hy(F)) = H.(X),

where H,(F) is a local coefficient system (i.e., locally constant sheaf)
on Y with stalk H;(F). Since F has no homology, except in degree zero
(where Ho(F) = Hy(F) is always the trivial local system when F is
path-connected), we get:

E;%,q =0 forg >0,

and
1—:;%,0 = H,(Y).

Therefore, all differentials in the spectral sequence vanish, so
E>=...=E®.
Recall now that
Hy(X)=Dyp2Dy_112---20

and E;‘fq = Dyp,q/Dp-14+1- Soif g > 0, then Dy = Dy 1441 since
E;’,fq = 0. In particular, D,,_17 = --- = Do, = D_1 41 = 0. Therefore,

Hu(X) = Eyy = E5 g = Hu(Y)

and, by our remarks on the Leray-Serre spectral sequence (and edge
homomorphism), the above composition of isomorphisms coincides
with f., thus proving the claim. O

2.5 Gysin and Wang sequences

As another application of the Leray-Serre spectral sequence, we discuss
the Gysin and Wang sequences.

Theorem 2.5.1 (Gysin sequence). Let F < E ~5 B be a fibration, and
suppose that F is a homology n-sphere. Assume that 7t1(B) acts trivially on
H,(F), e.g., m1(B) = 0. Then there exists an exact sequence

+++— H;(E) ™ H;(B) = H;_y_1(B) = H;_1(E) ™ H;_1(B) — - --
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Proof. The Leray-Serre spectral sequence of the fibration has

H,(B) ,9=0,n

E2 = H,(B;H,(F)) =
PA s i 0 , otherwise.

AN H*(B)

O Ezz---:E”‘H

H.(B)

Thus the only possibly nonzero differentials are:

n+1 ., pn+1 n+1
dm L ERSt — BNt

In particular,

b == B
for any (p,q), and
0 4 #0,n
Ey, = 4 ker(d"t1: E;,gl — EZfLLn) ,4=0 (2.5.1)
coker(d"+1 : EZE&LO — E;ﬂzq,n) ,q=n.

The above calculations yield the exact sequences

00 n+1 dntl n+1
0 EP/O EP/O Ep—n—l,n E

00}

p—n—1n » 0.

The filtration on H;(E) reduces to
0CE?

i—nmn

= Di_nn C Dip = Hi(E)
and so the sequences
0—E”,, — H(E) — Ej —0 (2.5.2)
are exact for each i.
The desired exact sequence follows by combining (2.5.1), (2.5.2) and
the edge isomorphism (2.3.1). O

Theorem 2.5.2 (Wang). If F — E — 5" is a fibration, then there is an exact
sequernce:

+++ —> Hi(F) — H;(E) — H;_4(F) — H;_1(F) — -+

Proof. Exercise. ]
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2.6 Suspension Theorem for Homotopy Groups of Spheres

We first need to compute the homology of the loop space (3S" for n > 1.
Proposition 2.6.1. If n > 1, we have:

Z ,+x=an-1),aeN

0 , otherwise

H.(QS") = {
Proof. Consider the Leray-Serre spectral sequence for the path fibration
(with 711 (S") = p(QS™) = 0)
QOS" < PS" ~ x — S",
with E2-page

H,(QS") ,p=0,n

E2, = H,(S"; H,(QS")) =
PA A 1 ) { 0 ,otherwise

which converges to H.(PS") = H.(point). In particular, Ej}, = 0 for
all (p,q) # (0,0).

H*(QS") F2—...—[n
H;(QS") H;(QS")
O
Hy(QS™) H1(QS™)

First note that we have Hy(QS") = Z since 11p(QS") = my(S") = 0.
Moreover, H;(QS") = Eéﬂ» = ES,Z. = Eg; =0for 0 <i <mn-—1,since
these entries are not affected by any differential. Furthermore, d> =
d® =...=d""! = 0 since these differential are too short to alter any of
the entries they act on. So

E2=...=FE"

Similarly, we have d"*! = d"*2 = ... = 0, as these differentials are too

long, and so
I
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Since E, = 0 for all (p,q) # (0,0), all nonzero entries in E" (except at
the origin) have to be killed in E"*!. In particular,

n . n n
dn,q . En,q ’ EO,q+n71
are isomorphisms.

H.(Qs") £2

. — En

H2n72(05n)

: d"
H,(Q8") O
) \

anl(QSn) Hy—1(QS")
0 0
0 0
\
0 n Z = Ho(QS") ’

For instance, d" : Z = Ho(QS") = E;y — Ej, ; = Hy,-1(QS")
is an isomorphism, hence H,_1(QS") = Z. More generally, we get
isomorphisms

Hq(QSn) = Hq+n71 (an)

for any g > 0. Since Hy(QS5") = Z and H;(QS") =0for0<i<n-—1,
this gives:

Z ,+=an-1),aeN

H.(QSs") =
0 , otherwise

as desired. O

We can now give a new proof of the Suspension Theorem for homo-
topy groups.

Theorem 2.6.2. If n > 3, there are isomorphisms 7;(S" 1) = 71;1(S"), for
i < 2n — 4, and we have an exact sequence:

Z — 7T2n73(5n_1) - 7T2n72(sn) — 0.

Proof. We have Z = 71,,(S") = 7, _1(QS"). Let g : "1 — QS" be a
generator of 71,1 (QS"). First, we claim that

9+ 1s an isomorphism on H;(—) for all i < 2n — 2.
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This is clear if i = 0, since Q)S" is connected. Given our calculation for
H;(QS") in Proposition 2.6.1, it suffices to prove the claim for i = n — 1.
We have a commutative diagram:

vt Hy_1(S"71) H,1(QS")
h O h

T 1(S"1) & 7y -1(QS")

[id] — [goid] = [g]

where & is the Hurewicz map. The bottom arrow g, is an isomorphism
on 7,_1 by our choice of g. The two vertical arrows are isomorphisms
by the Hurewicz theorem (recall that n > 3, so both S"1 and QS" are
simply-connected). By the commutativity of the diagram we get the
isomorphism on the top horizontal arrow, thus proving the claim.

Since we deal only with homotopy and homology groups, we can
moreover assume that g is an inclusion. Then the homology long exact
sequence for the pair (QS", S"~1) reads as:

oo Hy(S"Y &5 H(QS™) — H(QS",S"Y) —
— Hi1(S" 1) & H_;(QS") — - -

From the above claim, we obtain that H;(QS", S"fl) =0,fori <2n-—2,
together with the exact sequence

0 = Z = Hyy_2(QS") = Hpp_»(QS",S" 1) =0

Since S"~! is simply-connected (as n — 1 > 2), by the relative Hurewicz
theorem, we get that 77;(QS", S"1) =0fori < 2n—2,and

Tan—2(QS",§" 1) 2 Hyy (QS", 8" 1) = Z.

From the homotopy long exact sequence of the pair (QS",5" 1), we

~

then get 77;(QS") = 71;(S" 1) for i < 2n — 3 and the exact sequence
=L — 7_[2”73(511—1) — 70, —3(QS") = 0

Finally, using the fact that 77;(QS") = m;11(S"), we get the desired
result. O

By taking i = 4 and n = 4, we get the first isomorphism in the
following:

Corollary 2.6.3. 714(S3) = 715(5%) = ... = m,,1(S")
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2.7 Cohomology Spectral Sequences

Let us now turn our attention to spectral sequences computing coho-
mology. In the case of a fibration, we have the following Leray-Serre
cohomology spectral sequence:

Theorem 2.7.1 (Serre). Let F — E — B be a fibration, with 711(B) = 0 (or
7t1(B) acting trivially on fiber cohomology) and 1to(F) = 0. Then there exists
a cohomology spectral sequence with Ey-page

E}T = HY(B, H(F))
converging to H*(E). This means that, for each n, H"(E) admits a filtration
H"(E)=D" 2> p' 12> . . 2D oD 1=0

so that
, A
Efoq = D /Dp+1,q7].

Moreover, the differential d¥'7 : EF1 — Ef’“’q*r+1 satisfies (d,)*> = 0, and
E.q = H*(E,,d,).

\ n-th diagonal of Ee
H’%E)/Dlm*l

Dl,nfl / DZ,VI*Z

anl,l /Dn,O

Dn,O

~

The corresponding statements analogous to those of Remarks 2.1.3
and 2.1.5 also apply to the spectral sequence of Theorem 2.7.1.

The Leray-Serre cohomology spectral sequence comes endowed
with the structure of a product on each page E;, which is induced from
a product on Ej, i.e., there is a map

! / /
o EPT EVA s EPA
satisfying the Leibnitz condition

dr(x o y) = dy(x) oy + (~1)*Vx 0 d, (y)
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where deg(x) = p + g. On the E;-page this product is the cup product
induced from

HP(B,H(F)) x HY (B,H" (F)) — HP*’'(B,HT™7(F))
m-yxn-v — (mUn)-(yUv)

with m € HI(F), n € H7(F), v € CP(B) and v € C?(B), so that
mUn € H7 (F) and v Uv € CPH¥'(B).

As it is the case for homology, the cohomology Leray-Serre spectral
sequence satisfies the following property:

Theorem 2.7.2. Given a fibration F X E ™% B with F connected and
7t1(B) = 0 (or 111 (B) acts trivially on the fiber cohomology), the compositions

,0

0 0 0 0
HI(B) = E}” - Ey" — - — Ej" — El\, = E C HY(E) (2.7.1)

and
HI(E) — E& = E)%, C By € - € By = H(F) (2.7.2)

are the homomorphisms 7v* : H1(B) — HY(E) and i* : H1(E) — HI(F),
respectively.

Recall that for a space of finite type, the (co)homology groups
are finitely generated. By using the universal coefficient theorem in
cohomology, we have the following useful result:

Proposition 2.7.3. Suppose that F — E — B is a fibration with F connected
and assume that 711 (B) = 0 (or 711(B) acts trivially on the fiber cohomology).
If B and F are spaces of finite type (e.g., finite CW complexes), then for a field
K of coefficients we have:

EY" = H?(B;K) ®k H(F; K).

Sufficient conditions for the cohomology of the total space of a
fibration to be the tensor product of the cohomology of the fiber and
that of the base space are given by the following result.

Theorem 2.7.4 (Leray-Hirsch). Suppose F S ES Bisa fibration, with
B and F of finite type, 11(B) = 0 and mo(F) = 0, and let K be a field of
coefficients. Assume that i*: H*(E; K) — H*(F;K) is onto. Then

H*(E;K) = H*(B;K) ®x H*(F; K).
Proof. Consider the Leray-Serre cohomology spectral sequence

EY" = HP(B; H'(F;K)) = H*(E;K)
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of the fibration F <— E — B. By Proposition 2.7.3, we have:
E}'" = HP(B;K) @k H(F;K).
In order to prove the theorem, it suffices to show that
Ey=- = Es,

i.e., that all differentials d,, d3, etc., vanish. Indeed, since we work with
field coefficients, all extension problems encountered in passing from
Ew to H*(E;K) are trivial, i.e.,
H"EK)~ P EX.
ptq=n

Recall from Theorem 2.7.2 that the composite
0, 0, 0, 0,
H(E;K) - Eod! = qjl C E?c--- C Ey = HI(F;K)

is the homomorphism * : H1(E;K) — H7(F;K). Since i* is assumed
onto, all these inclusions must be equalities. So all d,, when restricted
to the g-axis, must vanish. On the other hand, at E, we have

EV = E @ E) (27.3)

since K is a field, and d, is already zero on E;’O since we work with a
first quadrant spectral sequence. Since d; is a derivation with respect
to (2.7.3), we conclude that d» = 0 and E3 = E;. The same argument
applies to d3 and, continuing in this fashion, we see that the spectral
sequence collapses (degenerates) at Ep, as desired. O

2.8 Elementary computations

Example 2.8.1. As a first example of the use of the Leray-Serre co-
homology spectral sequence, we compute here the cohomology ring
H*(CP*) of CP*.

Consider the fibration

St s §® ~ % — CP™.
The E;-page of the associated Leray-Serre cohomology spectral se-
quence starts with:

H*(SY)

A

E;

K
y H*(CP®)

Z 0 Z !
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Here, H'(CP®) = E;’O = 0 since it is not affected by any differential d,,
and the Ew-page has only zero entries except at the origin. Moreover,
since the cohomology of the fiber is torsion-free, we get by the universal
coefficient theorem in cohomology that

E}" = HP(CP™, HI(S")) = HP(CP®) @ HI(S).

In particular, we have Ey' = 0 and Ey! = H'(S') = Z.

Since S* has no positive cohomology, hence the E.-page has only
zero entries except at the origin, it is easy to see that d; : Eg'l — Eg,o has
to be an isomorphism, since these entries are not affected by any other
differential. Hence we have H?(CP*®) = E%’O = Z. Since all entries on
the Ey-page are concentrated at 4 = 0 and g = 1, the only differential
which can affect these entries is d>. A similar argument then shows
that d : Eg’l — Eg 2045 an isomorphism for any p > 0. This yields
that H®?"(CP®) = Z and H°*(CP®) = 0.

Let Z = (x) = H'(S'). Let y = d(x) be a generator of H>(CP®).

H*(Sh)

4 E2
xf, 0 xy
K K
» H*(CP*®)
1 0 y 0 e

Then, after noting that xy = (1® x)(y ® 1) is a generator of Z = E3",
we have:

dao(xy) = do(x)y + (—1)98Wxd, (y) = 12,

Therefore, H*(CP®) = Z = (y?), since the d; that hits 4 is an iso-
morphism. By induction, we get that do(xy"~!) = y" is a generator of
H?"(CP*). Altogether, H* (CP®) = Z[y], with deg(y) = 2.

Example 2.8.2 (Cohomology groups of lens spaces). In this example
we compute the cohomology groups of lens spaces. Let us first recall
the relevant definitions.

Assume n > 1. Consider the scaling action of C* on C"*1\{0}, and
the induced S'-action on $***1. By identifying Z/r with the group
of r'" roots of unity in C*, we get (by restriction) an action of Z/r on

S21+1 The quotient
S 2n+1

L(n,r):= S

is called a lens space.
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The action of Z/r on S***! is clearly free, so the quotient map
S+l L(n,r) is a covering map with deck group Z/r. Since S?"*1
is simply-connected, it is the universal cover of L(n,r). This yields that
m1(L(n,r)) = Z/r and all higher homotopy groups of L(n,r) agree
with those of the sphere 5?1,

By a telescoping construction, which amounts to letting n — oo, we
get a covering map S® — L(oo,r) := SOO/Z /r With contractible total
space. In particular,

L(co,7) = K(Z/1,1).

To compute the cohomology of L(n,r), one may be tempted to
use the Leray-Serre spectral sequence for the covering map Z/r —
S21+1 5 L(n,r). However, since L(n,r) is not simply-connected, com-
putations may be tedious. Instead, we consider the fibration

St < L(n,r) — CP" (2.8.1)

whose base space is simply-connected. This fibration is obtained by
noting that the action of S! on $?"*! descends to an action of S! =
SY/(Z/r) on L(n,r), with orbit space CP".

Consider now the Leray-Serre cohomology spectral sequence for
the fibration (2.8.1):

EyT = HP (CP",H(S';Z)) = H'1(L(n,1);Z)

and note that E}"" = 0 for g # 0, 1. This implies that all differentials d3
and higher vanish, so
E3 T e e e —— Eoo.

On the E>-page, we have by the universal coefficient theorem in coho-
mology that:
EY" = HP(CP";Z) @ H1(S%; Z).

Let a be a generator of Z = Eg'l =~ H!(S%;Z), and let x be a generator
of Z = E5" = H?(CP"; Z). We claim that

dy(a) = rx. (2.8.2)
* (gl
a 0 ax 0 ax? ax"
K X)
b H(CP)
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To find d», it suffices to compute H?(L(n,r);Z). Indeed, by looking
at the entries of the second diagonal of E, = --- = E3, we have:
02 11
H2(L(n, r),Z) = DO’Z, Egéz = D /Dl’l = 0, Egc',l = D /DZ’O = 0, and
20 _ 20 _Z ;
EY = DY = /Image(dz)' In particular,

HZ(L(TZ, 7’),2) = DO’2 = D1'1 = DZ,O = Z/Image(dz) (283)

On the other hand, since Hy(L(n,7);Z) = my(L(n,r)) = Z/r, we get
by the universal coefficient theorem that

H?(L(n,1);Z) = (free part) & Z/r. (2.8.9)

By comparing (2.8.3) and (2.8.4), we conclude that d(a) = rx and
H*(L(n,r);Z) =2Z/r.

By using the Kiinneth formula and the ring structure of H*(CP"; Z),
it follows from the Leibnitz formula and induction that da (ax¥~1) = rx*
for 1 < k < n, and we also have dy(ax") = 0. In particular, all the

nontrivial differentials labelled by d; are given by multiplication by .

Since multiplication by r is injective, the E3 = --- = E-page is
given by
AN Eoo
0 0 0 0 0 Z
- - - - - - 0- - - -@—— - - ———————— .- - - —-
>
Z 0 Z/r 0 Z/r T Z]r

The extension problems for going from E to the cohomology of
the total space L(n, r) are in this case trivial, since every diagonal of E
contains at most one nontrivial entry. We conclude that

Z. i=0
Z/r i=24,---,2n
Z i=2n+1

0 otherwise.

Hi(L(n,r);Z) =

By letting n — oo, we obtain similarly that

Z i=0
H(K(Z/1,1);Z) = Z/r i=2kk>1
0 otherwise.

In particular, if r = 2, this computes the cohomology of RP.
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2.9 Computation of 71,,11(S")

In this section we prove the following result:

Theorem 2.9.1. Ifn > 3,
m,1(S") =Z/2.

Theorem 2.9.1 follows from the Suspension Theorem (see Corollary
2.6.3), together with the following explicit calculation:

Theorem 2.9.2.
(8% =2/2.

The proof of Theorem 2.9.2 given here uses the Postnikov tower
approximation of S3, whose construction we recall here. (A different
proof of this fact will be given in the next section, by using Whitehead
towers.)

Lemma 2.9.3 (Postnikov approximation). Let X be a CW complex with
7ty := 1t (X). For any n, there is a sequence of fibrations

K(T[k,k) — Yk — Yk—l
and maps X — Yy with a commuting diagram

Yl Yz cee Yn,1 — Yn

Y

X

such that X — Yy induces isomorphisms 1;(X) = m;(Yy) for i < k, and
7ti(Yy) = 0 for i > k.

Proof. To construct Y, we Kkill off the homotopy groups of X in degrees
> n+ 1 by attaching cells of dimension > n + 2. We then have 77;(Y,,) =
m;(X) for i < nand m;(Y,) = 0if i > n. Having constructed Y;, the
space Y, is obtained from Y}, by killing the homotopy groups of Y,

in degrees > n, which is done by attaching cells of dimension > n + 1.

Repeating this procedure, we get inclusions
XCYyCYyqC---CYy=K(m,1),

which we convert to fibrations. From the homotopy long exact sequence
for each of these fibrations, we see that the fiber of Y, — Y;_; is a
K(7ty, k)-space. O

Proof of Theorem 2.9.2. We consider the Postnikov tower construction in
the case n = 4, X = S3, to obtain a fibration

K(7ty4,4) — Y4 — Y3 = K(Z,3), (2.9.1)
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where 714 = 714(S®) = 74(Yy). Here, Y3 = K(Z,3) since to get Y3 we
kill off all higher homotopy groups of S° starting at 7r4. Since Y* is
obtained from $3 by attaching cells of dimension > 6, it doesn’t have
cells of dimensions 4 and 5, thus

Hy(Ys) = H5(Ys) = 0.

Let us now consider the homology spectral sequence for the fibration
(2.9.1). By the Hurewicz theorem,

0 p=12

H,(K(2,3);2) = {Z o,

0 7=1,23

Hq(K(TL’4,4);Z) = {7’[ (53) q= 4
4 = 4.

So the E2-page looks like

HL(K (i, )

Tty
0
0 @
0
y H.(K(Z,3)
Z 0 0 Z Hy Hs

Since Hy(Ys) = 0 = Hs(Y4), all entries on the fourth and fifth diagonals
of E* are zero. The only differential that can affect 74(S%) = I:"(Z],4 =
R— ESA is

&> : H5(K(Z,3),Z) — m4(S°),

and by the previous remark, this map has to be an isomorphism (note
also that E%,O = H5(K(Z,3),Z) can be affected only by d°, and this
element too has to be killed at E*). Hence

714(S%) = H5(K(Z,3),Z). (2.9.2)

In order to compute Hs5(K(Z,3),Z), we use the cohomology Leray-
Serre spectral squence associated to the path fibration for K(Z,3),
namely

OK(Z,3) < PK(Z,3) — K(Z,3),
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and note that, since PK(Z, 3) is contractible, we have 71;(Q0K(Z,3)) =
mi+1(K(Z,3)), i.e., QK(Z,3) ~ K(Z,2) = CP>. Since each H/(CP%) is
a finitely generated free abelian group, the universal coefficient theorem
yields that

EY" = HP(K(Z,3); H'(CP®)) = H'(K(Z,3)) ® HT(CP%), (293)

and the product structure on E; is that of the tensor product of
H*(K(Z,3)) and H*(CP®).

Since E;’q = 0 for g odd, we have d, = 0, so E; = E3. Similarly, all
the even differentials dy,, are zero, so Ep, = Ej, 11, for all n > 1. Since
the total space of the fibration is contractible, we have that EXT =0 for
all (p,q) # (0,0), so every non-zero entry on the Ey-page (except at the
origin) must be killed on subsequent pages.

Let a € H?(CP®) = Z be a generator. So a* is a generator of
H%*(CP®) = Eg’Zk, for any k > 1. We create elements on E;’O, which
will sooner or later kill off all the non-zero elements in the spectral
sequence.

H*(CP®)

A

5 ¢0 E, = E3

1 0 0 $ 0 0 L g2
0 Y > H'(K(Z,3))
0 1 2 3 4 5 6

Note that Eé’o = E%’O = H'(K(Z,3)) is never touched by any differen-
tial, so
HY(K(Z,3)) = EX = 0.

Moreover, since d, = 0, we also have that
H*(K(2,3)) =E5° =E5° = EX’ =0.

The only differential that can affect (a) = Eg,z = Eg,z is dg,z : Eg,z — Eg’o,
so there must be an element s € Eg,o that kills off 4, i.e., d3(a) =s. On
the other hand, since Eg’o is only affected by d3 and it must be killed
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off at infinity, we must have that dg,z : E(3),2 — Eg’o is an isomorphism,
SO s generates
7z =E" =E" = H*K(Z,3)).

By (2.9.3), we also have that Eg’z = Eg'Z = Z, generated by as. Note that
d3(a*) = 2ad3(a) = 2as,

so dgA : Eg’4 — Eg”z is given by multiplication by 2. In particular,
EY* = 0. Next notice that H*(K(Z,3)) = E;” and H*(K(Z,3)) = E3°
can only be touched by the differentials d3, d4, or ds, but all of these are
trivial maps because their domains are zero. Thus, as H*(K(Z,3)) and
H°(K(Z,3)) can not killed by any differential, we have

H*(K(Z,3)) = H(K(Z,3)) = 0.

Similarly, H®(K(Z,3)) = E$° and (as) = E3? are only affected by
ds. Since d3(a®?) = 2as, we have ker(ds: (as) = Eg’z — Eg'o) =
Image(ds: Ey* — Ey* = (as)) = (2as) C (as), and hence H*(K(Z,3)) =
Image(ds: Ey* — ES°) = (as) / (2as) = Z/2.

In view of the above calculations, we get by the universal coefficient
theorem that

Hs(K(Z,3)) =Z/2. (2.9.4)
The assertion of the theorem then follows by combining (2.9.2) and
(2.9.4). O
Corollary 2.9.4.
my(S?) = Z/2.

Proof. This follows from Theorem 2.9.2 and the long exact sequence of
homotopy groups for the Hopf fibration S < §3 — S2. O

2.10 Whitehead tower approximation and rt5(S)

In order to compute 715(S%) we make use of the Whitehead tower
approximation. We recall here the construction.

Whitehead tower

Let X be a connected CW complex, with 77; = 71,(X) for any g > 0.

Definition 2.10.1. A Whitehead tower of X is a sequence of fibrations
e — Xy — Xy — =2 X=X

such that

(a) X, is n-connected
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(b) 1y(Xn) = 1g(X) forqg >n+1
(c) the fiber of Xy, — X1 is a K(7t,, n — 1)-space.
Lemma 2.10.2. For X a CW complex, Whitehead towers exist.

Proof. We construct X, inductively. Suppose that X,,_; has already
been defined. Add cells to X,,_; to kill off 7;(X,_1) for ¢ > n+ 1.
So we get a space Y which, by construction, is a K(7,, n)-space. Now
define the space

Xy =P Xy 1:={f:1=Y,f(0)=xf(1) € Xy_1}

consisting of of paths in Y beginning at a basepoint * € X,_1 and
ending somewhere in X,,_;. Endow X, with the compact-open topology.
As in the case of the path fibration, the map 7 : X, = X,,_1 defined by
v — (1) is a fibration with fiber QY = K(7m,, n —1).

From the long exact sequence of homotopy groups associated to the
fibration

K(my,n—1) = X, = X, 1
we get that 715(X,,) = my(X,—1) for ¢ > n+1, and 74(X,;) = 0 for
g < n — 2. Furthermore, the sequence
0 — 7t (Xn) — mn(Xy-1) — Tu-1(K(7tn,n — 1)) — - 1(Xn) — 0

is exact. So we are done if we show that the boundary homomor-
phism 9 : 71, (X;,—1) — 7,—1(K(7ry, n — 1)) of the long exact sequence
is an isomorphism. For this, note that the inclusion X,, 1 C Y =
K(my,n) = X,,_1 U {cells of dimension > n+ 2} induces an isomor-
phism 7, (X;,—1) = 7,K(7wy,n) = m,_1(K(7wy,n — 1)), which is pre-
cisely the above boundary map 0. O

Calculation of 714(S%) and 7t5(S°)

In this section we use the Whitehead tower for X = S% to compute
7'[5(53).
Theorem 2.10.3.

ms5(83) = Z/2.

Proof. Consider the Whitehead tower for X = S%. Since S° is 2-
connected, we have in the notation of Definition 2.10.1 that X = X; =
Xy. Let 7t; := m;(S%), for any i > 0. We have fibrations

K(7T4,3) —_— X4

|

K(m3,2) —— X3

J

53
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Since 713 = Z, we have K(73,2) = CP®. Moreover, since Xy is 4-
connected, we get by definition and Hurewicz that

7'[5(53) = 7T5(X4) = H5(X4).

Similarly,
74(S%) = 714(X3) = Hy(Xs).

Once again we are reduced to computing homology groups. Using the
universal coefficient theorem, we will deduce the homology groups
from cohomology.

Consider now the cohomology spectral sequence for the fibration

CP® — X3 — S5.
The Ep-page is given by
E}? = HP(S® HY(CP*,Z)) = HP(S%) ® H1(CP™) = H*(X3).

In particular, Ej7 = 0 unless p = 0,3 and 4 is even.

H*(CP®
(zs ) 1 EZ — E3
|
|
4 ¢52 1
ds |
340 !
2 |
|
2 X ;xu
|
ds |
1 40 N, |
|
1 0 0 !
0 ——s ;” s H*(5%)

Since Eg’q = 0 for g odd, we have d, = 0, so E; = E3. In addition, for
r>4,d, =0. So E4 = Eco.

Since X3 is 3-connected, we have by Hurewicz that H?(X3) =
H3(X3) = 0, so all entries on the second and third diagonals of
Ew = E4 are 0. This implies that d3* : EY*> = Z — E3° = Z is
an isomorphism. Let H*(CP%®) = Z[x| with x of degree 2, and let u be
a generator of H3(S%). Then we have d3(x) = u. By the Leibnitz rule,
d3x™ = nx""'dx = nx""'u, and since x"* generates Eg,zn and x"1u
generates Eg,z;qu, the differential dg’zn is given by multiplication by n.
This completely determines E; = E, hence the integral cohomology
and (by the universal coefficient theorem) homology of X3 is easily
computed as:

q 01 2 3 4 5 6 7 e 2k 2k+1
H1(X3)|Z 0 0 0 O Z/2 0 Z/3 --- 0 Z/k
Hy(X3)|Zz 0 0 0 Z/2 0 Z/3 0 o Z/k 0
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In particular, 714 = Hy(X3) = Z /2, which reproves Theorem 2.9.1.

In order to compute 715(S%) = Hs(Xy), we use the homology spectral
sequence for the fibration

K(7y,3) = Xq — X3,
with E2-page
E;q = Hp(X3;Hy(K(Z/2,3))) = Hi(Xy).

Note that, by the Hurewicz theorem, we have: H;(K(my,3)) = 0 for
i =1,2and H3(K(my,3)) = my = Z/2. So Ej , = 0 for g = 1,2. Also,
Ef;,o = H,(X3), whose values are computed in the above table.

H.(K(Z/2,3))

5¢7Z/2

Z 0 0 0 Z/2 0 Z/3
0 1 2 3 4 5 6

> H, (X3)

Since X4 is 4-connected, we have by Hurewicz that H3(X4) = Hy(Xy) =
0, so all entries on the third and fourth diagonal of E* are zero. Since
the first and second row of EZ are zero, this forces d* : Eio = Eio —
Eé/3 = E(%,s to be an isomorphism (thus recovering the fact that 74 =
Z./2), and

Hy(K(Z/2,3)) = Ej, = E5; = 0.

Moreover, by a spectral sequence argument for the path fibration of
K(Z/2,3), we obtain (see Exercise 6)

Ejs = H5(K(Z/2,3)) = Z/2,

and this entry can only be affected by d° : Eg,o = Z/3 — E8’5 =
E%,S = Z/2, which is the zero map, so ES‘/’5 = Z /2. Thus, on the fifth
diagonal of E*, all entries are zero except E8?5 = Z /2, which yields
H5(Xy) = 2Z/2,ie., 75(S%) = Z/2. O
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2.11 Serre’s theorem on finiteness of homotopy groups of spheres

In this section we prove the following result:
Theorem 2.11.1 (Serre).
(a) 7;(S*+1) is finite for i > 2k + 1.
(b) 7;(S%) is finite for i > 2k, i # 4k — 1, and
Ttgr—1(S%F) = Z @ {finite abelian group}.

Proof of part (a). The case k = 0 is easy since ;(S!) is in fact trivial
for i > 1. For k > 0, recall Serre’s theorem 2.4.2, according to which
a simply-connected finite CW complex has finitely generated homo-
topy groups. In particular, the groups 77;(S?*1) are finitely generated
abelian for all i > 1. Therefore, 7r;(S%**1) (i > 1) is finite if it is a torsion
group.

In what follows we show that

m;(S%1) 2 71,5 (S%*1) mod torsion, (2.11.1)

and part (a) of the theorem follows then by induction. The key to
proving the isomorphism (2.11.1) is the fact that

Mok (Q2S* ) =y 4 (8% = Z.

Letting B: %=1 — (?S%+1 be a generator of 7y _1(Q?S%*+1), we
will show that B induces an isomorphism mod torsion on H, (i.e., an
isomorphism on H,(—;Q)). Let us assume this fact for now. WLOG,
we assume that § is an inclusion, and then the homology long exact
sequence of the pair (Q25%+1, §%~1) yields that

H,(Q28%+1 62~1) — 0 mod torsion.

The relative version of the Hurewicz mod torsion Theorem 2.4.5 then

tells us that
(2821, 5251y — 0 mod torsion

for all i, so again by the homotopy long exact sequence of the pair

we get that 7;(S%*1) = ;(Q28%+1) = m;,,(S%+1) mod torsion, as

desired.

Thus, it remains to show that the generator §: §2%k=1 _y )2G2k+1 f
Ttor_10%(S%*1) induces an isomorphism on H.(—;Q). The bulk of the
argument amounts to showing that H;(Q?(S%*+1);Q) = 0 fori # 2k — 1,
which we do by computing H;(Q?(5%*+1);Q)" = H!(Q?(s%*1);Q)
with the help of the cohomology spectral sequence for the path fibration
0282+ <y 4 — O§%+1 The Ep-page is given by

Eé’/q — Hp(052k+1; Hq(QZSZkJrl;Q)) = H*(*;Q),
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and since the total space of the fibration is contractible, we have EFT =0
unless p = g = 0, in which case EX >~ 7.

It is a simple exercise (using the path fibration QS**1 — % —
$%+1) to show that

H*(QS%+1,Q) = Qle], dege = 2k.
Hence,

Eg'q :Hp (Qszk-‘rl’. Hq (0252k+1; Q))
~ [P (QSZk+1; Q) ®q Hq(0252k+1; Q)
has possibly non-trivial columns only at multiples p of 2k, with E%k’o =
Q = (¢*). This implies that dy,d3, . ..,dy;_1 are all zero, hence Ey = Ey.

Furthermore, since the first non-trivial homotopy group 71, (Q282k+1) =~
To12(S**1) appears at q = 2k — 1, it follows by Hurewicz that

HI(O?8%*1,Q) =0, for 0 < g < 2k —1.

Therefore, Eg,q =0for0<g<2k—1.

H* QZSZk+1;
2%k—1 |w O ew 0
- - - -—--—-- e
dok dok
2
0]1 0 € 0 ¢ I\ H*(QsZk+1.Q)
0 N zk e 4k

Since E3° = H*(QS*H1) = (¢) and EY* 1 = H2-1(Q25%+1) are

only affected by dg;?k*l : Eg,’fk*l — Eg,lz’o, we must have that dg;(zk “lisan

. . . 2k0  _ 12k0 0,2k—1 _ 10,2k—1
isomorphism in order for Ezk = E5 and Ezk = E to be zero.

So HZ*~1(?8%+1) = Q = (w), with dy;(w) = e. As a consequence,

ik, 2k— i _ . .
E;{( 2k=1 _ H2]k<QSZk+l;Q> ®q 2k 1(0252k+1> _ <E]> ®0 <w> _ <€]w>

and d;{(k’Zk_l: E;ik’Zk_l — E§£k+2k’0 are isomorphisms since dy (e/w) =
jdor(e)w + eldyi(w) = e/, This implies that, except for g € {0,2k — 1},
EL is always trivial, and in particular that H'(Q25%+1;Q) = Eg;{i is
trivial for i # 0,2k — 1. (If there was anything else in H* (QZSZ"Jrl ;Q),
it would have to also be present at infinity.)

Next note that $%*~1 and Q25%*1 are (2k — 2)-connected, so by
the Hurewicz theorem, their rational cohomology vanishes in degrees
i < 2k —1. Hence, B: S?71 — 25%+1 induces isomorphisms on
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H'(—;Q) if i # 2k — 1. In order to show that 8 induces an isomorphism
on Hy,_1(—;Q), recall the commutative diagram:

_ B+
Ha—1(S%71) —— Hy_1 (Q28%F1)

E E

Too—1 (S 1) 5 Tooj—1 (QPS?H1)

where the lower horizontal B is an isomorphism since f is the gen-
erator of 7T2k_1(0252k+1), and the vertical arrows are isomorphisms
by Hurewicz. Since the diagram commutes, the top horozontal map
labelled B, is an isomorphism also, and the proof of part (a) is com-
plete. O

Proof of part (b). We shall construct a fibration
T T

such that
7 (E) = ;($*1) (mod torsion). (2.11.2)

Assuming for now that such a fibration exists, then since by part (a) we
have that

_ finite 1 #4k—1
7i(S* 1):{2 i=ak—1"

we deduce that

finite i#4k—1
i(E) = o
Z ®finite =4k —1.
The homotopy long exact sequence:

= m($*Y) = m(E) — mi(S%) — g (%) — -

together with that fact proved in part (a) that

) finite i 2k —1
i(s* 1):{2 i—ok—1

then yields that

(52") finite i # 2k, 4k —1
TT; =
’ Z @ finite i =4k —1,

as desired.
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Note that in order to have (2.11.2), it is sufficient for E to satisfy
H;(E) = H;($*~1) modulo torsion, i.e.,

Hy(E) finite. | 1 #0,4k—1
Z @ finite i =4k — 1.

Indeed, by Hurewicz mod torsion, we then have that 7wy ((E) =
Hy_1(E) mod torsion, and let f: $*%~1 — E be a generator of the
Z-summand of 7y 1(E). WLOG, we can assume that f is an inclu-
sion. The homology long exact sequence of the pair (E,S*~1) then
implies that H,(E,S*~1) = 0 mod torsion. By Hurewicz mod torsion
this yields 7r.(E, $*~1) = 0 mod torsion. Finally, the homotopy long
exact sequence gives 71;(E) = 7;(S*~1) mod torsion.

Back to the construction of the space E, we start with the tangent
bundle TS* — % and let 7 : TpS%* — S2f be its restriction to the
space of nonzero tangent vectors to S?*. Then 7 is a fibration, since it

is locally trivial, and its fiber is R?*\ {0} ~ $%~1 We let
E = T,S%*.

Let us now consider the Leray-Serre homology spectral sequence of
this fibration, with

E} . = Hy(S%; Hy(S* 1)) = Hy(5%) @ Hy(S* ) = H.(E).
Therefore, the page E2 has only four non-trivial entries at (p,q) = (0,0),

(2k,0), (0,2k — 1), (2k — 1,2k), and all these entries are isomorphic to
Z.

2k—1
H(S77) E?—=...=F2
z de °Z
\ 2k
7 A H.(5°%)

Clearly, the differentials d2,d%,...,d%*1 are all zero, as are the dif-

d2,

ferentials The only possibly non-zero differential in the

spectral sequence is d3; : E3¢ — E3%, . Thus, E? = .- = E* and
E%+1 = ... = E®. Therefore, the space E has the desired homology if

and only if
By # 0.
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The map d%]lz,o fits into a commutative diagram

3 _
Ty (%) —=— 11 (%)
Bl ~|p
d
Hop(8%) —2 Hy 1(S%1)

where 9 is the connecting homomorphism in the homotopy long exact
sequence of the fibration, and / denotes the Hurewicz maps. Hence,
dyr # 0 if and only if 9 # 0. If, by contradiction, 0 = 0, then the
homotopy long exact sequence of the fibration 7 contains the exact
sequence

7oa(E) 25 7y (5%) 2 0.,
In particular, there is [¢] € 7 (E) so that m.([¢]) = [id], i.e., the
diagram
E

SZk

N

SZk

id
commutes up to homotopy. By the homotopy lifting property of the
fibration, there is then a map ¢: S* — E so that 7 o ¢ = id. In other
words, 1 is a section of the bundle 7. This implies the existence of a
nowhere-vanishing vector field on 2, which is a contradiction. O

Remark 2.11.2. Serre’s original proof of Theorem 2.11.1 used the White-
head tower approximation of a sphere, together with the computation
of the rational cohomology of K(Z,n) (see Exercise 13).

2.12  Computing cohomology rings via spectral sequences

The following computation will be useful when discussing about char-
acteristic classes:

Example 2.12.1. In this example, we show that the cohomology ring
H*(U(n);Z) is a free Z-algebra on odd degree generators x1, - - - , Xp,_1,
with deg(x;) =i, ie,,
H*(U(n); Z) = Agzlx1,- -+, xon—1].
We will prove this fact by induction on n, by using the Leray-Serre
cohomology spectral sequence for the fibration

Un—1) = Un) - &> 1

For the base case, note that U(1) = S!, so H*(U(1)) = Az[x1] with
deg(x;1) = 1. For the induction step, we will show that

H*(U(n)) = H*(S>" Y @ H*(U(n —1)). (2.12.1)
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Since H*(S?"1) = Agz[x,_1] with deg(xp,_1) = 21 — 1, this will then

give recursively that H*(U(n)) = Agz[x1, ..., Xn-3] @z Az[x2n-1] =

Agz[x1, -+, xp,-1], with odd-degree generators x1, - - - , xp,_1, with
deg(x;) = i.

Assume by induction that H*(U(n — 1)) = Agz[xq,- -, x2n—3], with
deg(x;) =i, and for n > 2 consider the cohomology spectral sequence
EY = HP(S*~1, HI(U(n —1))) = H*(U(n)).

By the universal coefficient theorem, we have that
EYI =HP(S" ) @HI(U(n—-1)) =0 if p#0,2n—1.
So all the nonzero entries on the E;-page are concentrated on the
columns p = 0 (i.e., g-axis) and p = 2n — 1. In particular,
dy=---=dy=0,
S0
Ey =---=Ey-1.

Furthermore, higher differentials starting with d,,, are also zero (since
either their domain or target is zero), so

Epp =+ = Eeo.

Recall now that x1,- - ,xp,_3 generate the cohomology of the fiber
U(n — 1) and note that, due to their position on Ej,_1, we have that
dop-1(x1) = -+ = doy_1(x20-3) = 0. Since dy; 1(x2,-1) = 0, we
conclude by the Leibnitz rule that

dyy—1 =0.

(Here, x7,_1 denotes the generator of H*(S?"~!).) Thus, E,_1 = Eay,
so in fact the spectral sequence degenerates at the E;-page, i.e.,

Ey = = Ew.

Since the Ew-term is a free, graded-commutative, bigraded algebra, it
is a standard fact (e.g., see Example 1.K in McCleary’s “A User’s guide
to spectral sequences”) that the abutement H*(U(n)) of the spectral
sequence is also a free, graded commutative algebra isomorphic to the
total complex associated to Ess", i.e.,

H(U(m) = P E&,

pHq=i

as desired.
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Example 2.12.2. We can similarly compute H*(SU(n)) either directly
by induction from the fibration SU(n — 1) < SU(n) — S$**~! and
the base case SU(2) = S®, or by using our computation of H*(U(n))
together with the diffeomorphism

U(n) = SU(n) x St (2.12.2)

1
iven by A — [ ——=A,det A |. In particular, (2.12.2) yields by the
gty A (e det ) I paticulas 122) yields by

Kiinneth formula:
H*(U(n)) = H*(SU(n)) ® H*(SY),

hence
H*(SU(Yl)) = AZ [X3, . ,x2n_1}

with deg x; = i.

2.13 Exercises

1. Show that 77;(ZIRP?) are finitely generated abelian groups for any i >
0. (Hint: Use Theorem 2.4.5, with C the category of finitely generated
2-groups.

2. Compute the homology of QS!. (Hint: Use the fibration QS!
Z — R obtained by “looping” the covering Z — R — S!, together
with the Leray-Serre spectral sequence.)

3. Prove Wang’s Theorem 2.5.2.

4. Let m : E — B be a fibration with fiber F, let K be a field, and
assume that 711 (B) acts trivially on H,(F;K). Assume that the Euler
characteristics x(B), x(F) are defined (e.g., if B and F are finite CW
complexes). Then x(E) is defined and

5. Use a spectral sequence argument to show that $” <+ S" — S!is a
fiber bundle, thenn = m+Iland [ = m + 1.

6. Prove that H5(K(my,3)) = Z/2. (Hint: consider the two fibrations
K(Z/2,2) = QK(Z/2,3) — *« — K(Z/2,3),and RP® = K(Z/2,1) <
* — K(Z/2,2). Then compute H,(K(Z/2,2)) via the spectral sequence
of the second fibration, and use it in the spectral sequence of the first
fibration to compute H,(K(Z/2,3)).)

7. Compute the cohomology of the space of continuous maps f :
S! — S3. (Hint: Let X := {f : S' — S3, f is continuous} and define
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: X — S3by f+ f(1). Then 7 is a fibration with fiber QS3. Apply
the cohomology spectral sequence for the fibration Q53 < X — S3 to
conclude that H*(X) = H*(S%) ® H*(QS%).)

8. Compute the cohomology of the space of continuous maps f : S! —
S2.

9. Compute the cohomology of the space of continuous maps f : S! —
cp".

10. Compute the cohomology ring H*(SO(n); Z/2).
11. Compute the cohomology ring H* (Vi (C"); Z).
12. Show that H*(SO(4)) = H*(S®) ® H*(RP?).

13. Show that

Q[zn] , ifniseven

H*(K(Z,n);Q) =
(K(Z,m):Q) {A(zn) , if nis odd,

with deg(z,) = n. Here, A(z,) := Q[zx]/(22).

(Hint: Consider the spectral sequence for the path fibration
K(Z,n—1) < * — K(Z,n)

and induction.)

14. Compute the ring structure on H*(QS").

15. Show that the p-torsion in 77;(S%) appears first for i = 2p, in which
case it is Z/p. (Hint: use the Whitehead tower of S3, the homology
spectral sequence of the relevant fibration, together with Hurewicz mod
Cp, where Cy is the class of torsion abelian groups whose p-primary
subgroup is trivial.)

16. Where does the 7-torsion appear first in the homotopy groups of
s"?
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3
Fiber bundles. Classifying spaces. Applications

3.1 Fiber bundles

Let G be a topological group (i.e., a topological space endowed with

a group structure so that the group multiplication and the inversion

map are continuous), acting continuously (on the left) on a topological

space F. Concretely, such a continuous action is given by a continuous

map p: Gx F — F, (§,m) — g-m, which satisfies the conditions

(gh)-m=g-(h-m)) and eg - m = m, for eg the identity element of G.
Any continuous group action p induces a map

Ad, : G — Homeo(F)

given by ¢ — (f +— ¢ f), with ¢ € G, f € F. Note that Ad, is a group
homomorphism since

(Adp)(gh)(f) = (gh) - f = g~ (h- f) = Adp(g)(Ady(R)(f))-
Note that for nice spaces F (e.g., CW complexes), if we give Homeo(F)
the compact-open topology, then Ad,: G — Homeo(F) is a continuous
group homomorphism, and any such continuous group homomor-
phism G — Homeo(F) induces a continuous group action G x F — F.

We assume from now on that p is an effective action, i.e., that Ad, is
injective.
Definition 3.1.1 (Atlas for a fiber bundle with group G and fiber F).
Given a continuous map 7t: E — B, an atlas for the structure of a fiber bundle
with group G and fiber F on 7t consists of the following data:

a) an open cover {Uy } of B,

b) homeomorphisms hy: n*l(u“) — Uy X F (called trivializing charts or
local trivializations) for each « so that the diagram

sz —>U,XXF

\/
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commutes,

c) continuous maps (called transition functions) gug: Uy N Ug — G so that
the horizontal map in the commutative diagram

thl(u,x N u/g)

(U,xﬂllﬁ)xl-" (umuﬁ)xp

h,B Ol’l;]

is given by
(x,m) = (x, 8pa(x) - m).
(By the effectivity of the action, if such maps g,p exist, they are unique.)

Definition 3.1.2. Two atlases A and B on 1t are compatible if AU B is an
atlas.

Definition 3.1.3 (Fiber bundle with group G and fiber F). A structure of
a fiber bundle with group G and fiber F on 7: E — B is a maximal atlas for
m: E— B.

Example 3.1.4.

1. When G = {eg} is the trivial group, 1: E — B has the structure
of a fiber bundle if and only if it is a trivial fiber bundle. Indeed,
the local trivializations h, of the atlas for the fiber bundle have
to satisfy hgohyt: (x,m) — (x,ec-m) = (x,m), which implies
hﬁ o h,;l =1id, so hﬁ = hy on U, N Up. This allows us to glue all
the local trivializations h, together to obtain a global trivialization
h: m1(B)=E=BxF.

2. When F is discrete, Homeo(F) is also discrete, so G is discrete by
the effectiveness assumption. So for the atlas of 77: E — B we have
71 (Uy) = Uy X F = Upper Uy X {m}, so 7 is in this case a covering
map.

3. A locally trivial fiber bundle, as introduced in earlier chapters, is just
a fiber bundle with structure group Homeo(F).

Lemma 3.1.5. The transition functions g,z satisfy the following properties:
(@) gup(x)8py(X) = Guy(x), for all x € Uy NUp N U,.
() gpa(x) = g;[}(x),for all x € Uy N Ug.

(C) glxa(x) == EG.
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Proof. On U, N Ug N U, we have: (hy o hlgl) o (hgohy') = hyohyt.

Therefore, since Ad, is injective (i.e., p is effective), we get that

Sap(X)8py (X) = gan (X)

forall x € Uaﬂu}gﬂlly.

Note that (/14 o hgl) o (hgo hi') = id, which translates into

(%, 8up(¥)8pa(x) - m) = (x,m).
So, by effectiveness, g,5(x)gps(x) = eg for all x € U, N U, whence
85 (1) = 82 ().

Take v = a in Property (a) to get gus(¥)gpa(¥) = gaa(x). So by
Property (b), we have g (x) = eg. O

Transition functions determine a fiber bundle in a unique way, in
the sense of the following theorem.

Theorem 3.1.6. Given an open cover {Uy,} of B and continuous functions
Sup: Un N Ug — G satisfying Properties (a)-(c), there is a unique structure
of a fiber bundle over B with group G, given fiber F, and transition functions

{gtxﬁ}-
Proof Sketch. Let E = ||, Uy x F x {a}, and define an equivalence rela-
tion ~ on E by
(x,m, ) ~ (x, ap(x) -1, B),

for all x € Uy N Ug, and m € F. Properties (a)-(c) of {g,5} are used
to show that ~ is indeed an equivalence relation on E. Specifically,
symmetry is implied by property (b), reflexivity follows from (c) and
transitivity is a consequence of the cycle property (a).

Let

E=E/~

be the set of equivalence classes in E, and define 7 : E — B locally by
[(x,m,a)] — x for x € U,. Then it is clear that 7 is well-defined and
continuos (in the quotient topology), and the fiber of 7 is F.

It remains to show the local triviality of 7. Let p : E — E be the
quotient map, and let py := ply, xrxfa} : Ua X F x {a} = 71 (Uy).
It is easy to see that p, is a homeomorphism. We define the local
trivializations of 7t by h, := py . O

Example 3.1.7.

1. Fiber bundles with fiber F = R" and group G = GL(n,R) are called
rank n real vector bundles. For example, if M is a differentiable real
n-manifold, and TM is the set of all tangent vectors to M, then
t: TM — M is a real vector bundle on M of rank n. More precisely,
if gy : Uy =2 R” are trivializing charts on M, the transition functions

for TM are given by g,p(x) = d(¢a © ?El)gpﬁ(x)'



82 HOMOTOPY THEORY AND APPLICATIONS

2. If F=R"and G = O(n), we get real vector bundles with a Rieman-
nian structure.

3. Similarly, one can take F = C" and G = GL(n,C) to get rank n
complex vector bundles. For example, if M is a complex manifold, the
tangent bundle TM is a complex vector bundle.

4. If F=C"and G = U(n), we get real vector bundles with a hermitian
structure.

We also mention here the following fact:

Theorem 3.1.8. A fiber bundle has the homotopy lifting property with respect
to all CW complexes (i.e., it is a Serre fibration). Moreover, fiber bundles over
paracompact spaces are fibrations.

Definition 3.1.9 (Bundle homomorphism). Fix a topological group G
acting effectively on a space F. A homomorphism between bundles E’ LY
and E 5 B with group G and fiber F is a pair (f, ) of continuous maps,
with f : B — Band f : E' — E, such that:

1. the diagram

F— 1 .k
1
B— 7 B
commutes, ie., o f = for.

2. if {(Ua, ha) }o is a trivializing atlas of 7w and {(Vg, Hg) } g is a trivializing
atlas of 7', then the following diagram commutes:

(Vp 1 f (U)X F 4 e (V1 F(Uy)) —— s M (Uy) — s Uy <

L 7
pry Py

Vs fH (Un) U,

and there exist functions dyg : Vg N f~1(Uy) — G such that for x €
VN f~1(Uy) and m € F we have:

hy of| oHﬁ_l(x,m) = (f(x),da/g(x) m).

An isomorphism of fiber bundles is a bundle homomorphism (f, f) which
admits a map (g, 8) in the reverse direction so that both composites are the
identity.

Remark 3.1.10. Gauge transformations of a bundle 77 : E — B are bundle
maps from 7t to itself over the identity of the base, i.e., corresponding
to continuous map g : E — E so that 77 0 ¢ = 7. By definition, such g
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restricts to an isomorphism given by the action of an element of the
structure group on each fiber. The set of all gauge transformations
forms a group.

Proposition 3.1.11. Given functions dyg : Vg N f~H(Uy) — G and dyg -
Vg N f “(Uy) — G as in (2) above for different trivializing charts of 7t and
resp. 7', then for any x € Vg N Vg Nf YUy NUy) # @, we have

doc/ﬂ’(x) :gu/zx(f(x)) duc,B(x) g‘B/S’(x) (3-1.1)
in G, where gy, are transition functions for 7t and gggs are transition functions
for 7',

Proof. Exercise. O

The functions {d,p} determine bundle maps in the following sense:

Theorem 3.1.12. Given a map f : B — B and bundles E B E i> B, a
map of bundles (f, f) : 7' — 7 exists if and only if there exist continuous
maps {dyp} as above, satisfying (3.1.1).

Proof. Exercise. O

Theorem 3.1.13. Every bundle map f over f = idp is an isomorphism. In
particular, gauge transformations are automorphisms.

Proof Sketch. Let dyp : Vg N Uy — G be the maps given by the bundle
map f : E' — E. So, if dyp : Vg MUy — Gis given by a different choice
of trivializing charts, then (3.1.1) holds on Vg N Vﬁ/ NU,NUy #Q,1ie.,

A (x) = ara(X) dap(x) gppr (%) (3.1.2)
in G, where g,/ are transition functions for 77 and gz are transition
functions for 77’. Let us now invert (3.1.2) in G, and set

dpu(x) = d} ()
to get:
Ay (%) = 8pp(x) dpa(x) aw (¥)-
So {@} are as in Definition 3.1.9 and satisfy (3.1.1). Theorem 3.1.12
implies that there exists a bundle map ¢ : E — E’ over idp.
We claim that ¢ is the inverse f~! of f, and this can be checked
locally as follows:

(s m) ¥ (3, dy () - ) & (5, T (x) - (A (x) - )
= (x,dpy (x)dup(x) -m)
N——

€G

= (x,m).

So gof = idp. Similarly,fog =idp 0
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One way in which fiber bundle homomorphisms arise is from the
pullback (or the induced bundle) construction.

Definition 3.1.14 (Induced Bundle). Given a bundle E = B with group G
and fiber F, and a continuous map f : X — B, we define

f*E:={(x,e) e XX E| f(x) =m(e)},

with projections f*rr: f*E — X, (x,e) + x,and f : f*E = E, (x,e) — e,
so that the following diagram commutes:

ffE——E e

X ———— f(x)

[ is called the induced bundle under f or the pullbafk of by f, and as we
show below it comes equipped with a bundle map (f, f) : f*m — 7.

The above definition is justified by the following result:
Theorem 3.1.15.
(a) f*m: f*E — X is a fiber bundle with group G and fiber F.
() (f,f): f*m — mis a bundle map.
Proof Sketch. Let {(Uy, hy) }o be a trivializing atlas of 77, and consider

the following commutative diagram:

(F0) (M (Ua)) — 7 (Uy) ——— Uy x F

L

flutx—>u¢

We have
()N (U) = {(xe) € FH (Un) x 71 (Ua) | f(x) = 7(e)}
>, xF
Define
ke : (f*”)il(fil(utx)) — fﬁl(utx) X F
by

(x,€) = (x, pry(ha(e)))-
Then it is easy to check that k, is a homeomorphism (with inverse
kyl(x,m) = (x,hg'(f(x),m)), and in fact the following assertions hold:
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1) {(f"Y(Ua),ka)}a is a trivializing atlas of f*7.

(ii) the transition functions of f*7r are f*g,p := gapo f, i€, f*up(x) =
gup(f(x)) for any x € F1(Uy 1 Up).

Remark 3.1.16. Itis easy to see that (f o g)* 7 = ¢*(f*7) and (idp)* 7
7. Moreover, the pullback of a trivial bundle is a trivial bundle.

As we shall see later on, the following important result holds:

Theorem 3.1.17. Given a fibre bundle 7t : E — B with group G and fiber
F, and two homotopic maps f ~ g : X — B, there is an isomorphism
f*m =2 g*m of bundles over X. (In short, induced bundles under homotopic
maps are isomorphic.)

As a consequence, we have:

Corollary 3.1.18. A fiber bundle over a contractible space B is trivial.

Proof. Since B is contractible, idp is homotopic to the constant map ct.

Let
b := Image(ct) <5 B,

so ioct ~ idg. We have a diagram of maps and induced bundles:

ct*i*E ——i*E ——

ct*i*nl li*r{ Jﬂ

ldB

Theorem 3.1.17 then yields:
2 (idg)*t & ct*i* .

Since any fiber bundle over a point is trivial, we have that i*7r = {b} x F
is trivial, hence 7w = ct*i*7r = B x F is also trivial. O

Proposition 3.1.19. If

E/%E
n’l lﬂ
B/%B

! ~ %

is a bundle map, then 7w’ = f*7t as bundles over B'.

. APPLICATIONS
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Proof. Define h : E' — f*E by ¢ + (7'(¢’), f(¢')) € B’ x E. This is
well-defined, i.e., h(e') € f*E, since f(r'(e')) = mt(f(e')).

It is easy to check that /i provides the desired bundle isomorphism
over B'.

O

Example 3.1.20. We can now show that the set of isomorphism classes
of bundles over S" with group G and fiber F is isomorphic to 77,,_1(G).
Indeed, let us cover S" with two contractible sets U and U_ obtained
by removing the south, resp., north pole of S". Let i+ : U+ < S" be
the inclusions. Then any bundle 7t over S” is trivial when restricted
to U4, that is, i r = U4 x F. In particular, U+ provides a trivializing
cover (atlas) for 71, and any such bundle 77 is completely determined by
the transition function g+ : Uy NU_ ~ sl 4G, ie, by an element
in TTy—1 (G)

More generally, we aim to “classify” fiber bundles on a given topo-
logical space. Let B (X, G, F,p) denote the isomorphism classes (over
idx) of fiber bundles on X with group G and fiber F, and G-action
on F given by p. If f : X’ — X is a continuous map, the pullback
construction defines a map

*:B(X,G,F,p) — B(X,G,F,
P P

so that (idx)* =id and (fog)* = ¢* o f*.

3.2 Principal Bundles

As we will see later on, the fiber F doesn’t play any essential role in the
classification of fiber bundle, and in fact it is enough to understand the
set

P(X,G):=B(X,G,G,mg)

of fiber bundles with group G and fiber G, where the action of G on
itself is given by the multiplication m¢ of G. Elements of P (X, G) are
called principal G-bundles. Of particular importance in the classification
theory of such bundles is the universal principal G-bundle G — EG —
BG, with contractible total space EG.
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Example 3.2.1. Any regular cover p : E — X is a principal G-bundle,
with group G = nl(X)/p* m(E) Here G is given the discrete topology.

In particular, the universal covering X — X is a principal 771 (X)-bundle.

Example 3.2.2. Any free (right) action of a finite group G on a (Haus-
dorff) space E gives a regular cover and hence a principal G-bundle
E—E/G.

More generally, we have the following:

Theorem 3.2.3. Let 7w : E — X be a principal G-bundle. Then G acts freely
and transitively on the right of E so that E/G = X. In particular, 7t is the
quotient (orbit) map.

Proof. We will define the action locally over a trivializing chart for 7.
Let U, be a trvializing open in X with trivializing homeomorphism
hy s e (Uy) 5 U, x G. We define a right action on G on 7t~ ! (U, ) by

mH(Uy) x G — (U 2 Uy x G
(e,8) > e-g:=hy' (m(e),pry (ha(e))-g)
Let us show that this action can be globalized, i.e., it is independent of

the choice of the trivializing open U,. If (Ug, hp) is another trivializing
chart in X so that e € 7~!(U, N Ug), we need to show that e- g =

h/;l (7w (e), pr, (hg (e)) - g), or equivalently,

h ' (7 (e),pry (huc (€)) - g) = hgt (7t (), pry (B (e)) -8) . (321)

After applying h, and using the transition function g,z for 7t(e) €
Uy N Up, (3.2.1) becomes

(7 (e),pry (ha (€)) - §) = haltg" (7 (e) ,pry (g (€)) - 8)
= (7 (e), 8ap(7t(e)) - (pr, (hp (e)) - 8))

which is guaranteed by the definition of an atlas for 7.

It is easy to check locally that the action is free and transitive. More-
over, E/G is locally given as Uy X G/G = U,, and this local quotient
globalizes to X. O

The converse of the above theorem holds in some important cases.

Theorem 3.2.4. Let E be a compact Hausdorff space and G a compact Lie
group acting freely on E. Then the orbit map E — E/G is a principal
G-bundle.

Corollary 3.2.5. Let G be a Lie group, and let H < G be a compact subgroup.
Then the projection onto the orbit space m : G — G/H is a principal H-
bundle.
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Let us now fix a G-space F. We define a map
P (X,G) = B(X,G,F,p)

as follows. Start with a principal G bundle v : E — X, and recall from
the previous theorem that G acts freely on the right on E. Since G acts
on the left on F, we have a left G-action on E x F given by:

g-(e.f)—(e-g7h,8f)

Let
ExgF:=ExT

be the corresponding orbit space, with projection map w : E Xg F —
E/G = X fitting into a commutative diagram

EXF (3.2.2)
pry
E E x P/G
T
w
X

Definition 3.2.6. The projection w := 7w Xg F : E Xxg F — X is called the
associated bundle with fiber F.

The terminology in the above definition is justified by the following
result.

Theorem 3.2.7. w : E xg F — X is a fiber bundle with group G, fiber
F, and having the same transition functions as 1t. Moreover, the assign-
ment 7T — w := 71 X F defines a one-to-one correspondence P (X, G) —
B (X,G,F,p).

Proof. Let hy : w1 (Uy) — Uy x G be a trivializing chart for 7. Recall
that for e € 771 (U,), f € F and g € G, if we set I, (e) = (rt(e), h) €
U, x G, then G acts on the right on 777! (U,) by acting on the right on
h = pra(he(e)). Then we have by the diagram (3.2.2) that

-1
-1 ~ 7T (Uy) X F
w () = Ae.f)~(e-g7lg f)
o~ U,X x G X F/ 1 .
(wh, f) ~ (u,hg™",8- f)
Let us define
ky:w ! (Uy) — Uy x F

by
[(u, 1, f)] = (u, - f).
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This is a well-defined map since

[(u,hg™ ', g )]~ (u,hg™'g - f) = (u,h- f).

It is easy to check that k, is a trivializing chart for w with inverse
induced by Uy x F — Uy x G X F, (u, f) — (u,idg, f). It is clear that
w and 7t have the same transition functions as they have the same
trivializing opens. 0

The associated bundle construction is easily seen to be functorial in
the following sense.

Proposition 3.2.8. If

El————E

|

X — X

is a map of principal G-bundles (so fis a G-equivariant map, i.e., j?(e g) =
f(e) - §), then there is an induced map of associated bundles with fiber F,

j?XGl'dF

E'xcF——%" JExGF

X' X

Example 3.2.9. Let 77 : S — S!, z + z? be regarded as a principal

Z/2-bundle, and let F = [-1,1]. Let Z/2 = {1,—1} act on F by

multiplication. Then the bundle associated to 7t with fiber F = [—1, 1]
1

110 == ) (ot

with a : S — S! denoting the antipodal map. Similarly, the bundle

associated to 7t with fiber F = S! is the Klein bottle.

is the Mébius strip S Xz,

Let us now get back to proving the following important result.

Theorem 3.2.10. Let 7 : E — Y be a fiber bundle with group G and fiber F,
and let f ~ ¢ : X — Y be two homotopic maps. Then f*m = ¢*m over idx.

It is of course enough to prove the theorem in the case of principal
G-bundles. The idea of proof is to construct a bundle map over idx
between f*7r and g*

?

F*E : »¢*E

N,

X
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So we first need to understand maps of principal G-bundles, i.e., to
solve the following problem: given two principal G-bundles bundles
E; 25 X and E; 22 Y, describe the set maps (71, 112) of bundle maps

E1L>E2

-,

X—Y

Since G acts on the right of E; and E, we also get an action on the left
of E; by g-e; := e - ¢~ 1. Then we get an associated bundle of 7r; with
fiber E;, namely

w:=7m XgEy:Ei XgEy — X.
We have the following result:

Theorem 3.2.11. Bundle maps from 71 to 7 are in one-to-one correspon-
dence to sections of w.

Proof. We work locally, so it suffices to consider only trivial bundles.

Given a bundle map (f, f) : 71y — 72, let U C Y open, and V C
F~1(U) open, so that the following diagram commutes (this is the
bundle maps in trivializing charts)

VXGLUXG

ol
\% % u

We define a section ¢ in

(VxG)xg(UxG)

{|

as follows. For e; € V x G, with x = 711(e7) € V, we set

o(x) = [er, fler)]-

This map is well-defined, since for any g € G we have:

le1 g fler &) =le1-g fler) gl =ler-g,8 " fle)] = [ex, fler)].

Now, it is an exercise in point-set topology (using the local definition
of a bundle map) to show that ¢ is continuous.
Conversely, given a section of E; x E; ++ X, we define a bundle

-~

by (f, f) by

~

fler) = e,
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where o(71(e1)) = [(e1,e2)]. Note that this is an equivariant map
because

le1-ge2-gl =[e1-9,8 " -ea] = [er, 2],

hence f(e;-g) =ey-g = f(e1) - g Thus f descends toamap f: X — Y

on the orbit spaces. We leave it as an exercise to check that (f, f) is

~

indeed a bundle map, i.e., to show that locally f(v,g) = (f(v),d(v)g)
with d(v) € Gand d: V — G a continuous function. O

The following result will be needed in the proof of Theorem 3.2.10.

Lemma 3.2.12. Let m : E — X x I be a bundle, and let 11y := iy :

Ey — X be the pullback of 7t under iy : X — X x I, x +— (x,0). Then
= (pry)*my = o x idy, where pry : X x I — X is the projection map.

Proof. It suffices to find a bundle map (pry, pr,) so that the following
diagram commutes

& pr
Eg——$E 'ty Eg

S

l Py

XX x I X

By Theorem 3.2.11, this is equivilant to the existence of a section ¢ of w :
E xg Eg — X x I. Note that there exists a section oy of wq : Eg Xg Eg —

X = X x {0}, corresponding to the bundle map (idx, idE,) : 7o — .

Then composing oy with the top inclusion arrow, we get the following
diagram

X x {0} —2 E x¢ E
- A

lw

Xxl—9 s xx1

Since w is a fibration, by the homotopy lifting property one can extend
sop to a section o of w. O

We can now finish the proof of Theorem 3.2.10.

Proof of Theorem 3.2.10. Let H : X x I — Y be a homotopy between f
and g, with H(x,0) = f(x) and H(x,1) = g(x). Consider the induced
bundle H* 7t over X x I. Then we have the following diagram.
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f*E /H*E " LE
frr S*E H*r m
X x {0}< st D xxI—Hsy

PN
X x {1} X

Since f = H(—,0), we get f*m = ifH*7. By Lemma 3.2.12, H*7r =
pry (f*m) = pri (§¥m), and thus f*rr = ifH* 7w = ijpri g*m = g*m. O

We conclude this section with the following important consequence
of Theorem 3.2.11

Corollary 3.2.13. A principle G-bundle 7t : E — X is trivial if and only if
7t has a section.

Proof. The bundle 7 is trivial if and only if 77 = ct*77/, with ¢t : X —
point the constant map, and 7’ : G — point the trvial bundle over a
point space. This is equivalent to saying that there is a bundle map

E > G

X —4 point

or, by Theorem 3.2.11, to the existence of a section of the bundle
w : E xXgG — X. On the other hand, w == 7, since E X5 G — X looks
locally like

nfl(ua)xG/NguaxGxG/

(1,81,82) ~ (1,818, gg2) = Ua ¥ &

with the last homeomorphism defined by [(u, g1,$2)] — (4, §182)-
Altogether, 7t is trivial if and only if 77 : E — X has a section. O

3.3 Classification of principal G-bundles

Let us assume for now that there exists a principal G-bundle 7 :
EG — BG, with contractible total space EG. As we will see below, such
a bundle plays an essential role in the classification theory of principal
G-bundles. Its base space BG turns out to be unique up to homotopy,
and it is called the classifying space for principal G-bundles due to the
following fundamental result:
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Theorem 3.3.1. If X is a CW-complex, there exists a bijective correspondence

o

®: P(X,G) > [X,BG]

fimg i f

Proof. By Theorem 3.2.10, ® is well-defined.

Let us next show that ® is onto. Let m € P(X,G), m: E — X. We
need to show that 7 = f*7r; for some map f : X — BG, or equivalently,
that there is a bundle map (f, f) : © — 7¢. By Theorem 3.2.11, this
is equivalent to the existence of a section of the bundle E xg EG — X
with fiber EG. Since EG is contractible, such a section exists by the
following:

Lemma 3.3.2. Let X be a CW complex, and m : E — X € B(X,G,F,p)
with 7;(F) = 0 for all i > 0. If A C X is a subcomplex, then every section
of 7t over A extends to a section defined on all of X. In particular, 7t has a
section. Moreover, any two sections of 7t are homotopic.

Proof. Given a section 0y : A — E of 7t over A, we extend it to a section
o : X — E of i over X by using induction on the dimension of cells in
X — A. So it suffices to assume that X has the form

X:AU¢6n,

where ¢" is an n-cell in X — A, with attaching map ¢ : de” — A. Since
e” is contractible, 7 is trivial over ", so we have a commutative diagram

o)

(") ——e" x F

h
T

de"—— " 7

with it : 771 (¢") — e x F the trivializing chart for 7t over ¢”, and ¢
to be defined. After composing with /1, we regard the restriction of oy
over de” as given by

op(x) = (x,9(x)) € e X F,

with 15 : de" = §"~1 — F. Since 71, _1(F) = 0, Tp extends to a map
T : " — F which can be used to extend oy over e¢" by setting

o(x) = (x,t(x)).

After composing with h~1, we get the desired extension of oy over e".

Let us now assume that ¢ and ¢’ are two sections of 7. To find
a homotopy between ¢ and o', it suffices to construct a section ¥. of
mxid : ExI — X x 1. Indeed, if such X exists, then X(x,t) =
(0¢(x),t), and oy provides the desired homotopy. Now, by regarding
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o as a section of 7t x id; over X x {0}, and ¢’ as a section of 7w X id]
over X x {1}, the question reduces to constructing a section of 7t X idj,
which extends the section over X x {0,1} defined by (¢, ¢’). This can
be done as in the first part of the proof. O

In order to finish the proof of Theorem 3.3.1, it remains to show that
@ is a one-to-one map. If g = f*rig = ¢* 1g = 1, we will show that
f =~ g. Note that we have the following commutative diagrams:

Eo = f"Ec — s kg

ER
X = X x {0} —— B

Eo = Ey = g'Ec —— Eg

R
X=Xx{1} —2- B

where we regard g as defined on Ej via the isomorphism 7ty = 717. By
putting together the above diagrams, we have a commutative diagram

a=(£0)U(g 1
Eox I <= Eyx {01} ZVOUED, p

J{TL’OXId lnox{o,l} lﬂc

Xx1 = Xx{01) SO 5

Therefore, it suffices to extend («,&) to a bundle map (H, H) : 7y x
Id — 7, and then H will provide the desired homotopy f ~ g.

By Theorem 3.2.11, such a bundle map (H, H) corresponds to a
section ¢ of the fiber bundle

w:(EO XI) XgEg—X x L.

On the other hand, the bundle map («, @) already gives a section oy of
the fiber bundle

wy : (EO X {0,1}) XG EG — X X {0,1},

which under the obvious inclusion (Eg X {0,1}) xg Eg C (Eg X I) Xg
Eg can be regarded as a section of w over the subcomplex X x {0,1}.
Since EG is contractible, Lemma 3.3.2 allows us to extend oy to a section
o of w defined on X x I, as desired. O

Example 3.3.3. We give here a more conceptual reasoning for the asser-
tion of Example 3.1.20. By Theorem 3.3.1, we have

B(S",G,F,p) = P(S",G) = [S", BG] = m,(BG) = m,_1(G),
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where the last isomorphism follows from the homotopy long exact
sequence for 77, since EG is contractible.

Back to the universal principal G-bundle, we have the following

Theorem 3.3.4. Let G be a locally compact topological group. Then a univer-
sal principal G-bundle 7 : EG — BG exists (i.e., satisfying m;(EG) = 0
for all i > 0), and the construction is functorial in the sense that a continuous
group homomorphism y : G — H induces a bundle map (Bu, Ep) : g —
1ty. Moreover, the classifying space Bg is unique up to homotopy.

Proof. To show that BG is unique up to homotopy, let us assume that
n¢ : Eg — Bg and 7; : E; — B{; are universal principal G-bundles.
By regarding 71 as the universal principal G-bundle for 71;;, we get a
map f : B, — Bg such that i, = f*71¢, ie., a bundle map:

EL — s Eg

e
B, —— B
G G
Similarly, y regarding 7, as the universal principal G-bundle for 7,
there exists a map g : BG — B such that 71 = g* ;. Therefore,

ng=g'ng =g f g = (fog) .

On the other hand, we have g = (idp_)*7g, so by Theorem 3.3.1
we get that f o ¢ ~ idp_.. Similarly, we get go f ~ z'dB/G, and hence
f : B = Bg is a homotopy equivalence.

We will not discuss the existence of the universal bundle here,
instead we will indicate the universal G-bundle, as needed, in specific
examples. O

Example 3.3.5. Recall from Section 1.12 that we have a fiber bundle
O(n)—— V;,(R*®) —— G, (IR%), (3-3-1)

with V},(R®) contractible. In particular, the uniqueness part of Theorem
3.3.4 tells us that BO(n) ~ G,(RR®) is the classifying space for rank n
real vector bundles. Similarly, there is a fiber bundle

U(n)—— V,,(C®) —— G,(C*), (3.3.2)

with V,(C%) contractible. Therefore, BU(n) ~ G, (C®) is the classify-
ing space for rank n complex vector bundles.

Before moving to the next example, let us mention here without
proof the following useful result:
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Theorem 3.3.6. Let G be an abelian group, and let X be a CW complex. There
is a natural bijection

T:[X,K(G,n)] — H"(X,G)

[f] = f*(a)

where « € H"(K(G,n),G) = Hom(H,(K(G,n),Z),G) is given by the
inverse of the Hurewicz isomorphism G = 1t,(K(G,n)) — Hu(K(G,n),Z).

Example 3.3.7 (Classification of real line bundles). Let G = Z/2 and
consider the principal Z/2-bundle Z/2 — S* — RRP*. Since 5% is
contractible, the uniqueness of the universal bundle yields that BZ /2 =
RP*. In particular, we see that RP* classifies the real line (i.e., rank-
one) bundles. Since we also have that RP® = K(Z/2,1), we get:

P(X,Z/2) = [X,BZ/2] = [X,K(Z/2,1)] = H (X, Z/2)

for any CW complex X, where the last identification follows from
Theorem 3.3.6. Let now 7 be a real line bundle on a CW complex X,
with classifying map fr : X — RP%. Since H*(RP®,Z/2) = Z/2[w),
with w a generator of H' (RP®,Z/2), we get a well-defined degree one
cohomology class

wy(7) := fr(w)

called the first Stiefel-Whitney class of 7. The bijection P(X,Z/2) =
H'(X,Z/?2) is then given by 7 — w (1), so real line bundles on X are
classified by their first Stiefel-Whitney classes.

Example 3.3.8 (Classification of complex line bundles). Let G = S!
and consider the principal S'-bundle S! < S* — CP®. Since S® is
contractible, the uniqueness of the universal bundle yields that BS! =
CP®. In particular, as S! = GL(1,C), we see that CP* classifies
the complex line (i.e., rank-one) bundles. Since we also have that

CP*® = K(Z,2), we get:
P(X,S') = [X,BSY] = [X,K(Z,2)] = H*(X, Z)

for any CW complex X, where the last identification follows from
Theorem 3.3.6. Let now 7T be a complex line bundle on a CW complex
X, with classifying map fr : X — CP*®. Since H*(CP®,Z) = Z|c],
with ¢ a generator of H?(CP*®,Z), we get a well-defined degree two
cohomology class

c1(7) = fr(c)

called the first Chern class of 7. The bijection P (X, S!) = H%(X,Z) is
then given by 7 +— ¢1(77), so complex line bundles on X are classified
by their first Chern classes.
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Remark 3.3.9. If X is any orientable closed oriented surface, then
H?(X,Z) = Z, so Example 3.3.8 shows that isomorphism classes of
complex line bundles on X are in bijective correspondence with the set
of integers. On the other hand, if X is a non-orientable closed surface,
then H?(X,Z) = Z/2, so there are only two isomorphism classes of
complex line bundles on such a surface.

3.4 Exercises

1. Let p : S> — RP? be the (oriented) double cover of RP?2. Since RP?
is a non-orientable surface, we know by Remark 3.3.9 that there are
only two isomorphism classes of complex line bundles on RP?: the
trivial one, and a non-trivial complex line bundle which we denote
by 7 : E — RP%. On the other hand, since S? is a closed orientable
surface, the isomorphism classes of complex line bundles on S? are in
bijection with Z. Which integer corresponds to complex line bundle
p*r: p*E — S? on S22

2. Consider a locally trivial fiber bundle S < E 5 S$2. Recall
that such 7t can be regarded as a fiber bundle with structure group
G = Homeo(S?) = SO(3). By the classification Theorem 3.3.1, SO(3)-
bundles over S? correspond to elements in

(52, BSO(3)] = m2(BSO(3)) = m(SO(3)).

(a) Show that 711(SO(3)) = Z/2. (Hint: Show that SO(3) is homeo-
morphic to RP3.)

(b) What is the non-trivial SO(3)-bundle over S%?

3. Let 7w : E — X be a principal S'-bundle over the simply-connected
space X. Let a € H'(S!,Z) be a generator. Show that

c1(r) = da(a),

where d; is the differential on the E,-page of the Leray-Serre spectral
sequence associated to 7, i.e., E)' = HP (X, H1(S')) = HPYI(E, Z).

4. By the classification Theorem 3.3.1, (isomorphism classes of) S!-
bundles over S? are given by

[S?,BS'] = mp(BSY) =2 my(SY) = Z

and this correspondence is realized by the first Chern class, i.e., 7 —
c1(7).
(a) What is the first Chern class of the Hopf bundle Sl 83 5 522
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(b) What is the first Chern class of the sphere (or unit) bundle of the
tangent bundle TS??

(c) Construct explicitely the S'-bundle over S? corresponding to n €
Z. (Hint: Think of lens spaces, and use the above Exercise 3 and
Example 2.8.2.)
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4
Vector Bundles. Characteristic classes.

Cobordism. Applications.

4.1 Chern classes of complex vector bundles

We begin with the following

Proposition 4.1.1.
H* (BU(n);Z) = Zley, -+ ,cnl,
with degc; = 2i

Proof. Recall from Example 2.12.1 that H*(U(n); Z) is a free Z-algebra
on odd degree generators x1, - - -, Xp,—1, with deg(x;) =i, i.e.,

H*(U(n);Z) = Az[xq,- -+, Xon-1]-

Then using the Leray-Serre spectral sequence for the universal U(n)-
bundle, and using the fact that EU(n) is contractible, yields the desired
result.

Alternatively, the functoriality of the universal bundle construction
yields that for any subgroup H < G of a topological group G, there
is a fibration G/H < BH — BG. In our case, consider U(n — 1) as a
A

subgroup of U(n) via the identification A — ( 0

(1) ) Hence, there
exists fibration
U(n)/U(n—1) =8>t < BU(n—1) — BU(n).

Then the Leray-Serre spectral sequence and induction on n gives
the desired result, where we use the fact that BU(1) ~ CP® and
H*(CP*®;Z) = Z|c] with degc = 2. O

Definition 4.1.2. The generators cq,-- - , ¢, of H* (BU(n); Z) are called the
universal Chern classes of U (n)-bundles.
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Recall from the classification theorem 3.3.1, that given 7: E - X a
principal U (n)-bundle, there exists a “classifying map” fr : X — BU(n)
such that 7 = fr7ry(,).

Definition 4.1.3. The i-th Chern class of the U(n)-bundle 7t : E — X with
classifying map fr : X — BU(n) is defined as
¢i(m) := fi(c;) € H¥(X; Z).
Remark 4.1.4. Note that if 77 is a U(n)-bundle, then by definition we
have that ¢;(7r) =0, if i > n.
Let us now discuss important properties of Chern classes.

Proposition 4.1.5. If £ denotes the trivial U(n)-bundle on a space X, then
ci(€) =0 foralli> 0.

Proof. Indeed, the trivial bundle is classified by the constant map ct :
X — BU(n), which induces trivial homomorphisms in positive degree
cohomology. O

Proposition 4.1.6 (Functoriality of Chern classes). If f : Y — X isa
continuous map, and 7 : E — X is a U(n)-bundle, then c;(f*m) = f*c;(m),
for any i.

Proof. We have a commutative diagram

f*Ef—>E*>ELI(n)

lf*ﬂ J/T[ lﬂu(;z)
f f

s

Y ——X—— BU(n)

which shows that f o f classifies the U(n)-bundle f*7r on Y. Therefore,
ci(f*m) = (fro f) e
= f (frei)
= frei(m).
O

Definition 4.1.7. The total Chern class of a U(n)-bundle 7t : E — X is
defined by

c(7r) = co(70) + 1 () + - - -en() = 1+ 1 () + - - - en() € HY (X, Z),
as an element in the cohomology ring of the base space.

Definition 4.1.8 (Whitney sum). Let r; € P(X,U(n)), mp € P(X, U(m)).
Consider the product bundle 11 x 7, € P(X x X, U(n) x U(m)), which
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can be regarded as a U(n + m)-bundle via the canonical inclusion U(n) x
A 0

U(m) < U(n+m), (A,B) — 0 B

>, The Whitney sum of the

bundles 11 and 715 is defined as:
T ® 1y = A () X ),
where A : X — X x X is the diagonal map given by x — (x, x).

Remark 4.1.9. The Whitney sum 717 @ 715 of 7 and 7 is the U(n + m)-

bundle on X with transition functions (in a common refinement of the
1

0 .
trvialization atlases for 71y and 71p) given by ( gg 5 ) where ¢ 8

gpcﬁ
are the transition function of 77;, i = 1,2.

Proposition 4.1.10 (Whitney sum formula). If 1y € P(X,U(n)) and
mp € P(X,U(m)), then

c(m & mp) = c(m) Uc(mp).
Equivalently, cx (711 @ 112) = iy j—k ¢i(711) U cj(m2)
Proof. First note that
B(U(n) x U(m)) ~ BU(n) x BU(m). (4.1.1)

Indeed, by taking the product of the universal bundles for U(n) and
U(m), we get a U(n) x U(m)-bundle over BU(n) x BU(m), with total
space EU(n) x EU(m):

U(n) x U(m) — EU(n) x EU(m) — BU(n) x BU(m). (4.1.2)

Since m;(EU(n) x EU(m)) = m;(EU(n)) x m;(EU(m)) = 0 for all i,
it follows that (4.1.2) is the universal bundle for U(n) x U(m), thus

proving (4.1.1).
Next, the inclusion U(n) x U(m) < U(n + m) yields a map

w:B(U(n) x U(m)) ~ BU(n) x BU(m) — BU(n + m).
By using the Kiinneth formula, one can show (e.g., see Milnor’s book,

p.164) that:

whe, = Z Ci X Cj.
i+j=k

Therefore,
ck(m @ 112) = ¢ (A* (11 X 712))

= A*Ck(ﬂ'l X 7'[2)
= D (fryxmy (¢1))

101



102 HOMOTOPY THEORY AND APPLICATIONS

(s xS
= Y A*(fr (i) % fr,(cj)

i+j=k

= Y A"(ci(m) x ¢j(m2))

i+j=k

= Z ci(rr1) Ucj(ma).

i+j=k
Here, we use the fact that the classifying map for 71y X 73, regarded as
aU(n+m)-bundle is w o (fr, X fr,) O

Since the trivial bundle has trivial Chern classes in positive degrees,
we get

Corollary 4.1.11 (Stability of Chern classes). Let £! be the trivial U(1)-
bundle. Then
c(m @& = c(n).

4.2 Stiefel-Whitney classes of real vector bundles

As in Proposition 4.1.1, one easily obtains the following
Proposition 4.2.1.

H* (BO(n);Z/2) = Z/2[wq, - ,wy],
with degw; = i.

Proof. This can be easily deduced by induction on n from the Leray-
Serre spectral sequence of the fibration

O(n)/O(n—1) = §"1 < BO(n —1) — BO(n),

by using the fact that BO(1) >~ RP® and H*(RP*;Z/2) = Z/2[w].
0

Definition 4.2.2. The generators wy, - - - ,wy, of H* (BO(n); Z/2) are called
the universal Stiefel-Whitney classes of O(n)-bundles.

Recall from the classification theorem 3.3.1 that, given 7: E = X a
principal O(n)-bundle, there exists a “classifying map” fr : X — BO(n)
such that 7T = f771y;()-

Definition 4.2.3. The i-th Stiefel-Whitney class of the O(n)-bundle 7t : E —
X with classifying map fr : X — BO(n) is defined as

wi(n) := fr(w;) € H(X;Z/2).
The total Stiefel-Whitney class of 7 is defined by
w(n) =14+w () +---wy(n) € H(X;Z/2),

as an element in the cohomology ring with Z./2-coefficients.
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Remark 4.2.4. If 71 is a O(n)-bundle, then by definition we have that
w;(r) =0, if i > n. Also, since the trivial bundle is classified by the
constant map, it follows that the positive-degree Stiefel-Whitney classes
of a trivial O(n)-bundle are all zero.

Stiefel-Whitney classes of O(n)-bundles enjoy similar properties as
the Chern classes.

Proposition 4.2.5. The Stiefel-Whitney classes satisfy the functoriality prop-
erty and the Whitney sum formula.

4.3 Stiefel-Whitney classes of manifolds and applications

If M is a smooth manifold, its tangent bundle TM can be regarded as
an O(n)-bundle.

Definition 4.3.1. The Stiefel-Whitney classes of a smooth manifold M are
defined as

Theorem 4.3.2 (Wu). Stiefel-Whitney classes are homotopy invariants, i.e.,
if h : My — My is a homotopy equivalence then h*w;(M;) = w;(My), for
any i > 0.

Characteristic classes are particularly useful for solving a wide range
of topological problems, including the following:

(a) Given an n-dimensional smooth manifold M, find the minimal inte-
ger k such that M can be embedded /immersed in R"*¥,

(b) Given an n-dimensional smooth manifold M, is there an (n + 1)-
dimensional smooth manifold W such that oW = M?

(c) Given a topological manifold M, classify/find exotic smooth struc-
tures on M.
The embedding problem
Let f : M"™ — N"** be an embedding of smooth manifolds. Then
ffTN=TM®&v, (4.3.1)

where v is the normal bundle of M in N. In particular, v is of rank
k, hence w;(v) = 0 for all i > k. The Whitney product formula for
Stiefel-Whitney classes, together with (4.3.1), yields that

Fro(N) = w(M) Uo(v). (432)
Note that w(M) = 1+ w;(M) + - - - is invertible in H*(M;Z/2), hence

w(v) = w(M)~tU ffw(N).
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In particular, if N = R”*K, one gets w(v) = w(M) 1.

The same considerations apply in the case when f : M" — N™+k
is required to be only an immersion. In this case, the existence of the
normal bundle v is guaranteed by the following simple result:

Lemma 4.3.3. Let

FR— 1 \F

N S

be a linear monomorphism of vector bundles, i.e., in local coordinates, i is
given by U x R" — U xR™ (n < m), (u,v) — (u,€(u)v), where £(u)
is a linear map of rank n for all u € U. Then there exists a vector bundle
mi B — X so that my &y & it

To summarize, we showed that if f : M™ — N+ is an embedding
or an immersion of smooth manifolds, than one can solve for w(v) in
(4.3.2), where v is the normal bundle of M in N. Moreover, since v has
rank k, we must have that w;(v) =0 for all i > k.

The following result of Whitney states that one can always solve for
w(v) if the codimension k is large enough. More precisely, we have:

Theorem 4.3.4 (Whitney). Any smooth map f : M"™ — N is homotopic
to an embedding for k > m + 1.

Let us now consider the problem of embedding (or immersing) IRP"™
into R”*k. If v is the corresponding normal bundle of rank k, we have
that w(v) = w(RP™)~1

We need the following calculation:

Theorem 4.3.5.
w(RP") = (1+2)"", (4.33)
where x € H'(RP™;Z/2) is a generator.

Before proving Theorem 4.3.5, let us discuss some examples.

Example 4.3.6. Let us investigate constraints on the codimension k of
an embedding of RP? into R¥. By Theorem 4.3.5, we have:

wRP?) = (1+ 1) = (1+x)¥(1+x)? = (1+28)(1+2?) =14+22+48,
since x!0 = 0 in H*(RP%; Z/2). Therefore,
w(RP)™ =1+ 2%+ x* + 26

If an embedding (or immersion) f of RP? into R?*¥ exists, then w(v) =
w~!(RP?), where v is the corresponding rank k normal bundle. In
particular, wg(v) # 0. Since we must have w;(v) = 0 for i > k, we
conclude that k > 6. For example, this shows that RP? cannot be
embedded into R,
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Example 4.3.7. Similarly, if m = 2" then
w(RP?) = (1+x)2 T =14+ (1 +x) =1+x+47.

If there exists an embedding or immersion RP?" — R? ** with normal
bundle v, then

wv) =w(RP*) ' =1+x+22+---+2771,

hence k > 2" —1 = m — 1. In particular, RRP® cannot be immersed in
R'4. In this case, one can actually construct an immersion of RP?" into
R? +¥ for any k > 2" — 1, due to the following result:

Theorem 4.3.8 (Whitney). An m-dimensional smooth manifold can be em-
bedded in R¥™ and immersed in R?"~1,

Definition 4.3.9. A smooth manifold is parallelizable if its tanget bundle TM
is trivial.

Example 4.3.10. Lie groups, hence in particular S!, S®> and S7, are
parallelizable.

Theorem 4.3.5 can be used to prove the following:

Theorem 4.3.11. w(RP™) = 1 if and only if m +1 = 2" for some r. In
particular, if RP™ is parallelizable, then m +1 = 2" for some r.

Proof. Note that if RP™ is parallelizable, then w(IRP™) = 1 since TRP"™
is a trivial bundle. If m + 1 = 27, then w(RP™) = (1 +x)? =14 x% =
1+ 2™+ = 1. On the other hand, if m + 1 = 2k, where k > 1 is an odd
integer, we have

w(RP™) = [(1+x)2F =1+ =1+k® +--- #1,
since x2 # 0 (indeed, 2" < 2’k = m + 1). O
In fact, the following result holds:
Theorem 4.3.12 (Adams). RP™ is parallelizable if and only if m € {1,3,7}.
Let us now get back to the proof of Theorem 4.3.5

Proof of Theorem 4.3.5. The idea is to find a splitting of (a stabilization
of) TRP™ into line bundles, then to apply the Whitney sum formula.
Recall that O(1)-bundles on RP™ are classified by

[RP™,BO(1)] = [RP",K(Z/2,1)] = H (RP"; Z/2) = Z/2.

We'll denote by £! the trivial O(1)-bundle, and let 7t be the non-trivial
O(1)-bundle on RP™. Since O(1) = Z/2, O(1)-bundles are regular
double coverings. It is then clear that 7t corresponds to the 2-fold cover
S§™" — IRP™.

COBORDISM. APPLICATIONS.
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We have w(&£') =1 € H*(RP"; Z/2). To calculate w(7), we notice
that the inclusion map i : RP" — RP* classifies the bundle 7, as
the universal bundle S* — IRP® pulls back under the inclusion to
S§™ — RP™. In particular,

wy () =i*wy =i*x = x,

where x is the generator of H!(RP®;Z/2) = H'(RP™;Z/2). There-
fore,

w(m) =1+ x.
We next show that
TRP" @ &' =~ DT, 3.
® TP DT (4-3-4)
m+1 times

from which the computation of w(IRP™) follows by an application of
the Whitney sum formula.

To prove (4.3.4), start with §" — R"*1 with (rank one) normal
bundle denoted by &,. Note that £, is a trivial line bundle on 5", as it
has a global non-zero section (mapping y € S™ to the normal vector vy
at y). We then have

TS" @& 2 TR gn =M 2 elg... g &,
_\/_/

m+1 times

with £ the trivial bundle of rank 7 + 1 on S™, i.e., the Whitney sum
of m + 1 trivial line bundles £! on S™, each of which is generated by
the global non-zero section y — dixi|y' i=1,---,m+1.

Leta: S™ — S™ be the antipodal map, with differential da : TS™ —
TS™. Lety : (—ee) = S, v(0) =y, v = 9 (0) € T,S™. Then
da(v) = %(a ov(t))|i=0 = —7'(0) = —v € T,(,)S™. Therefore da is an
involution on TS™, commuting with 4, and hence

TS™/da = TRP™.

Next note that the normal bundle &£, on §™ is invariant under the
antipodal action (as da(vy) = v,(,)), so it descends to the trivial line
bundle on RP", i.e.,

E/da= £,
Finally,
S" xR/da=S" xR/ (y ti) ~ (—y —ti) =S5"xz,» R
" dx; T dx; /2%

which is the associated bundle of 7t with fiber IR. So,
EV/da= .

This concludes the proof of (4.3.4) and of the theorem. O



VECTOR BUNDLES. CHARACTERISTIC CLASSES. COBORDISM. APPLICATIONS.

Remark 4.3.13. Note that RP? 22 SO(3) is a Lie group, so its tangent
bundle is trivial. In this case, once can conclude directly that w(RP3) =
1, but this fact can also be seen from formula (4.3.3).

Boundary Problem.

For a closed manifold M", let uyr € Hy,(M,Z/2) be the fundamental
class. We will associate to M certain Z /2-invariants, called its Stiefel-
Whitney numbers.

Definition 4.3.14. Let &« = (aq,...,a,) be a tuple of non-negative integers
such that y ;' | in; = n. Set

W (M) :=w (M) U- - Uw, (M)™ € H'(M; Z/2).
The Stiefel-Whitney number of M with index « is defined as
W (M) := (@ (M), pu) € Z/2,

where (—,—) : H'(M;Z/2) x H,(M;Z./2) — Z/2 is the Kronecker
evaluation pairing.

We have the following result:

Theorem 4.3.15 (Pontrjagin-Thom). A closed n-dimensional manifold M
is the boundary of a smooth compact (n + 1)-dimensional manifold W if and
only if all Stiefel-Whitney numbers of M vanish.

Proof. We only show here one implication (due to Pontrjagin), namely
that if M = oW then w(,)(M) = 0, for any & = (ay,...,ay) with
Y in; =n.

If i : M — W denotes the boundary embedding, then

FTWXTM &V,

where v! is the rank-one normal bundle of M in W.
Assume that TW has a Euclidean metric. Then the normal bundle

vl is trivialized by picking the inward unit normal vector at every point
in M. Hence
FTW=TM®E,

where £! is the trivial line bundle on M. In particular, the Whitney
sum formula yields that

wi(M) = i"we (W),

fork=1,---,n,so wll (M) = i*w[“](W) for any « as above.
Let uw be the fundamental class of (W, M) i.e., the generator of
H,1(W,M;Z/2), and let up be the fundamental class of M as above.
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From the long exact homology sequence for the pair (W, M) and
Poincaré duality, we have that

I(pw) = K-
Let 6 : H'(M;Z/2) — H"T1(W, M;Z/2) be the map adjoint to 9. The

naturality of the cap product yields the identity:

(W, um) = (v, ouw) = Oy, pw)

for any y € H"(M;Z/2). Putting it all together we have:

(@™ (M), jip)
("Wl (W), duyy)
(@@ W™ (W), uw)
(O,
0,

Wy (M) =
- [
= (0, uw)

since 4 0 i* = 0, as can be seen from the long exact cohomology sequence
for the pair (W, M). O

Example 4.3.16. Suppose M = X L X, i.e., M is the disjoint union of
two copies of a closed n-dimensional manifold X. Then for any «,
W(y) (M) = 2w, (X) = 0. This is consistent with the fact that X LI X is
the boundary of the cylinder X x [0, 1].

Example 4.3.17. Every RP%*1is a boundary. Indeed, the total Stiefel-
Whitney class of RPZ*~1 is (1 + x)?* = (1 4 x2)*, with x the generator
of H'(RP?~1;Z/2). Thus, all the odd degree Stiefel-Whitney classes
of RP?~1 are 0. Since every monomial in the Stiefel-Whitney classes of
RP%*~1 of total degree 2k — 1 must contain a factor w; with j odd, all
Stiefel-Whitney numbers of RP?~1 vanish. This implies the claim by
the Pontrjagin-Thom Theorem 4.3.15.

Example 4.3.18. The real projective space RP? is not a boundary, for
any integer k > 0. Indeed, the total Stiefel-Whitney class of RP? is

w(RP%) = (12 =1 (e ()
=1+x+- 42

In particular, wy (RP%) = x2*. Tt follow that for « = (0,0,...,1) we
have

Wy (RPF) =1 0.
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4.4 Pontrjagin classes

In this section, unless specified, we use the symbol 7 to denote real
vector bundles (or O(n)-bundles), and use w for complex vector bundles
(or U(n)-bundles) on a topological space X.

Given a real vector bundle 71, we can consider its complexification
n®C, ie., the complex vector bundle with same transition functions
as 7t

Sap : U NUg — O(n) C U(n),
and fiber R" ® C = C".

Given a complex vector bundle w, we can consider its realization
wr, obtained by forgeting the complex structure, i.e., with transition
functions

Sap U, N Uﬁ — U(n) = O(2n).

Given a complex vector bundle w, its conjugation w is defined by

transition functions

ap : Un N Ug 26 U(n) 5 U(n),

with the second homomorphism given by conjugation. w has the same
underlying real vector bundle as w, but the opposite complex structure
on its fibers.

Lemma 4.4.1. If w is a complex vector bundle, then
Wr®C = wdw.

Proof. Let j be the linear transformation on Fr ® C given by multiplica-
tion by i. Here F is the fiber of complex vector bundle w, and Fp is the
fiber of its realization wg. Then ]2 = —id, so we have

Fr ® C = Eigen(i) & Eigen(—i),

where | acts as multiplication by i on Eigen(i), and it acts as multipli-
cation by —i on Eigen(—i). Moreover, we have F C Eigen(i) and F C
Eigen(—i). By a dimension count we then get that [Rr @ C ¥ F®F. O

Lemma 4.4.2. Let 7t be a real vector bundle. Then
neC=rnC.

Proof. Indeed, since the transition functions of 77 ® C are real-values
(same as those of 77), they are also the transition functions for 7 @ C. [

Lemma 4.4.3. If w is a rank n complex vector bundle, the Chern classes of
its conjugate w are computed by

(@) = (=1 e (w),

foranyk=1,--- ,n.
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Proof. Recall that one way to define (universal) Chern classes is by
induction by using the fibration

§%=1 < BU(k—1) — BU(k).

In fact,
ck = dox(a),

where a is the generator of H2*~1(S%~1,7).

SZk—l

The complex conjugation on the fiber of the above fibration

is a map of degree (—1)F (it keeps k out of 2k real basis vectors in-
variant, and it changes the sign of the other k; each sign change is a
reflection and it has degree —1). In particular, the homomorphism
H#-1(521,7) — H%*-1(S?~1;Z) induced by conjugation is defined
by a + (—1)k - a. Altogether, this gives ¢, (@) = (—1)* - cx(w). O

Combining the results from Lemma 4.4.2 and Lemma 4.4.3, we have
the following:

Corollary 4.4.4. For any real vector bundle r,
Ck(TL' & C) = Ck(ﬂ.' & C) = (—1)kck(7r & C)

In particular, for any odd integer k, cx (7t @ C) is an integral cohomology class
of order 2.

Definition 4.4.5 (Pontryagin classes of real vector bundles). Let 77 : E —
X be a real vector bundle of rank n. The i-th Pontrjagin class of 7t is defined
as:

pi(m) == (~1)'cpi(m ® C) € HY(X; Z).

If w a complex vector bundle of rank n, we define its i-th Pontryagin class as
pi(w) := pi(wr) = (~1)'czi(w D @)
Remark 4.4.6. Note that p;(7r) = 0 for alli > 7.

Definition 4.4.7. If 7t is a real vector bundle on X, its total Pontrjagin class
is defined as
p(m) =potpi+--- € H(X;Z).

Theorem 4.4.8 (Product formula). If 7ty and 7ty are real vector bundles on
X, then

p(m @ ) = p(m1) U p(mp) mod 2-torsion.
Proof. We have (711 @ 717) ® C = (711 ® C) @ (71, ® C). Therefore,

pi(m @& 1) = (—1)cpi((7m1 & m2) ® C)

=(-1)" Y a(m®C)Ug(meC)
k+1=2i
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= (=1)" Y c2(m ®C) Ucyy(m2 ® C) + {elements of order 2}

a+b=i

= Y pa(m) Upy(mz) + {elements of order 2},
a+b=i

thus proving the claim. O
Definition 4.4.9. If M is a real smooth manifold, we define

p(M) := p(TM).
If M is a complex manifold, we define

p(M) := p((TM)R)-
Here TM is the tangent bundle of the manifold M.

In order to give applications of Pontrjagin classes, we need the
following computational result:

Theorem 4.4.10 (Chern and Pontrjagin classes of complex projective
space). The total Chern and Pontrjagin classes of the complex projective space
CP" are computed by:

c(CP") = (1+¢)"*, (4-4.1)

p(CP") = (142", (4-4.2)
where ¢ € H?>(CP"; Z) is a generator.
Proof. The arguments involved in the computation of ¢(CP") are very
similar to those of Theorem 4.3.5. Indeed, one first shows that there is
a splitting
TCP' & &' =y@--- 87,
n+1 times

were £ is the trivial complex line bundle on CP" and 1 is the complex

line bundle associated to the principle S'-bundle S! < $?"+1 — CP".

Then v is classified by the inclusion

SZnJrl( Goo

.

CP"—— CP*® = BU(1)

and hence ¢1(7) = ¢, the generator of H2(CP*;Z) = H?(CP";Z). The
Whitney sum formula for Chern classes then yields:

¢(CP") = ¢(TCP") = c(y)""! = (14 ¢c)"L.

111



112 HOMOTOPY THEORY AND APPLICATIONS

By conjugation, one gets
¢(TCP") = (1 — )",
Therefore,
c((TCP")R ® C) = ¢(TCP" & TCP")
(TCP")Uc(TCP")
1— CZ)n—&-ll

= (

from which one can readily deduce that p(CP") = (1 + ¢2)"*+1. O

Applications to the embedding problem

After forgetting the complex structure, CP" is a 2n-dimensional real
smooth manifold. Suppose that there is an embedding

CP" < ]R271+k’

and we would like to find contraints on the embedding codimension k
by means of Pontrjagin classes.

Let (TCP")R be the realization of the tangent bundle for CP". Then
the existence of an embedding as above implies that there exists a
normal (real) bundle v¥ of rank k such that

(TCP")R ® v* = TR *|cpn 2= €214, (4-43)

with £2"F denoting the trivial real vector bundle of rank 21 + k.

By applying the Pontrjagin class p to (4.4.3) and using the product
formula of Theorem 4.4.8 together with the fact that there are no
elements of order 2 in H*(CP"; Z), we have

p(CP") - p(vF) = 1.
Therefore, we get
p(*) = p(CP")" L. (4-4-4)

And by the definition of the Pontryagin classes, we know that if
pi(vk) £ 0, then i < %

Example 4.4.11. In this example, we use Pontrjagin classes to show that C P2
does not embed in R, First,

CP?) = (143 =1+3c,
p

with ¢ € H?(CP2;Z) a generator (hence ¢ = 0). If there is an embedding
CP? < R** with normal bundle v, then

p(vf) = p(CP?)~1 =1 -3¢

Hence p1(vk) # 0, which implies that k > 2.
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4.5 Oriented cobordism and Pontrjagin numbers

If M is a smooth oriented manifold, we denote by —M the same mani-
fold but with the opposite orientation.

Definition 4.5.1. Let M" and N" be smooth, closed, oriented real manifolds
of dimension n. We say M and N are oriented cobordant if there exists a
smooth, compact, oriented (n + 1)-dimensional manifold W't such that
OW = MLI(—N).

Remark 4.5.2. Let us say a word of convention about orienting a bound-
ary. For any x € 0W, there exist an inward normal vector v (x) and an
outward normal vector v_ (x) to the boundary at x. By using a partition
of unity, one can construct an inward/outward normal vector field
v+ : OW — TW]{,w. By convention, a frame {ey,--- ,e,} on Tx(dW) is
positive if {e1,- - -, ey, v_(x)} is a positive frame for T, W.

Lemma 4.5.3. Oriented cobordism is an equivalence relation.

Proof. M and —M are clearly oriented cobordant because M LI (—M) is
diffeomorphic to the boundary of M x [0, 1]. Hence oriented cobordism
is reflexive. The symmetry can be deduced from the fact that, if M LI
(=N) ~ 0W, then N U (—M) ~ o(—W). Finally, if M; U (—M;) ~ W,
and M, U (—M3) ~ dW’, then we can glue W and W’ along the common
boundary and get a new manifold with boundary M; LI (—M3). Hence
oriented cobordism is also transitive. O

Definition 4.5.4. Let (), be the set of cobordism classes of closed, oriented,
smooth n-manifolds.

Corollary 4.5.5. The set (), is an abelian group with the disjoint union
operation.

Proof. This is an immediate consequence of Lemma 4.5.3. The zero
element in ), is the class of @, or equivalently, [M] = 0 € Q, if and
only if M = dW, for some compact manifold W. The inverse of [M] is
[—M], since M U (—M) is a boundary. O

A natural problem to investigate is to describe the group (), by
generators and relations. For example, both [CP*] and [CP? x CP?]
are elements of Qg. Do they represent the same element, i.e., are CP*
and CP? x CP? oriented cobordant? A lot of insight is gained by using
Pontrjagin numbers.

Definition 4.5.6. Let M" be a smooth, closed, oriented real n-manifold, with
fundamental class pyy; € Hy(M;Z). Let k = [§] and choose a partition
w=(ay, o) € ZF such that Z;C:l 4ja; = n. The Pontrjagin number of
M associated to the partition w is defined as:

P (M) = (pr(M)* U - U pp(M)*™, pr) € Z.
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Remark 4.5.7. If n is not divisible by 4, then p(,)(M) = 0 by definition.
Theorem 4.5.8. For n = 4k, each p,) defines a homomorphism
Qn — 7, {M] — p(a)(M)

Hence oriented cobordant manifolds have the same Pontrjagin numbers. In
particular, if M" = 0W" T, then P(x)(M) = 0 for any partition .

Proof. If M = M; U My, then [M] = [M;]| + [Mz] € O, and pp =
UM, T+ UM, € Hy,(M;Z). It follows readily that P(a) (M) = P(a) (M]) +
P(a)(M2).

If M = 90N, then it can be shown as in the proof of Theorem 4.3.15
that p(,) (M) = 0 for any partition a. O

Example 4.5.9. By Theorem 4.4.10, we have that p(CP*") = (1 +
c?)21*+1 where c is a generator of H?(CP?*";Z). Hence p;(CP?") =
(anl)czz' For the partition « = (0,...,0,1), we find that P(a) (CP?) =
<(2”;1)c2",}4¢p2n> = (1) # 0. We conclude that CP?" is not an
oriented boundary.

Remark 4.5.10. If we reverse the orientation of a manifold M of real
dimension n = 4k, the Pontrjagin classes remain unchanged, but the
fundamental class )1 changes sign. Therefore, all Pontrjagin numbers
P(x)(M) change sign. This shows that, if some Pontrjagin number
P(x)(M) is nonzero, then M cannot have any orientation-reversing
diffeomorphism.

Example 4.5.11. The above remark and Example 4.5.9 show that CP?"
does not have any orientation-reversing diffeomorphism. However,
CP?"*! has an orientation-reversing diffeomorphism induced by com-
plex conjugation.

Example 4.5.12. Let us consider (4. As CP? is not an oriented bound-
ary by Example 4.5.9, we have [CP?] # 0 € Q). Recall that p(CP?) =
1+ 3c?, so p1(CP?) = 3c2. For the partition & = (1), we then get that
p(l)(CPZ) = 3. So

14
0, %37 o0
is exact, thus rank(Q)y) > 1.

Example 4.5.13. We next consider ()g. The partitions to work with in
this case are a3 = (2,0) and ap = (0,1), and Theorem 4.5.8 yields a
homomorphism
(P(ay)P(ag))
05— 7 a7

We aim to show that

rank(Q)g) = dimg(Qg ® Q) > 2.
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We start by noting that both CP* and CP? x CP? are compact oriented
8-manifolds which are not boundaries. We calculate the Pontrjagin
numbers of these two spaces. First,

p(CP*) = (1+¢?)° =1 +5¢% +10c%,

where c is a generator of H?(CP*;Z). Hence, p;(CP*) = 5¢? and
p2(CP*) = 10c*. The Pontrjagin numbers of CP* corresponding to the
partitions a1 = (2,0) and ap = (0,1) are given as:

P(ay) (CP*) = (p1(CP*)?, peps) = 25,

P(ag) (CP*) = (p2(CP*), ucps) = 10.
In order to compute the corresponding Pontrjagin numbers for CP? x
CP?, let pr; : CP? x CP* — CP?,i = 1,2, be the projections on factors.
Then
T(CP? x CP?) = priT(CP?) @ pryT(CP?),

so Theorem 4.4.8 yields that
p(CP* x CP?) = prip(CP?) U pr3p(CP?) = p(CP?) x p(CP?),

where X denotes the external product. Let c; and ¢, denote the genera-
tors of the second integral cohomology of the two CP? factors. Then:

p(CP2x CP?) = (1+c2)%- (1+c3)% = (1+3¢3) - (1+3c3)
=1+3c} +3c3 +9c3c3.
Hence, p1(CP? x CP2) = 3(c? +¢3) and p2(CP? x CP?) = 9c3c3. There-
fore, the Pontrjagin numbers of CP? x CP? corresponding to the parti-
tions a1 and a, are computed by (here we use the fact that ¢} = 0 = c3):
P(a;)(CP* X CP?) =18, p(,,)(CP?> x CP*) =9.
The values of the homomorphism (p(4,), P(ay)) : Qs —> Z S Z on

CP* and CP? x CP? fit into the 2 x 2 matrix ﬁg 198] with nonzero

determinant. Hence rank(Qg) > 2.

More generally, we the following qualitative description of (),
which we mention here without proof.

Theorem 4.5.14 (Thom). The oriented cobordism group )y, is finitely gener-
ated of rank |1|, where 1 is the collection of partitions a satisfying }_; 4jaj = n.
In fact, modulo torsion, (), is generated by products of even complex projective
spaces. Moreover, @ p(y) : Qn — Z" is an injective homomorphism onto a
ael

subgroup of the same rank.

Example 4.5.15. Our computations from Examples 4.5.12 and 4.5.13
together with Theorem 4.5.14 yield that in fact we have: rank(Q4) =1
and rank(Qg) = 2.
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4.6  Signature as an oriented cobordism invariant

Recall that if M* is a closed, oriented manifold of real dimension
n = 4k, then we can define its signature c(M) as the signature of the
bilinear symmetric pairing

H*(M; Q) x H*(M;Q) — Q,

which is non-degenerate by Poincaré duality. Recall also that if M is an
oriented boundary then o(M) = 0. This suffices to deduce the folowing
result:

Theorem 4.6.1 (Thom). o : Qe — Z is a homomorphism.

It follows from Theorems 4.5.14 and 4.6.1 that the signature is a
rational combination of Pontrjagin numbers, i.e.,

U= Z AxP (a) (4.6.1)
ael
for some coefficients a, € Q. The Hirzebruch signature theorem provides
an explicit formula for these coefficients a,. In what follows we compute
by hand the coefficients a, in the cases of ()4 and Q.

Example 4.6.2. On closed oriented 4-manifolds, the signature is com-
puted by

o =apy, (4.6.2)

with a4 € Q to be determined. Since 4 is the same for any [M] € Qy,
we will determine it by performing our calculations on M = CP2.
Recall that ¢(CP?) = 1, and if ¢ € H*(CP? Z) is a generator then
p1(CP?) = 3c?. Hence p(l)(CPz) = 3, and (4.6.2) implies that 1 = 3a,
or a = 1. Therefore, for any closed oriented 4-manifold M* we have

that
a 1

#(M) = (3p1(M), fiaa) = 5p0) (M) € Z.

Example 4.6.3. On closed oriented 8-manifolds, the signature is com-
puted by (4.6.1) as

0 =4a12,0)P(2,0) T 40,1)P(0,1) (4.6.3)

with a;9),a(0,1) € Q to be determined. Since ()g is generated rationally
by CP* and CP? x CP?, we can calculate a(2,0) and 4(g 1) by evaluating
(4.6.3) on CP* and CP? x CP?. Using our computations from Example
4.5.13, we have:

1= 0(CP*) = 25a(5) + 104y 1), (4.6.4)

and
1=0(CP? x CP?) = 18a(5) + 94(0,1)- (4.6.5)
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Solving for a(; gy and a(g 1) in (4.6.4) and (4.6.5), we get:
1 7

A20) = ~357 401 = 35
Altogether, the signature of a closed oriented manifold M8 is computed
by the following formula:

O(M®) = 42 (7pa(M) — pr(M)?, ). 466)

4.7 Exotic 7-spheres

Now we turn to the construction of exotic 7-spheres. Start with M
a smooth, 3-connected orientable 8-manifold. Up to homotopy, M =~
(S*v..-vSH Us e8. Assume further that B4(M) = 1,ie, M ~ S* Us e?,
for some map f : S” — S*. By Whitney’s embedding theorem, there is
a smooth embedding S* <+ M. Let E be a tubular neighborhood of this
embedded S* in M; in other words, E is a D*-bundle on $* inside M.
Such D*-bundles on S* are classified by

m3(S0(4)) = m13(S° x B =2 Z ¢ Z.

(Here we use the fact that S® x S% is a 2-fold covering of SO(4).) That
means that E corresponds to a pair of integers (i, j).

Let X’ be the boundary of E, so X is a S3-bundle over S*. If X is
diffeomorphic to a 7-sphere, one can recover M from E by attaching
an 8-cell to X = JE. So the question to investigate is: for which pairs of
integers (i, j) is X diffeomorphic to S’?

One can show the following:

Lemma 4.7.1. X is homotopy equivalent to S” if and only if i +j = +1.

Suppose i + j = 1. Then for each choice of i, we get an S3-bundle
over 5% namely X = 9E, which has the homotopy type of S7. If X is in
fact diffeomorphic to S’, then we can recover M by attaching an 8-cell
to X, and in this case the signature of M is computed by

oc(M) = 41*5 <7P(0,1)(M) - P(z,o)(M)> .

Moreover, one can show that:
Lemma 4.7.2. p(y0)(M) =4(i — j)? = 4(2i — 1)%

Note that o(M) = =41 since H*(M;Z) = Z, and let us fix the
orientation according to which (M) = 1. Our assumption that X was
diffeomorphic to S7 leads now to a contradiction, since

4(2i —1)% +45
P(o,l)(M) = %
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is by definition an integer for all i, which is contradicted e.g., for i = 2.

So far (for i = 2 and j = —1), we constructed a space X which is
homotopy equivalent to S7, but which is not diffeomorphic to S7. In
fact, one can further show the following:

Lemma 4.7.3. X is homeomorphic to S7, so in fact X is an exotic 7-sphere.

This latest fact can be shown by constructing a Morse function
g : X = R with only two nondegenerate critical points (a maximum
and a minimum). An application of Reeb’s theorem then yields that X
is homeomorphic to S7.

4.8 Exercises
1. Construct explicitly the bounding manifold for RPS.

2. Let w be a rank n complex vector bundle on a topological space X,
and let c;(w) € H*(X;Z) be its i-th Chern class. Via Z — Z/2, c;(w)
determines a cohomology class ¢;(w) € H*(X;Z/2). By forgetting the
complex structure on the fibers of w, we obtain the realization wg of w,
as a rank 27 real vector bundle on X.

Show that the Stiefel-Whitney classes of wpr are computed as follows:

(@) wyi(wr) =¢i(w), for 0 <i < n.

(b) wyir1(wr) = 0 for any integer i.

3. Let M be a 2n-dimensional smooth manifold with tangent bundle
TM. Show that, if M admits a complex structure, then w,;(M) is
the mod 2 reduction of an integral class for any 0 < i < #n, and
wyi+1(M) = 0 for any integer i. In particular, Stiefel-Whitney classes
give obstructions to the existence of a complex structure on an even-
dimensional real smooth manifold.

4. Show that a real smooth manifold M is orientable if and only if
wl(M) =0.

5. Show that CP? does not embed in R”.
6. Show that CP* does not embed in R1!.

7. Example 4.5.9 shows that CP? is not the boundary on an oriented
compact 5-manifold. Can CP? be the boundary on some non-orientable
compact 5-manifold?

8. Show that CP?"*! is the boundary of a compact manifold.
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