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Chapter 1

Selected topics in Homology

Note: Knowledge of simplicial and singular homology will be assumed.

1.1 Cellular Homology

1.1.1 Degrees

Definition 1.1.1. The degree of continuous map f : Sn → Sn is defined as:

deg f = f∗(1) (1.1.1)

where 1 ∈ Z denotes the generator, and f∗ : H̃n(Sn) = Z → H̃n(Sn) = Z is the homomor-
phism induced by f in homology.

The degree has the following properties:

1. deg idSn = 1.

Proof. This is because (idSn)∗ = id which is multiplication by the integer 1.

2. If f is not surjective, then deg f = 0.

Proof. Indeed, suppose f is not surjective, then there is a y /∈ Imagef . Then we can
factor f in the following way:

Sn
f
> Sn

Sn \ {y}
h

>

g >

Since Sn−{y} ∼= Rn which is contractible, Hn(Sn \{y}) = 0. Therefore f∗ = h∗g∗ = 0,
so deg f = 0.
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3. If f ∼= g, then deg f = deg g.

Proof. This is because f∗ = g∗. Note that the converse is also true (by a theorem of
Hopf).

4. deg(g ◦ f) = deg g · deg f .

Proof. Indeed, we have that (g ◦ f)∗ = g∗ ◦ f∗.

5. If f is a homotopy equivalence (so there exists a g so that g◦f ' idSn), then deg f = ±1.

Proof. This follows directly from 1, 3, and 4 above, since f ◦ g ∼= idSn implies that
deg f · deg g = deg idSn = 1.

6. If r : Sn → Sn is a reflection across some n-dimensional subspace of Rn+1, that is,
r(x0, . . . xn) 7→ (−x0, x1, . . . , xn), then deg r = −1.

Proof. Without loss of generality we can assume the subspace is Rn × {0} ⊂ Rn−1.
Choose a CW structure for Sn whose n-cells are given by ∆n

1 and ∆n
2 , the upper

and lower hemispheres of Sn, attached by identifying their boundaries together in the
standard way. Then consider the generator of Hn(Sn): [∆n

1 −∆n
2 ]. The reflection map

r maps the cycle ∆n
1 −∆n

2 to ∆n
2 −∆n

1 = −(∆n
1 −∆n

2 ). So

r∗([∆
n
1 −∆n

2 ]) = [∆n
2 −∆n

1 ] = [−(∆n
1 −∆n

2 )] = −1 · [∆n
1 −∆n

2 ]

so deg r = −1.

7. If a : Sn → Sn is the antipodal map (x 7→ −x), then deg a = (−1)n+1

Proof. Note that a is a composition of n+1 reflections, since there are n+1 coordinates
in x, each getting mapped by an individual reflection. From 4 above we know that
composition of maps leads to multiplication of degrees.

8. If f : Sn → Sn and Sf : Sn+1 → Sn+1 is the suspension of f then degSf = deg f .

Proof. Recall that if f : X → X is a continuos map and

ΣX = X × [−1, 1]/(X × {−1}, X × {1})

denotes the suspension of X, then Sf := f × id[−1,1]/ ∼, with the same equivalence as
in ΣX. Note that ΣSn = Sn+1.
The Suspension Theorem states that

H̃i(X) ∼= H̃i+1(ΣX).

4



This can be proved by using the Mayer-Vietoris sequence for the decomposition

ΣX = C+X ∪X C−X,

where C+X and C−X are the upper and lower cones of the suspension joined along
their bases:

→ H̃n+1(C+X)⊕ H̃n+1(C−X)→ H̃n+1(ΣX)→ H̃n(X)→ H̃n(C+X)⊕ H̃n(C−X)→

Since C+X and C−X are both contractible, the end groups in the above sequence are
both zero. Thus, by exactness, we get H̃i(X) ∼= H̃i+1(ΣX), as desired.
Let C+S

n denote the upper cone of ΣSn. Note that the base of C+S
n is Sn×{0} ⊂ ΣSn.

Our map f induces a map C+f : (C+S
n, Sn)→ (C+S

n, Sn) whose quotient is Sf . The
long exact sequence of the pair (C+S

n, Sn) in homology gives the following commutative
diagram:

0 > H̃i+1(C+S
n, Sn) ' H̃i+1(C+S

n/Sn)
∂

∼
> H̃i(S

n) > 0

H̃i+1(Sn+1)

(Sf)∗∨
∂

∼
> H̃i(S

n)

f∗∨

Note that C+S
n/Sn ∼= Sn+1 so the boundary map ∂ at the top and bottom of the

diagram are the same map. So by the commutativity of the diagram, since f∗ is
defined by multiplication by some integer m, then (Sf)∗ is multiplication by the same
integer m.

Example 1.1.2. Consider the reflection map: rn : Sn → Sn defined by (x0, . . . , xn) 7→
(−x0, x1, . . . , xn). Since rn leaves x1, x2, . . . , xn unchanged we can unsuspend one at a
time to get

deg rn = deg rn−1 = · · · = deg r0,

where ri : Si → Si by (x0, x1, . . . , xi) 7→ (−x0, x1, . . . , xi). So r0 : S0 → S0 by
x0 7→ −x0. Note that S0 is two points but in reduced homology we are only looking
at one integer. Consider

0→ H̃0(S0)→ H0(S0)
ε−→ Z→ 0

where H̃0(S0) = {(a,−a) | a ∈ Z}, H0(S0) = Z ⊕ Z, and ε : (a, b) 7→ a + b. Then
(r0)∗ : H̃0(S0)→ H̃0(S0) is given by (a,−a) 7→ (−a, a) = (−1)(a,−a). So deg rn = −1.

9. If f : Sn → Sn has no fixed points then deg f = (−1)n+1.

Proof. Consider the above figure. Since f(x) 6= x, the segment (1−t)f(x)+t(−x) from
−x to f(x) does not pass through the origin in Rn+1 so we can normalize to obtain a
homotopy:

gt(x) :=
(1− t)f(x) + t(−x)

|(1− t)f(x) + t(−x)|
: Sn → Sn.
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Note that this homotopy is well defined since (1− t)f(x)− tx 6= 0 for any x ∈ Sn and
t ∈ [0, 1], because f(x) 6= x for all x. Then gt is a homotopy from f to a, the antipodal
map.

Exercises

1. Let f : Sn → Sn be a map of degree zero. Show that there exist points x, y ∈ Sn with
f(x) = x and f(y) = −y.

2. Let f : S2n → S2n be a continuous map. Show that there is a point x ∈ S2n so that
either f(x) = x or f(x) = −x.

3. A map f : Sn → Sn satisfying f(x) = f(−x) for all x is called an even map. Show that
an even map has even degree, and this degree is in fact zero when n is even. When n is odd,
show there exist even maps of any given even degree.

1.1.2 How to Compute Degrees?

Assume f : Sn → Sn is surjective, and that f has the property that there exists some
y ∈ Image(Sn) so that f−1(y) is a finite number of points, so f−1(y) = {x1, x2, . . . , xm}.
Let Ui be a neighborhood of xi so that all Ui’s get mapped to some neighborhood V of y.
So f(Ui − xi) ⊂ V − y. We can choose the Ui to be disjoint. We can do this because f is
continuous.

Let f |Ui : Ui → V be the restriction of f to Ui. Then:
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Hn(Ui, Ui − xi)
f∗−→ Hn(V, V − y)

' (excision) ' (excision)

Hn(Sn, Sn − xi) Hn(Sn, Sn − y)

' l.e.s. ' l.e.s.
H̃n(Sn) H̃n(Sn)

' '

Z Z
Define the local degree of f at xi, deg fxi , to be the effect of f∗ : Hn(Ui, Ui−xi)→ Hn(V, V−y).
We then have the following result:

Theorem 1.1.3. The degree of f equals the sum of local degrees at points in a generic fiber,
that is,

deg f =
m∑
i=1

deg f |xi .

Proof. Consider the commutative diagram, where the isomorphisms labelled by “exc" follow
from excision, and “l.e.s" stands for a long exact sequence.

Z ∼= Hn(Ui, Ui − xi)
f∗

·deg f |xi
> Hn(V, V − y) ∼= Z

∼=, exc

<

Z ∼= Hn(Sn, Sn − xi) <
Pi

Hn(Sn, Sn − f−1(y))

ki

∨
f∗

> Hn(Sn, Sn − y)

∼= exc

∨

' exc

⊕mi=1 Hn(Ui, Ui − xi)

Z ∼= Hn(Sn)

l.e.s. j
∧

f∗

·deg f |xi
>

∼=, l.e.s

<

Hn(Sn) ∼= Z

∼= l.e.s.

∧

By examining the diagram above we have:

ki(1) = (0, . . . , 0, 1, 0, . . . , 0)

where the entry 1 is in the ith place. Also, Pi ◦ j(1) = 1, for all i, so

j(1) = (1, 1, . . . , 1) =
m∑
i=1

ki(1).

The commutativity of the lower rectangle gives:

deg f = f∗j(1) = f∗

( m∑
i=1

ki(1)

)
=

m∑
i=1

f∗(0, . . . , 0, 1, 0, . . . , 0) =
m∑
i=1

deg f |xi
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Thus we have shown that the degree of a map f is the sum of its local degrees.

Example 1.1.4. Let us consider the power map f : S1 → S1, f(x) = xk, k ∈ Z. We claim
that deg f = k. We distinguish the following cases:

• If k = 0 then f is the constant map which has degree 0.

• If k < 0 we can compose f with a reflection r : S1 → S1 by (x, y) → (x,−y). This
reflection has degree −1. So since composition leads to multiplication of degrees, we
can assume that k > 0.

• If k > 0, then for all y ∈ S1, f−1(y) has k points (the k roots), call them x1, x2, . . . , xk,
and f has local degree 1 at each of these points. Indeed, for the above y ∈ Sn we can
find a small open neighborhood centered at y, call this neighborhood V , so that he
pre-images of V are open neighborhoods Ui centered at each xi, with f |Ui : Ui → V a
homeomorphism (which has possible degree ±1). In this case, these homeomorphisms
are a restriction of a rotation, which is homotopic to the identity, and thus the degree
of f |Ui is 1 for each i.

So the degree of f is indeed k. Note that this implies that we can construct maps Sn → Sn

of arbitrary degrees for any n, simply by suspending the power map f .

1.1.3 CW Complexes

Let us recall some notation from the theory of CW complexes. A CW complex X can be
written as

X = ∪nXn,

where Xn is the n-skeleton, which contains all cells up to and including dimension n. Then

Xn = Xn−1 qλ Dn
λ

/
∼

with the identification x ∈ ∂Dn
λ ∼ ϕnλ(x), for ∂Dn

λ = Sn−1
ϕnλ−→ Xn−1 the attaching map of

the n-cell. So we are gluing the boundary of n-cells to Xn−1 according to the attaching map
ϕλ. A CW complex is endowed the weak topology: A ⊂ X is open ⇐⇒ A∩Xn is open for
any n. An n-cell will be denoted by enλ = Int(Dn

λ). One can think of X as a disjoint union
of cells of various dimensions, or as qn,λDn

λ

/
∼, where ∼ means that we are attaching the

cells via their respective attaching maps.
A CW complex X is finite if it has finitely many cells, so there is a cell of maximum

dimension and the dimension of X can be defined. A CW complex is of finite type if it has
finitely many cells in each dimension. Note that a CW complex of finite type may have cells
in infinitely many dimensions. If X = ∪nXn and Xm = Xn for all m > n for some n, then
X = Xn and we say that the skeleton stabilizes.
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Example 1.1.5. On the n-sphere Sn we have a CW structure with one 0-cell (e0) and one
n-cell (en). The attaching map for the n-cell is φ : Sn−1 = ∂Dn → point. There is only
one such map, the collapsing map. Think of taking the disk Dn and collapsing the entire
boundary to a single point, giving Sn.

Example 1.1.6. A different CW structure on Sn can be constructed so that there are two
cells in each dimension from 0 to n. Start with X0 = S0 = {e0

1, e
0
2}. Then X1 = S1 where

the two 1-cells D1
1, D1

2 are attached to the 0-cells by homeomorphisms on the boundary.
Similarly, two 2-cells can be attached to X1 = S1 by homeomorphism on the boundary
giving X2 = S2. Keep working in this manner adding two cells in each new dimension. Note
that if we identify each pair of cells in the same dimension by the antipodal map, we get a
CW structure on RP n with one cell in each dimension from 0 to n.

Example 1.1.7. The complex projective space CP n = Cn+1/C∗ is identified with the col-
lection of complex lines through the origin. So we write CP n = {[z0, . . . , zn]} where
[z0, . . . , zn] = (z0 : . . . : zn) ∼ (λz0 : . . . : λzn). We have that

CP n ∼= CP n−1 tϕ D2n,

where ψ : D2n → CP n is given by

(z1 : . . . : zn) 7→

z1, : . . . : zn :

√√√√1−
n∑
i=1

|zi|2

 .

The attaching map of the 2n-cell is ϕ = ψ|S2n−1 : S2n−1 → CP n−1. It follows that CP n has
a CW structure with one cell in each even dimension 0, 2, . . . , 2n.

1.1.4 Cellular Homology

Let us start with the following preliminary result:

Lemma 1.1.8. If X is a CW complex, then:

(a) Hk(Xn, Xn−1) =

{
0 if k 6= n

Z # of n-cells if k = n.

(b) Hk(Xn) = 0 if k > n.

(c) The inclusion i : Xn ↪→ X induces an isomorphism Hk(Xn)→ Hk(X) if k < n.

Proof. (a) We know that Xn is obtained from Xn−1 by attaching the n-cells (enλ)λ. Pick a
point xλ at the center of each n-cell enλ. Let A := Xn − {xλ}λ. Then A deformation retracts
to Xn−1, so we have that

Hk(Xn, Xn−1) ∼= Hk(Xn, A).
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By excising Xn−1, the latter group is isomorphic to ⊕λHk(D
n
λ , D

n
λ − {xλ}). Moreover, the

homology long exact sequence of the pair (Dn
λ , D

n
λ − {xλ}) yields that

Hk(D
n
λ , D

n
λ − {xλ}) ∼= H̃k−1(Sn−1

λ ) ∼=

{
Z if k = n

0 if k 6= n

So the claim follows.

(b) Consider the following portion of the long exact sequence of the pair for (Xn, Xn−1):

→ Hk+1(Xn, Xn−1)→ Hk(Xn−1)→ Hk(Xn)→ Hk(Xn, Xn−1)→

If k+1 6= n and k 6= n, we have from part (a) that Hk+1(Xn, Xn−1) = 0 and Hk(Xn, Xn−1) =
0. Thus Hk(Xn−1) ∼= Hk(Xn). Hence if k > n (so in particular, n 6= k + 1 and n 6= k), we
get by iteration that

Hk(Xn) ∼= Hk(Xn−1) ∼= · · · ∼= Hk(X0).

Note that X0 is a collection of points, so Hk(X0) = 0. Thus when k > n we have Hk(Xn) = 0
as desired.

(c) We only prove the statement for finite dimensional CW complexes. Let k < n and
consider the long exact sequence for the pair (Xn+1, Xn):

→ Hk+1(Xn+1, Xn)→ Hk(Xn)→ Hk(Xn+1)→ Hk(Xn+1, Xn)→

Since k < n we have k+1 6= n+1 and k 6= n+1, so by part (a) we get thatHk+1(Xn+1, Xn) = 0
and Hk(Xn+1, Xn) = 0. Thus Hk(Xn) ∼= Hk(Xn+1). By repeated iterations, we obtain:

Hk(Xn) ∼= Hk(Xn+1) ∼= Hk(Xn+2) ∼= · · · ∼= Hk(Xn+l) = Hk(X).

Since X is finite dimensional we know that X = Xn+l for some l. This proves the claim.

In what follows we defined the cellular homology of a CW complex X in terms of a given
cell structure, then we show that it coincides with the singular homology, so it is in fact
independent on the cell structure. Cellular homology is very useful for computations.

Definition 1.1.9. The cellular homology HCW
∗ (X) of a CW complex X is the homology of

the cellular chain complex (C∗(X), d∗) indexed by the cells of X, i.e.,

Cn(X) := Hn(Xn, Xn−1) = Z#n−cells, (1.1.2)
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and with differentials dn : Cn(X)→ Cn−1(X) defined by the following diagram:

Hn(Xn+1, Xn) = 0

Hn(Xn−1) = 0 Hn(Xn+1) ∼= Hn(X)

>

Hn(Xn)

in
>

>

Hn+1(Xn+1, Xn)
dn+1

>

∂n+1 >

Hn(Xn, Xn−1)
dn

>

jn

>
Hn−1(Xn−1, Xn−1)

Hn−1(Xn−1)
jn−1

>

∂n >

Hn−1(Xn−2) = 0

>

The diagonal arrows are induced from long exact sequences of pairs, and we use Lemma
1.1.8 for the identifications Hn(Xn−1) = 0, Hn−1(Xn−2) = 0 and Hn(Xn+1) ∼= Hn(X) in the
diagram. In the notations of the above diagram, we now set:

dn = jn−1 ◦ ∂n : Cn(X)→ Cn−1(X), (1.1.3)

and note that we have
dn ◦ dn+1 = 0. (1.1.4)

Indeed,
dn ◦ dn+1 = jn−1 ◦ ∂n ◦ jn ◦ ∂n+1 = 0

since ∂n ◦ jn = 0 as the composition of two consecutive maps in a long exact sequence. So
(C∗(X), d∗) is a chain complex.

The following result asserts that cellular homology is independent on the cell structure
used for its definition:

Theorem 1.1.10. There are isomorphisms

HCW
n (X) ∼= Hn(X)

for all n, where Hn(X) is the singular homology of X.

Proof. Since Hn(Xn+1, Xn) = 0 and Hn(X) ∼= Hn(Xn+1), we get from the diagram above
that

Hn(X) ∼= Hn(Xn)/ ker in ∼= Hn(Xn)/Image ∂n+1.
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Now, Hn(Xn) ∼= Image jn ∼= ker ∂n ∼= ker dn. The first isomorphism comes from jn being
injective, while the second follows by exactness. Finally, ker ∂n = ker dn since dn = jn−1 ◦ ∂n
and jn−1 is injective. Also, we have Image ∂n+1 = Image dn+1. Indeed, dn+1 = jn ◦ ∂n+1 and
jn is injective.

Altogether, we have

Hn(X) ∼= Hn(Xn)/Image ∂n+1 = ker dn/Image dn+1 = HCW
n (X)

So we have proved the theorem.

Let us now discuss some immediate consequences of the above theorem.

(a) If X has no n-cells, then Hn(X) = 0.
Indeed, in this case we have Cn = Hn(Xn, Xn−1) = 0, so HCW

n (X) = 0.

(b) If X is connected and has a single 0-cell then d1 : C1 → C0 is the zero map.
Indeed, since X contains only a single 0-cell, C0 = Z. Also, since X is connected,
H0(X) = Z. So by the theorem above Z = H0(X) = ker d0/Image d1 = Z/Image d1.
This implies that Image d1 = 0, so d1 is the zero map as desired.

(c) If X has no two cells in adjacent dimensions then dn = 0 for all n and Hn(X) ∼= Z#n−cells

for all n.
Indeed, in this case all maps dn vanish. So for any n, HCW

n (X) ∼= Cn ∼= Z#n−cells.

Example 1.1.11. Recall that CP n has one cell in each dimension 0, 2, 4, . . . , 2n. So CP n

has no two cells in adjacent dimensions, meaning we can apply Consequence (c) above to
say:

Hi(CP n) =

{
Z if i = 0, 2, 4, . . . , 2n

0 otherwise.

Example 1.1.12. When n > 1, Sn × Sn has one 0-cell, two n-cells, and one 2n-cell. Since
n > 1, these cells are not in adjacent dimensions so again Consequence (c) above applies to
give:

Hi(S
n × Sn) =


Z i = 0, 2n

Z2 i = n

0 otherwise.

In the remaining of this section, we discuss how to compute in general the maps

dn : Cn(X) = Z#n−cells → Cn−1(X) = Z#(n−1)−cells

of the cellular chain complex. Let us consider the n-cells {enα}α as the basis for Cn(X) and
the (n− 1)-cells {en−1

β }β as the basis for Cn−1(X). In particular, we can write:

dn(enα) =
∑
β

dαβ · en−1
β ,

with dαβ ∈ Z. The following result provides a way of computing the coefficients dαβ:

12



Theorem 1.1.13. The coefficient dαβ is equal to the degree of the map ∆α,β : Sn−1
α → Sn−1

β

defined by the composition:

Sn−1
α = ∂enα

ϕnα−→ Xn−1 = Xn−2 qγ en−1
γ

collapse−−−−→ Xn−1/(Xn−2 tγ 6=β en−1
γ ) = Sn−1

β ,

where ϕnα is the attaching map of enα, and the collapsing map sends Xn−2

∐
γ 6=β e

n−1
γ to a

point.

Proof. We will proceed with the proof by chasing the following diagram, and we note that
the map ∆αβ∗ is defined so that the top right square commutes.

Hn(Dn
α, S

n−1
α )

Φn∗
��

∂
'
// Hn−1(Sn−1

α )

ϕn−1
α∗
��

∆αβ∗ // Hn−1(Sn−1
β )

Cn(X)
∂n //

dn

&&

Hn−1(Xn−1)

jn−1
∗

��

q∗ // H̃n−1(Xn−1/Xn−2)

qβ∗

OO

'
��

= ⊕βH̃n−1(en−1
β /∂en−1

β )

Cn−1(X) ' // Hn(
Xn−1

Xn−2

,
Xn−2

Xn−2

)

Recall that our goal is to compute dn(enα). The upper left square is natural and therefore
commutes (it is induced by the characteristic map Φ : (D∗, S∗−1) → (X∗, X∗−1) of a cell),
while the lower left triangle is part of the exact diagram defining the chain complex C∗(X)
and is defined to commute as well. Appealing to naturality, the map Φ gives a unique Dn

α

so that Φn(Dn
α) = enα. Since the top left square and the bottom left triangle both commute,

this gives that
dn(enα) = jn−1

∗ ◦ ϕn−1
α∗ ◦ ∂(Dn

α).

Looking to the bottom right square, recall that since X is a CW complex, (Xn, Xn−1) is a
good pair. This gives the isomorphism Cn−1(X) = Hn−1(Xn−1, Xn−2) ' H̃n−1(Xn−1/Xn−2)
But, we similarly have H̃n−1(Xn−1/Xn−2) ' Hn−1(Xn−1/Xn−2, Xn−2/Xn−2), where the iso-
morphism is induced by the quotient map q collapsing Xn−2.
The bottom right square commutes by the definition of jn−1

∗ and q∗, from which it follows
that

dn(eαn) = q∗ ◦ ϕn−1
α∗ ◦ ∂(Dα

n),

13



where formally we should precompose in the left hand side with the isomorphism between
Cn−1(X) and H̃n−1(Xn−1/Xn−2) so that everything is in the same space. This last map takes
the generator Dα

n to some linear combination of generators in ⊕βH̃n−1(en−1
β /∂en−1

β ). To see
which generators it maps to, we project down to the β summands to obtain

dn(eαn) =
∑
β

qβ∗q∗ϕ
n−1
α∗ ∂D

α
n .

As noted before, we have defined ∆αβ∗ = qβ∗q∗ϕ
n−1
α∗ . So writing

dn(eαn) =
∑
β

∆αβ∗∂D
β
n,

we see from the definition of the above maps that ∆αβ∗ is multiplication by dαβ.

Example 1.1.14. Let Mg be the close oriented surface of genus g, with its usual CW
structure: one 0-cell, 2g 1-cells {a1, b1, · · · ag, bg}, and one 2-cell attached by product of
commutators [a1, b1] · · · [ag, bg]. The associated cellular chain complex of Mg is:

0
d3 // Z d2 // Z2g d1 // Z d0 // 0

Since Mg is connected and has only one 0-cell, we get that d1 = 0. We claim that d2 is also
the zero map. This amounts to showing that d2(e) = 0, where e denotes the 2-cell. Indeed,
let us compute the coefficients deai and debi in our degree formula. As the attaching map
sends the generator to a1b1a

−1
1 b−1

1 ...agbga
−1
g b−1

g , when we collapse all 1-cells (except ai, resp.
bi) to a point, the word defining the attaching map a1b1a

−1
1 b−1

1 ...agbga
−1
g b−1

g reduces to aia−1
i

and resp. bib−1
i . Hence deai = 1− 1 = 0. Similarly, debi = 1− 1 = 0, for each i. Altogether,

d2(e) = a1 + b1 − a1 − b1 + · · · ag + bg − ag − bg = 0.

So the homology groups of Mg are given by

Hn(Mg) =


Z i=0,2
Z2g i=1
0 otherwise.

Example 1.1.15. Let Ng be the closed nonorientable surface of genus g, with its cell struc-
ture consisting of one 0-cell, g 1-cells {a1, · · · , ag}, and one 2-cell e attached by the word
a2

1 · · · a2
g. The cellular chain complex of Ng is given by

0
d3 // Z d2 // Zg d1 // Z d0 // 0

As before, d1 = 0 since Ng is connected and there is only one cell in dimension zero. To
compute d2 : Z→ Zg we again apply the cellular boundary formula, and obtain

d2(1) = (2, 2, · · · , 2)

14



since each a1 appears in the attaching word with total exponent 2, which means that each
map ∆αβ is homotopic to the map z 7→ z2 of degree 2. In particular, d2 is injective, hence
H2(Ng) = 0. If we change the standard basis for Zg by replacing the last standard basis
element en = (0, · · · , 0, 1) by e′n(1, · · · , 1), then d2(1) = 2 · e′n, so

H1(Ng) ∼= Zg/Image d2
∼= Zg/2Z ∼= Zg−1 ⊕ Z/2.

Altogether,

Hn(Ng) =


Z i=0
Zg−1 ⊕ Z2 i=1
0 otherwise.

Example 1.1.16. Recall that RPn has a CW structure with one cell ek in each dimension
0 ≤ k ≤ n. Moreover, the attaching map of ek in RPn is the two-fold cover projection
ϕ : Sk−1 → RPk−1. The cellular chain complex for RPn looks like:

0
dn+1 // Z dn // ...Z d1 // Z d0 // 0

To compute the differential dk, we need to compute the degree of the composite map

∆ : Sk−1 ϕ−→ RPk−1 q−→ RPk−1/RPk−2 = Sk−1.

The map ∆ is a homeomorphism when restricted to each component of Sk−1 \ Sk−2, and
these homeomorphisms are obtained from each other by precomposing with the antipodal
map a of Sk−1, which has degree (−1)k. Hence, by our local degree formula, we get that:

deg ∆ = deg id+ deg a = 1 + (−1)k.

In particular,

dk =

{
0 if k is odd
2 if k is even,

and therefore we obtain that

Hk(RPn) =


Z2 if k is odd , 0 < k < n

Z k = 0, and k = n odd
0 otherwise.

Finally, note that an equivalent definition of the above map ∆ is obtained by first collapsing
the equatorial Sk−2 to a point to get Sk−1 ∨ Sk−1, and then mapping the two copies of Sk−1

onto Sk−1, the first one by the identity map, and the second by the antipodal map.

15



Exercises

1. Describe a cell structure on Sn ∨ Sn ∨ · · · ∨ Sn and calculate H∗(Sn ∨ Sn ∨ · · · ∨ Sn).

2. Let f : Sn → Sn be a map of degree m. Let X = Sn ∪f Dn+1 be a space obtained from
Sn by attaching a (n+ 1)-cell via f . Compute the homology of X.

3. Let G be a finitely generated abelian group, and fix n ≥ 1. Construct a CW-complex X
such that Hn(X) ∼= G and H̃i(X) = 0 for all i 6= n. (Hint: Use the calculation of the previous
exercise, together with know facts from Algebra about the structure of finitely generated
abelian groups.) More generally, given finitely generated abelian groups G1, G2, · · · , Gk,
construct a CW-complex X whose homology groups are Hi(X) = Gi, i = 1, · · · , k, and
H̃i(X) = 0 for all i /∈ {1, 2, · · · , k}.

4. Show that RP5 and RP4∨S5 have the same homology and fundamental group. Are these
spaces homotopy equivalent?

5. Let 0 ≤ m < n. Compute the homology of RPn/RPm.

6. The mapping torus Tf of a map f : X → X is the quotient of X × I

Tf =
X × I

(x, 0) ∼ (f(x), 1)
.

Let A and B be copies of S1, let X = A ∨ B, and let p be the wedge point of X. Let
f : X → X be a map that satisfies f(p) = p, carries A into A by a degree–3 map, and carries
B into B by a degree–5 map.

(a) Equip Tf with a CW structure by attaching cells to X ∨ S1.

(b) Compute a presentation of π1(Tf ).

(c) Compute H1(Tf ;Z).
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7. The closed oriented surface Mg of genus g, embedded in R3 in the standard way, bounds
a compact region R. Two copies of R, glued together by the identity map between their
boundary surfacesMg, form a space X. Compute the homology groups of X and the relative
homology groups of (R,Mg).

8. Let X be the space obtained by attaching two 2-cells to S1, one via the map z 7→ z3 and
the other via z 7→ z5, where z denotes the complex coordinate on S1 ⊂ C.

(a) Compute the homology of X with coefficients in Z.

(b) Is X homeomorphic to the 2-sphere S2? Justify your answer!

17



1.2 Euler Characteristic
Definition 1.2.1. Let X be a finite CW complex of dimension n and denote by ci the number
of i cells of X. The Euler characteristic of X is defined as:

χ(X) =
n∑
i=0

(−1)i · ci. (1.2.1)

It is natural to question whether or not the Euler characteristic depends on the cell
structure chosen for the space X. As we will see below, this is not the case. It suffices to
show that the Euler characteristic depends only on the cellular homology of the space X.
Indeed, cellular homology is isomorphic to singular homology, and the latter is independent
of the cell structure on X.

Recall that if G is a finitely generated abelian group, then G decomposes into a free part
and a torsion part, i.e.,

G ' Zr × Zn1 × · · ·Znk .
The integer r := rk(G) is the rank of G. The rank is additive in short exact sequences of
finitely generated abelian groups.

Theorem 1.2.2. The Euler characteristic can be computed as:

χ(X) =
n∑
i=0

(−1)i · bi(X) (1.2.2)

with bi(X) := rkHi(X) the i-th Betti number of X. In particular, χ(X) is independent of
the chosen cell structure on X.

Proof. We will follow the following notation: Bi = Image(di+1), Zi = ker(di), and Hi =
Zi/Bi. Consider a chain complex of finitely generated abelian groups and the short exact
sequences defining homology:

0
dn+1 // Cn

dn // ...
d2 // C1

d1 // C0
d0 // 0

0 // Zi
� � ι // Ci

di // // Bi−1
// 0

0 // Bi
di+1 // Zi

q // Hi
// 0

The additivity of rank yields that

ci := rkCi = rkZi + rkBi−1

and
rkZi = rkBi + rkHi.

Substitute the second equality into the first, multiply the resulting equality by (−1)i, and
sum over i to get that χ(X) =

∑n
i=0(−1)i · rkHi.

Finally, apply this result to the cellular chain complex Ci = Hi(Xi, Xi−1) and use the
identification between cellular and singular homology.
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Example 1.2.3. IfMg and Ng denote the orientable and resp. nonorientable closed surfaces
of genus g, then χ(Mg) = 1− 2g + 1 = 2(1− g) and χ(Ng) = 1− g + 1 = 2− g. So all the
orientable and resp. non-orientable surfaces are distinguished from each other by their Euler
characteristic, and there are only the relations χ(Mg) = χ(N2g).

Exercises

1. A graded abelian group is a sequence of abelian groups A• := (An)n≥0. We say that A•
is of finite type if ∑

n≥0

rankAn <∞.

The Euler characteristic of a finite type graded abelian group A• is the integer

χ(A•) :=
∑
n≥0

(−1)n · rankAn.

A short exact sequence of graded groups A•, B•, C•, is a sequence of short exact sequences

0→ An → Bn → Cn → 0, n ≥ 0.

Prove that if 0→ A• → B• → C• → 0 is a short exact sequence of graded abelian groups of
finite type, then

χ(B•) = χ(A•) + χ(C•).

2. Suppose we are given three finite type graded abelian groups A•, B•, C•, which are part
of a long exact sequence

· · · → Ak
ik→ Bk

jk→ Ck
∂k→ Ak−1 → · · · → A0 → B0 → C0 → 0.

Show that
χ(B•) = χ(A•) + χ(C•).

3. For finite CW complexes X and Y , show that

χ(X × Y ) = χ(X) · χ(Y ).

4. If a finite CW complex X is a union of subcomplexes A and B, show that

χ(X) = χ(A) + χ(B)− χ(A ∩B).

5. For a finite CW complex and p : Y → X an n-sheeted covering space, show that

χ(Y ) = n · χ(X).

6. Show that if f : RP2n → Y is a covering map of a CW -complex Y , then f is a homeo-
morphism.
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1.3 Lefschetz Fixed Point Theorem
Recall that if G is a finitely generated abelian group, then G decomposes into a free part
and a torsion part, i.e.,

G ' Zr × Zn1 × · · ·Znk .

Here r = rk(G) and Torsion(G) := ×ki=1Zni . Given an endomorphism ϕ : G→ G, define its
trace by

Tr(ϕ) = Tr (ϕ̄ : G/Torsion(G)→ G/Torsion(G)) (1.3.1)

where the latter trace is the linear algebraic trace of the map ϕ̄ : Zr → Zr.

Definition 1.3.1. If X has the homotopy type of a finite simplicial or cellular complex and
f : X → X, then the Lefschetz number of f is defined to be

τ(f) =
∑
i

(−1)i · Tr(f∗ : Hi(X)→ Hi(X)). (1.3.2)

Remark 1.3.2. Notice that homotopic maps have the same Lefschetz number since they
induce the same maps on homology.

Example 1.3.3. If f ' idX , then τ(f) = χ(X). This follows from the fact the map induced
in homology by the identity map is the identity matrix and that the trace of the identity
matrix in this case is the corresponding Betti number of X.

Theorem 1.3.4. (Lefschetz)
If X is a retract of a finite simplicial (or cellular) complex and if f : X → X satisfies
τ(f) 6= 0, then f has a fixed point.

Before proving this theorem, let us consider a few examples.

Example 1.3.5. Suppose that X has the homology of a point (up to torsion). Then

τ(f) = Tr (f∗ : H0(X)→ H0(X)) = 1.

This follows from the fact that all the other homology groups are zero and that the map
induced on H0 is the identity.

This example leads immediately to two nontrivial results, the first of which is the Brouwer
fixed point theorem.

Example 1.3.6. (Brouwer) If f : Dn → Dn is continuous then f has a fixed point.

Example 1.3.7. IfX = RP2n then modulo torsionX has the homology of a point. Therefore
any continuos map f : RP2n → RP2n has a fixed point.

Finally we are led to an example which does not follow from the computation for a point.
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Example 1.3.8. If f : Sn → Sn is a continuos map and deg(f) 6= (−1)n+1, then f has a
fixed point. To verify this, we compute

τ(f) = Tr(f∗ : H0(Sn)→ H0(Sn)) + (−1)n · Tr(f∗ : Hn(Sn)→ Hn(Sn))

= 1 + (−1)n · deg(f)

6= 0.

Corollary 1.3.9. If a : Sn → Sn is the antipodal map, then deg(a) = (−1)n+1.

Now we return to outlining the proof:

Definition 1.3.10. If K and L are simplicial complexes and f : K → L is a linear map
which sends each simplex of K to a simplex in L so that vertices map to vertices, then f is
said to be simplicial.

Note that a simplicial map is uniquely determined by its values on vertices. The simplicial
approximation theorem asserts that given any map f from a finite simplicial complex to an
arbitrary simplicial complex, we can find a map g in the homotopy class of f so that g is
simplicial in the above sense with respect to some finite iteration of barycentric subdivisions
of the domain.

Theorem 1.3.11. If K is a finite simplicial complex and L is an arbitrary simplicial com-
plex, then for any map f : K → L there is a map in the homotopy class of f which is
simplicial with respect to some interated barycentric subdivision of K.

The proof of this result is omitted. We now proceed to the Lefschetz theorem.

Proof. (sketch)
Let us suppose that f has no fixed points. The general case reduces to the case when X is a
finite simplicial complex. Indeed, if r : K → X is a retraction of a finite simplicial complexK
onto X, the composition f ◦r : K → X ⊂ K has exactly the same fixed points as f and since
r∗ : Hi(K)→ Hi(X) is projection onto a direct summand, we have that Tr(f∗ ◦ r∗) = Tr(f∗),
so τ(f ◦ r) = τ(f). We therefore take X to be a finite simplicial complex.

X is compact and there exists a metric d on X so that d restricts to the Euclidean metric
on each simplex of X; choose such a metric. If f has no fixed points, we can find a uniform ε
for which d(x, f(x)) > ε by the standard covering trick. Via repeated barycentric subdivision
of X we can construct L so that for each vertex, the union of all simplicies containing that
vertex has diameter less than ε

2
. Applying the simplicial approximation theorem we can find

a subdivision K of L and a simplicial map g : K → L so that g lies in the homotopy class
of f . Moreover, we may take g so that f(σ) lies in the subcomplex of X consisting of all
simplicies containing σ. Again, by repeated barycentric subdivision we may choose K so
that each simplex in K has diameter less than ε

2
. In particular then g(σ) ∩ σ = ∅ for each

σ ∈ K. Notice τ(g) = τ(f) since f and g are homotopic.
Since g is simplicial, Kn maps to Ln (that is, g sends n-skeletons to n-skeletons). We

constructed K as a subdivision of L so that g(Kn) ⊂ Kn for each n.
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We will use the algebraic fact that trace is additive for short exact sequences to show
that we can replace Hi(X) with Hi(Ki, Ki−1) in our computation of the Lefschetz num-
ber. By essentially the same argument as was used above in the computation of the Euler
characteristic and using this fact we obtain that

τ(g) =
∑
i

(−1)i · Tr(g∗ : Hi(Ki, Ki−1)→ Hi(Ki, Ki−1))

We have a natural basis for Hi(Ki, Ki−1) coming from the simplicies σi in Ki. But since
g(σ) ∩ σ = ∅ it follows that Tr(g∗ : Hi(Ki, Ki−1) → Hi(Ki, Ki−1)) = 0 for each i. So
τ(f) = τ(g) = 0.

The cellular case is proved similarly, using instead a corresponding cellular approximation
theorem.

Exercises

1. Is there a continuous map f : RP2k−1 → RP2k−1 with no fixed points? Explain.

1. Is there a continuous map f : CP2k−1 → CP2k−1 with no fixed points? Explain. We will
see later that any map f : CP2k → CP2k has a fixed point.
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1.4 Homology with General Coefficients
Let G be an abelian group and X a topological space. We define the homology of X with G
coefficients, denoted H∗(X;G), as the homology of the chain complex

Ci(X;G) = Ci(X)⊗G (1.4.1)

consisting of finite formal sums
∑

i ηi · σi (σ : ∆i → X, ηi ∈ G), and with boundary maps
given by

∂Gi := ∂i ⊗ idG.
Since ∂i satisfies ∂i ◦ ∂i+1 = 0 it follows that ∂Gi ◦ ∂Gi+1 = 0, so (C∗(X;G), ∂G∗ ) forms in-
deed a chain complex. We can construct versions of the usual modified homology groups
(relative, reduced, etc.) in the natural way. Define relative chains by Ci(X,A;G) :=
Ci(X;G)/Ci(A;G), and reduced homology via the augmented chain complex

· · ·
∂Gi+1−→ Ci(X;G)

∂Gi−→ · · ·
∂G2−→ C1(X;G)

∂G1−→ C0(X;G)
ε−→ G→ 0.

where ε(
∑

i ηiσi) =
∑

i ηi. Notice that Hi(X) = Hi(X,Z) by definition.
By looking directly at the chain maps, it follows that

Hi(pt;G) =

{
G i = 0

0 i 6= 0.

Nothing (other than coefficients) needs to change in our previous proofs about the relation-
ships between relative homology and reduced homology of quotient spaces so we can compute
the homology of a sphere as before by induction and using the long exact sequence of the
pair (Dn, Sn) to be

Hi(S
n;G) =

{
G i = 0, n

0 otherwise.

Finally, we can build cellular homology in the same way, defining

CGi (X) = Hi(Xi, Xi−1;G) = G# n−cells.

The cellular boundary maps are given by:

dn(
∑
α

nαe
n
α) =

∑
α,β

dαβnαe
n−1
β ,

where dαβ is as before the degree of a map ∆αβ : Sn−1 → Sn−1. This follows from the easy
fact that if f : Sk → Sk has degree m, then f∗ : Hk(S

k;G) ' G → Hk(S
k;G) ' G is the

multiplication by m. As it is the case for integers, we get

HCW
i (X;G) ' Hi(X;G)

for all i.
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Example 1.4.1. We compute Hi(RPn;Z2) using the calculation above. Notice that over Z
the cellular boundary maps are di = 0 or di = 2 depending on the parity of i, and therefore
with Z2-coefficients all of boundary maps vanish. Therefore,

Hi(RPn;Z2) =

{
Z2 0 ≤ i ≤ n

0 otherwise.

Example 1.4.2. Fix n > 0 and let g : Sn → Sn be a map of degree m. Define the CW
complex

X = Sn ∪g en+1,

where the (n + 1)-cell ∂en+1 is attached to Sn via the map g. Let f be the quotient map
f : X → X/Sn. Define Y = X/Sn = Sn+1. The homology of X can be easily computed by
using the cellular chain complex:

0
dn+2 // Z dn+1

m
// Z dn // ...

d1 // 0
d1 // Z d0 // 0

Therefore,

Hi(X;Z) =


Z i = 0

Zm i = n

0 otherwise.

Moreover, as Y = Sn+1, we have

Hi(Y ;Z) =

{
Z i = 0, n+ 1

0 otherwise.

It follows that f induces the trivial homomorphisms in homology with Z-coefficients (except
in degree zero, where f∗ is the identity). So it is natural to ask if f is homotopic to the
constant map. As we will see below, by considering Zm-coefficients we can show that this is
not the case.

Let us now consider H∗(X;Zm) where m is, as above, the degree of the map g. We return
to the cellular chain complex level and observe that we have

0
dn+2 // Zm

dn+1

m
// Zm

dn // ...
d1 // 0

d1 // Zm
d0 // 0

Multiplication by m is now the zero map, so we get

Hi(X;Zm) =

{
Zm i = 0, n, n+ 1

0 otherwise.

Also, as already discussesd,

Hi(Y ;Zm) =

{
Zm i = 0, n+ 1

0 otherwise.
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We next consider the induced homomorphism f∗ : Hn+1(X;Zm) → Hn+1(X;Zm). The
claim is that this map is injective, thus non-trivial map, so f cannot be homotopic to the con-
stant map. As noted before, we still have an isomorphism H̃n+1(Y ;Zm) ' Hn+1(X,Sn;Zm).
This leads us to consider the long exact sequence of the pair (X,Sn) in dimension n+ 1. We
have

· · · −→ Hn+1(Sn;Zm) −→ Hn+1(X;Zm)
f∗−→ Hn+1(X,Sn;Zm) −→ · · ·

But, Hn+1(Sn;Zm) = 0 and so f∗ is injective on Hn+1(X;Zm). Since Hn+1(X;Zm) = Zm 6= 0

and Hn+1(X,Sn;Zm) ' H̃n+1(Y ;Zm) it follows that f∗ is not trivial on Hn+1(X;Zm), which
proves our claim.

Exercises

1. Calculate the homology of the 2-torus T 2 with coefficients in Z, Z2 and Z3, respectively.
Do the same calculations for the Klein bottle.
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1.5 Universal Coefficient Theorem for Homology

1.5.1 Tensor Products

Let A,B be abelian groups. Define the abelian group

A⊗B = {a⊗ b | a ∈ A, b ∈ B}/ ∼ (1.5.1)

where ∼ is generated by the relations (a + a′) ⊗ b = a ⊗ b + a′ ⊗ b and a ⊗ (b + b′) =
a ⊗ b + a ⊗ b′. The zero element of A ⊗ B is 0 ⊗ b = a ⊗ 0 = 0 ⊗ 0 = 0A⊗B since, e.g.,
0⊗b = (0+0)⊗b = 0⊗b+0⊗b so 0⊗b = 0A⊗B. Similarly, the inverse of an element a⊗b is
−(a⊗ b) = (−a)⊗ b = a⊗ (−b) since, e.g., 0A⊗B = 0⊗ b = (a+ (−a))⊗ b = a⊗ b+ (−a)⊗ b.

Lemma 1.5.1. The tensor product satisfies the following universal property which asserts
that if ϕ : A× B → C is any bilinear map, then there exists a unique map ϕ : A⊗ B → C
such that ϕ = ϕ ◦ i, where i : A×B → A⊗B is the natural map (a, b) 7→ a⊗ b.

A×B
ϕ

%%

i // A⊗B
∃!
��
C

Proof. Indeed, ϕ : A⊗B → C can be defined by a⊗ b 7→ ϕ(a, b).

Proposition 1.5.2. The tensor product satisfies the following properties:

(1) A⊗B ∼= B ⊗ A via the isomorphism a⊗ b 7→ b⊗ a.

(2) (
⊕

iAi)⊗B ∼=
⊕

i(Ai ⊗B) via the isomorphism (ai)i ⊗ b 7→ (ai ⊗ b)i.

(3) A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C via the isomorphism a⊗ (b⊗ c) 7→ (a⊗ b)⊗ c.

(4) Z⊗ A ∼= A via the isomorphism n⊗ a 7→ na.

(5) Z/nZ⊗ A ∼= A/nA via the isomorphism l ⊗ a 7→ la.

Proof. These are easy to prove by using the above universal property. We sketch a few.
(1) The map ϕ : A×B → B⊗A defined by (a, b) 7→ b⊗a is clearly bilinear and therefore

induces a homomorphism ϕ : A ⊗ B → B ⊗ A with a ⊗ b 7→ b ⊗ a. Similarly, there is the
reverse map ψ : B × A→ A⊗ B defined by (b, a) 7→ a⊗ b which induces a homomorphism
ψ : B ⊗ A → A ⊗ B with b ⊗ a 7→ a ⊗ b. Clearly, ϕ ◦ ψ = idB⊗A and ψ ◦ ϕ = idA⊗B and
A⊗B ∼= B ⊗ A.

(4) The map ϕ : Z × A → A defined by (n, a) 7→ na is a bilinear map and therefore
induces a homomorphism ϕ : Z ⊗ A → A with n ⊗ a 7→ na. Now suppose ϕ(n ⊗ a) = 0.
Then na = 0 and n⊗ a = 1⊗ (na) = 1⊗ 0 = 0Z⊗A. Thus ϕ is injective. Moreover, if a ∈ A,
then ϕ(1⊗ a) = a and ϕ is surjective as well.
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(5) The map ϕ : Z/nZ×A→ A/nA defined by (l, a) 7→ la is a bilinear map and therefore
induces a homomorphism ϕ : Z/nZ⊗A→ A/nA with l ⊗ a 7→ la. Now suppose ϕ(l ⊗ a) =
la = 0. Then la =

∑k
i=1 nai and l⊗a = 1⊗ (la) = 1⊗ (

∑k
i=1 nai) =

∑k
i=1(n⊗ai) = 0Z/nZ⊗A,

so ϕ is injective. Now let a ∈ A/nA. Then ϕ(1⊗ a) = a and ϕ is surjective as well.

More generally, if R is a ring and A and B are R-modules, a tensor product A⊗R B can
be defined as follows:

(1) if R is commutative, define the R-module A⊗RB := A⊗B/ ∼, where ∼ is the relation
generated by ra⊗ b = a⊗ rb = r(a⊗ b).

(2) if R is not commutative, we need A a right R-module and B a left R-module and the
relation is ar ⊗ b = a⊗ rb. In this case A⊗R B is only an abelian group.

In both cases, A⊗R B is not necessarily isomorphic to A⊗B.

Example 1.5.3. Let R = Q[
√

2] = {a + b
√

2 | a, b ∈ Q}. Now R ⊗R R ∼= R which is a
2-dimensional Q-vector space. However, R ⊗ R as a Z-module is a 4-dimesnional Q-vector
space.

Lemma 1.5.4. If G is an abelian group, then the functor − ⊗ G is right exact, that is, if
A

i−→ B
j−→ C → 0 is exact, then A⊗G i⊗1G−−−→ B ⊗G j⊗1G−−−→ C ⊗G→ 0 is exact.

Proof. Let c ⊗ g ∈ C ⊗ G. Since j is onto, there exists, b ∈ B such that j(b) = c. Then
(j ⊗ 1G)(b⊗ g) = c⊗ g and j ⊗ 1G is onto.

Since j◦i = 0, we have (j⊗1G)◦(i⊗1G) = (j◦i)⊗1G = 0 and thus, Image(i⊗1G) ⊆ ker(j⊗1G).

It remains to show that ker(j ⊗ 1G) ⊆ Image(i⊗ 1G). It is enough to show that

ψ : B ⊗G/Image(i⊗ 1G)
∼=−→ C ⊗G,

where ψ is the map induced by j ⊗ 1G. Construct an inverse of ψ, induced from the homo-
morphism

ϕ : C ×G→ B ⊗G/Image(i⊗ 1G)

defined by (c, g) 7→ b ⊗ g, where j(b) = c. We must show that ϕ is a well-defined bilinear
map and that the induced map ϕ satisfies ϕ ◦ ψ = id and ψ ◦ ϕ = id.

If j(b) = j(b′) = c, then b − b′ ∈ ker j = Image i, so b − b′ = i(a) for some a ∈ A.
Thus, b⊗ g − b′ ⊗ g = (b− b′)⊗ g = i(a)⊗ g ∈ Image(i⊗ 1G). So ϕ is well defined.

Now ϕ((c + c′, g)) = d ⊗ g where j(d) = c + c′. Since j is surjective, choose b, b′ ∈ B
such that j(b) = c and j(b′) = c′. Then d − (b + b′) ∈ ker j = Image i and so there
exists a ∈ A such that i(a) = d − (b + b′). Thus, ϕ((c + c′, g)) = d ⊗ g = (b + b′) ⊗ g =
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b ⊗ g + b′ ⊗ g = ϕ(c, g) + ϕ(c′, g) and ϕ is linear in the first component. For the second
component, ϕ(c, g+ g′) = b⊗ (g+ g′) = b⊗ g+ b⊗ g′ = ϕ(c, g) +ϕ(c, g′). Thus, ϕ is bilinear.

Now by the universal property of the tensor product, the bilinear map ϕ induces a ho-
momorphism

ϕ : C ⊗G→ B ⊗G/Image(i⊗ 1G)

defined by c⊗ g 7→ ϕ(c, g) = b⊗ g, where j(b) = c. For c⊗ g ∈ C ⊗G,

ψ ◦ ϕ(c⊗ g) = ψ(b⊗ g) = j(b)⊗ g = c⊗ g,

so ψ ◦ ϕ = idC⊗G. Similarly, for b⊗ g ∈ B ⊗G/Image(i⊗ 1G), ϕ ◦ ψ(b⊗ g) = ϕ(j(b)⊗ g) =
ϕ(j(b), g) = b⊗ g. Thus ϕ ◦ ψ = id.

1.5.2 The Tor functor and the Universal Coefficient Theorem

In this section we explain how to compute H∗(X;G) in terms of H∗(X;Z) and G. More
generally, given a chain complex

C• : · · · → Cn
∂n−→ Cn−1 → · · · → C0 → 0

of free abelian groups and G an abelian group, we aim to compute H∗(C•;G) = H∗(C•⊗G)
in terms of H∗(C•;Z) and G. The answer is provided by the following result:

Theorem 1.5.5. (Universal Coefficient Theorem)
There are natural short exact sequences:

0→ Hn(C•)⊗G→ Hn(C•;G)→ Tor(Hn−1(C•), G)→ 0 for all n. (1.5.2)

Naturality here means that if C• → C ′• is a chain map, then there is an induced map of short
exact sequences with commuting squares. Moreover, these short exact sequences split, but
not naturally.

In particular, if C• = C∗(X,A) is the relative singular chain complex, then there are
natural short exact sequences

0→ Hn(X,A)⊗G→ Hn(X,A;G)→ Tor(Hn−1(X,A), G)→ 0. (1.5.3)

Naturality is with respect to maps of pairs (X,A)
f−→ (Y,B). The exact sequence (1.5.3)

splits, but not naturally. Indeed, if we assume that A = B = ∅, then we have splittings
Hn(X;G) =

(
Hn(X)⊗G

)
⊕Tor(Hn−1(X), G), Hn(Y ;G) =

(
Hn(Y )⊗G

)
⊕Tor(Hn−1(Y ), G).

If these splittings were natural, and f induces the trivial map f∗ = 0 on H∗(−;Z) then f
induces the trivial map on H∗(−;G), for any coefficient group G. But this is in contradiction
with Example 1.4.2.

Let us next explain the Tor functor appearing in the statement of the universal coefficient
theorem.
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Definition 1.5.6. A free resolution of an abelian group H is an exact sequence:

· · · → F2
f2−→ F1

f1−→ F0
f0−→ H → 0,

with each Fn free abelian.

Given an abelian group G, from a free resolution F• of H, we obtain a modified chain
complex:

F• ⊗G : · · · → F2 ⊗G→ F1 ⊗G→ F0 ⊗G→ 0.

We define
Torn(H,G) := Hn(F• ⊗G). (1.5.4)

Note here that we have removed the final term of the complex to account for the fact that
−⊗G is right exact.

Moreover, the following holds:

Lemma 1.5.7. For any two free resolutions F• and F ′• of H there are canonical isomorphisms
Hn(F• ⊗G) ∼= Hn(F ′• ⊗G) for all n. Thus, Torn(H,G) is independent of the free resolution
F•.

Proposition 1.5.8. For any abelian group H, we have that

Torn(H,G) = 0 if n > 1, (1.5.5)

and
Tor0(H,G) ∼= H ⊗G. (1.5.6)

Proof. Indeed, given an abelian group H, take F0 to be the free abelian group on a set of

generators of H to get F0

f0
� H → 0. Let F1 := ker(f0), and note that F1 is a free group, as

it is a subgroup of a free abelian group F0. Let F1 ↪→ F0 be the inclusion map. Then

0→ F1 ↪→ F0 � H → 0

is a free resolution of H. Thus, Torn(H,G) = 0 if n > 1. Moreover, it follows readily that
Tor0(H,G) ∼= H ⊗G.

Definition 1.5.9. In what follows, we adopt the notation:

Tor(H,G) := Tor1(H,G).

Proposition 1.5.10. The Tor functor satisfies the following properties:

(1) Tor(A,B) ∼= Tor(B,A).

(2) Tor(
⊕

iAi, B) ∼=
⊕

i Tor(Ai, B).

(3) Tor(A,B) = 0 if A or B is free or torsion-free.
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(4) Tor(A,B) ∼= Tor(Torsion(A), B), where Torsion(A) is the torsion subgroup of A.

(5) Tor(Z/nZ, A) ∼= ker(A
n−→ A).

(6) For a short exact sequence: 0→ B → C → D → 0 of abelian groups, there is a natural
exact sequence:

0→ Tor(A,B)→ Tor(A,C)→ Tor(A,D)→ A⊗B → A⊗ C → A⊗D → 0.

Proof. (2) Choose a free resolution for
⊕

iAi as the direct sum of free resolutions for the Ai’s.

(5) The exact sequence 0→ Z n−→ Z→ Z/nZ→ 0 is a free resolution of Z/nZ. Now −⊗A
gives Z ⊗ A n⊗1A−−−→ Z ⊗ A → 0 which by property (4) of the tensor product is A n−→ A → 0.
Thus, Tor(Z/nZ, A) = ker(A

n−→ A).

(3) If A is free, we can choose the free resolution:

F1 = 0→ F0 = A→ A→ 0

which implies that Tor(A,B) = 0. On the other hand, if B is free, tensoring the ex-
act sequence 0 → F1 → F0 → A → 0 with B = Zs gives a direct sum of copies of
0 → F1 → F0 → A → 0. Hence, it is an exact sequence and so H1 of this complex is
0. For the torsion free case, see below.

(6) Let 0→ F1 → F0 → A→ 0 be a free resolution of A, and tensor it with the short exact
sequence 0→ B → C → D → 0 to get a commutative diagram:

0 0 0
↓ ↓ ↓

0→ F1 ⊗B → F1 ⊗ C → F1 ⊗D → 0
↓ ↓ ↓

0→ F0 ⊗B → F0 ⊗ C → F0 ⊗D → 0
↓ ↓ ↓
0 0 0

Rows are exact since tensoring with a free group preserves exactness. Thus we get a short
exact sequence of chain complexes. Recall now that for any short exact sequence of chain
complexes 0 → B• → C• → D• → 0 (which means exactness for each level n: 0 → Bn →
Cn → Dn → 0, commuting with differential ∂), there is an associated long exact sequence of
homology groups

· · · → Hn(B•)→ Hn(C•)→ Hn(D•)→ Hn−1(B•)→ . . .

So in our situation we obtain the homology long exact sequence:

0→ H1(F•⊗B)→ H1(F•⊗C)→ H1(F•⊗D)→ H0(F•⊗B)→ H0(F•⊗C)→ H0(F•⊗D)→ 0

30



Since H1(F• ⊗ B) = Tor(A,B) and H0(F• ⊗ B) = A ⊗ B, the above long exact sequence
reduces to:

0→ Tor(A,B)→ Tor(A,C)→ Tor(A,D)→ A⊗B → A⊗ C → A⊗D → 0.

(1) Apply (6) to a free resolution 0 → F1 → F0 → B → 0 of B, and get a long exact
sequence:

0→ Tor(A,F1)→ Tor(A,F0)→ Tor(A,B)→ A⊗ F1 → A⊗ F0 → A⊗B → 0.

Because F1, F0 are free, by (3) we have that Tor(A,F1) = Tor(A,F0) = 0, so the long exact
sequence becomes:

0→ Tor(A,B)→ A⊗ F1 → A⊗ F0 → A⊗B → 0.

Also, by definition of Tor, we have a long exact sequence:

0→ Tor(B,A)→ F1 ⊗ A→ F0 ⊗ A→ B ⊗ A→ 0.

So we get a diagram:

0→ Tor(A,B)→ A⊗ F1 → A⊗ F0 → A⊗B → 0
↓ φ '↓ '↓ '↓

0→ Tor(B,A)→ F1 ⊗ A→ F0 ⊗ A→ B ⊗ A→ 0

with the arrow labeled φ defined as follows. The two squares on the right commute since ⊗
is naturally commutative. Hence, there exists φ : Tor(A,B) → Tor(B,A) which makes the
left square commutative. Moreover, by the 5-lemma, we get that φ is an isomorphism.

We can now prove the torsion free case of (3). Let 0 → F1
f→ F0 → A → 0 be a

free resolution of A. The claim about the vanishing of Tor(A,B) is equivalent to the in-
jectivity of the map f ⊗ idB : F1 ⊗ B → F0 ⊗ B. Assume

∑
i xi ⊗ bi ∈ ker(f ⊗ idB). So∑

i f(xi)⊗ bi = 0 ∈ F1⊗B. In other words,
∑

i f(xi)⊗ bi can be reduced to zero by a finite
number of applications of the defining relations for tensor products. Only a finite number of
elemnts of B, generating a finitely generated subgroup B0 of B, are involved in this process,
so in fact

∑
i xi⊗ bi ∈ ker(f ⊗ idB0). But B0 is finitely generated and torsion free, hence free,

so Tor(A,B0) = 0. Thus
∑

i xi⊗ bi = 0, which proves the claim. The case when A is torsion
free follows now by using (1) to reduce to the previous case.

(4) Apply (6) to the short exact sequence: 0 → Torsion(A) → A → A/Torsion(A) → 0 to
get :

0→ Tor(G,Torsion(A))→ Tor(G,A)→ Tor(G,A/Torsion(A))→ · · ·
Because A/Torsion(A) is torsion free, Tor(G,A/Torsion(A)) = 0 by (3), so:

Tor(G,Torsion(A)) ' Tor(G,A)

Now by (1), we get that Tor(A,G) ' Tor(Torsion(A), G).
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Remark 1.5.11. It follows from (5) that

Tor(Z/nZ,Z/mZ) =
Z

(n,m)Z
= Z/nZ⊗ Z/mZ,

where (n,m) is the greatest common divisor of n and m. More generally, if A and B are
finitely generated abelian groups, then

Tor(A,B) = Torsion(A)⊗ Torsion(B) (1.5.7)

where Torsion(A) and Torsion(B) are the torsion subgroups of A and B respectively.

Let us conclude with some examples:

Example 1.5.12. Suppose G = Q, then Tor(Hn−1(X),Q) = 0, so

Hn(X;Q) ' Hn(X)⊗Q.

It follows that the n-th Betti number of X is given by

bn(X) := rkHn(X) = dimQHn(X;Q).

Example 1.5.13. Suppose X = T 2, and G = Z/4. Recall that H1(T 2) = Z2. So:

H0(T 2;Z/4) = H0(T 2)⊗ Z/4 = Z/4

H1(T 2;Z/4) =
(
H1(T 2)⊗ Z/4

)
⊕ Tor(H0(T 2),Z/4) = Z2 ⊗ Z/4 = (Z/4)2

H2(T 2;Z/4) =
(
H2(T 2)⊗ Z/4

)
⊕ Tor(H1(T 2),Z/4) = Z/4.

Example 1.5.14. Suppose X = K is the Klein bottle, and G = Z/4. Recall that H1(K) =
Z⊕ Z/2, and H2(K) = 0, so:

H2(K;Z/4) =
(
H2(K)⊗Z/4

)
⊕Tor(H1(K),Z/4) = Tor(Z,Z/4)⊕Tor(Z/2,Z/4) = 0⊕Z/2 = Z/2.

Exercises

1. Prove Lemma 1.5.7.

2. Show that H̃n(X;Z) = 0 for all n if, and only if, H̃n(X;Q) = 0 and H̃n(X;Z/p) = 0 for
all n and for all primes p.
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Chapter 2

Basics of Cohomology

Given a space X and an abelian group G, we will first define cohomology groups H i(X;G).
In the next chapter we will show that, via the cup product operation, the graded group⊕

iH
i(X;G) becomes a ring. The ring structure will help us distinguish spaces X and Y

which have isomorphic homology and cohomology groups but non-isomorphic cohomology
rings, for example X = CP2 and Y = S2 ∨ S4.

2.1 Cohomology of a chain complex: definition
Let G be an abelian group, and let (C•, ∂•) be a chain complex of free abelian groups:

· · · −→ Cn+1
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ · · · (2.1.1)

Dualize the chain complex (2.1.1), i.e., apply Hom(−;G) to it, to get the cochain complex:

· · · δ
n+1

←− Cn+1 δn←− Cn δn−1

←− Cn−1 ←− · · · (2.1.2)

with
Cn := Hom(Cn, G), (2.1.3)

and where the coboundary map
δn : Cn → Cn+1 (2.1.4)

is defined by
(δnψ)(α) = ψ(∂n+1α), for ψ ∈ Cn and α ∈ Cn+1. (2.1.5)

It follows that
(δn+1 ◦ δn)(ψ) = ψ∂n+1∂n+2 = 0,∀ψ (2.1.6)

since ∂n+1 ◦ ∂n+2 = 0 in the chain complex (2.1.1).

Definition 2.1.1. The n-th cohomology group Hn(C•;G) with G-coefficients of the chain
complex C• is defined by:

Hn(C•;G) := Hn(C•; δ•) := ker(δ : Cn → Cn+1)/Image(δ : Cn−1 → Cn). (2.1.7)

33



2.2 Relation between cohomology and homology
In this section, we explain how each cohomology group Hn(C•;G) can be computed only in
terms of the coefficients G and the integral homology groups H∗(C•) of (C•, ∂•).

2.2.1 Ext groups

Let H and G be given abelian groups. Consider a free resolution of H:

F• : · · · f2−→ F1
f1−→ F0

f0−→ H −→ 0

Dualize it with respect to G, i.e., apply Hom(−, G) to it, to get the cochain complex

· · ·
f∗2←− F ∗1

f∗1←− F ∗0
f∗0←− H∗ ←− 0

where we set H∗ = Hom(H,G) and similarly for F ∗i . After discarding H∗, we get the cochain
complex involving only the F ∗i ’s, and we consider its cohomology groups.

Hn(F•;G) = ker f ∗n+1/Imagef ∗n

The Ext groups are defined as:

Extn(H,G) := Hn(F•;G). (2.2.1)

The following result holds:

Lemma 2.2.1. The Ext groups are well-defined, i.e., independent of the choice of resolution
F• of H.

As in the case of the Tor functor, one can thus work with the free resolution of H given
by

0 −→ F1 −→ F0 −→ H −→ 0,

where F0 is the free abelian group on the generators of H, while F1 is the free abelian group
on the relations of H. In particular, it follows that

Extn(H,G) = 0 , ∀n ≥ 1.

We also get that
Ext0(H,G) = Hom(H,G).

For simplicity, we set:
Ext(H,G) := Ext1(H,G). (2.2.2)

Proposition 2.2.2. The Ext group Ext(H,G) satisfies the following properties:

(a) Ext(H ⊕H ′, G) = Ext(H,G)⊕ Ext(H ′, G).
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(b) If H is free, then Ext(H,G) = 0.

(c) Ext(Z/n,G) = G/nG.

Proof. For (a) use the fact that a free resolution of H⊕H ′ is a direct sum of free resolutions
of H and resp. H ′. For (b), if H is free, then 0 −→ H −→ H −→ 0 is a free resolution of H,
so Ext(H,G) = 0. For part (c), start with the free resolution of Z/n given by

0 −→ Z ·n−→ Z −→ Z/n −→ 0,

dualize it and use the fact that Hom(Z, G) = G to conclude that Ext(Z/n,G) = G/nG.

As an immediate consequence of these properties, we get the following:

Corollary 2.2.3. If H is a finitely generated abelian group, then :

Ext(H,G) = Ext(Torsion(H), G) = Torsion(H)⊗Z G. (2.2.3)

Proof. Indeed, H decomposes into a free part and a torsion part, and the claim follows by
Proposition 2.2.2.

2.2.2 Universal Coefficient Theorem

The following result shows that cohomology is entirely determined by its coefficients and the
integral homology:

Theorem 2.2.4. Given an abelian group G and a chain complex (C•, ∂•) of free abelian
groups with homology H∗(C•), the cohomology group Hn(C•;G) fits into a natural short
exact sequence:

0→ Ext(Hn−1(C•), G) −→ Hn(C•;G)
h−→ Hom(Hn(C•), G) −→ 0 (2.2.4)

In addition, this sequence is split, that is,

Hn(C•;G) ∼= Ext(Hn−1(C•), G)⊕ Hom(Hn(C•), G). (2.2.5)

Proof. (Sketch)
The homomorphism h : Hn(C•;G)→ Hom(Hn(C•), G) is defined as follows. Let Zn = ker ∂n,
Bn = Image ∂n+1, in : Bn ↪→ Zn the inclusion map, and Hn = Zn/Bn. Let [φ] ∈ Hn(C•;G).
Then φ is represented by a homomorphism φ : Cn → G, so that δnφ := φ∂n+1 = 0, which
implies that φ|Bn = 0. Let φ0 := φ|Zn , then φ0 vanishes on Bn, so it induces a quotient
homomorphism φ̄0 : Zn/Bn → G, i.e., φ̄0 ∈ Hom(Hn(C•), G). We define h by

h([φ]) = φ̄0.

Notice that if φ ∈ Image δn−1, i.e., φ = δn−1ψ = ψ∂n, then φ|Zn = 0, so φ̄0 = 0, which shows
that h is well-defined. It is not hard to show that h is an epimorphism, and

kerh = Coker(i∗n−1 : Z∗n−1 → B∗n−1) = Ext(Hn−1(C•), G), (2.2.6)
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where the Ext group is defined with respect to the free resolution of Hn−1(C•) given by

0 −→ Bn−1
in−1−→ Zn−1 −→ Hn−1(C•) −→ 0.

Remark 2.2.5. The splitting in the above universal coefficient theorem is not natural; see
Exercise 8 at the end of this chapter for an example.

The following special case of Theorem 2.2.4 is very useful in calculations:

Corollary 2.2.6. Let (C•, ∂•) be a chain complex so that its (integral) homology groups H∗
are finitely generated, and let Tn = Torsion(Hn). Then we have natural short exact sequences:

0→ Tn−1 −→ Hn(C•;Z) −→ Hn/Tn → 0 (2.2.7)

This sequence splits, so:
Hn(C•;Z) ∼= Tn−1 ⊕Hn/Tn. (2.2.8)

Finally, we have the following easy application of Theorem 2.2.4:

Proposition 2.2.7. If a chain map α : C• → C ′• between chain complexes C• and C ′•
induces isomorphisms α∗ on integral homology groups, then α induces isomorphisms α∗ on
the cohomology groups H∗(−;G) for any abelian group G.

Proof. By the naturality part of Theorem 2.2.4, we have a commutative diagram:

0 −→ Ext(Hn−1(C•), G) −→ Hn(C•;G) −→ Hom(Hn(C•), G) −→ 0
↑ (α∗)

∗ ↑ α∗ ↑ (α∗)
∗

0 −→ Ext(Hn−1(C ′•), G) −→ Hn(C ′•;G) −→ Hom(Hn(C ′•), G) −→ 0

The claim follows by the five-lemma, since α∗ and its dual are isomorphisms.

2.3 Cohomology of spaces

2.3.1 Definition and immediate consequences

Suppose X is a topological space with singular chain complex (C•(X), ∂•). The group of
singular n-cochains of X is defined as:

Cn(X;G) := Hom(Cn(X), G). (2.3.1)

So n-cochains are functions from singular n-simplices to G.
The coboundary map

δn : Cn(X;G)→ Cn+1(X;G)
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is defined as the dual of the corresponding boundary map ∂n+1 : Cn+1 → Cn, i.e., for
ψ ∈ Cn(X;G), we let

δnψ := ψ∂n+1 : Cn+1(X)
∂n+1→ Cn(X)

ψ→ G. (2.3.2)

It follows that
δn+1 ◦ δn = 0, (2.3.3)

and for a singular (n+ 1)-simplex σ : ∆n+1 → X we have:

δnψ(σ) =
n+1∑
i=0

(−1)i · ψ(σ|[v0,··· ,v̂i,··· ,vn+1]). (2.3.4)

Definition 2.3.1. The cohomology groups of X with G-coefficients are defined as:

Hn(X;G) := ker(δn : Cn(X;G)→ Cn+1(X;G))/Image(δn−1 : Cn−1(X;G)→ Cn(X;G)).
(2.3.5)

Elements of ker δn are called n-cocycles, and elements of Image δn−1 are called n-coboundaries.

Remark 2.3.2. Note that ψ is an n-cocycle if, by definition, it vanishes on n-boundaries.

Since the groups Cn(X) of singular chains are free, we can employ Theorem 2.2.4 to
compute the cohomology groups Hn(X;G) in terms of the coefficients G and the integral
homology of X. More precisely, we have natural short exact sequences:

0 −→ Ext(Hn−1(X), G) −→ Hn(X;G) −→ Hom(Hn(X), G). −→ 0 (2.3.6)

Moreover, these sequences split, though not naturally.
Let us now derive some immediate consequences from (2.3.6):

(a) If n = 0, (2.3.6) yields that

H0(X;G) = Hom(H0(X), G), (2.3.7)

or equivalently, H0(X;G) consists of all functions from the set of path-connected com-
ponents of X to the group G.

(b) If n = 1, the Ext-term in (2.3.6) vanishes since H0(X) is free, so we get:

H1(X;G) = Hom(H1(X), G). (2.3.8)

Remark 2.3.3. Theorem 2.2.4 also works for modules over a PID. In particular, if G = F
is a field, then

Hn(X;F ) ' Hom(Hn(X), F ) ' HomF (Hn(X;F ), F ) = Hn(X,F )∨

Thus, with field coefficients, cohomology is the dual of homology.
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Example 2.3.4. Let X be a point space. From (2.3.6), we have:

H i(X;G) = Hom(Hi(X), G)⊕ Ext(Hi−1(X), G).

And since

Hi(X) =

{
Z, i = 0

0, otherwise,

we get

Hom(Hi(X), G) =

{
G, i = 0

0, otherwise.

Furthermore, since Hi(X) is free for all i, we also have that Ext(Hi−1(X), G) = 0, for all i.
Altogether,

H i(X;G) =

{
G, i = 0

0, otherwise.

Example 2.3.5. Let X = Sn. Then we have

Hi(X) =

{
Z, i = 0, n
0, otherwise.

Thus the Ext-term in the universal coefficient theorem vanishes and we get:

H i(X;G) = Hom(Hi(X), G) =

{
G, i = 0 or n
0, otherwise.

2.3.2 Reduced cohomology groups

We start with the augmented singular chain complex for X:

· · · ∂−→ C1(X)
∂−→ C0(X)

ε−→ Z −→ 0

with ε(
∑

i nixi) =
∑

i ni. After dualizing it (i.e., applying Hom(−;G)), we get the augmented
cochain complex

· · · δ←− C1(X;G)
δ←− C0(X;G)

ε∗←− G←− 0.

Note that since ε∂ = 0, we get by dualizing that δε∗ = 0. The homology of this augmented
cochain complex is the reduced cohomology of X with G-coefficients, denoted by H̃ i(X;G).

It follows by definition that H̃ i(X;G) = H i(X;G), if i > 0, and by the universal coeffi-
cient theorem (applied to the augmented chain complex), we get H̃0(X;G) = Hom(H̃0(X), G).
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2.3.3 Relative cohomology groups

To define relative cohomology groups Hn(X,A;G) for a pair (X,A), we dualize the relative
chain complex by setting

Cn(X,A;G) := Hom(Cn(X,A), G). (2.3.9)

The group Cn(X,A;G) can be identified with functions from n-simplices in X to G that
vanish on simplices in A, so we have a natural inclusion

Cn(X,A;G) ↪→ Cn(X;G). (2.3.10)

The relative coboundary maps

δ : Cn(X,A;G)→ Cn+1(X,A;G) (2.3.11)

are obtained by restrcting the absolute ones, so they satisfy δ2 = 0. So the relative cohomol-
ogy groups Hn(X,A;G) are defined.

We next dualize the short exact sequence

0 −→ Cn(A)
i−→ Cn(X)

j−→ Cn(X,A) −→ 0

to get another short exact sequence

0←− Cn(A;G)
i∗←− Cn(X;G)

j∗←− Cn(X,A;G)←− 0, (2.3.12)

where the exactness at Cn(A;G) follows by extending a cochain in A “by zero". More
precisely, for ψ ∈ Cn(A;G), we define a function ψ̂ : Cn(X)→ G by

ψ̂(σ) =

{
ψ(σ), if σ ∈ Cn(A)
0, if Image(σ) ∩ A = ∅

ψ̂ is a well-defined element of Cn(X;G) since Cn(X) has a basis made of simplices contained
in A and those contained in X \ A. It is clear that i∗(ψ̂) = ψ.

Since i and j commute with ∂, it follows that i∗ and j∗ commute with δ. So we obtain a
short exact sequence of cochain complexes:

0←− C∗(A;G)
i∗←− C∗(X;G)

j∗←− C∗(X,A;G)←− 0. (2.3.13)

By taking the associated long exact sequence of homology groups, we get the long exact
sequence for the cohomology groups of the pair (X,A):

· · · //Hn(X,A;G)
j∗ //Hn(X;G) i∗ //Hn(A;G) δ //Hn+1(X,A;G) //· · · (2.3.14)

We can also consider above the augmented chain complexes on X and A, and get a long
exact sequence for the reduced cohomology groups, with H̃n(X,A;G) = Hn(X,A;G):

· · · //Hn(X,A;G) //H̃n(X;G) //H̃n(A;G) //Hn+1(X,A;G) //· · · (2.3.15)

In particular, if A = x0 is a point in X, we get by (2.3.15) that

H̃n(X;G) ∼= Hn(X, x0;G). (2.3.16)
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2.3.4 Induced homomorphisms

If f : X → Y is a continuous map, we have induced chain maps

f# : Cn(X) // Cn(Y )

(σ : ∆n → X) � // (f ◦ σ : ∆n
σ→ X

f→ Y )

satisfying f#∂ = ∂f#.
Dualizing f# with respect to G, we get maps

f# : Cn(Y ;G)→ Cn(X;G),

with f#(ψ) = ψ(f#) and δf# = f#δ (which is obtained by dualizing f#∂ = ∂f#). Thus, we
get induced homomorphisms on cohomology groups:

f ∗ : Hn(Y,G)→ Hn(X,G).

In fact, we can repeat the above for maps of pairs, say f : (X,A)→ (Y,B). And note that
the universal coefficient theorem also works for pairs because Cn(X,A) = Cn(X)/Cn(A) is
free abelian. So, by naturality, we get a commutative diagram for a map of pairs f : (X,A)→
(Y,B):

0 // Ext(Hn−1(X,A), G) // Hn(X,A;G) // Hom(Hn(X,A), G) // 0

0 // Ext(Hn−1(Y,B), G) //

(f∗)∗

OO

Hn(Y,B;G) //

f∗

OO

Hom(Hn(Y,B), G) //

(f∗)∗

OO

0

2.3.5 Homotopy invariance

Theorem 2.3.6. If f ' g : (X,A)→ (Y,B) and G is an abelian group, then

f ∗ = g∗ : Hn(Y,B;G)→ Hn(X,A;G).

Proof. Recall from the proof of the similar statement for homology that there is a prism
operator

P : Cn(X,A)→ Cn+1(Y,B) (2.3.17)

satisfying
f# − g# = P∂ + ∂P (2.3.18)

with f# and g# the induced maps on singular chain complexes. (In fact, if F : X × I → Y
denotes the homotopy, with F (x, 0) = f(x) and F (x, 1) = g(x), then the prism operator is
defined on generators (σ : ∆n → X) ∈ Cn(X) by pre-composing F ◦ (σ × id) : ∆n × I → Y
with an appropriate decomposition of ∆n × I into (n+ 1)-dimensional simplices. Then one
notes that such a P takes Cn(A) to Cn+1(B), hence it induces the relative prism operator of
(2.3.17).)

So the difference of the middle maps in the following diagram equals to the sum of the
two side “paths":
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Cn(X,A)
P

ww

∂ //

f#
��
g#

��

Cn−1(X,A)

Pww
Cn+1(Y,B) ∂ // Cn(Y,B)

Then it follows from (2.3.18) that f∗ = g∗ on relative homology groups.
The claim about cohomology follows by dualizing the prism operator (2.3.17) to get

P ∗ : Cn+1(Y,B;G)→ Cn(X,A;G) (2.3.19)

which satisfies an identity dual to (2.3.18), that is,

f# − g# = δP ∗ + P ∗δ. (2.3.20)

This implies readily that f ∗ = g∗ on relative cohomology groups.

The following is an immediate consequence of Theorem 2.3.6:

Corollary 2.3.7. If f : X → Y is a homotopy equivalence, then f ∗ : Hn(Y ;G)→ Hn(X;G)
is an isomorphism, for any coefficient group G.

Example 2.3.8. We have:

H i(Rn;G) =

{
G, i = 0
0, otherwise.

This follows immediately by the homotopy invariance of cohomology groups, since Rn is
contractible.

2.3.6 Excision

Theorem 2.3.9. Given a topological space X, suppose that Z ⊂ A ⊂ X, with cl(Z) ⊆
int(A). Then the inclusion of pairs i : (X \ Z,A \ Z) ↪→ (X,A) induces isomorphisms

i∗ : Hn(X,A;G)→ Hn(X \ Z,A \ Z;G) (2.3.21)

for all n. Equivalently, if A and B are subsets of X with X = int(A) ∪ int(B), then the
inclusion map (B,A ∩B) ↪→ (X,A) induces isomorphisms in cohomology.

Proof. By the naturality of universal coefficient theorem, we have the commutative diagram:

0 // Ext(Hn−1(X,A), G) // Hn(X,A;G) // Hom(Hn(X,A), G) // 0

0 // Ext(Hn−1(X \ Z,A \ Z), G)

(i∗)∗

OO

// Hn(X \ Z,A \ Z;G)

i∗

OO

// Hom(Hn(X \ Z,A \ Z), G)

(i∗)∗

OO

// 0

By excision for homology, the maps i∗, hence (i∗)
∗, are isomorphisms. So by the five-lemma,

it follows that i∗ is also an isomorphism.
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2.3.7 Mayer-Vietoris sequence

Theorem 2.3.10. Let X be a topological space, and A and B be subsets of X so that

X = int(A) ∪ int(B).

Then there is a long exact sequence of cohomology groups:

· · · −→ Hn(X;G)
ψ−→ Hn(A;G)⊕Hn(B;G)

φ−→ Hn(A ∩B;G) −→ Hn+1(X;G) −→ · · ·
(2.3.22)

Proof. There is a short exact sequence of cochain complexes, which at level n is given by:

0 // Cn(A+B;G)
ψ // Cn(A;G)⊕ Cn(B;G)

φ // Cn(A ∩B;G) // 0

Hom(Cn(A+B), G)

where Cn(A+ B) is the set of simplices in X which are sums of simplices in either A or B,
and the maps are defined by

ψ(η) = (η|Cn(A), η|Cn(B))

and
φ(α, β) = α|Cn(A∩B) − β|Cn(A∩B).

Moreover, since C∗(A + B) ↪→ C∗(X) is a chain homotopy, it follows by dualizing that
C∗(A+B;G) and C∗(X;G) are chain homotopic, and thus H∗(A+B;G) ∼= H∗(X;G). The
cohomology Mayer-Vietoris sequence (2.3.22) is the long exact cohomology sequence of the
above short exact sequence of cochain complexes.

Remark 2.3.11. A similar Mayer-Vietoris sequence holds can be obtained for the reduced
cohomology groups.

Example 2.3.12. Let us compute the cohomology groups of Sn by using the above Mayer-
Vietoris sequence. Cover Sn by two open sets A = Sn \N and B = Sn \ S, where N and S
are the North and resp. South pole of Sn. Then we have A ∩ B ' Sn−1 and A ' B ' Rn.
Thus by the Mayer-Vietoris sequence for reduced cohomology, together with Example 2.3.8,
homotopy invariance and induction, we get:

H̃ i(Sn;G) ∼= H̃ i−1(Sn−1;G) ∼= · · · ∼= H̃ i−n(S0;G) ∼=
{
G, i = n
0, otherwise.
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2.3.8 Cellular cohomology

Definition 2.3.13. Let X be a CW complex. The cellular cochain complex of X, (C•(X;G), d•),
is defined by setting:

Cn(X;G) := Hn(Xn, Xn−1;G),

for Xn the n-skeleton of X, and with coboundary maps

dn = δn ◦ jn

fitting in the following diagram (where the coefficient group for cohomology is by default G):

Hn−1(Xn−1)

δn−1

&&
· · · // Hn−1(Xn−1, Xn−2) dn−1

//

jn−1
77

Hn(Xn, Xn−1) dn //

jn %%

Hn+1(Xn+1, Xn) // · · ·

Hn(Xn)

δn

88

Here, the diagonal arrows are part of cohomology long exact sequences for the relevant pairs.
For this reason, it follows that jnδn−1 = 0, and therefore

dndn−1 = δnjnδn−1jn−1 = 0.

So (C•(X;G), d•) is indeed a cochain complex.
The cellular cohomology of X with G-coefficients is by definition the cohomology of the cel-
lular cochain complex (C•(X;G), d•)

Just like in the case of cellular homology, we have the following identification:

Theorem 2.3.14. The singular and cellular cohomology of X are isomorphic, i.e.,

Hn(X;G) ∼= Hn(C•(X;G)) (2.3.23)

for all n and any coefficient group G. Moreover, the cellular cochain complex (C•(X;G), d•)
is isomorphic to the dual of the cellular chain complex (C•(X), d•), obtained by applying
Hom(−;G).

Proof. Recall from Section 1.1.4 that for the cellular chain complex of X we have that

Cn(X) := Hn(Xn, Xn−1) ∼= Z# of n-cells

and Hi(Xn, Xn−1) = 0 whenever i 6= n. So by the universal coefficient theorem, we obtain:

Cn(X;G) := Hn(Xn, Xn−1;G) ∼= Hom(Cn(X), G) (2.3.24)
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since the Ext term vanishes. The universal coefficient theorem also yields that

H i(Xn, Xn−1;G) = 0 if i 6= n, (2.3.25)

since the groups Hi(Xn, Xn−1) are either free or trivial.
From the long exact sequence of the pair (Xn, Xn−1), that is,

· · · −→ Hk(Xn, Xn−1;G) −→ Hk(Xn;G) −→ Hk(Xn−1;G) −→ Hk+1(Xn, Xn−1;G) −→ · · · ,
we thus get for k 6= n, n− 1 the isomorphisms

Hk(Xn;G) ∼= Hk(Xn−1;G). (2.3.26)

Therefore, if k > n, we obtain by induction:

Hk(Xn;G) ∼= Hk(Xn−1;G) ∼= Hk(Xn−2;G) ∼= · · · ∼= Hk(X0;G) = 0 (2.3.27)

since X0 is just a set of points.
We next claim that there is an isomorphism

Hn(Xn+1;G) ∼= Hn(X;G). (2.3.28)

First recall from Lemma 1.1.8(c) that the inclusion Xn+1 ↪→ X induces isomorphisms on
homology groups Hk, for k < n+1. So by the naturality of the universal coefficient theorem,
we get the following diagram with commutative squares:

0 // Ext(Hn−1(X), G) //

∼= (i∗)∗

��

Hn(X;G) h //

i∗

��

Hom(Hn(X), G) //

∼= (i∗)∗

��

0

0 // Ext(Hn−1(Xn+1), G) // Hn(Xn+1;G) h // Hom(Hn(Xn+1), G) // 0

Then, by using the five-lemma, it follows that the middle map

i∗ : Hn(X;G)→ Hn(Xn+1;G)

is also an isomorphism.
Altogether, by using (2.3.27) and (2.3.28), we get the following diagram (where the

diagonal arrows are part of long exact sequences of pairs):

Hn−1(Xn−2) ∼= 0

Hn−1(Xn−1)

77

δn−1

''
· · · // Hn−1(Xn−1, Xn−2)

jn−1
77

dn−1
// Hn(Xn, Xn−1)

dn //

jn ''

Hn+1(Xn+1, Xn) // · · ·

Hn(Xn)

δn

99

&&
Hn(X) ∼= Hn(Xn+1)

77
α

77

Hn(Xn−1) ∼= 0
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Thus, by using the definition dn = δnjn of the cellular coboundary maps, and after noting
that jn−1 and jn are onto and α is injective, we obtain the following sequence of isomorphisms:

Hn(X;G) ∼= Hn(Xn+1;G)
∼= Image(α)
∼= ker(δn)
∼= ker(dn)/ ker(jn)
∼= ker(dn)/Image(δn−1)
∼= ker(dn)/Image(δn−1jn−1)
∼= ker(dn)/Image(dn−1).

(2.3.29)

The only claim left to prove is that

dn = (dn+1)∗. (2.3.30)

By definition, the cellular coboundary map dn is the composition:

dn : Hn(Xn, Xn−1;G)
jn−→ Hn(Xn : G)

δn−→ Hn+1(Xn+1, Xn;G),

and, similarly, the boundary map dn+1 of the cellular chain complex is given by:

dn+1 : Hn+1(Xn+1, Xn)
∂n+1−→ Hn(Xn)

jn−→ Hn(Xn, Xn−1).

Let us now consider the following diagram:

dn : Hn(Xn, Xn−1;G)
jn //

∼= h
��

Hn(Xn;G) δn //

h
��

Hn+1(Xn+1, Xn;G)

∼= h
��

(dn+1)∗ : Hom(Hn(Xn, Xn−1), G)
(jn)∗ // Hom(Hn(Xn), G)

(∂n+1)∗// Hom(Hn+1(Xn+1, Xn), G)

The composition across the top is the cellular coboundary map dn, and we want to conclude
that it is the same as the composition (dn+1)∗ across the bottom row. The extreme vertical
arrows labelled h are isomorphisms by the universal coefficient theorem, since the relevant
Ext terms vanish (by using (2.3.25)). So it suffices to show that the diagram commutes. The
left square commutes by the naturality of universal coefficient theorem for the inclusion map
(Xn, ∅) ↪→ (Xn, Xn−1), and the right square commutes by a simple diagram chase.

Example 2.3.15. Let X = RP2. Then X has one cell in each dimension 0, 1, and 2, and
the cellular chain complex of X is:

0 // Z 2 // Z 0 // Z // 0
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To compute the (cellular) cohomology H∗(X;Z), we dualize (i.e., apply Hom(−,Z)) the
above cellular chain complex, and get:

0 Zoo Z2oo Z0oo 0oo

Thus, we have

H i(RP2;Z) =


Z, i = 0
Z/2, i = 2
0, otherwise.

Similarly, in order to calculate H∗(X;Z/2), we dualize the cellular chain complex of X with
respect to Z/2 (i.e., by applying Hom(−,Z/2)) to get:

0 Z/2oo Z/20oo Z/20oo 0oo

We then have:
H i(RP2;Z/2) ∼=

{
Z/2, i = 0, 1, or 2
0, otherwise.

Example 2.3.16. LetK be the Klein bottle and let us computeH∗(K;Z/3) andH∗(K;Z/3).
The cellular chain complex of K is given by:

0 //Z (2,0) //Z⊕ Z 0 //Z //0

So the cellular chain complex of K with Z/3-coefficients is given by:

0 //Z/3 (2,0) //Z/3⊕ Z/3 0 //Z/3 //0

Note that the map (2, 0) : Z/3 → Z/3 ⊕ Z/3 is an isomorphism on the first component, so
we get:

Hi(K;Z/3) =

{
Z/3, i = 0 or 1
0, otherwise.

In order to compute the cohomology with Z/3-coefficients, we dualize the cellular chain
complex of K with respect to Z/3 to get:

0 Z/3oo Z/3⊕ Z/3(2,0)oo Z/30oo 0oo

Therefore, we have

H i(K;Z/3) =

{
Z/3, i = 0 or 1
0, otherwise.
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Exercises

1. Prove Lemma 2.2.1.

2. Show that the functor Ext(−,−) is contravariant in the first variable, that is, if H,
H ′ and G are abelian groups, a homomorphism α : H → H ′ induces a homomorphism
α∗ : Ext(H ′, G)→ Ext(H,G).

3. For a topological space X, let

〈 , 〉 : Cn(X)⊗ Cn(X)→ Z

be the Kronecker pairing given by 〈φ, σ〉 := φ(σ). In terms of this pairing, the coboundary
map δ : Cn(X)→ Cn+1(X) is defined by 〈δ(φ), σ〉 = 〈φ, ∂σ〉 for all σ ∈ Cn+1(X). Show that
this pairing induces a pairing between cohomology and homology:

〈 , 〉 : Hn(X;Z)⊗Hn(X;Z)→ Z.

4. Compute H∗(Sn;G) by using the long exact sequence of a pair, coupled with excision.

5. Compute the cohomology of the spaces S1 × S1, RP2 and the Klein bottle first with Z
coefficients, then with Z/2 coefficients.

6. Show that if f : Sn → Sn has degree d, then f ∗ : Hn(Sn;G)→ Hn(Sn;G) is multiplication
by d.

7. Show that if A is a closed subspace of X that is a deformation retract of some neighbor-
hood, then the quotient map X → X/A induces isomorphisms

Hn(X,A;G) ∼= H̃n(X/A;G)

for all n.

8. Let X be a space obtained from Sn by attaching a cell en+1 by a degree m map.

• Show that the quotient map X → X/Sn = Sn+1 induces the trivial map on H̃i(−;Z)
for all i, but not on Hn+1(−;Z). Conclude that the splitting in the universal coefficient
theorem for cohomology cannot be natural.

• Show that the inclusion Sn ↪→ X induces the trivial map on H̃ i(−;Z) for all i, but not
on Hn(−;Z).

9. Let X and Y be path-connected and locally contractible spaces such that H1(X;Q) 6= 0
and H1(Y ;Q) 6= 0. Show that X ∨ Y is not a retract of X × Y .

10. Let X be the space obtained by attaching two 2-cells to S1, one via the map z 7→ z3

and the other via z 7→ z5, where z denotes the complex coordinate on S1 ⊂ C. Compute the
cohomology groups H∗(X;G) of X with coefficients:
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(a) G = Z.

(b) G = Z/2.

(c) G = Z/3.
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Chapter 3

Cup Product in Cohomology

Let us motivate this chapter with the following simple, but hopefully convincing example.
Consider the spaces X = CP 2 and Y = S2 ∨ S4. As CW complexes, both X and Y have
one 0-cell, one 2-cell and one 4-cell. Hence the cellular chain complex for both X and Y is:

0 −→ Z 0−→ 0
0−→ Z 0−→ 0

0−→ Z −→ 0

So X and Y have the same homology and cohomology groups. Note that X and Y also have
the same fundamental groups: π1(X) = π1(Y ) = 0. A natural question is then whether X
and Y are homotopy equivalent. Similarly, one can ask if there is a map f : X → Y inducing
isomorphisms on (co)homology groups. We will see below that by using cup products in
cohomology, we can show that the answer to both questions is negative.

3.1 Cup Products: definition, properties, examples
Definition 3.1.1. Let X be a topological space, and fix a coefficient ring R (e.g., Z, Z/nZ,
Q). Let φ ∈ Ck(X;R) and ψ ∈ C l(X;R). The cup product φ ^ ψ ∈ Ck+l(X;R) is defined
by:

(φ ^ ψ)(σ : ∆k+l → X) = φ(σ|[v0,··· ,vk]) · ψ(σ|[vk,··· ,vk+l]), (3.1.1)

where “ · ” denotes the multiplication in ring R.

The aim is to show that this cup product of cochains induces a cup product of cohomology
classes. We need the following result which relates the cup product to coboundary maps.

Lemma 3.1.2.
δ(φ ^ ψ) = δφ ^ ψ + (−1)kφ ^ δψ (3.1.2)

for φ ∈ Ck(X;R), and ψ ∈ C l(X;R).

Proof. For σ : ∆k+l+1 → X we have

(δφ ^ ψ)(σ) =
k+1∑
i=0

(−1)iφ(σ|[v0,··· ,v̂i,··· ,vk+1]) · ψ(σ|[vk+1,··· ,vk+l+1])
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and

(−1)k(φ ^ δψ)(σ) =
k+l+1∑
i=k

(−1)iφ(σ|[v0,··· ,vk]) · ψ(σ|[vk,··· ,v̂i,··· ,vk+l+1]).

When we add these two expressions, the last term of the first sum cancels with the first term
of the second sum, and the remaining terms are exactly δ(φ ^ ψ)(σ) = (φ ^ ψ)(∂σ) since
∂σ =

∑k+l+1
i=0 (−1)iσ |[v0,··· ,v̂i,··· ,vk+l+1] .

As immediate consequences of the above Lemma, we have:

Corollary 3.1.3. The cup product of two cocycles is again a cocycle. That is, if φ, ψ are
cocycles, then δ(φ ^ ψ) = 0.

Proof. This is true, since δφ = 0 and δψ = 0 imply by (3.1.2) that δ(φ ^ ψ) = 0.

Moreover,

Corollary 3.1.4. If either one of φ or ψ is a cocycle and the other a coboundary, then
φ ^ ψ is a coboundary.

Proof. Say δφ = 0 and ψ = δη. Then φ ^ ψ = φ ^ δη = ±δ(φ ^ η). Similarly, if
δψ = 0, φ = δη then φ ^ ψ = δη ^ ψ = δ(η ^ ψ).

It follows from Corollary 3.1.3 and Corollary 3.1.4 that we get an induced cup product
on cohomology:

Hk(X;R)×H l(X;R)
^−→ Hk+l(X;R). (3.1.3)

It is distributive and associative since it is so on the cochain level. If R has an identity
element, then there is an identity element for the cup product, namely the class 1 ∈ H0(X;R)
defined by the 0-cocycle taking the value 1 on each singular 0-simplex.

Considering the cup product as an operation on the the direct sum of all cohomology
groups, we get a (graded) ring structure on the cohomology ⊕iH i(X;R). We will elaborate
on the ring structure on cohomology groups induced by the cup product after looking at a
few examples and properties of the cup product.

Example 3.1.5. Let us consider the real projective plane RP2. Its Z/2Z-cohomology is
computed by:

H i(RP2;Z/2Z) =

{
Z/2Z for i = 0, 1, 2

0 otherwise.

Let α ∈ H1(RP2;Z/2Z) = Z/2Z be the generator, and consider

α2 := α ^ α ∈ H2(RP2;Z/2Z).

We claim that α2 6= 0, so α2 is in fact the generator of H2(RP2;Z/2Z).
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Consider the cell structure on RP2 with two 0-cells v and w, three 1-cells e, e1 and e2, and
two 2-cells T1 and T2. The 2-cell T1 is attached by the word e1ee

−1
2 , and the 2-cell T2 is

attached by the word e2ee
−1
1 (see the figure below).

Since α is a generator of H1(RP2;Z/2Z) ∼= Hom(H1(RP2),Z/2Z), it is represented by a
cocycle

φ : C1(RP2)→ Z/2Z

with φ(e) = 1, where we use the fact that e represents the generator of H1(RP2). The cocycle
condition for φ translates into the identities:

0 = (δφ)(T1) = φ(∂T1) = φ(e1) + φ(e)− φ(e2).

0 = (δφ)(T2) = φ(∂T2) = φ(e2) + φ(e)− φ(e1).

As φ(e) = 1, without loss of generality we may take φ(e1) = 1 and φ(e2) = 0.

Next, note that α2 = α ^ α is represented by φ ^ φ, and we have:

(φ ^ φ)(T1) = φ(e1) · φ(e) = 1

since T1 : [vww]→ RP2. Similarly,

(φ ^ φ)(T2) = φ(e2) · φ(e) = 0.

Since the generator of H2(RP2;Z/2Z) is T1 + T2, and we have

(φ ^ φ)(T1 + T2) = (φ ^ φ)(T1) + (φ ^ φ)(T2) = 1 + 0 = 1,

it follows that α2 (which is represented by φ ^ φ) is the generator of H2(RP2;Z/2Z). �

The cup product on cochains

Ck(X;R)× C l(X;R) −→ Ck+l(X;R)
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restricts to cup products:

Ck(X,A;R)× C l(X;R) −→ Ck+l(X,A;R),

Ck(X,A;R)× C l(X,A;R) −→ Ck+l(X,A;R),

and
Ck(X;R)× C l(X,A;R) −→ Ck+l(X,A;R)

since Ci(X,A;R) can be regarded as the set of cochains vanishing on chains in A, and if φ
or ψ vanishes on chains in A, then so does φ ^ ψ. So there exist relative cup products:

Hk(X,A;R)×H l(X;R)
^−→ Hk+l(X,A;R),

Hk(X,A;R)×H l(X,A;R)
^−→ Hk+l(X,A;R),

and
Hk(X;R)×H l(X,A;R)

^−→ Hk+l(X,A;R).

In particular, if A is a point, we get a cup product on the reduced cohomology H̃∗(X;R).
More generally, there is a cup product

Hk(X,A;R)×H l(X,B;R)
^−→ Hk+l(X,A ∪B;R)

when A and B are open subsets of X or subcomplexes of the CW complex X. Indeed, the
absolute cup product restricts first to a cup product

Ck(X,A;R)× C l(X,B;R) −→ Ck+l(X,A+B;R),

where Ck+l(X,A+B;R) is the subgroup of Ck+l(X;R) consisting of cochains vanishing on
sums of chains in A and chains in B. If A and B are opens in X, then Ck+l(X,A∪B;R) ↪→
Ck+l(X,A + B;R) induces an isomorphism in cohomology, via the five-lemma and the fact
that the restriction maps Ci(A ∪B;R)→ Ci(A+B;R) induce cohomology isomorphisms.

Let us now prove the following simple but important fact:

Lemma 3.1.6. The cup product is functorial, i.e., for a map f : X → Y the induced maps
f ∗ : H i(Y ;R)→ H i(X;R) satisfy

f ∗(α ^ β) = f ∗(α) ^ f ∗(β), (3.1.4)

and similarly in the relative case.

Proof. It sufficies to show the following cochain formula

f#(φ ^ ψ) = f#(φ) ^ f#(ψ).
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For φ ∈ Ck(X;R) and ψ ∈ C l(X;R) we have:

f#(φ) ^ f#(ψ)(σ : ∆k+l → X) = (f#φ)(σ|[v0,··· ,vk]) · (f#ψ)(σ|[vk,··· ,vk+l])
= φ((f#σ)|[v0,··· ,vk]) · ψ((f#σ)|[vk,··· ,vk+l])
= (φ ^ ψ)(f#σ)

= (f#(φ ^ ψ))(σ).

Definition 3.1.7. A graded ring is a ring A with a sum decomposition A = ⊕kAk where the
Ak are additive subgroups so that the multiplication of A takes Ak ×Al to Ak+l. Elements of
Ak are called elements of degree k.

Definition 3.1.8. The cohomology ring of a topological space X is the graded ring

H∗(X;R) := (
⊕
k≥0

Hk(X;R),^),

with respect to the cup product operation. If R has an identity, then so does H∗(X;R).
Similarly, we define the cohomology ring of a pair H∗(X,A;R) by using the relative cup
product.

Remark 3.1.9. By scalar multiplication with elements of R, we can regard these cohomology
rings as R-algebras.

The following is an immediate consequence of Lemma 3.1.6:

Corollary 3.1.10. If f : X → Y is a continuous map then we get an induced ring homo-
morphism

f ∗ : H∗(Y ;R)→ H∗(X;R).

Example 3.1.11. The isomorphisms

H∗(
⊔
α

Xα;R)
∼=−→
∏
α

H∗(Xα;R) (3.1.5)

whose coordinates are induced by the inclusions iα : Xα ↪→
⊔
αXα is a ring isomorphism

with respect to the coordinatewise multiplication in a ring product, since each coordinate
function i∗α is a ring homomorphism. Similarly, the group isomorphism

H̃∗(
∨
α

Xα;R) ∼=
∏
α

H̃∗(Xα;R) (3.1.6)

is a ring isomorphism. Here the reduced cohomology is identified to cohomology relative to
a basepoint, and we use relative cup products. (We also assume the basepoints xα ∈ Xα are
deformation retracts of neighborhoods.)
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Example 3.1.12. From our calculations in Example 3.1.5 we have that:

H∗(RP2;Z/2Z) = {a0 + a1α + a2α
2| ai ∈ Z/2Z}

= (Z/2Z)[α]/(α3),

where α is a generator of H1(RP2;Z/2Z).

Example 3.1.13.
H∗(Sn,Z) = Z[α]/(α2)

where α is a generator of Hn(Sn;Z). Indeed, we have

H i(Sn;Z) =

{
Z for i = 0, n

0 otherwise.

So if α is a generator of Hn(Sn;Z), then the only possible cup products are α ^ 1 and
α ^ α. However, α ^ α ∈ H2n(Sn;Z) = 0. Hence α2 = 0.

Let us now recall that the cell structure on

RP∞ = ∪n≥0RPn

consists of one cell in each non-negative dimension. The following result will be proved later
on in this section:

Theorem 3.1.14. The cohomology rings of the real (resp. complex) projective spaces are
given by:

(a)
H∗(RPn;Z/2Z) ∼= Z/2[α]/(αn+1)

where α is the generator of H1(RPn;Z/2Z).

(b)
H∗(RP∞;Z/2Z) ∼= Z/2[α]

where α is the generator of H1(RPn;Z/2Z).

(c)
H∗(CPn;Z) = Z[β]/(βn+1)

where β is the generator of H2(CPn;Z).

(d)
H∗(CP∞;Z) = Z[β]

where β is the generator of H2(CPn;Z).

Before discussing the proof of the above theorem, let us get back to the following moti-
vating example:
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Example 3.1.15. We saw at the beginning of this chapter that the spaces X = CP2 and
Y = S2 ∨ S4 have the same homology and cohomology groups, and even the same CW
structure. The cup products can be used to decide whether these spaces are homotopy
equivalent. Indeed, let us consider the cohomology rings H∗(X;Z) and H∗(Y ;Z). From the
above theorem, we have that:

H∗(CP2;Z) = Z[β]/(β3),

where β is the generator of H2(CP2;Z). We also have a ring isomorphism

H̃∗(S2 ∨ S4;Z) ∼= H̃∗(S2;Z)⊕ H̃∗(S4;Z),

where H∗(S2;Z) = Z[α]/(α2) and H∗(S4;Z) = Z[γ]/(γ2), with degree of α equal to 2 and
degree of γ equal to 4. Moreover, α2 = 0 = γ2 and α ^ γ = 0.
Consider the cohomology generators in degree 2 and square them. In the case of H∗(CP2;Z),
β2 is a generator of H4(CP2;Z), hence β2 6= 0. However, in the case of H∗(S2 ∨ S4;Z),
α2 ∈ H4(S2;Z) = 0. Hence the two cohomology rings of the two spaces are not isomorphic,
hence the two spaces are not homotopy equivalent.

Let us now get back to the proof of Theorem 3.1.14. We will discuss below the proof
in the case of RPn. The result in the case of RP∞ follows from the finite-dimensional case
since the inclusion RPn ↪→ RP∞ induces isomorphisms on H i(−;Z/2) for i ≤ n by cellular
cohomology. The complex projective spaces are handled in precisely the same manner, using
Z-coefficients and replacing Hk by H2k and R by C.

We next prove the following result:

Theorem 3.1.16.
H∗(RPn;Z/2) = Z/2[α]/(αn+1), (3.1.7)

where α is the generator of H1(RPn;Z/2).

Proof. For simplicity, let us use the notation Pn := RPn and all coefficients for the cohomol-
ogy groups are understood to be Z/2-coefficients.

We prove (3.1.7) by induction on n. Let αi be a generator forH i(Pn) and αj be a generator
for Hj(Pn), with i + j = n. Since for any k < n the inclusion map u : Pk ↪→ Pn induces
isomorphisms on cohomology groups H l, for l ≤ k, it suffices by induction on n to show that
αi ^ αj 6= 0.

Recall now that Pn = Sn/(Z/2), with

Sn = {(x0, · · · , xn) ∈ Rn+1|
n∑
l=0

x2
l = 1}.

Let

Si = {(x0, · · · , xi, 0, · · · , 0) |
i∑
l=0

x2
l = 1}
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and

Sj = {(0, · · · , 0, xn−j, · · ·xn) |
n∑

l=n−j

x2
l = 1}

be the i-th and j-th (sub)sphere respectively. Note that since i + j = n, we have that
xn−j = xi. Hence Si ∩ Sj = {(0, · · · , 0,±1, 0, · · · , 0)} with ±1 is in the i-th position, i.e.,
the intersection consists of the two antipodal points with i-th coordinate ±1 and all other
coordinates zero.

Hence, Pi = Si/(Z/2) and Pj = Sj/(Z/2) are subsets of Pn = Sn/(Z/2) so that

Pi ∩ Pj = {p} = (0 : · · · : 0 : 1 : 0 : · · · : 0)

with 1 is in the i-th place.
Let U ⊂ Pn be the open subset consisting of points (x0 : · · · : xn) with xi 6= 0, i.e.,

U = {(x0 : · · · : xi−1 : 1 : xi+1 : · · · : xn)},

and notice that the map

φ
(
(x0 : · · · : xi−1 : 1 : xi+1 : · · · : xn)

)
= (x0, · · · , xi−1, xi+1, · · · , xn)

is a homeomorphism U ∼= Rn which takes p to 0 ∈ Rn.
We clearly have that Pn = Pn−1∪U , where Pn−1 is identified to the set of points in Pn with

the i-th coordinate equal to zero. Regarding U as the interior of the n-cell of Pn (attached
to Pn−1), it follows that Pn − {p} deformation retracts to Pn−1. Similarly, as {p} = Pi ∩ Pj,
we have that Pi − {p} ' Pi−1 and Pj − {p} ' Pj−1. All of this is represented schematically
in the figure below, where Pn is represented by a disc with its antipodal boundary points
identified.

Let us now write Rn = Ri×Rj, with coordinates of factors denoted by (x0, · · · , xi−1) and
(xi+1, · · · , xn), respectively. Consider the following commutative diagram with horizontal
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Figure 3.1:

arrows given by the (relative) cup product:

H i(Pn)×Hj(Pn) // Hn(Pn)

H i(Pn,Pn − Pj)×Hj(Pn,Pn − Pi) //

OO

��

Hn(Pn,Pn − {p})

OO

��
H i(Rn,Rn − Rj)×Hj(Rn,Rn − Ri) // Hn(Rn,Rn − {0})

The diagram commutes by naturality of the cup product. Let us examine the bottom row
in the above diagram. Let Di denote a small closed i-disc in Ri with boundary Si−1. Then
by homotopy equivalence and excision we have:

H i(Rn,Rn − Rj) ∼= H i(Rn,Rn − int(Di)× Rj)

∼= H i(Di × Rj, Si−1 × Rj)

∼= H i(Di ×Dj, Si−1 ×Dj)

∼= H i((Di, Si−1)×Dj)

∼= H i(Di, Si−1).

Similarly,
Hj(Rn,Rn − Ri) ∼= Hj((Dj, Sj−1)×Di) ∼= Hj(Dj, Sj−1)

and

Hn(Rn,Rn − {0}) ∼= Hn(Dn, Sn−1) ∼= Hn(Di ×Dj, Si−1 ×Dj ∪ Sj−1 ×Di).

Since Dn is an n-cell, its class [Dn] (in the Z/2-cellular cohomology) generates Hn(Dn, Sn−1),
and similar considerations apply to [Di ∈ H i(Di, Si−1) and [Dj] ∈ Hj(Dj, Sj−1). So the
above isomorphisms and cellular cohomology show that the cup product of the bottom
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arrow in the above commutative diagram takes the product of generators to a generator, i.e.,
it is given by

[Di]× [Dj] 7→ [Dn].

The same will be true for the top row, provided we show that the four vertical maps in the
above diagram are isomorphisms.
For the bottom right vertical arrow, we have by excision that

Hn(Pn,Pn − {p}) ∼= Hn(U,U − {p}) ∼= Hn(Rn,Rn − {0}), (3.1.8)

where the last isomorphism follows by using the homeomorphism φ : U → Rn.
For the top right vertical arrow, we already noted that Pn − {p} deformation retracts to
Pn−1, so we have

Hn(Pn,Pn − {p}) ∼= Hn(Pn,Pn−1) ∼= Z/2, (3.1.9)

where the second isomorphism follows by cellular cohomology. Moreover, by using the long
exact sequence for the cohomology of the pair (Pn,Pn−1) and the fact that Hn(Pn−1) = 0,
we get that the map Z/2 = Hn(Pn,Pn−1)→ Hn(Pn) ∼= Z/2 is onto, hence an isomorphism.
Thus we get:

Hn(Pn,Pn − {p}) ∼= Hn(Pn) (3.1.10)

To show that the two left vertical arrows are isomorphisms, consider the following commu-
tative diagram.

H i(Pn)

(1)
��

H i(Pn,Pi−1)
(2)

oo

(3)
��

H i(Pn,Pn − Pj)
(4)

oo (5) //

(6)
��

H i(Rn,Rn − Rj)

(7)
��

H i(Pi) H i(Pi,Pi−1)
(8)

oo H i(Pi,Pi − {p})
(9)

oo (10) // H i(Ri,Ri − {0})

It suffices to show that all these maps are isomorphisms. (Then to finish the proof of
the theorem, just interchange i and j.) First note that (Rn,Rn − Rj) = (Ri,Ri − {0})× Rj

deformation retract to (Ri,Ri−{0}), so the arrow (7) is an isomorphism. As already pointed
out, (10) is an isomorphism by (3.1.8). Moreover, (9) is an isomorphism as in (3.1.9), and (8)
is an isomorphism as in (3.1.10). The arrow (1) is an isomorphism by cellular homology, and
the arrow (3) is an isomorphism by cellular homology and the naturality of the cohomology
long exact sequence. By commutativity of the left square, it then follows that (2) is an
isomorphism. In order to show that (4) is an isomorphism, we note that Pn−Pj deformation
retracts onto Pi−1. Indeed, a point v = (x0 : · · · : xn) ∈ Pn − Pj has at least one of the first
i coordinates non-zero, so the function

ft(v) := (x0 : · · · : xi−1 : txi : · · · : txn)

gives, as t decreases from 1 to 0, a deformation retract from Pn − Pj onto Pi−1.
Since (3), (4) and (9) are isomorphisms, the commutativity of the middle square yields that
(6) is an isomorphism. Finally, since (6), (7) and (10) are isomorphisms, the commutativity
of the right square yields that (5) is an is0morphism, which completes the proof of the
theorem.
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Example 3.1.17. Let us consider the spaces RP2n+1 and RP2n∨S2n+1. First note that these
spaces have the same CW structure and the same cellular chain complex, so they have the
same homology and cohomology groups. However, we claim that RP2n+1 and RP2n ∨ S2n+1

are not homotopy equivalent. In order to justify the claim, we first compute their Z/2Z-
cohomology rings.
From the above theorem, the cohomology ring of RP2n+1 is:

H∗(RP2n+1;Z/2Z) = Z/2Z[α]/(α2n+2),

where α is a degree one element, namely the generator of H1(RP2n+1;Z/2Z).
We also have a ring isomorphism

H̃∗(RP2n ∨ S2n+1;Z/2Z) ∼= H̃∗(RP2n;Z/2Z)⊕ H̃∗(S2n+1;Z/2Z)

with H∗(RP2n;Z/2Z) ∼= Z/2Z[β]/(β2n+1) for β the degree 1 generator of H1(RP2n;Z/2Z),
and H∗(S2n+1;Z/2Z) ∼= Z/2Z[γ]/(γ2) for γ the generator of H2n+1(S2n+1;Z/2Z) of degree
2n+ 1.
If there was a homotopy equivalence f : RP2n+1 → RP2n ∨ S2n+1, then the generators of
degree one would correspond isomorphically to each other, i.e., we would get f ∗(β) = α. But
as f ∗ is a ring isomorphism, this would then imply that: f ∗(β2n+1) = (f ∗(β))2n+1 = α2n+1.
However, this yields a contradiction, since β2n+1 = 0, thus f ∗(β2n+1) = 0, while α2n+1 6= 0
since α2n+1 generates H2n+1(RP2n+1;Z/2Z).
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3.2 Application: Borsuk-Ulam Theorem
In this section we use cup products in order to prove the following result:

Theorem 3.2.1 (Borsuk-Ulam). If n > m ≥ 1, there are no maps g : Sn → Sm commuting
with the antipodal maps, i.e., for which g(−x) = −g(x), for all x ∈ Sn.

Proof. We prove the theorem by contradiction. Assume that there is a map g : Sn → Sm

commuting with the antipodal maps. Then g carries pairs of antipodal points (x,−x) in Sn
to pairs of antipodal points

(
g(x), g(−x) = −g(x)

)
in Sm. So, by passage to the quotient, g

induces a map
f : RPn → RPm

[x] 7→ [g(x)]

which makes the following diagram commutative:

Sn

yp′

��

g // Sm

p
��

RPn f // RPm

Here p and p′ are the two-sheeted covering maps.
We claim that there exists a lift f ′ of f , i.e., f = pf ′ in the following diagram:

Sm

p
��

RPn f //

f ′
;;

RPm

Let us for now assume the claim and complete the proof of the theorem. Consider the
following diagram:

Sm

p
��

Sn

g
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p′
// RPn

f ′
;;

f
// RPm

We have pg = fp′ = pf ′p′, the second equality following from the above claim. This implies
that both g and f ′p′ are lifts of fp′. Under the two-sheeted covering map p, antipodal points
in Sm are mapped to the same point in RPm. Therefore, pg = pf ′p′ implies that at a point
x ∈ Sn, we have g(x) = f ′p′(x) or ag(x) = f ′p′(x), where a : Sm → Sm is the antipodal
map. But ag(x) = −g(x) = g(−x) and f ′p′(x) = f ′p′(−x). Thus at x ∈ Sn, one of following
equalities holds: g(x) = f ′p′(x) or g(−x) = f ′p′(−x). Since g and f ′p′ are lifts of fp′ and
they coincide at a point, it follows by the uniqueness of the lift that g = f ′p′. But this is a
contradiction since p′(x) = p′(−x), hence f ′p′(x) = f ′p′(−x), while g(x) 6= g(−x) = −g(x).

It remains to prove the claim. A lift for f exists iff

f∗(π1(RPn)) ⊆ p∗(π1(Sm)). (3.2.1)
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If m = 1, the only homomorphism

f∗ : π1(RPn) ∼= Z/2→ π1(RP1) ∼= Z

is the trivial one, so (3.2.1) is satisfied.
If m > 1, both groups π1(RPn) and π1(RPm) are Z/2. We will use cup products to show
that the induced map f∗ : Z/2 → Z/2 on fundamental groups is the trivial map. Let
αm ∈ H∗(RPm;Z/2) and αn ∈ H∗(RPn;Z/2) be the generators of degree 1, and consider the
induced ring homomorphism

f ∗ : H∗(RPm;Z/2)→ H∗(RPn;Z/2).

We have:
0 = f ∗(αm+1

m ) = f ∗(αm)m+1,

so f ∗(αm) ∈ H1(RPn;Z/2) has order m+ 1 < n+ 1. Therefore,

f ∗(αm) 6= αn.

Since H1(RPn;Z/2) = Z/2 = 〈αn〉, this implies that

f ∗(αm) = 0.

Let i : RP1 ↪→ RPn and j : RP1 ↪→ RPm be the inclusions obtained by setting all
but the first two homogeneous coordinates equal to zero. By cellular cohomology, the map
j∗ : H1(RPm)→ H1(RP1) is an isomorphism, so j∗(αm) is the generator of H1(RP1), and in
particular,

j∗(αm) 6= 0.

On the other hand,
(f ◦ i)∗(αm) = i∗(f ∗(αm)) = 0.

So (f ◦ i)∗ 6= j∗, hence the maps f ◦ i and j are not homotopic.
But the homotopy classes of i and j generate π1(RPn) and π1(RPm), respectively. So the

homomorphisms

f∗ : π1(RPn) ' Z/2 −→ π1(RPm) ' Z/2
[i] 7→ [f ◦ i] 6= [j]

maps the generator [i] to an element of Z/2 other than the generator [j], i.e., f∗ = 0. This
proves the claim, and completes the theorem.
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Exercises
1. Show that if X is the union of contractible open subsets A and B, then all cup products
of positive-dimensional classes in H∗(X) are zero. In particular, this is the case if X is a
suspension. Conclude that spaces such as RP2 and T 2 cannot be written as unions of two
open contractible subsets.

2. Is the Hopf map

f : S3 ⊂ C2 → S2 = C ∪ {∞}, (z, w) 7→ z
w

nullhomotopic? Explain.

3. Is there a continuous map f : X → Y inducing isomorphisms on all of the cohomology
groups (i.e., f ∗ : H i(Y ;Z)

∼=→ H i(X;Z), for all i) but X and Y do not have isomorphic
cohomology rings (with Z coefficients)? Explain your answer.

4. Show that RP3 and RP2 ∨ S3 have the same cohomology rings with integer coefficients.

5.

(a) Show that H∗(CPn;Z) ∼= Z[x]/(xn+1), with x the generator of H2(CPn;Z).

(a) Show that the Lefschetz number τf of a map f : CPn → CPn is given by

τf = 1 + d+ d2 + · · ·+ dn,

where f ∗(x) = dx for some d ∈ Z, and with x as in part (a).

(c) Show that for n even, any map f : CPn → CPn has a fixed point.

(d) When n is odd, show that there is a fixed point unless f ∗(x) = −x, where x denotes
as before a generator of H2(CPn;Z).

6. Use cup products to compute the map H∗(CPn;Z) → H∗(CPn;Z) induced by the map
CPn → CPn that is a quotient of the map Cn+1 → Cn+1 raising each coordinate to the d-th
power, (z0, · · · , zn) 7→ (zd0 , · · · , zdn), for a fixed integer d > 0. (Hint: First do the case n = 1.)

7. Describe the cohomology ring H∗(X ∨ Y ) of a join of two spaces.

8. Let H = R ·1⊕R ·i⊕R ·j⊕R ·k be the skew-field of quaternions, where i2 = j2 = k2 = −1
and ij = k = −ji, jk = i = −kj, ki = j = −ik. For a quaternion q = a + bi + cj + dk,
a, b, c, d ∈ R, its conjugate is defined by q̄ = a− bi− cj − dk. Let |q| :=

√
a2 + b2 + c2 + d2.

(a) Verify the following formulae in H: q · q̄ = |q|2, q1q2 = q̄2q̄1, |q1q2| = |q1| · |q2|.
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(b) Let S7 ⊂ H⊕H be the unit sphere, and let f : S7 → S4 = HP1 = H ∪ {∞} be given
by f(q1, q2) = q1q2

−1. Show that for any p ∈ S4, the fiber f−1(p) is homeomorphic to
S3.

(c) Let HPn be the quaternionic projective space defined exactly as in the complex case as
the quotient of Hn+1 \ {0} by the equivalence relation v ∼ λv, for λ ∈ H \ {0}. Show
that the CW structure of HPn consists of only one cell in each dimension 0, 4, 8, · · · , 4n,
and calculate the homology of HPn.

(d) Show that H∗(HPn;Z) ∼= Z[x]/(xn+1), with x the generator of H4(HPn;Z).

(e) Show that S4 ∨ S8 and HP2 are not homotopy equivalent.

9. For a map f : S2n−1 → Sn with n ≥ 2, let Xf = Sn ∪f D2n be the CW complex obtained
by attaching a 2n-cell to Sn by the map f . Let a ∈ Hn(Xf ;Z) and b ∈ H2n(Xf ;Z) be the
generators of respective groups. The Hopf invariant H(f) ∈ Z of the map f is defined by
the identity a2 = H(f)b.

(a) Let f : S3 → S2 = C∪{∞} be given by f(z1, z2) = z1/z2, for (z1, z2) ∈ S3 ⊂ C2. Show
that Xf = CP2 and H(f) = ±1.

(b) Let f : S7 → S4 = H ∪ {∞} be given by f(q1, q2) = q1q2
−1 in terms of quaternions

(q1, q2) ∈ S7, the unit sphere in H2. Show that Xf = HP2 and H(f) = ±1.
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3.3 Künneth Formula

3.3.1 Cross product

Let us motivate this section by consider the spaces S2×S3 and S2∨S3∨S5. Both spaces are
CW complexes with cells {e0, e2, e3, e5} in degrees, 0, 2, 3 and 5, respectively. So the cellular
chain complex for both spaces is:

0→ Z→ 0→ Z 0−→ Z→ 0→ Z→ 0

Hence both spaces have the same homology and cohomology groups. It is then natural to
ask the following:

Question 3.3.1. Are the spaces S2 × S3 and S2 ∨ S3 ∨ S5 homotopy equivalent?

The aim of this section is to convince the reader that the answer is No. More precisely,
we will show that the two spaces have different cohomology rings.
The cohomology ring H∗(S2 ∨ S3 ∨ S5;Z) can be computed from the ring isomorphism

H̃∗(S2 ∨ S3 ∨ S5;Z) ∼= H̃∗(S2;Z)⊕ H̃∗(S3;Z)⊕ H̃∗(S5;Z),

with H∗(S2;Z) ∼= Z[α]/(α2), H∗(S3;Z) ∼= Z[β]/(β2) and H∗(S5;Z) ∼= Z[γ]/(γ2), where α
is the generator of H2(S2;Z), β is the generator of H3(S3;Z) and γ is the generator of
H5(S5;Z). Moreover, we have that α ^ β = 0. Indeed, let

p : S2 ∨ S3 ∨ S5 → S2 ∨ S3

be the natural retraction map. Then p∗ induces isomorphisms on H2 and H3. So if ᾱ and β̄
are the generators of H2(S2 ∨ S3) and H3(S2 ∨ S3), then α = p∗ᾱ and β = p∗β̄. So

α ^ β = p∗ᾱ ^ p∗β̄ = p∗(ᾱ ^ β̄) = 0

since ᾱ ^ β̄ = 0.
By the end of this section, we will show that the product of the generators of degree 2 and
degree 3 in the cohomology ring of S2 × S3 is the generator in degree 5, so it is non-zero.
This will then completely answer the above question.

The following result is proved in [Hatcher, Theorem 3.14]:

Theorem 3.3.2. Let R be a commutative ring, and α ∈ Hk(X,A;R) and β ∈ H l(X,A;R).
Then the following holds:

α ^ β = (−1)kl · β ^ α. (3.3.1)

Definition 3.3.3. A graded ring which satisfies a condition as in the above theorem is called
graded commutative. Hence the cohomology ring H∗(X,A;R) is a graded commutative ring.
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Corollary 3.3.4. If α ∈ H∗(X;R) is of odd degree and if H∗(X;R) has no elements of
order two, then α ^ α = 0.

Definition 3.3.5. Cross product or External cup product
Let X and Y be topological spaces, and denote by p and q the projections p : X × Y −→ X
and q : X × Y −→ Y . By using the cohomology maps defined by these projections, we have
an induced map denoted by ×:

H∗(X;R) × H∗(Y ;R)
×−→ H∗(X × Y ;R)

a b 7→ a× b := p∗(a) ^ q∗(b)

All cohomology groups H i(X;R) and H i(Y ;R) have an R-module structure, hence so do the
corresponding cohomology rings H∗(X;R) and H∗(Y ;R). Since the map × is bilinear, the
universal property for tensor products yields a group homomorphism called the cross product,
which we again denote by ×:

H∗(X;R)⊗R H∗(Y ;R)
×−→ H∗(X × Y ;R) (3.3.2)

So, by definition, we have that:
×(a⊗ b) := a× b.

The cross-product becomes a ring isomorphism if we put a ring structure on H∗(X;R) ⊗R
H∗(Y ;R) by the following multiplication operation:

(a⊗ b) · (c⊗ d) = (−1)deg(b)·deg(c)(ac⊗ bd) (3.3.3)

Indeed, we have:

×((a⊗ b) · (c⊗ d)) = (−1)deg(b)·deg(c) × (ac⊗ bd)

= (−1)deg(b)·deg(c) (ac× bd)

= (−1)(deg b)·deg(c) p∗(a ^ c) ^ q∗(b ^ d)

= (−1)deg(b)·deg(c) p∗(a) ^ p∗(c) ^ q∗(b) ^ q∗(d)

(3.3.1)
= p∗(a) ^ q∗(b) ^ p∗(c) ^ q∗(d)

= ×(a⊗ b) ^ ×(c⊗ d).

3.3.2 Künneth theorem in cohomology. Examples

The following result is very helpful in finding the cohomology ring of a product of CW
complexes:

Theorem 3.3.6. Künneth Formula
If X and Y are CW complexes, and Hk(Y ;R) is a finitely generated free R-module for all
k, then the cross product

H∗(X;R)⊗R H∗(Y ;R)
×−→ H∗(X × Y ;R)
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is a ring isomorphism. Moreover, we have the following isomorphism of groups:

Hn(X × Y ;R) ∼=
⊕
i+j=n

H i(X;R)⊗R Hj(Y ;R) (3.3.4)

In the next section, we will explain the content of Theorem 3.3.6 in a more general
context. Let us now work out some examples.

Example 3.3.7. Let us find the cohomology ring of S2×S3, which appeared at the beginning
of this section. According to the Künneth formula, we have the following ring isomorphism:

H∗(S2 × S3;Z) ∼= H∗(S2;Z)⊗Z H
∗(S3;Z)

If we let a ∈ H∗(S2;Z) denote the degree 2 element which generates H2(S2;Z) and b ∈
H∗(S3;Z) the degree 3 element which generates H3(S3;Z), then ×(a ⊗ 1) and ×(1 ⊗ b)
(where 1 denotes the identity in the respective cohomology rings) will be the generators in
H∗(S2 × S3;Z) of degree 2 and 3, respectively. Moreover, ×(a⊗ 1) ^ ×(1⊗ b) = ×(a⊗ b)
will be a generator of degree 5 in H∗(S2 × S3;Z).

In order to simplify the notations, we make the following definition.

Definition 3.3.8. Exterior Algebra
Let R be a commutative ring with identity. The exterior algebra over R, denoted

ΛR[α1, α2, . . .],

is the free R-module generated by products of the form:

αi1αi2 · · ·αik , with i1 < i2 < · · · < ik,

and with associative and distributive multiplication defined by the rules:

αiαj = −αjαi, if i 6= j

α2
i = 0.

The empty product of αi’s is allowed and it gives the identity element 1 ∈ ΛR[α1, α2, . . .].

Example 3.3.9. Let us now show that

H∗(S3 × S5 × S7;Z) ∼= ΛZ[a3, a5, a7], (3.3.5)

where ai is the generator of degree i in H∗(S3 × S5 × S7;Z), for i = 3, 5, 7.
By the Künneth formula applied to the product of CW complexes S3×S5×S7, we have the
following ring isomorphism:

H∗(S3 × S5 × S7;Z) ∼= H∗(S3;Z)⊗Z H
∗(S5;Z)⊗Z H

∗(S7;Z).

Let αi be the generator of degree i in H∗(Si;Z) for i = 3, 5, 7. Then the generators of degree
3, 5 and 7 in H∗(S3 × S5 × S7;Z) are given respectively by:
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• a3 = ×(α3 ⊗ 1⊗ 1)

• a5 = ×(1⊗ α5 ⊗ 1)

• a7 = ×(1⊗ 1⊗ α7)

The product of these generators produce generators of higher degrees, i.e., 8, 10, 12 and 15,
in the cohomology ring H∗(S3×S5×S7;Z). Let us compute some products of the elements:

a2
3 = ×(α3 ⊗ 1⊗ 1) ^ ×(α3 ⊗ 1⊗ 1)

= ×
[
(α3 ⊗ 1⊗ 1) · ×(α3 ⊗ 1⊗ 1)

]
= ×(α2

3 ⊗ 1⊗ 1)

= 0

and a similar result for a2
5 and a2

7.

a3a5 = ×(α3 ⊗ 1⊗ 1) ^ ×(1⊗ α5 ⊗ 1)

= ×
[
(α3 ⊗ 1⊗ 1) · (1⊗ α5 ⊗ 1)

]
= (−1)0·0 × (α3 ⊗ α5 ⊗ 1)

= ×(α3 ⊗ α5 ⊗ 1)

a5a3 = ×(1⊗ α5 ⊗ 1) ^ ×(α3 ⊗ 1⊗ 1)

= ×
[
(1⊗ α5 ⊗ 1) · (α3 ⊗ 1⊗ 1)

]
= (−1)3·5 × (α3 ⊗ α5 ⊗ 1)

= −a3a5

We have similar results for the other products too. The above calculations show that we
have an isomorphism H∗(S3 × S5 × S7;Z) ∼= ΛZ[a3, a5, a7].

Remark 3.3.10. It is easy to see that a similar result holds for the cohomology ring of any
(finite) product of odd dimensional spheres.

Example 3.3.11. By the Künneth formula we have the following ring isomorphism:

H∗(RP∞ × RP∞;Z/2) = H∗(RP∞;Z/2)⊗Z2 H
∗(RP∞;Z/2)

= Z/2[α]⊗Z/2 Z/2[β]

= Z/2[α, β]

where α and β are generators of degree 1, and they commute since we work with Z/2-
coefficients.
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Example 3.3.12. Let us now investigate if the spaces CP 6 and S2×S4×S6 are homotopy
equivalent. Fortunately, there is an easy answer to this question. Consider the usual CW
structure for CP 6 and the product CW structure for S2 × S4 × S6. Both spaces have cells
only in even dimensions, but CP 6 has one cell in dimension 6, whereas S2×S4×S6 has two
cells in dimension 6. It follows that H6(CP 6) = Z, whereas H6(S2 × S4 × S6) = Z⊕ Z. So
CP 6 and S2 × S4 × S6 are not homotopy equivalent. A more difficult approach to answer
the question would be to show that the cohomolgy rings for these spaces are not isomorphic.
We will do this in the following example.

Example 3.3.13. Let us show that if n > 1, the spaces CP
n(n+1)

2 and S2 × S4 × · · · × S2n

are not homotopy equivalent. Consider the following cases:

• If n = 1, then CP 1 is homeomorphic to S2.

• If n = 2, then both the spaces CP 3 and S2 × S4 have one cell in each of the dimen-
sions {0, 2, 4, 6}. Thus they also have the same cellular chain/cochain complex and,
in particular, their homology/cohomology groups are isomorphic. We will, however,
distinguish these spaces by their cohomology rings.

• If n ≥ 3, then CP n has one cell in each of the dimensions {0, 2, 4, . . . , 2n}, but the
cell structure of S2 × S4 × · · · × S2n is different from that of CP n since, for example,
S2×S4× · · · ×S2n has two 6-cells. As both spaces have cells only in even dimensions,
we can already conclude that they have different homology and cohomology groups
since they have different cell structures.

We will now show that for n > 1 the two spaces have non-isomorphic cohomology rings.
First, the Künneth formula yields that:

H∗(S2 × S4 × · · · × S2n;Z) ∼= H∗(S2;Z)⊗Z H
∗(S4;Z)⊗Z · · · ⊗Z H

∗(S2n;Z)

So a degree 2 element in this ring looks like ×(a⊗ 1⊗ 1⊗ · · · ⊗ 1), where a ∈ H2(S2). The
square of this element is:

[×(a⊗ 1⊗ 1⊗ · · · ⊗ 1)]2 = ×[(a⊗ 1⊗ 1⊗ · · · ⊗ 1)2]

= ×(a2 ⊗ 1⊗ 1⊗ · · · ⊗ 1)

= 0

since a2 ∈ H4(S2) = 0. However, in the case of CP
n(n+1)

2 , we know that square of a non-zero
degree 2 element is a non-zero degree 4 element. Hence the cohomology rings of the two
spaces are not isomorphic.

Example 3.3.14. Let us use cup products and the Künneth formula in order to show that
Sn ∨Sm is not a retract of Sn×Sm, for n,m ≥ 1. First, consider the product CW structure
on Sn × Sm: it consists of cells {e0, em, en, em+n} with attaching maps φ : ∂em → e0 and
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φ′ : ∂en → e0 coming from the factors. Hence Sn ∨ Sm is a subset of Sn × Sm. (Note that
we also allow the case n = m.) Next, suppose by contradiction that there is a retract

r : Sn × Sm → Sn ∨ Sm.

So, if i : Sn∨Sm ↪→ Sn×Sm denotes the inclusion, then the composition r ◦ i is the identity
map on Sn ∨ Sm. It follows that the cohomology map (r ◦ i)∗ = i∗ ◦ r∗ is the identity, so

r∗ : H∗(Sn ∨ Sm) −→ H∗(Sn × Sm)

is a monomorphism. By the Künneth formula, we have a ring isomorphism

H∗(Sn)⊗H∗(Sm)
×∼= H∗(Sn × Sm).

Hence, a non-zero element in Hn(Sn×Sm) is of the form a×1 := ×(a⊗1), with a ∈ Hn(Sn) a
non-zero class. Similarly, a non-zero element in Hm(Sn×Sm) is of the form 1×b := ×(1⊗b),
for some non-zero class b ∈ Hm(Sm). Let us now consider the product of non-zero elements
a× 1 ∈ Hn(Sn × Sm) and 1× b ∈ Hm(Sn × Sm) in the ring H∗(Sn × Sm). We get:

(a× 1) ^ (1× b) = ×(a⊗ 1) ^ ×(1⊗ b)
= ×[(a⊗ 1) · (1⊗ b)]
= ×(a⊗ b)
= a× b
6= 0,

(3.3.6)

since a⊗ b 6= 0 in H∗(Sn)⊗H∗(Sm). We also have a ring isomorphism

H̃∗(Sn ∨ Sm) ∼= H̃∗(Sn)⊕ H̃∗(Sm).

Let α, β ∈ H∗(Sn ∨ Sm) be the generators of degree n and m, respectively. Then

α ^ β ∈ Hn+m(Sn ∨ Sm) = 0.

On the other hand, since r∗ is a monomorphism, the classes r∗(α) and r∗(β) are non-zero
elements of degree n and resp. m in the cohomology ring H∗(Sn × Sm), so by the above
calculation, their product is non zero. But

r∗(α) ^ r∗(β) = r∗(α ^ β) = r∗(0) = 0,

which gives us a contradiction.
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3.3.3 Künneth exact sequence and applications

In this section, we aim to provide the necessary background for Künneth-type theorems.

Let us fix coefficients in a PID ring R.
Given two chain complexes (C•, ∂•) and (C ′•, ∂

′
•), we define (C ⊗ C ′)• to be the complex

with:

(C ⊗ C ′)n =
n⊕
p=0

(Cp ⊗ C ′n−p) (3.3.7)

and boundary map dn : (C ⊗ C ′)n → (C ⊗ C ′)n−1 which on Cp ⊗ C ′n−p is given by:

dn(a⊗ b) = (∂pa)⊗ b+ (−1)p(a⊗ ∂′n−pb). (3.3.8)

Then we have:

(d ◦ d)(a⊗ b) = d
(
(∂a)⊗ b+ (−1)p(a⊗ ∂′b)

)
= (∂2a)⊗ b+ (−1)p−1(∂a)⊗ (∂′b) + (−1)p(∂a)⊗ (∂′b) + (−1)pa⊗ (∂′2b)

= 0.

So
(
(C ⊗ C ′)•, d•

)
is a chain complex. It is therefore natural to ask the following question:

Question 3.3.15. How is the homology H∗((C ⊗ C ′)•) related to H∗(C•) and H∗(C ′•)?

The answer is provided by the following result from homological algebra:

Theorem 3.3.16. Künneth exact sequence
Let R be a PID, and assume that for each i, Ci is a free R-module. Then for all n, there is
a split short exact sequence:

0 −→
⊕
p

(
Hp(C•)⊗RHn−p(C

′
•)
)
−→ Hn((C⊗C)•) −→

⊕
p

TorR
(
Hp(C•), Hn−p−1(C ′•)

)
−→ 0

(3.3.9)

In what follows we discuss several applications of Theorem 3.3.16.

Künneth Formula for homology.

Let X and Y be two spaces, and let C• and C ′• denote the singular chain complexes of X
and Y , respectively. Then it is not hard to see that the singular chain complex C•(X×Y ) of
X × Y is chain homotopy equivalent to (C ⊗C ′)•, so they have the same homology groups.
We thus have the following important consequence of Theorem 3.3.16:

Corollary 3.3.17. Künneth Formula for homology
If X and Y are topological spaces, then the following holds:

Hn(X × Y ) ∼=
n⊕
p=0

(
Hp(X)⊗Hn−p(Y )

)
⊕

n−1⊕
p=0

Tor
(
Hp(X), Hn−p−1(Y )

)
. (3.3.10)

70



In particular, if all homology groups of X or Y are free R-modules, then:

Hn(X × Y ) ∼=
n⊕
p=0

Hp(X)⊗Hn−p(Y ). (3.3.11)

As a consequence of Corollary 3.3.17, we have:

Corollary 3.3.18. If the Euler characteristics χ(X) and χ(Y ) are defined, then χ(X × Y )
is defined, and:

χ(X × Y ) = χ(X) · χ(Y ). (3.3.12)

Universal Coefficient Theorem for homology

The Universal Coefficient Theorem for homology can be seen as a consequence of Theorem
3.3.16 as follows: take C• to be the singular chain complex of X and let C ′• to be the chain
complex defined by: C ′n = 0 if n 6= 0, C ′0 = R, and ∂′n = 0 for all n ≥ 0. We then get by
Theorem 3.3.16 that:

Hn(X;R) ∼=
(
Hn(X)⊗R

)
⊕ Tor(Hn−1(X), R). (3.3.13)

Remark 3.3.19. Note that (3.3.13) can also be obtained from (3.3.10) by taking Y to be a
point.

Künneth formula for cohomology

Finally, we also have the following cohomology Künneth formula:

Corollary 3.3.20. Künneth formula for cohomology
If R is a PID, and all homology groups Hi(X;R) are finitely generated, then there is a split
exact sequence (with R-coefficients):

0 −→
n⊕
p=0

(
Hp(X)⊗Hn−p(Y )

)
−→ Hn(X × Y ) −→

n+1⊕
p=0

Tor
(
Hp(X), Hn−p+1(Y )

)
−→ 0.

(3.3.14)
Moreover, if all cohomology groups H i(X) of X (or Y ) are free over R, we get the following
isomorphism:

Hn(X × Y ) ∼=
n⊕
p=0

Hp(X)⊗Hn−p(Y ). (3.3.15)

Proof. (Sketch.) Let us indicate how this result is obtained from Theorem 3.3.16. We would
like to apply the Künneth exact sequence to the chain complexes defined by:

C−n := Cn(X;R), ∂−n := δnX
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and
C ′−n := Cn(Y ;R), ∂′−n := δnY .

However, note that Ci and C ′i are not necessarily R-free. Indeed,

Cn(X;R) = HomR(Cn(X;R), R),

but Cn(X;R) is not necessarily a finitely generated R-module. In order to get around this
problem, the idea is to replace the chain complex C•(X;R) by a chain homotopic one, which
has finitely generated components. Here is where the assumption that Hi(X;R) are finitely
generated is used.

Exercises
1. Are the spaces S2 × RP4 and S4 × RP2 homotopy equivalent? Justify your answer!

2. Using cup products, show that every map Sk+l → Sk × Sl induces the trivial homomor-
phism Hk+l(S

k+l)→ Hk+l(S
k × Sl), assuming k > 0 and l > 0.

3. Describe H∗(CP∞/CP1;Z) as a ring with finitely many multiplicative generators. How
does this ring compare with H∗(S6 ×HP∞;Z)?

4. Show that if Hn(X;Z) is finitely generated and free for each n, then H∗(X;Zp) and
H∗(X;Z)⊗Zp are isomorphic as rings, so in particular the ring structure with Z-coefficients
determines the ring structure with Zp-coefficients.

5. Show that the cross product map H∗(X;Z) ⊗ H∗(Y ;Z) → H∗(X × Y ;Z) is not an
isomorphism if X and Y are infinite discrete sets.

6. Show that for n even Sn is not an H-space, i.e., there is no map µ : Sn × Sn → Sn so
that µ ◦ i1 = idSn and µ ◦ i2 = idSn , where i1, i2 are the inclusions on factors.

7. Let A be the union of two once linked circles in S3, and B be the union of two unlinked
circles. Show that the cohomology groups of S3 \ A and S3 \ B are isomorphic, but their
cohomology rings are not.

8. Compute the ring structure of H∗(T n;Z), where T n is the n-dimensional torus (a product
of n circles). Do the same for H∗(T n \ {x};Z), where x ∈ T n is any point.
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Chapter 4

Poincaré Duality

4.1 Introduction
In this chapter, we show that oriented n-manifolds enjoy a very special symmetry on their
(co)homology groups:

Theorem 4.1.1. Let M be a closed (i.e., compact without boundary), oriented and connected
manifold of dimension n. Then for all i ≥ 0 we have isomorphisms:

Hi(M ;Z) ∼= Hn−i(M ;Z). (4.1.1)

In particular, we get:

Corollary 4.1.2. For all i ≥ 0, the isomorphisms

Hi(M ;Q)
(4.1.1)∼= Hn−i(M ;Q)

(UCT )∼= Hom(Hn−i(M ;Q),Q) (4.1.2)

yield a non-degenerate bilinear pairing

Hi(M ;Q)×Hn−i(M ;Q)→ Q.

Moreover, the complementary Betti numbers are equal, i.e.,

βi(M) = βn−i(M).

In the next section we will explain in more detail the notion of orientability of manifolds.
Later on, we will describe explicitly the nature of the isomorphism (4.1.1) by using the cap
product operation _, i.e., we will show that it is realized by

_ [M ] : Hn−i(M ;Z) −→ Hi(M ;Z), (4.1.3)

where [M ] ∈ Hn(M) is the “fundamental (orientation) class" of the manifold M .
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4.2 Manifolds. Orientation of manifolds
Definition 4.2.1. A Hausdorff space M is a (topological) manifold if any point x ∈M has
a neighborhood Ux homeomorphic to Rn (where such a homeomorphism takes x to 0).

Let us now compute the local homology groups of a manifold M at some point x ∈M :

Hi(M,M \ {x};Z)
(1)∼= Hi(Ux, Ux \ {x};Z)

(2)∼= Hi(Rn,Rn \ {0};Z)

(3)∼= H̃i−1(Rn \ {0};Z)

(4)∼= H̃i−1(Sn−1;Z)

=

{
Z, if i = n

0 , otherwise,

(4.2.1)

where (1) follows by excision, (2) by using the homeomorphism Ux ∼= Rn, (3) by the homology
long exact sequence of a pair, and (4) by using a deformation retract.

Definition 4.2.2. The dimension of a manifold M , denoted dim(M), is the only non-
vanishing degree of the local homology groups of M .

Definition 4.2.3. A local orientation of an n-manifold M at x ∈ M is a choice µx of one
of the two generators of the local homology group Hn(M,M \ {x};Z) = Z.

Remark 4.2.4. A local orientation µx at x ∈ M induces local orientations at all nearby
points y, i.e., if x and y are contained in a small ball B, then we have induced isomorphisms:

µx ∈ Z = Hn(M,M \ {x})
∼=←− Hn(M,M \B) = Z

∼=−→ Hn(M,M \ {y}) = Z ∈ µy, (4.2.2)

where the above isomorphisms are induced by deformation retracts.

Definition 4.2.5. A (global) orientation on an n-manifold M is a continuous choice of
local orientations, i.e., for every x ∈M there exists a closed ball of finite positive dimension
B ⊂ Ux ∼= Rn and a (generating) class µB ∈ Hn(M,M \B) such that ρy : Hn(M,M \B)→
Hn(M,M \ {y}) takes µB to µy for all y ∈ B.

Definition 4.2.6. The pair consisting of manifold and orientation is called an oriented
manifold.

Notation: Let M be an n-manifold and K ⊂ L ⊂ M be compact subsets. Consider the
map induced by inclusion of pairs:

ρK : Hi(M,M \ L)→ Hi(M,M \K).

Then for a ∈ Hi(M,M \ L), ρK(a) is called the restriction of a to K.

In the above notations, we have the following important result:
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Theorem 4.2.7. For any oriented manifold M of dimension n and any compact K ⊂ M ,
there is a unique µK ∈ Hn(M,M \K;Z) such that ρx(µK) = µx for all x ∈ K.

An immediate corollary of the above theorem is the existence of the fundamental class
of compact oriented manifolds. More precisely, by taking K = M in Theorem 4.2.7, we get
the following:

Corollary 4.2.8. If M is a compact oriented n-manifold, there exists a unique µM ∈
Hn(M ;Z) so that ρx(µM) = µx for all x ∈M .

Definition 4.2.9. The homology class [M ] := µM of Corollary 4.2.8 is called the fundamen-
tal class of M .

The proof of Theorem 4.2.7 uses the following:

Lemma 4.2.10. If K is a compact subset of an n-manifold M , we have:

(i) Hi(M,M \K) = 0 if i > n.

(ii) a ∈ Hn(M,M \K) is equal to 0 if and only if ρx(a) = 0 for all x ∈ K.

Before proving the above lemma, let us finish the proof of Theorem 4.2.7.

Proof. (of Theorem 4.2.7)
For the uniqueness part, if µ1

K and µ2
K are as in the statement of the theorem, then for all

x ∈ K we have ρx(µ1
K − µ2

K) = µx − µx = 0. Then by using Lemma 4.2.10(ii), we get that
µ1
K − µ2

K = 0, or µ1
K = µ2

K .
We prove the existence part in several steps:

Step I: If K is contained in a sufficiently small euclidean closed ball (of finite positive radius)
B centered at a point y ∈ M , as in the definition of orientability, then for all x ∈ K, the
composition

Hn(M,M \B)
ρK−→ Hn(M,M \K)

ρx−→ Hn(M,M \ {x}) (4.2.3)

is an isomorphism. Then set µK := ρK(µB), with µB ∈ Hn(M,M \ B) as in the definition
of orientability.

Step II: If the theorem holds for compact subsets K1 and K2 and for their intersection
K1 ∩ K2, we show that it holds for their union K = K1 ∪ K2. Indeed, the Mayer-Vietoris
sequence for the open cover

M \ (K1 ∩K2) = (M \K1) ∪ (M \K2),

with intersection
M \K = (M \K1) ∩ (M \K2)
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gives the long exact sequence:

0→ Hn(M,M \K)
ϕ−→ Hn(M,M \K1)⊕Hn(M,M \K2)

ψ−→ Hn(M,M \ (K1 ∩K2))→ . . .
(4.2.4)

where ϕ(a) = ρK1(a) ⊕ ρK2(a) and ψ(b ⊕ c) = ρK1∩K2(b) − ρK1∩K2(c). By our assumption,
there exist unique µK1 ∈ Hn(M,M \ K1) and µK2 ∈ Hn(M,M \ K2) restricting to local
orientations at points x ∈ K1 and resp. x ∈ K2, hence

ρx ◦ ρK1∩K2(µKi) = ρx(µKi) = µx (4.2.5)

for all x ∈ K1 ∩K2 and i = 1, 2. Then we have

ρx(ρK1∩K2(µK1)− ρK1∩K2(µK2)) = µx − µx = 0 (4.2.6)

for all x ∈ K1 ∩K2. So by Lemma 4.2.10 we get that

ψ(µK1 ⊕ µK2) = ρK1∩K2(µK1)− ρK1∩K2(µK2) = 0, (4.2.7)

i.e., µK1 ⊕ µK2 ∈ kerψ = Image ϕ. Since ϕ is injective, there exists a unique

µK ∈ Hn(M,M \K)

such that ϕ(µK) = µK1 ⊕ µK2 . By the uniqueness part, we also have that µK restricts to
local orientations at points x ∈ K.

Step III: For an arbitrary compact K, we write K as a finite union K = K1 ∪K2 ∪ . . .∪Kr

with each Ki as in Step I. Then the claim follows by induction on r by using Step II.

Let us now get back to proving Lemma 4.2.10:

Proof. (of Lemma 4.2.10)
The proof is done in several steps, as indicated below.
Step I: Assume that M = Rn and K is a convex compact subset. Let B be a large ball in
Rn with K ⊂ B, and let S = ∂B be the bounding sphere. Then for all x ∈ K, both M \K
and M \ {x} deformation retract to S. So we have:

Hi(M,M \K) ∼= Hi(M,M \ {x})
∼= Hi(Rn, Sn−1)

∼= H̃i−1(Sn−1)

=

{
Z for i = n

0 otherwise.

(4.2.8)
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Step II: We next show that if the Lemma holds for compact sets K1, K2 and for their
intersection K1 ∩K2, then it holds for K := K1 ∪K2. Indeed, we have the Mayer-Vietoris
sequence

· · · → Hi+1(M,M \ (K1 ∩K2))→ Hi(M,M \K)
ϕ−→ Hi(M,M \K1)⊕Hi(M,M \K2)

ψ−→ Hi(M,M \ (K1 ∩K2))→ · · ·
(4.2.9)

If i > n, we have by our assumption that Hi+1(M,M \ (K1 ∩K2)) = 0, Hi(M,M \K1) = 0
and Hi(M,M \K2) = 0. Therefore, Hi(M,M \K) = 0.

If i = n, the Mayer-Vietoris sequence takes the form

0→ Hn(M,M \K)
ϕ−→ Hn(M,M \K1)⊕Hn(M,M \K2)

ψ−→ Hn(M,M \ (K1 ∩K2))→ . . .
(4.2.10)

with ϕ injective. So for a ∈ Hn(M,M \K), we have the following sequence of equivalences:

a = 0 ⇐⇒ 0 = ϕ(a) = ρK1(a)⊕ ρK2(a)

⇐⇒ ρK1(a) = 0 and ρK2(a) = 0

⇐⇒ ρxρK1(a) = 0 ∀x ∈ K1, and ρyρK2(a) = 0 ∀y ∈ K2

(since, by assumption, the lemma holds for K1 and K2)
⇐⇒ ρx(a) = 0, ∀x ∈ K1 ∪K2.

(4.2.11)

Step III: If M = Rn and K = K1 ∪K2 ∪ · · · ∪Kr with each Ki convex and compact (which
also implies that K1 ∩ K2 is convex and compact), then the lemma holds for K by Step I
and Step II.

Step IV: Assume that M = Rn and K is an arbitrary compact subset in Rn. Choose
a compact neighborhood N of K in Rn. Then for any a ∈ Hi(M,M \ K) there exists
a′ ∈ Hi(M,M \ N) such that ρK(a′) = a. Indeed, if γ is a cycle representative of a, we
have that γ ∈ Ci(Rn) and ∂γ ∈ Ci−1(Rn \K). So ∂γ ∩K = ∅. Choose N small enough so
that ∂γ ∩ N = ∅. Next, we cover K by a union of closed balls Bi such that Bi ⊂ N and
Bi ∩K 6= ∅. Then ρK factors as

Hi(Rn,Rn \N)
ρK

> Hi(Rn,Rn \K)

Hi(Rn,Rn \ ∪iBi)

ρK

>

ρ∪iBi >

If i > n, then Hi(Rn,Rn \ ∪iBi) = 0 by Step III. So for any a ∈ Hi(Rn,Rn \ K), we have
that

a = ρK(a′) = ρK(ρ∪iBi(a
′)) = 0.
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If i = n, then ρx(a) = 0 for all x ∈ K implies by a deformation retract argument that
ρx(a) = 0 for all x ∈ ∪iBi. By using Step III, we then get that ρ∪iBi(a′) = 0. Hence we have
a = ρK(ρ∪iBi(a

′)) = 0.

Step V: If K is contained in some euclidean neighborhood in (arbitrary) M , we have by
excision

Hi(M,M \K) ∼= Hi(Rn,Rn \K). (4.2.12)

So the Lemma holds for K by Step IV.

Step VI: Finally, note that any compact subset K of M can be written as a union K =
K1 ∪ K2 ∪ . . . ∪ Kr with each Ki as in Step V. Then the Lemma follows by using Step V,
Step II and induction.

Exercises
1. Show that every covering space of an orientable manifold is an orientable manifold.

2. Given a covering space action of a group G on an orientable manifold M by orientation-
preserving homeomorphisms, show that M/G is also orientable.

3. For a map f : M → N between connected closed orientable n-manifolds with fundamental
classes [M ] and [N ], the degree of f is defined to be the integer d such that f∗([M ]) = d[N ],
so the sign of the degree depends on the choice of fundamental classes. Show that for any
connected closed orientable n-manifold M there is a degree 1 map M → Sn.

4. Show that a p-sheeted covering space projection M → N has degree p, when M and N
are connected closed orientable manifolds.

5. Given two disjoint connected n-manifolds M1 and M2, a connected n-manifold M1#M2,
their connected sum, can be constructed by deleting the interiors of closed n-balls B1 ⊂
M1 and B2 ⊂ M2 and identifying the resulting boundary spheres ∂B1 and ∂B2 via some
homeomorphism between them. (Assume that each Bi embeds nicely in a larger ball in Mi.)

(a) Show that if M1 and M2 are closed then there are isomorphisms

Hi(M1#M2;Z) ' Hi(M1;Z)⊕Hi(M2;Z), for 0 < i < n,

with one exception: If both M1 and M2 are non-orientable, then Hn−1(M1#M2;Z) is
obtained from Hn−1(M1;Z)⊕Hn−1(M2;Z) by replacing one of the two Z2-summands
by a Z-summand.

(b) Show that χ(M1#M2) = χ(M1) + χ(M2)− χ(Sn) if M1 and M2 are closed.
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4.3 Cohomolgy with Compact Support
Let X be a topological space and define the compactly supported i-cochains on X by:

Ci
c(X) :=

⋃
K compact in X

Ci(X,X \K) ⊂ Ci(X). (4.3.1)

Equivalently,

Ci
c(X) = {ϕ : Ci(X)→ Z | ∃ compactKϕ ⊂ X s.t. ϕ = 0 on chains in X \Kϕ}. (4.3.2)

Define a coboundary operator by
δϕ(σ) := ϕ(∂σ),

and note that if ϕ ∈ Ci
c(X) vanishes on chains in X \Kϕ then δϕ is also zero on all chains

in X \Kϕ, and so δϕ ∈ Ci+1
c (X). Therefore we get a cochain (sub)complex (C•c (X), δ•).

Definition 4.3.1. The i-th cohomology of X with compact support is defined by

H i
c(X) := H i(C•c (X)).

In what follows, we give an alternative characterization of the cohomology with compact
support, which is more useful for calculations. We begin by recalling the notion of direct
limit of groups.

Definition 4.3.2. Let Gα be abelian groups indexed by some directed set I, i.e., I has a
partial order ≤ and for any α, β ∈ I, there exists γ ∈ I such that α ≤ γ and β ≤ γ. Suppose
also that for each pair α ≤ β there is a homomorphism fαβ : Gα → Gβ such that fαα = idGα
and fαγ = fβγ ◦ fαβ. Consider the set

qαGα/ ∼

where the equivalence relation ∼ is defined as: if x ∈ Gα, x
′ ∈ Gα′, then x ∼ x′ if fαγ(x) =

fα′γ(x
′) with α, α′ ≤ γ. Any two equivalence classes [x] and [x′] have representatives lying in

the same Gγ, with α, α′ ≤ γ, so we can define

[x] + [x′] = [fαγ(x) + fα′γ(x
′)].

This is a well-defined binary operation, and it gives an abelian group structure on the set
qαGα/ ∼. The direct limit of the groups Gα is then the group defined as:

lim−→
α∈I

Gα := qαGα/ ∼ . (4.3.3)

Remark 4.3.3. If J ⊂ I so that ∀α ∈ I,∃β ∈ J with α ≤ β, then lim−→
α∈I

Gα = lim−→
β∈J

Gβ. In

particular, if J = {β} (i.e, I contains a maximal element), then lim−→
α∈I

Gα = Gβ.
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We can now prove the following result:

Proposition 4.3.4. There is an isomorphism

H i
c(X) ∼= lim−→

K∈I
H i(X,X \K) (4.3.4)

where I := {K ⊂ X| K compact}.

Proof. First note that I is a directed set since it is partially ordered by inclusion, and the
union of two compact sets is also compact. Moreover, if K ⊆ L are compact subsets of X,
then there is a homomorphism fKL : H i(X,X \K) → H i(X,X \ L) induced by inclusion.
Hence the direct limit group lim−→K∈I H

i(X,X \K) is well-defined.
Each element of lim−→K∈I H

i(X,X \K) is represented by some cocyle ϕ ∈ Ci(X,X \K)
for some compact subset K of X. Regarding ϕ as an i-cochain with compact support, its
cohomology class yields an element [ϕ] ∈ H i

c(X). Moreover, such a cocycle ϕ ∈ Ci(X,X \K)
is the zero element in lim−→H i(X,X \K) iff ϕ = δψ for some ψ ∈ Ci(X,X \ L) with L ⊃ K,
and so [ϕ] = 0 in H i

c(X).

Remark 4.3.5. If X is compact, then H i
c(X) = H i(X), for all i ≥ 0, since in this case there

is a unique maximal compact set K ⊂ X, namely X itself.

Example 4.3.6. Let us compute the cohomology with compact support of Rn. By the above
proposition,

H i
c(Rn) = lim−→

K

H i(Rn,Rn \K),

where the direct limit is over the directed set of compact subsets of Rn. Note that it suffices
to let K range over closed balls Bk of integer radius k centered at the origin since each
compact K ⊂ Rn is contained in such a ball. So we have that

lim−→
K

H i(Rn,Rn \K) = lim−→
k∈Z≥0

H i(Rn,Rn \Bk)

Moreover, we have isomorphisms

Hn(Rn,Rn \Bk) ∼= Hn(Rn,Rn \Bk+1)

induced by inclusion, since for all k:

H i(Rn,Rn \Bk) ∼= H i(Rn,Rn \ {0}) ∼=

{
Z if i = n

0 otherwise.

Altogether,

H i
c(Rn) ∼= lim−→H i(Rn,Rn \K) = lim−→

k∈Z≥0

H i(Rn,Rn \Bk) =

{
Z if i = n

0 otherwise.
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Remark 4.3.7. It follows from the previous example that the cohomology with compact
support H∗c (−) is not a homotopy invariant.

Remark 4.3.8. Let X̂ = X ∪ x̂ be the one point compactification of X. Then

H i
c(X) ∼= H i(X̂, x̂) ∼= H̃ i(X̂). (4.3.5)

For example, H i
c(Rn) ∼= H̃ i(Sn). This follows from the following general fact. If U is an

open subset of a topological space V , with closed complement Z := V \U , then there exists
a long exact sequence for the cohomology with compact support

· · · → H i
c(U)→ H i

c(V )→ H i
c(Z)→ H i+1

c (U)→ · · ·

If we apply this fact to the case X̂ = X ∪ x̂, we get a long exact sequence

· · · → H i
c(X)→ H i

c(X̂)→ H i
c(x̂)→ · · ·

Since X̂ and x̂ are compact, this yields that H i
c(X) ∼= H i(X̂, x̂) ∼= H̃ i(X̂), as claimed.
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4.4 Cap Product and the Poincaré Duality Map
Definition 4.4.1. We define the cap product operation

Ci(X)⊗ Cn(X)
_−→ Cn−i(X) (4.4.1)

as follows: for b ∈ Ci(X) and ξ ∈ Cn(X), b _ ξ ∈ Cn−i(X) is defined by

a(b _ ξ) := (a ^ b)ξ (4.4.2)

where a ∈ Cn−i(X).

Remark 4.4.2. It is not hard to see that if σ : ∆n → X is an n-simplex and b ∈ Ci(X),
then

b _ σ = b(σ|[υn−i,··· ,υn])︸ ︷︷ ︸
∈Z

·σ|[υ0,··· ,υn−i]︸ ︷︷ ︸
∈Cn−i(X)

. (4.4.3)

The reader is encouraged to show that these two notions of cap product are equivalent.

The following result is a direct consequence of the definition:

Lemma 4.4.3. For any b ∈ Ci(X) and ξ ∈ Cn(X), we have:

∂(b _ ξ) = δb _ ξ + (−1)i b _ ∂ξ. (4.4.4)

As a consequence, the cap product descends to (co)homology:

Corollary 4.4.4. There is an induced cap product operation

H i(X)⊗Hn(X)
_−→ Hn−i(X). (4.4.5)

Remark 4.4.5. A relative cap product

H i(X,A)⊗Hn(X,A)
_−→ Hn−i(X) (4.4.6)

can be defined as follows. First note that the restriction

Ci(X,A)⊗ Cn(X)
_−→ Cn−i(X)

of absolute cap product (4.4.1) vanishes on Ci(X,A)⊗ Cn(A), so it induces:

Ci(X,A)⊗ Cn(X,A)
_−→ Cn−i(X).

Since (4.4.4) still holds in this relative setting, we get a relative cap product operation:

H i(X,A)⊗Hn(X,A)
_−→ Hn−i(X).

The following result states that the cap product _ is functorial. Its proof is a direct
consequence of the definition of cap products and is left as an exercise:
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Lemma 4.4.6. If f : X → Y is a continuous map, then

ϕ _ f∗ξ = f∗((f
∗ϕ) _ ξ) (4.4.7)

for all ϕ ∈ H i(Y ) and ξ ∈ Hn(X). This fact is illustrated in the following diagram:

H i(X) ⊗ Hn(X)
_−−−→ Hn−i(X)

f∗
x f∗

y f∗

y
H i(Y ) ⊗ Hn(Y )

_−−−→ Hn−i(Y )

Let us next move towards the definition of the Poincaré duality map. Let M be a n-
dimensional orientable connected manifold (not necessarily compact), and let K ⊂ L ⊂ M
where K, L are compact subsets. Consider the diagram:

H i(M,M \ L) ⊗ Hn(M,M \ L)
_−−−→ Hn−i(M)

i∗

x i∗

y ∥∥∥
H i(M,M \K) ⊗ Hn(M,M \K)

_−−−→ Hn−i(M)

By the functoriality of the cap product, we have for any ϕ ∈ H i(M,M \K) that:

(i∗ϕ) _ µL = ϕ _ i∗(µL), (4.4.8)

where µK and µL denote the orientation classes of Theorem 4.2.7. Moreover, the following
identification holds:

Lemma 4.4.7. For compact subsets K ⊂ L of M , we have:

i∗(µL) = µK . (4.4.9)

Proof. The claim follows from the commutativity of the following diagram and the uniqueness
of µK in Hn(M,M \K) which restricts to local orientations µx, ∀x ∈ K.

µK ∈ Hn(M,M \K) Hn(M,M \ x)

µL ∈ Hn(M,M \ L)

i∗

Therefore, we have from (4.4.8) and (4.4.9) that:

(i∗ϕ) _ µL = ϕ _ i∗(µL) = ϕ _ µK , (4.4.10)

for all ϕ ∈ H i(M,M \ K). Let us now recall from Proposition 4.3.4 that we have an
isomorphism:

H i
c(M) ∼= lim−→

K

H i(M,M \K), (4.4.11)
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where the direct limit on the right-hand side is taken over all compact subsets K of M . We
can now define the Poincaré duality map

H i
c(M)

_−→ Hn−i(M) (4.4.12)

as follows: its value on ϕ ∈ H i
c(M) is defined as ϕK _ µK , where ϕK ∈ H i(M,M \ K)

is a representative of ϕ and µK ∈ Hn(M,M \K) is the orientation class defined by K (cf.
Theorem 4.2.7). Note that the Poincaré duality map (4.4.12) is well-defined (i.e., independent
of the choice of the representative ϕK) by the commutativity of the following diagram (which
follows from the identity (4.4.10)):

H i(M,M \K) H i(M,M \ L)

Hn−i(M)

i∗

_ µK _ µL

We have now all the necessary ingredients to formulate the main theorem of this chapter:

Theorem 4.4.8. (Poincaré Duality)
If M is an n-dimensional oriented connected manifold, then the Poincaré duality map:

H i
c(M)

_−→ Hn−i(M)

is an isomorphism for all i.

An an immediate corollary, we get the following:

Corollary 4.4.9. If M is an n-dimensional closed oriented connected manifold, then the
map

H i(M)
_−→ Hn−i(M)

defined by the cap product with the fundamental class of M , that is, ϕ 7→ ϕ ∩ [M ], is an
isomorphism for all i.
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4.5 The Poincaré Duality Theorem
This section is devoted to proving The Poincaré Duality Theorem, which we recall below for
the convenience of the reader.

Theorem 4.5.1. (Poincaré Duality)
If M is an n-dimensional oriented connected manifold, then the Poincaré duality map:

H i
c(M)

_−→ Hn−i(M)

is an isomorphism for all i.

Proof. Recall that on an element ϕ ∈ H i
c(M) ∼= lim−→

K⊂X
Kcompact

H i(M,M \K), the Poincaré duality

map takes the value ϕK _ µK , where ϕK ∈ H i(M,M \K) is a representative of ϕ, and µK
is the orientation class of Hn(M,M \K).

The proof of the theorem will be divided into several steps. We first show that the state-
ment holds locally, then we glue the local isomorphisms by a Mayer-Vietoris argument.

Step I: We first show that the theorem holds for M = Rn.
Let Bk denote the closed ball of integer radius k in Rn. Then

H i
c(Rn) ∼= lim−→

Bk

H i(Rn,Rn \Bk) ∼=

{
Z if i = n

0 otherwise

and

Hn−i(Rn) '

{
Z if i = n

0 otherwise.

The Universal Coefficient Theorem yields that

Hn(Rn,Rn \Bk) ' Hom(Hn(Rn,Rn \Bk);Z).

So Hn(Rn,Rn\Bk) is generated by some class ak so that ak(µBk) = 1 ∈ Z. Let 1 ∈ H0(Rn) =
Z be the generator. Then:

1 = ak(µBk) = (1 ^ ak)(µBk) = 1(ak _ µBk)

Hence ak _ µBk is a generator of H0(Rn). In particular, the map

_ µBk : Hn(Rn,Rn \Bk)→ H0(Rn)

is an isomorphism. Taking the direct limit over the Bk’s, we get an isomorphism

Hn
c (Rn)

∼=−→ H0(Rn),
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which by the above considerations coincides with the Poincaré duality map. Also, both
groups are trivial for i 6= n, so the claim follows.

Step II: Assuming the theorem holds for opens U, V ⊂ M and for their intersection U ∩ V ,
we show that it holds for the union U ∪ V .
For this purpose, we construct a commutative diagram

· · · → H i
c(U ∩ V ) → H i

c(U)⊕H i
c(V ) → H i

c(U ∪ V ) → H i+1
c (U ∩ V ) → · · ·

↓ ↓ ↓ ↓
· · · → Hn−i(U ∩ V ) → Hn−i(U)⊕Hn−i(V ) → Hn−i(U ∪ V ) → Hn−i−1(U ∩ V ) → · · ·

(4.5.1)

Once the diagram is constructed, the claim follows by the 5-lemma.
The bottom row in (4.5.1) is just the Mayer-Vietoris homology sequence. The top row of
the above diagram can be constructed as follows. For compact subsets K ⊂ U and L ⊂ V ,
consider the cohomology Mayer-Vietoris sequence for the pairs (M,M \K) and (M,M \L):

· · · → H i(M,M \ (K ∩L))→ H i(M,M \K)⊕H i(M,M \L)→ H i(M,M \ (K ∪L))→ · · ·

By excision, we get a long exact sequence:

· · · → H i(U∩V, U∩V \K∩L)→ H i(U,U\K)⊕H i(V, V \L)→ H i(U∪V, U∪V \K∪L)→ · · ·

Taking direct limits over K ⊂ U and L ⊂ V , we get the top long exact sequence in (4.5.1):

· · · → H i
c(U ∩ V )→ H i

c(U)⊕H i
c(V )→ H i

c(U ∪ V )→ · · ·

The commutativity follows by using the definition of the Poincaré duality map.

Step III: Assume M is a union of nested open subsets Uα so that the theorem holds for each
Uα. We show that the theorem holds for M .
First note that any compact subset in M (in particular, the support of a singular (co)chain)
is contained in some Uα. Then we claim that the following identifications hold:

Hi(M) = lim−→α
Hi(Uα) (4.5.2)

and
H i
c(M) = lim−→α

H i
c(Uα). (4.5.3)

This claim and Poincaré duality for each Uα imply the Poincaré duality isomorphism for M ,
since the direct limit of isomorphisms is an isomorphism. In order to prove the claim, we
note that the inclusions iα : Uα ↪→M induce homomorphisms iα∗ : Hi(Uα)→ Hi(M) so that
for Uα ↪→ Uβ the following diagram commutes:
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Hi(Uα) −→ Hi(Uβ)
↘ ↙

Hi(M)

We therefore get a well-defined map

f : lim−→α
Hi(Uα)→ Hi(M).

We next show that f is an isomorphism.

• f is onto: any [ξ] ∈ Hi(M) is represented by a cycle whose support is contained in a
compact subset of M , thus in some Uα. The corresponding homology class in Hi(Uα)
maps onto [ξ].

• f is one-to-one: if ξ = ∂η, for η ∈ Ci+1(M), then ξ is a cycle in some Uα, but not
necessarily a boundary in Uα. On the other hand, η is contained in some larger Uβ, so ξ
can be regarded as a boundary in Uβ. Therefore, [ξ] = 0 ∈ Hi(Uβ), hence it represents
the zero class in lim−→α

Hi(Uα).

So (4.5.2) follows. The identification in (4.5.3) is obtained similarly.

Step IV: We next show that the theorem holds when M is an open subset of Rn.
If M is convex, then M is homeomorphic to Rn, so the theorem holds by Step I. If M is not
convex, then M =

⋃
k∈Z>0

Vk, with each Vk open and convex in Rn. By induction and Step
II, the theorem holds for the sets Uk = V1 ∪ · · · ∪ Vk. Note that {Uk}k forms a nested cover
of opens for M , hence the theorem follows by Step III.

Step V: Finally, we show that the Poincaré duality isomorphism holds for an arbitrary M .
We first cover M by open sets Vα, each of which is homeomorphic to Rn. We next choose a
well ordering < of the index set, which exists by Zorn’s lemma (if M has a countable basis,
the we can choose the positive integer as index set). Then the sets

Uα := ∪β<αVβ.

form a nested open cover of M . So by Step III, it suffices to show that the theorem holds for
each Uα. But Uα = ∪β<αVβ, with Vβ ∼= Rn for each β, and the theorem holds for each Vβ. By
Step II and transfinite induction, the theorem holds for each Uα, and the claim follows.

Remark 4.5.2. By taking coefficients in any commutative ring R, we can prove the Poincaré
duality isomorphism over R via the coefficient map Z→ R. Moreover, for R = Z/2, Poincaré
duality holds even without the orientability assumption.
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Exercises
1. Show that if Mn is connected, non-compact manifold, then Hi(M ;Z) = 0 for i ≥ n.

2. Show that the Euler characteristic of a closed, oriented, (4n+ 2)-dimensional manifold is
even.

3. Let M be a closed oriented manifold with fundamental class [M ]. Consider the following
cup product pairing between cohomology groups of complementary dimensions (after moding
out by the corresponding torsion subgroups):

( , ) : H i(M ;Z)/Torsion⊗Hn−i(M ;Z)/Torsion→ Z

given by (α, β) = 〈α ∪ β, [M ]〉. Here 〈 , 〉 : Hn(X;Z) ⊗ Hn(X;Z) → Z is the Kronecker
pairing defined in Homework #1.

(i) Show that the cup product pairing is nonsingular in the following sense: for each choice
of a Z-basis {β1, · · · , βr} of Hn−i(M ;Z)/Torsion, there exists a Z-basis {α1, · · · , αr}
of H i(M ;Z)/Torsion such that (αi, βj) = δij. (Hint: Use the Universal Coefficient
Theorem and Poincaré Duality.)

(ii) As an application, re-prove the following facts about the ring structures on the coho-
mology of projective spaces:

(a) H∗(RPn;Z2) ∼= Z2[x]/(xn+1), |x| = 1,

(b) H∗(CPn;Z) ∼= Z[y]/(yn+1), |y| = 2,

(c) H∗(HPn;Z) ∼= Z[w]/(wn+1), |w| = 4.

4. Let M be a closed, oriented 4n-dimensional manifold, with fundamental class [M ]. The
middle intersection pairing

( , ) : H2n(M ;Z)/Torsion⊗H2n(M ;Z)/Torsion→ Z

given by (α, β) = 〈α ∪ β, [M ]〉 is symmetric and nondegenerate. Let {α1, · · · , αr} be a Z-
basis of H2n(M ;Z)/Torsion, and let A = (aij) for aij := (αi, αj) ∈ Z. Then A is a symmetric
matrix with det(A) = ±1, so it is diagonalizable over R. Define the signature of M to be

σ(M) := (the number of positive eigenvalues)− (the number of negative eigenvalues)

(a) Compute σ(CPn), σ(S2 × S2).

(b) Show that the signature σ(M) is congruent mod 2 to the Euler characteristic χ(M).
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5. Show that if a connected manifold M is the boundary of a compact manifold, then the
Euler characteristic of M is even. Conclude that RP2n, CP2n, HP2n cannot be boundaries.

6. Show that if M4n is a connected manifold which is the boundary of a compact oriented
(4n+ 1)-dimensional manifold V , then the signature of M is zero.

7. Show that if M is a compact contractible n-manifold then ∂M is a homology (n − 1)-
sphere, that is, Hi(∂M ;Z) ' Hi(S

n−1;Z) for all i.

8. Let M be a closed, connected, orientable 4-manifold with fundamental group π1(M) ∼=
Z/3 ∗ Z/3 and Euler characteristic χ(M) = 5.

(a) Compute Hi(M,Z) for all i.

(b) Prove that M is not homotopy equivalent to any CW complex with no 3-cells.

9. Let M be a closed, connected, oriented n-manifold and let f : Sn → M be a continuous
map of non-zero degree, i.e., the morphism

f∗ : Hn(Sn;Z)→ Hn(M ;Z)

is non-trivial. Show that M and Sn have the same Q-homology.

10. Show that there is no orientation-reversing self-homotopy equivalence CP2n → CP2n.
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4.6 Immediate applications of Poincaré Duality
In this section we derive several applications of the Poincaré duality isomorphism of Theorem
4.5.1. (In particular, we provide answers to some of the exercises listed in the previous
section.)

Proposition 4.6.1. If Mn is a closed odd dimensional manifold, then χ(M) = 0.

Proof. Let n = 2k + 1.
If M is oriented, then (with Z-coefficients):

rkHi(M)
(P.D.)

= rkHn−i(M)
(UCT )

= rkHn−i(M).

So:

χ(M) =
2k+1∑
i=0

(−1)i · rkHi(M) =
k∑
i=0

(
(−1)i + (−1)n−i

)
· rkHi(M) = 0.

IfM is non orientable, the Poincaré duality isomorphism holds with Z/2-coefficients, and
we get:

χ(M) :=
2k+1∑
n=0

(−1)n · rkHi(M ;Z)
(∗)
=

2k+1∑
n=0

(−1)i · dimZ/2Hi(M ;Z/2) = 0,

where the vanishing follows as before by Poincaré duality (over Z/2). The equality (∗) follows
from the Universal Coefficient Theorem as follows:

H i(M,Z/2) = Hom(Hi(M),Z/2)⊕ Ext(Hi−1(M),Z/2).

• a Z-summand of Hi(M ;Z) contributes

– Hom(Z,Z/2) = Z/2 to H i(M ;Z/2), and

– Ext(Z,Z/2) = 0 to H i+1(M ;Z/2).

• a Z/m summand of Hi(M ;Z), with m odd, contributes:

– Hom(Z/m,Z/2) = 0 to H i(M ;Z/2), and

– Ext(Z/m,Z/2) = 0 to H i+1(M ;Z/2).

• a Z/m summand of Hi(M ;Z), with m even, contributes:

– Hom(Z/m,Z/2) = Z/2 to H i(M ;Z/2), and

– Ext(Z/m,Z/2) = Z/2 to H i+1(M ;Z/2), so these Z/2 contributions cancel out in∑
i(−1)i · dimZ/2H

i(M ;Z/2).

Finally, note that dimZ/2Hi(M ;Z/2) = dimZ/2H
i(M ;Z/2), so the claim follows.
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Proposition 4.6.2. If Mn is a closed, oriented, connected manifold, then

Torsion(Hn−1(M)) = 0.

Proof. Indeed,

Torsion(Hi(M))
(P.D.)

= Torsion(Hn−i(M))
(UCT )

= Ext(Hn−1−i(M),Z) = Torsion(Hn−1−i(M))

Since M is connected, H0(M) is free, so the claim follows.

We will show later the following:

Proposition 4.6.3. If Mn is a closed, connected, non-orientable manifold, then

Torsion(Hn−1(M)) = Z/2

and
Hn(M) = Z/2.

The second part of Proposition 4.6.3 follows from the Universal Coefficient Theorem and the
following consequence of Poincaré duality (to be proved in the next section):

Lemma 4.6.4. If Mn is an n-dimensional closed, connected manifold, then

Hn(M) =

{
Z , if M-oriented
0 , if M-non-oriented.
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4.7 Addendum to orientations of manifolds
Before we explain the proof of Proposition 4.6.3, we need to elaborate on orientations of
manifolds.

Recall that if Mn is a n-manifold, a local orientation at x ∈ M is a generator µx ∈
Hn(M,M \ x) ∼= Z. We say that M is oriented if there exists a global orientation, i.e., a
continuous choice x → µx of local orientations. This means that for all x ∈ M , there is a
closed euclidian ball B (of finite positive radius) around x so that

Z ∼= Hn(M,M \B)
ρx→ Hn(M,M \ y)

sends the generator µBx to the local orientation class µy, for all y ∈ Bx.

Proposition 4.7.1. Any manifold M (oriented or not) has an oriented double cover M̃ .

Proof. (Sketch)
Define

M̃ := {µx| x ∈M,µx a local orientation of M at x}

and π : M̃ →M by µx → x. Clearly, π is a 2 : 1 map.
We need to put a topology on M̃ so that it becomes a manifold and π is a covering map.

For an open ball B ⊂ Rn ⊂M of finite radius, with a generator µB ∈ Hn(M,M \B), define

U(µB) = {µx ∈ M̃ | x ∈ B, µx = ρx(µB)},

where ρx denotes the natural map Hn(M,M \B)→ Hn(M,M \ x). Then

π−1(B) = U(µB) t U(−µB)

and both U(µB) and U(−µB) are in bijection to B. Moreover, it can be shown that the sets
{U(µB)}B form basis of opens for the topology of M̃ so that π is continuous. So π is 2-fold
covering and M̃ is manifold.

Moreover, M̃ is orientable. Indeed, we have,

Hn(M̃, M̃ \ µx) ∼= Hn(U(µB), U(µB) \ µx) ∼= Hn(B,B \ x) ∼= Hn(M,M \ x). (4.7.1)

So at the point µx ∈ M̃ there exists a canonical local orientation

µ̃x ∈ Hn(M̃, M̃ \ µx) ∼= Z

corresponding to µx under the above isomorphism (4.7.1). The consistency of such local
orientations follows by construction.

Example 4.7.2. (a) The oriented double cover of M = RP2 is M̃ = S2.

(b) The oriented double cover of the Klein bottle K is the 2-torus T 2.
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Proposition 4.7.3. If M is a connected manifold, then M is orientable if, and only if, M̃
has two components. In particular, if π1(M) = 0 or has no index 2 subgroup, then M is
orientable.

Proof. The oriented double cover M̃ can have one or two components. If M̃ has two com-
ponents, each is oriented and homeomorphic to M , so M is orientable. Conversely, if M is
orientable, it can have exactly two orientations at each point, each defining a sheet of M̃ .

Example 4.7.4. CPn is orientable.

The oriented double cover M̃ can be embedded in a larger covering space MZ of M as
follows. Let

MZ = {αx | x ∈M, αx ∈ Hn(M,M \ x) = Z}.

We then have the Z-fold projection map

πZ : MZ →M

defined by αx → x. A basis of opens {U(B)} for MZ can be defined by the following recipe:
for an open ball B ⊂ Rn ⊂M , set

U(B) = {αx | x ∈ B,αx = ρx(αB) for αB ∈ Hn(M,M \B) ∼= Z)}

with ρx : Hn(M,M \B)
∼=→ Hn(M,M \ x) induced by inclusion as before. For any k ∈ Z, we

then get a subcover Mk ⊂MZ by selecting ±kµx in the fibre above x. So

MZ =
⋃
k≥0

Mk

with M0
∼= M,Mk

∼= M−k, and Mk
∼= M̃ , for any integer k.

Definition 4.7.5. A section of πZ : MZ →M is a continuous map α : M →MZ defined by
x 7→ αx ∈ Hn(M,M \ x) = Z. An orientation of M is a section of πZ assigning µx to each
x ∈M .

One can generalize the definition of orientability by replacing Z any commutative ring R
with unit. Note that by the universal coefficient theorem for homology, we have:

Hn(M,M \ x;R) ∼= Hn(M,M \ x)⊗R ∼= Z⊗R ∼= R.

The covering MZ can be generalized to:

MR = {αx | x ∈M,αx ∈ Hn(M,M \ x;R) ∼= R}.

The corresponding covering map πR : MR → M is defined by αx 7→ x (so the fibre over
x ∈ M is R). Each r ∈ R determines a subcovering Mr by selecting the points ±µx ⊗ r ∈
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Hn(M,M \ x;R) in each fibre. If r is an element of order 2 in R, then Mr is a copy of M .
(Indeed, ±µx ⊗ r = µx ⊗ ±r = µx ⊗ r.) Otherwise, Mr is homeomorphic to the oriented
double cover M̃ . We have

MR =
⋃
r∈R

Mr,

with all Mr being disjoint except for Mr = M−r, and Mr = M if 2r = 0.

Definition 4.7.6. An R-orientation of an n-dimensional manifold M is a section of MR

assigning to each x ∈M a generator u of Hn(M,M \ x;R) ∼= R.

Remark 4.7.7. Note that a generator of R is an element u so that Ru = R. Since R has a
unit, this is equivalent to saying that u is invertible in R.

Remark 4.7.8. An orientable manifold is R-orientable, for all commutative rings R with
unit. A non-orientable manifold is R-orientable iff R contains a unit of order 2. Thus every
manifold is Z/2-orientable.

We are now ready to prove the following result, which shows that orientability of a closed
manifold is reflected in the structure of its homology:

Theorem 4.7.9. Let M be a closed connected n-manifold. Then:

(a) if M is (R-)orientable, then Hn(M ;R) → Hn(M,M \ x;R) ∼= R is an isomorphism
for any x ∈M .

(b) if M is not orientable, then Hn(M ;R) → Hn(M,M \ x;R) ∼= R is one-to-one, with
image the group generated by the set of elements of order 2 in R.

(c) Hi(M ;R) = 0, for all i > n.

The proof of Theorem 4.7.9 is based on the Theorem 4.2.7 and Lemma 4.2.10 (which
we formulate here with R-coefficients in parts (a) and (b) below), together with a slight
generalization of Theorem 4.2.7 (see part (c) below) which holds without the orientability
assumption:

Lemma 4.7.10. Let M be a connected n-manifold and K a compact subset of M . Then:

(a) if M is R-oriented, then there exists a unique µK ∈ Hn(M,M \ K;R) such that
ρx(µK) = µx ∈ Hn(M,M \ x;R), for all x ∈ K.

(b) Hi(M,M \ K;R) = 0 for i > n, and a class αK ∈ Hn(M,M \ K;R) is zero iff
ρx(αK) = 0 for any x ∈ K.

(c) if x 7→ αx is a section of the covering space MR → M , then there is a unique class
αK ∈ Hn(M,M \K;R) so that ρx(αK) = αx ∈ Hn(M,M \ x;R), for all x ∈ K.
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Note that the proof of part (c) of the above lemma is almost identical to that of Theorem
4.2.7 (with the uniqueness following from part (b)), with the only easy modification appearing
in Step I of loc.cit. (where the orientation assumption used in the proof of Theorem 4.2.7 is
replaced by the continuity of the section). We leave the details to the reader.

To deduce parts (a) and (b) of Theorem 4.7.9, choose K = M in the above lemma, and
let ΓR(M) be the set of sections of the covering mapMR →M . With respect to the addition
of functions and multiplication by scalars in R, ΓR(M) becomes an R-module. Moreover,
there exists a homomorphism

Hn(M ;R) −→ ΓR(M)

defined by
α→ (x 7→ αx),

where αx is the image of α under the map ρx : Hn(M ;R)→ Hn(M,M \ {x};R). The above
lemma asserts that this is in fact an isomorphism.
Let us now translate the statements about Hn(M ;R) in Theorem 4.7.9 into statements about
the R-module ΓR(M):

1. For the oriented case: Hn(M ;R) ∼= ΓR(M) → Hn(M,M \ x;R) is an isomorphism,
defined by α 7→ (x 7→ αx) 7→ αx for a given x.

2. For the non-oriented case: Hn(M ;R) ∼= ΓR(M) → Hn(M,M \ x;R) is a monomor-
phism, with image the group generated by the elements of order 2 in R.

Note that since M is connected, each section in ΓR(M) is determined by its value at one
point x ∈ M . The injectivity statements in part (a) and (b) of Theorem 4.7.9 follow from
Lemma 4.7.10(b). Also, the surjectivity in part (a), as reformulated in part 1 above, follows
from Lemma 4.7.10(a). The remaining statement in part 2 above can be seen as follows.
Since πR is a covering map, the section group ΓR(M) can be identified with the connected
components of MR which map homeomorphically via πR to M . Since M is non-orientable,
the oriented double cover π : M̃ → M is non-trivial (i.e., connected), thus the components
of MR are of the form r(M̃), with r : M̃ → MR the continuous map defined by µ 7→ µ⊗ r.
The only points in r(M̃) which under πR map to x ∈M are µx⊗r and −µx⊗r = µx⊗ (−r).
Thus, πR|rM̃ is a homeomorphism iff r = −r, or 2r = 0. �

Corollary 4.7.11. If M is orientable, then Hn(M ;Z) ∼= Z. If M is non-orientable, then
Hn(M ;Z) = 0. In either case, Hn(M ;Z/2) = Z/2.

We can now prove the following:

Corollary 4.7.12. Let M be a closed and connected n-manifold. If M is oriented, then

Torsion(Hn−1(M)) = 0.

Otherwise,
Torsion(Hn−1(M)) = Z/2.
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Proof. By the universal coefficient theorem for homology, and using the fact that the homol-
ogy groups of a closed manifold are finitely generated (e.g., see Cor.A.8 and A.9 in Hatcher’s
book), we have:

Hn(M ;Z/p) = Hn(M ;Z)⊗ Z/p⊕ Tor(Hn−1(M ;Z),Z/p)
= Hn(M ;Z)⊗ Z/p⊕ Torsion(Hn−1(M ;Z))⊗ Z/p.

In the orientable case, if Hn−1(M) contained torsion, then for some prime p, the group
Hn(M ;Z/p) = Z/p would be larger than the Z/p coming from the first summand (here we
use that Hn(M) = Z), which is impossible. This means Torsion(Hn−1(M)) = 0.
In the non-orientable case, we have by Theorem 4.7.9 that Hn(M ;Z/m) is either Z/2 or 0,
depending on whether m is even or odd. (Indeed, in this case the map Hn(M ;Z/m)→ Z/m
is injective with image the elements of order 2 in Z/m. So, if m is odd, there are no elements
of order 2 in Z/m, while if m = 2k is even, then k is the only element of order 2 in Z/m.)
Since in this case we have Hn(M ;Z) = 0, this forces the torsion subgroup of Hn−1(M) to be
Z/2.

Remark 4.7.13. By using the universal coefficient theorem for the cohomology of a closed
n-manifold, we have:

Hn(M) = Free(Hn(M))⊕ Torsion(Hn−1(M)).

So by using the result of and the previous corollary, we get that if M is oriented then
Hn(M) = Z. Otherwise, Hn(M) = Z/2.
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4.8 Cup product and Poincaré Duality
Let R be a fixed commutative coefficient ring, and fix ϕ ∈ C l(M ;R), ψ ∈ Ck(M ;R) and
σ ∈ Ck+l(M ;R). Then ψ _ σ ∈ Cl(M ;R) is defined by

ϕ(ψ _ σ) = (ϕ ^ ψ)(σ) ∈ R. (4.8.1)

Alternatively, if σ is a (k + l)-simplex, then

ψ _ σ = ψ(σ|[vl,vl+1,...,vk+l]) · σ|[v0,v1,...,vl]. (4.8.2)

Indeed,
ϕ(ψ _ σ) = ψ(σ|[vl,vl+1,...,vk+l]) · ϕ(σ|[v0,v1,...,vl]) = (ϕ ^ ψ)(σ). (4.8.3)

This means that − ^ ψ : C l(M ;R) → Ck+l(M ;R) is dual to ψ _ − : Ck+l(M ;R) →
Cl(M ;R). Passing to (co)homology, we get the following commutative diagram:

H l(M ;R)
h−−−→ HomR(Hl(M ;R), R)

^ψ

y (ψ_)∗
y

Hk+l(M ;R)
h−−−→ HomR(Hk+l(M ;R), R)

In particular, if h is an isomorphism (e.g., R is a field, or we work over Z but H∗ is torsion-
free), then −^ ψ and ψ _ − determine each other.

Definition 4.8.1. LetM be a closed connected R-oriented n-manifold. Then the cup product
pairing

Hk(M ;R)×Hn−k(M ;R) −→ Hn(M ;R)
_[M ]−→ H0(M ;R) = R (4.8.4)

is defined by
(ϕ, ψ) 7→ (ϕ ^ ψ) 7→ (ϕ ^ ψ) _ [M ].

Definition 4.8.2. Let A and B be R-modules. A pairing α : A×B → R is non-singular if
f : A → HomR(B,R) is an isomorphism, with f defined by f(a)(b) = α(a, b), and g : B →
HomR(A,R) is an isomorphism, with g(b)(a) = α(a, b).

We then have the following:

Proposition 4.8.3. The cup product pairing is non-singular if R is a field, or if R = Z and
torsion is factored out.

Proof. Consider the composition

f : Hk(M ;R)
h−→ HomR(Hk(M ;R), R)

(P.D.)∗−→ HomR(Hn−k(M ;R), R),
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where (P.D.)∗ denotes the dual of the Poincaré duality isomorphism. Under our assumptions
on R, h is isomorphism. Moreover, by Poincaré Duality, (PD)∗ is also an isomorphism, hence
f is an isomorphism. For ϕ ∈ Hk(M ;R) and ψ ∈ Hn−k(M ;R), we have:

f(ϕ)(ψ) = ((P.D.)∗ ◦ h(ϕ))(ψ)

= h(ϕ)(P.D.(ψ))

= h(ϕ)(ψ _ [M ])

= ϕ(ψ _ [M ])

= (ϕ ^ ψ)[M ].

We obtain a similar isomorphism by interchanging k with n− k, so the claim follows.

Corollary 4.8.4. Let M be a closed connected Z-oriented n-manifold. Then for any α ∈
Hk(M) a generator of a Z-summand, there exists β ∈ Hn−k(M) such that α ^ β generates
Hn(M) ∼= Z.

Proof. By hypothesis, there exists a homomorphism (i.e., the projection to some Z-summand)

ϕ : Hk(M)→ Z

such that ϕ(α) = 1. By the non-singularity of the cup product pairing, ϕ is realized by
taking the cup product with some β ∈ Hn−k(M) and evaluating on the fundamental class
[M ]. We therefore get

1 = ϕ(α) = (α ^ β)[M ].

This means α ^ β is the generator of Hn(M).

Corollary 4.8.5. H∗(CPn;Z) ∼= Z[α]/(αn+1), with deg(α) = 2.

Proof. Let α be the generator of H2(CPn) = Z. By induction, we can assume that αn−1

generates H2n−2(CPn) = Z. Using the previous corollary, there exists β ∈ H2(CPn) so that
αn−1 ^ β generates H2n(CPn) = Z. Note that since α is the generator of H2(CPn) = Z,
it follows that β = mα, for some m ∈ Z. This means that αn−1 ^ β = mαn generates Z.
Thus m = ±1, whence αn generates H2n(CPn).

We can now ask the following:

Question 4.8.6. Does there exist a 2n-dimensional closed manifold whose cohomology is
additively isomorphic to that of CPn, but with a different cup product structure?

If n = 2, the answer is No. Indeed, H∗(CP2;Z) = Z[α]/(α3), with deg(α) = 2. If there is
such manifold M , then α also generates H2(M) = H2(CP2) = Z, so there exists β ∈ H2(M)
such that α ^ β generates H4(M) = Z. So, β = mα, for some m ∈ Z. Hence α ^ β = mα2

generates H4(M), which yields m = ±1. This means that M has the same cup product
structure as CP2.
If n ≥ 3, the answer is Yes. Indeed, S2 × S4 and CP3 have isomorphic cohomology groups,
but different cup product structures on their cohomology rings.

Another application of Poincaré duality is the following:
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Corollary 4.8.7. If M is a closed oriented manifold of dimension m = 4n+ 2, then χ(M)
is even.

Proof. By the definition of the Euler characteristic, χ(M), we have

χ(M) =
4n+2∑
i=0

(−1)i · rk(Hi(M)).

By Poincaré duality, we obtain

rk(Hi(M)) = rk(Hm−i(M)).

Therefore,
χ(M) ≡ rk(H2n+1(M)) (mod 2).

Let us now consider the following cup product pairing

H2n+1(M)×H2n+1(M)
^→ H4n+2(M)

_[M ]−→ Z

defined by
(α, β) 7→ (α ^ β) 7→ (α ^ β) _ [M ].

By Poincaré Duality, after moding out by torsion, this pairing is non-singular. As a result,
the matrix A of the cup product pairing is non-singular and anti-symmetric. By linear
algebra, A is similar to a matrix with diagonal blocks(

0 −1
−1 0

)
Therefore,

rk(H2n+1(M)) = rk(A),

which is clearly even.

Remark 4.8.8. Dualizing the cup product pairing of Proposition 4.8.3, we get the non-
singular intersection pairing

Hk(M)×Hn−k(M)→ Z
defined by

([σ], [η])→ ](σ ∩ η′),
where η′ is chosen so that it is homologous to η but transversal to σ (so σ ∩ η′ is a finite
number of points).

Example 4.8.9. Let T be the 2-dimensional torus and S be a meridian of T . Let M be
the pinched torus T/S. Then Poincaré duality fails for M. If not, let α be the longitude
of M (and T ) and β be the a meridian of M . Then Poincaré duality for M would yield
([α], [β])→ ](α ∩ β) = 1. However, [β] = 0. This is impossible since the intersection pairing
is non-singular. The reason for the failure of Poincaré duality is that the pinched torus
M := T/S is not a manifold. Indeed, a neighborhood of the pinch point is a join of two
2-disks, thus it is not homeomorphic to R2.
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4.9 Manifolds with boundary: Poincaré duality and ap-
plications

In this section, we discuss the Poincaré duality theorem for manifolds with boundary. The
proofs are routine adaptation of those for closed manifolds.

Definition 4.9.1. A Hausdorff topological space M is an n-manifold with boundary if any
point x ∈ M has a neighborhood Ux homeomorphic to either Rn or Rn

+ := {(x1, · · · , xn) ∈
Rn| xn ≥ 0}. In particular,

(a) if Ux ∼= Rn, then Hn(M,M \ x) ∼= Hn(Ux, Ux \ x) ∼= Z.

(b) if Ux ∼= Rn
+, then

Hn(M,M \ x) ∼= Hn(Ux, Ux \ x) ∼= Hn(Rn
+,Rn

+ − {0}) ∼= 0.

The boundary of M is defined to be

∂M := {x ∈M | Hn(M,M \ x) = 0}.

Example 4.9.2. ∂(Dn) = Sn−1, ∂(Rn
+) = Rn−1.

Remark 4.9.3. If M is an n-manifold with boundary, then the boundary set ∂M is a
manifold of dimension n− 1.

Definition 4.9.4. We say that a manifold with boundary (M,∂M) is orientable if M \ ∂M
is orientable as a manifold with no boundary.

We have the following:

Proposition 4.9.5. If (M,∂M) is a compact, orientable n-manifold with oriented bound-
ary, then there exists a unique class µM ∈ Hn(M,∂M) inducing local orientations µx ∈
Hn(M,M \ x) at all points x ∈M \ ∂M .

Remark 4.9.6. If (M,∂M) is a compact, orientable n-manifold with boundary, then in the
long exact sequence for the pair (M,∂M) we have:

Hn(M,∂M)
∂−→ Hn−1(∂M)

[M ] = µM 7−→ [∂M ]

Theorem 4.9.7 (Poincaré Duality). If (M,∂M) is a connected, oriented n-manifold with
boundary, then there are isomorphisms

H i
c(M)

_µM−−−→∼= Hn−i(M,∂M) (4.9.1)

and
H i
c(M,∂M)

_µM−−−→∼= Hn−i(M) (4.9.2)

where H i
c(M,∂M) := lim−→Kcompact

K⊂M\∂M
H i(M, (M \ K) ∪ ∂M) is the cohomology with compact

support for the pair (M,∂M).
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Let us now describe some applications of Poincaré duality for manifolds with boundary.

Proposition 4.9.8. If Mn = ∂V n+1 is a connected manifold with V a compact (n + 1)-
dimensional manifold with boundary, then the Euler characteristic χ(M) is even.

An immediate consequence of Proposition 4.9.8 is the following:

Corollary 4.9.9. RP2n,CP2n,HP2n cannot be boundaries of compact manifolds.

In order to prove Proposition 4.9.8, we need the following result:

Proposition 4.9.10. Assume V 2n+1 is an oriented, (2n+ 1)-dimensional compact manifold
with connected boundary ∂V = M2n. If R is a field (e.g., Z/2Z if M is non-orientable), then
dimRH

n(M ;R) = dimRHn(M ;R) is even.

Proof of Proposition 4.9.10. Consider the long exact sequence for the pair (V,M):

Hn(V ;R)
i∗

> Hn(M ;R)
δ
> Hn+1(V,M ;R)

Hn(M ;R)

∼= _[M ]

∨
i∗

> Hn(V ;R)

∼= _[V ]

∨

where i∗, i∗ are induced by the inclusion i : M = ∂V ↪→ V . By exactness, we have that

Image i∗ ∼= ker δ
P.D.∼= ker i∗, so

dim(Image i∗) = dim(ker i∗) = dimHn(M ;R)− dim(Image i∗).

Since i∗, i∗ are Hom-dual, we have that dim(Image i∗) = dim(Image i∗). Altogether,

dimHn(M ;R) = dimHn(M ;R) = 2 dim(Image i∗)

is even.

Proof of Proposition 4.9.8. If n = dimM is odd, then Proposition 4.6.1 yields that χ(M) =
0, thus even. If n = 2m is even, then we work with Z/2Z-coefficients and get:

χ(M) =
2m∑
i=0

(−1)i dimZ/2Hi(M ;Z/2)

(1)
= 2

m−1∑
i=0

(−1)i dimZ/2Hi(M ;Z/2) + (−1)m dimZ/2Hm(M ;Z/2)

≡ dimZ/2Hm(M ;Z/2) (mod 2)

(2)
≡ 0 (mod 2),

where equation (1) follows by Poincaré Duality, and congruence (2) is by Proposition 4.9.10.
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The proof of Proposition 4.9.10 also yields the following:

Corollary 4.9.11. Under the assumptions of Proposition 4.9.10, we have the following:

(a) Image i∗ ⊂ Hn(M2n;R) is self-annihilating with respect to cup product ^, i.e., if
α, β ∈ Image i∗, then α ^ β = 0.

(b) dim(Image i∗) = 1
2

dimHn(M2n;R).

Proof. For any α = i∗(α), β = i∗(β) with α, β ∈ Hn(V ;R), we have

δ(α ^ β) = δ(i∗(α) ^ i∗(β)) = δi∗(α ^ β) = 0

Hence, α ^ β ∈ ker
(
δ : H2n(M ;R) → H2n+1(V,M ;R)

) ∼= 0, where the last isomorphism
follows by the following commutative diagram

H2n(M ;R)
δ
> H2n+1(V,M ;R)

H0(M ;R)

∼= P.D.
∨

> H0(V ;R)

∼= P.D.
∨

with the bottom arrow an injection.

4.9.1 Signature

Definition 4.9.12. Let M be a closed oriented manifold. If dimM = 4k, the signature
σ(M) of M is defined to be the signature of the symmetric non-singular cup product pairing

H2k(M ;R)×H2k(M ;R) −→ R
(α, β) 7→ (α ^ β)[M ]

Otherwise, if dimM is not divisible by 4, we let σ(M) = 0.

Remark 4.9.13. Recall that a symmetric non-singular bilinear pairing has only real (non-
zero) eigenvalues, and its signature is defined by subtracting the number of negative eigen-
values from the number of positive eigenvalues.

Example 4.9.14. σ(S2 × S2) = σ

(
0 1
1 0

)
= 0, σ(CP2n) = 1, σ(CP2#CP2) = 2.

The signature σ is a cobordism invariant, i.e. if ∂W = M t −N , then σ(M) = σ(N).
Here −N denotes the manifold N but with the opposite orientation.
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Here we prove the following special case of this fact:

Theorem 4.9.15. If, in the above notations, M4k = ∂V 4k+1 is connected with V compact
and orientable, then σ(M) = 0.

Proof. Let A = H2k(M ;R). The cup product yields a non-singular and symmetric pairing

ϕ : A× A→ R.

Let A+ be the subspace on which the pairing is positive-definite, and A− the subspace on
which the pairing is negative-definite. Let r = dimA+, 2l = dimA (which is even by
Proposition 4.9.10). Then, dimA− = 2l − r since the pairing is non-singular, and

σ(M) = r − (2l − r) = 2r − 2l.

In order to prove that σ(M) = 0, it suffices to show that r = l.
Let B ⊂ A be the self-annihilating l-dimensional subspace given by Proposition 4.9.8.

Then A+ ∩B = {0} and A− ∩B = {0}. Hence,

dimA+ + dimB ≤ dimA = 2l, i.e., r + l ≤ 2l i.e., r ≤ l

dimA− + dimB ≤ dimA = 2l, i.e., 2l − r + l ≤ 2l i.e., r ≥ l

In conclusion, r = l and σ(M) = 0.

4.9.2 Connected Sums

Definition 4.9.16. LetMn, Nn be closed, connected, oriented n-manifolds. Their connected
sum

is defined to be
M#N := (M \Dn

1 ) ∪f (N \Dn
2 )

where f : ∂Dn
1 = Sn−1 → ∂Dn

2 = Sn−1 is an orientation-reversing homeomorphism.
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Remark 4.9.17. The connected sum M#N of closed, connected, oriented n-manifolds is
itself a closed, connected, oriented n-manifold. The cohomology ring H∗(M#N) is isomor-
phic to the ring resulting from the direct product of H∗(M) and H∗(N), with the unity
elements identified, and the orientation classes identified. In particular, H0(M#N) = Z,
Hn(M#N) = Z and Hk(M#N) ∼= Hk(M) ⊕Hk(N), 0 < k < n. Moreover, cup products
of positive dimensional classes, one from each of the two original manifolds, are zero, i.e.,
α ^ β = 0 for any α ∈ Hk(M) and β ∈ H l(N) with k, l > 0.

Example 4.9.18. By the above description of cup products of a connected sum, we get:

σ(CP2#− CP2) = 0.

In fact, it can be shown that CP2#−CP2 is the boundary of a connected, oriented 5-manifold;

Example 4.9.19. The spaces S2 × S2 and CP2#CP2 have the same cohomology groups,

H0 = Z, H2 = Z⊕ Z = Zα⊕ Zβ, H4 = Z,

but different cohomogy rings, since α ^ β 6= 0 in H∗(S2 × S2), but α ^ β = 0 in
H∗(CP2#CP2).

Example 4.9.20. We have
σ(CP2#CP2) = 2 6= 0,

so in view of Theorem 4.9.15, CP2#CP2 cannot be the boundary of a compact, oriented
5-manifold. However, CP2#CP2 = ∂W 5, where W 5 is a compact non-orientable 5-manifold.
The compact manifold W can be constructed as follows:

(a) Start with (CP2 × I)#(RP2 × S3).

(b) Run an orientation reversing path γ from one CP2 to the other, by traveling along an
orientation reversing path in RP2.

(c) Enlarge the path to a tube and remove its interior. What is left is a 5-dimensional
non-orientable manifold with ∂W = CP2#CP2.
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Chapter 5

Basics of Homotopy Theory

5.1 Homotopy Groups
Definition 5.1.1. For each n ≥ 0 and X a topological space with x0 ∈ X, the n-th homotopy
group of X is defined as

πn(X, x0) =
{
f : (In, ∂In)→ (X, x0)

}
/ ∼

where ∼ is the usual homotopy of maps.

Remark 5.1.2. Note that we have the following diagram of sets:

(In, ∂In)
f //

��

(X, x0)

(In/∂In, ∂In/∂In)

g
66

with (In/∂In, ∂In/∂In) ' (Sn, s0). So we can also define

πn(X, x0) =
{
g : (Sn, s0)→ (X, x0)

}
/ ∼ .

Remark 5.1.3. If n = 0, then π0(X) is the set of connected components of X. Indeed, we
have I0 = pt and ∂I0 = ∅, so π0(X) consists of homotopy classes of maps from a point into
the space X.

Now we will prove several results analogous to the case n = 1, which corresponds to the
fundamental group.

Proposition 5.1.4. If n ≥ 1, then πn(X, x0) is a group with respect to the operation +
defined as:

(f + g)(s1, s2, . . . , sn) =

{
f(2s1, s2, . . . , sn) 0 ≤ s1 ≤ 1

2

g(2s1 − 1, s2, . . . , sn) 1
2
≤ s1 ≤ 1
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(Note that if n = 1, this is the usual concatenation of paths/loops.)

Proof. First note that since only the first coordinate is involved in this operation, the same
argument used to prove that π1 is a group is valid here as well. Then the identity element is
the constant map taking all of In to x0 and the inverse element is given by

−f(s1, s2, . . . , sn) = f(1− s1, s2, . . . , sn).

Proposition 5.1.5. If n ≥ 2, then πn(X, x0) is abelian.

Intuitively, since the + operation only involves the first coordinate, if n ≥ 2, there is enough
space to “slide f past g ".

Proof. Let n ≥ 2 and let f, g ∈ πn(X, x0). We wish to show f + g ' g + f . Consider the
following figures:

We first shrink the domains of f and g to smaller cubes inside In and map the remaining
region to the base point x0. Note that this is possible since both f and g map to x0 on
the boundaries, so the resulting map is continuous. Then there is enough room to slide f
past g inside In. We then enlarge the domains of f and g back to their original size and get
g + f . So we have constructed a homotopy between f + g and g + f and hence πn(X, x0) is
abelian.

Remark 5.1.6. If we view πn(X, x0) as homotopy classes of maps (Sn, s0)→ (X, x0), then
we have the following visual representation of f+g (one can see this by collapsing boundaries
in the above cube interpretation).

106



Next recall that if X is path-connected and x0, x1 ∈ X, then there is an isomorphism

βγ : π1(X, x0)→ π1(X, x1)

where γ is a path from x0 to x1, i.e., γ : [0, 1] → X with γ(0) = x0 and γ(1) = x1. The
isomorphism βγ is given by

βγ([f ]) = [γ−1 · f · γ]

for any [f ] ∈ π1(X, x0).

We next show a similar fact holds for all n ≥ 1.

Proposition 5.1.7. If n ≥ 1 and X is path-connected, then there is an isomorphism βγ :
πn(X, x1)→ πn(X, x0) given by

βγ([f ]) = [γ · f ],

where γ is a path in X from x1 to x0, and γ · f is constructed by first shrinking the domain
of f to a smaller cube inside In, and then inserting the path γ radially from x1 to x0 on the
boundaries of these cubes.

Proof. It is easy to check that the following properties hold:

1. γ · (f + g) ' γ · f + γ · g

2. (γ · η) · f ' γ · (η · f), for η a path from x0 to x1
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3. cx0 · f ' f , where cx0 denotes the constant path based at x0.

4. βγ is well-defined with respect to homotopies of γ or f .

Note that (1) implies that βγ is a group homomorphism, while (2) and (3) show that βγ
is invertible. Indeed, if γ(t) = γ(1− t), then β−1

γ = βγ.

So, as in the case n = 1, if the space X is path-connected, then πn is independent of the
choice of base point. Further, if x0 = x1, then (2) and (3) also imply that π1(X, x0) acts on
πn(X, x0):

π1 × πn → πn

(γ, [f ]) 7→ [γ · f ]

Definition 5.1.8. We say X is an abelian space if π1 acts trivially on πn for all n ≥ 1.

In particular, this means π1 is abelian, since the action of π1 on π1 is by inner-automorphisms,
which must all be trivial.

We next show that πn is a functor.

Proposition 5.1.9. A map φ : X → Y induces group homomorphisms φ∗ : πn(X, x0) →
πn(Y, φ(x0)) given by [f ] 7→ [φ ◦ f ], for all n ≥ 1.

Proof. First note that, if f ' g, then φ◦f ' φ◦g. Indeed, if ψt is a homotopy between f and
g, then φ◦ψt is a homotopy between φ◦f and φ◦g. So φ∗ is well-defined. Moreover, from the
definition of the group operation on πn, it is clear that we have φ◦ (f + g) = (φ◦f) + (φ◦ g).
So φ∗([f + g]) = φ∗([f ]) + φ∗([g]). Hence φ∗ is a group homomorphism.

The following is a consequence of the definition of the above induced homomorphisms:

Proposition 5.1.10. The homomorphisms induced by φ : X → Y on higher homotopy
groups satisfy the following two properties:

1. (φ ◦ ψ)∗ = φ∗ ◦ ψ∗.

2. (idX)∗ = idπn(X,x0).

We thus have the following important consequence:

Corollary 5.1.11. If φ : (X, x0)→ (Y, y0) is a homotopy equivalence, then φ∗ : πn(X, x0)→
πn(Y, φ(x0)) is an isomorphism, for all n ≥ 1.

Example 5.1.12. Consider Rn (or any contractible space). We have πi(Rn) = 0 for all
i ≥ 1, since Rn is homotopy equivalent to a point.

The following result is very useful for computations:

Proposition 5.1.13. If p : X̃ → X is a covering map, then p∗ : πn(X̃, x̃)→ πn(X, p(x̃)) is
an isomorphism for all n ≥ 2.
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Proof. First we claim p∗ is surjective. Let x = p(x̃) and consider f : (Sn, s0)→ (X, x). Since
n ≥ 2, we have that π1(Sn) = 0, so f∗(π1(Sn, s0)) = 0 ⊂ p∗(π1(X̃, x̃)). So f admits a lift,
i.e., there is f̃ : (Sn, s0)→ (X̃, x̃) such that p ◦ f̃ = f . Then [f ] = [p ◦ f̃ ] = p∗([f̃ ]). So p∗ is
surjective.

(Sn, s0)
f //

f̃ $$

(X, x)

(X̃, x̃)

p

OO

Next, we show that p∗ is injective. Suppose [f̃ ] ∈ ker p∗. So p∗([f̃ ]) = [p ◦ f̃ ] = 0. Let
p ◦ f̃ = f . Then f ' cx via some homotopy φt : (Sn, s0)→ (X, x0) with φ1 = f and φ0 = cx.
Again, by the lifting criterion, there is a unique φ̃t : (Sn, s0)→ (X̃, x̃) with p ◦ φ̃t = φt.

(Sn, s0)
φt //

φ̃t $$

(X, x)

(X̃, x̃)

p

OO

Then we have p ◦ φ̃1 = φ1 = f and p ◦ φ̃0 = φ0 = cx, so by the uniqueness of lifts, we must
have φ̃1 = f̃ and φ̃0 = cx̃. Then φ̃t is a homotopy between f̃ and cx̃. So [f̃ ] = 0. Thus p∗ is
injective.

Example 5.1.14. Consider S1 with its universal covering map p : R→ S1 given by p(t) =
e2πit. We already know π1(S1) = Z. If n ≥ 2, Proposition 5.1.13 yields that πn(S1) =
πn(R) = 0.

Example 5.1.15. Consider T n = S1 × S1 × · · · × S1, the n-torus. We have π1(T n) = Zn.
By using the universal covering map p : Rn → T n, we have by Proposition 5.1.13 that
πi(T

n) = πi(Rn) = 0 for i ≥ 2.

Definition 5.1.16. If πn(X) = 0 for all n ≥ 2, the space X is called aspherical.

Proposition 5.1.17. Let {Xα}α be a collection of path-connected spaces. Then

πn

(∏
α

Xα

)
∼=
∏
α

πn(Xα)

for all n.

Proof. First note that a map f : Y →
∏

αXα is a collection of maps fα : Y → Xα. For
elements of πn, take Y = Sn (note that since all spaces are path-connected, we may drop
the reference to base points). For homotopies, take Y = Sn × I.
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Example 5.1.18. It is a natural question to find two spaces X and Y such that πn(X) ∼=
πn(Y ) for all n, but with X and Y not homotopy equivalent. Whitehead’s Theorem (to be
discussed later on) states that if a map of CW complexes f : X → Y induces isomorphisms
on all πn, then f is a homotopy equivalence. So we must find X and Y so that there is no
continuous map f : X → Y inducing the isomorphisms on πn’s. Consider X = S2 × RP 3

and Y = RP 2 × S3. Then πn(X) = πn(S2 × RP 3) = πn(S2) × πn(RP 3). Since S3 is a
covering of RP 3, for all n ≥ 2 we have that πn(X) = πn(S2)×πn(S3). We also have π1(X) =
π1(S2) × π1(RP 3) = Z/2. Similarly, we have πn(Y ) = πn(RP 2 × S3) = πn(RP 2) × πn(S3).
And since S2 is a covering of RP 2, for n ≥ 2 we have that πn(Y ) = πn(S2)×πn(S3). Finally,
π1(Y ) = π1(RP 2) × π1(S3) = Z/2. So πn(X) = πn(Y ) for all n. By considering homology
groups, however, we see that X and Y are not homotopy equivalent. Indeed, by the Künneth
formula, we get that H5(X) = Z while H5(Y ) = 0 (since RP 3 is oriented while RP 2 is not).

Just like there is a homomorphism π1(X) → H1(X), we can also construct homomor-
phisms

πn(X)→ Hn(X)

defined by [f : Sn → X] 7→ f∗[S
n], where [Sn] is the fundamental class of Sn. A very

important result in homotopy theory is the following:

Theorem 5.1.19. (Hurewicz)
If n ≥ 2 and πi(X) = 0 for all i < n, then Hi(X) = 0 for i < n and πn(X) ∼= Hn(X).

Moreover, there is also a relative version of the Hurewicz theorem (see the next section
for a definition of the relative homotopy groups), which can be used to prove the following:

Corollary 5.1.20. If X and Y are CW complexes with π1(X) = π1(Y ) = 0, and a map
f : X → Y induces isomorphisms on all integral homology groups Hn, then f is a homotopy
equivalence.
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5.2 Relative Homotopy Groups
Given a triple (X,A, x0) where x0 ∈ A ⊂ X, we define relative homotopy groups as follows:

Definition 5.2.1. Let X be a space and let A ⊆ X and x0 ∈ A. Let

In−1 = {(s1, . . . , sn) ∈ In| sn = 0}

and set
Jn−1 = ∂In\In−1.

Then define the n-th homotopy group of the pair (X,A) as:

πn(X,A, x0) =
{
f : (In, ∂In, Jn−1)→ (X,A, x0)

}
/ ∼

where, as before, ∼ is the homotopy equivalence relation.

Alternatively, by collapsing Jn−1 to a point, we can take

πn(X,A, x0) =
{
g : (Dn, Sn−1, s0)→ (X,A, x0)

}
/ ∼ .

A sum operation is defined in πn(X,A, x0) by the same formulas as for πn(X, x0), ex-
cept that the coordinate sn now plays a special role and is no longer available for the sum
operation. Thus, we have:

Proposition 5.2.2. If n ≥ 2, then πn(X,A, x0) forms a group under the usual sum opera-
tion. Further, if n ≥ 3, then πn(X,A, x0) is abelian.
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Remark 5.2.3. Note that the proposition fails in the case n = 1. Indeed, we have that

π1(X,A, x0) =
{
f : (I, {0, 1}, {1})→ (X,A, x0)

}
/ ∼ .

Then π1(X,A, x0) consists of homotopy classes paths starting anywhere A and ending at x0,
so we cannot always concatenate two paths.

Just as in the absolute case, a map of pairs φ : (X,A, x0)→ (Y,B, y0) induces homomor-
phisms φ∗ : πn(X,A, x0)→ πn(Y,B, y0) for all n.

A very important feature of the relative homotopy groups is the following:

Proposition 5.2.4. The relative homotopy groups of (X,A, x0) fit into a long exact sequence

· · · → πn(A, x0)
i∗→ πn(X, x0)

j∗→ πn(X,A, x0)
∂−→ πn−1(A, x0)→ · · · → π0(X, x0)→ 0,

where the map ∂ is defined by ∂[f ] = [f |In−1 ] and all others are induced by inclusions.

Remark 5.2.5. Near the end of the above sequence, where group structures are not defined,
exactness still makes sense: the image of one map is the kernel of the next, those elements
mapping to the homotopy class of the constant map.

For what follows, it will be important to have a good description of the zero element
0 ∈ πn(X,A, x0).

Lemma 5.2.6. Let [f ] ∈ πn(X,A, x0). Then [f ] = 0 iff f ' g for some map g with image
contained in A.

Proof. (⇐) Suppose f ' g for some g with Image g ⊂ A.
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Then we can deform In to Jn−1 as indicated in the above picture, and so g ' cx0 . Since
homotopy is a transitive relation, we then get that f ' cx0 .
(⇒) Suppose [f ] = 0 in πn(X,A, x0). So f ' cx0 via some homotopy F : In+1 → X. Then
we may deform In inside In+1 (while fixing the boundary) to Jn. Composing with F , we get
a homotopy from f to a map g with Image g ⊂ A.

Recall that if X is path-connected, then πn(X) is independent of our choice of base point
and π1(X) acts on πn(X) for all n. In the relative case, we have:

Lemma 5.2.7. If A is path-connected, then βγ : πn(X,A, x0)→ πn(X,A, x1) is an isomor-
phism, where γ is a path in A from x0 to x1.

Remark 5.2.8. In particular, if x0 = x1, we get an action of π1(A) on πn(X,A).

Definition 5.2.9. We say that the pair (X,A) is n-connected if πi(X,A) = 0 for i ≤ n and
X is n-connected if πi(X) = 0 for i ≤ n.
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5.3 Homotopy Groups of Spheres
We now turn our attention to computing (some of) the homotopy groups πi(Sn). For i ≤
n, i = n + 1, n + 2, n + 3 and a few more cases, this is known. In general, however, this is
a very difficult problem. For i = n, we would expect to have πn(Sn) = Z by associating
to each (homotopy class of a) map f : Sn → Sn its degree. For i < n, we will show that
πi(S

n) = 0. Note that if f : Si → Sn is not surjective, i.e., there is y ∈ Sn\f(Si), then f
factors through Rn, which is contractible. By composing f with the retraction Rn → x0 we
get that f ' cx0 . However, there are surjective maps Si → Sn for i < n, in which case the
above proof fails. To make things work, we “alter" f to make it cellular.

Definition 5.3.1. Let X and Y be CW-complexes. A map f : X → Y is called cellular if
f(Xn) ⊂ Yn for all n, where Xn denotes the n-skeleton of X and similarly for Y .

Theorem 5.3.2. Any map between CW-complexes is homotopic to a cellular map. A similar
statement holds for maps of pairs.

Corollary 5.3.3. For i < n, we have πi(Sn) = 0.

Proof. Choose the standard CW-structure on Si and Sn. For [f ] ∈ πi(Sn), we may assume
by the above theorem that f : Si → Sn is cellular. Then f(Si) ⊂ (Sn)i. But (Sn)i is a point,
so f is a constant map.

Corollary 5.3.4. Let A ⊂ X and suppose that all cells of X \A have dimension > n. Then
πi(X,A) = 0 for i ≤ n.

Proof. Let [f ] ∈ πi(X,A). By the relative version of the cellular approximation, the map of
pairs f : (Di, Si−1) → (X,A) is homotopic to a map g with g(Di) ⊂ Xi. But for i ≤ n, we
have that Xi ⊂ A, so Image g ⊂ A. Therefore, [f ] = [g] = 0.

Corollary 5.3.5. πi(X,Xn) = 0 for all i ≤ n.

Therefore, the long exact sequence for the homotopy groups of the pair (X,Xn) yields
the following:

Corollary 5.3.6. For i < n, we have πi(X) ∼= πi(Xn).

Theorem 5.3.7. (Suspension Theorem)
Let f : Si → Sn be a map, and consider its suspension,

Σf : ΣSi = Si+1 → ΣSn = Sn+1.

The assignment
[f ] ∈ πi(Sn) 7→ [Σf ] ∈ πi+1(Sn+1)

defines a homomorphism πi(S
n)→ πi+1(Sn+1). Moreover, this is an isomorphism πi(S

n) ∼=
πi+1(Sn+1) for i < 2n− 1 and a surjection for i = 2n− 1.
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Corollary 5.3.8. πn(Sn) is either Z or a finite quotient of Z (for n ≥ 2), generated by the
degree map.

Proof. By the Suspension Theorem, we have the following:

Z ∼= π1(S1) � π2(S2) ∼= π3(S3) ∼= π4(S4) ∼= · · ·

To show that π1(S1) ∼= π2(S2), we can use the long exact sequence for the homotopy groups
of a fibration. (Note: Covering maps are a good example of a fibration with F discrete).

F � o

��
E

��
B

· · · → πi(F )→ πi(E)→ πi(B)→ πi−1(F )→ · · · (5.3.1)

Applying the above long exact sequence to the Hopf fibration S1 ↪→ S3 f−→ S2, we obtain:

· · · → π2(S1)→ π2(S3)→ π2(S2)→ π1(S1)→ π1(S3)→ · · ·

Using the fact that π2(S3) = 0 and π1(S3) = 0, we therefore have an isomorphism:

π2(S2) ∼= π1(S1) ∼= Z.

Note that by using the vanishing of the higher homotopy groups of S1, the above long exact
sequence also yields that

π3(S2) ∼= π2(S2) ∼= Z.

Remark 5.3.9. Unlike the homology and cohomology groups, the homotopy groups of a
finite CW-complex can be infinitely generated. This fact is discussed in the next example.

Example 5.3.10. For n ≥ 2, consider the finite CW complex S1 ∨ Sn. We then have that

πn(S1 ∨ Sn) = πn(S̃1 ∨ Sn),

where S̃1 ∨ Sn is the universal cover of S1 ∨ Sn, depicted below:
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By contracting the segments between integers, we have that

S̃1 ∨ Sn '
∨
k∈Z

Snk .

So for any n ≥ 2, we have:
πn(S1 ∨ Sn) = πn(

∨
k∈Z

Snk ),

which is the free abelian group generated by the inclusions Snk ↪→
∨
k∈Z S

n
k . Indeed, we have

the following:

Lemma 5.3.11. πn(
∨
α S

n
α) is free abelian and generated by the inclusions of factors.

Proof. First note that, since the image of any f : Sn →
∨
α S

n
α is compact hence contained

in the wedge of finitely many Snα’s, we can assume that there are only finitely many Snα’s in
the wedge

∨
α S

n
α. Then we can regard

∨
α S

n
α as the n-skeleton of

∏
α S

n
α. The cell structure

of a particular Snα consists of a single 0-cell e0
α and a single n-cell, enα. Thus, in the product∏

α S
n
α there is one 0-cell e0 =

∏
α e

0
α, which, together with the n-cells⋃

α

(
∏
β 6=α

e0
β)× enα,

form the n-skeleton of
∨
α S

n
α. Hence

∏
α S

n
α \

∨
α S

n
α has only cells of dimension at least

2n, which by Corollary 5.3.5 yields that the pair (
∏

α S
n
α,
∨
α S

n
α) is (2n − 1)-connected. In

particular, as n ≥ 2, we get:

πn(
∨
α

Snα) ∼= πn

(∏
α

Snα

)
∼=
∏
α

πn(Snα) =
⊕
α

πn(Snα) =
⊕
α

Z.

To conclude our example, we showed that πn(S1∨Sn) ∼= πn(
∨
k∈Z S

n
k ), and πn(

∨
k∈Z S

n
k ) is

free abelian generated by the inclusion of each of the infinite number of n-spheres. Therefore,
πn(S1 ∨ Sn) is infinitely generated.

Remark 5.3.12. Under the action of π1 on πn, we can regard πn as a Z[π1]-module, with

Z[π1] = {
∑
α

nαγα| nα ∈ Z, γα ∈ π1}.

Since all Snk in the universal cover
∨
k∈Z S

n
k are identified under the π1-action, πn is a free

Z[π1]-module of rank 1, i.e.,

πn ∼= Z[π1] ∼= Z[Z] ∼= Z[t, t−1],

1 7→ t

−1 7→ t−1

n 7→ tn,

which is infinitely generated (by the powers of t) over Z (i.e., as an abelian group).
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5.4 Whitehead’s Theorem
In this section, we discuss the following important result:

Theorem 5.4.1. (Whitehead)
If X and Y are CW complexes, and a map f : X → Y induces isomorphisms on the homotopy
groups πn for all n, then f is a homotopy equivalence. Moreover, if X is a subcomplex of Y ,
and f is the inclusion map, then X is a deformation retract of Y .

The following consequence is very useful in practice:

Corollary 5.4.2. If X and Y are CW complexes with π1(X) = π1(Y ) = 0, and f : X → Y
induces isomorphisms on homology groups Hn for all n, then f is a homotopy equivalence.

The above corollary follows from Whitehead’s theorem and the following relative version
of the Hurewicz theorem:

Theorem 5.4.3. (Hurewicz)
If n ≥ 2, and πi(X,A) = 0 for i < n, with A simply-connected and non-empty, then
Hi(X,A) = 0 for i < n and πn(X,A) ∼= Hn(X,A).

Before discussing the proof of Whitehead’s theorem, let us give an example that shows
that having induced isomorphisms on all homology groups is not sufficient for having a
homotopy equivalence (so the simply-connectedness assumption in Corollary 5.4.2 is really
important):

Example 5.4.4. Let

X = S1 ↪→ (S1 ∨ Sn) ∪ en+1 = Y (n ≥ 2),

where f is the inclusion ofX in Y . We know from Example 5.3.10 that πn(S1∨Sn) ∼= Z[t, t−1].
We define Y by attaching the (n+1)-cell en+1 to S1∨Sn by a map g : Sn = ∂en+1 → S1∨Sn
so that [g] ∈ πn(S1 ∨ Sn) corresponds to the element 2t− 1 ∈ Z[t, t−1]. We then see that

πn(Y ) = Z[t, t−1]/(2t− 1) 6= 0 = πn(X),

since by setting t = 1
2
we get that Z[t, t−1]/(2t− 1) ∼= Z[1

2
] = { a

2k
| k ∈ Z≥0} ⊂ Q. Moreover,

from the long exact sequence of homotopy groups for the (n− 1)-connected pair (Y,X), the
inclusion X ↪→ Y induces an isomorphism on homotopy groups πi for i < n. Finally, this
inclusion map also induces isomorphisms on all homology groups, Hk(X) ∼= Hk(Y ) for all k,
as can be seen from cellular homology. Indeed, the cellular boundary map

Hn+1(Yn+1, Yn)→ Hn(Yn, Yn−1)

is an isomorphism since the degree of the composition of the attaching map Sn → S1 ∨ Sn
of en+1 with the collapse map S1 ∨ Sn → Sn is 2− 1 = 1.
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Let us now get back to the proof of Whitehead’s Theorem 5.4.1:

Proof. (of Whitehead’s theorem) To prove Whitehead’s theorem, we will use the following
compression lemma:

Lemma 5.4.5. (Compression Lemma)
Let (X,A) be a CW pair, and (Y,B) be a pair with Y path-connected and B 6= ∅. Suppose
that for each n > 0 for which X \A has cells of dimension n, πn(Y,B, b0) = 0 for all b0 ∈ B.
Then any map f : (X,A) → (Y,B) is homotopic to some map f ′ : X → B fixing A (i.e.
f ′|A = f |A).

We can then split the proof of Whitehead’s theorem into two cases:
Case 1: If f is an inclusion X ↪→ Y , since πn(X) = πn(Y ) for all n, we get by the long exact
sequence for the homotopy groups of the pair (Y,X) that πn(Y,X) = 0 for all n. Applying
the above compression lemma to the identity map id : (Y,X) → (Y,X), we get that the
identity map idY is homotopic to a deformation retract r : Y → X.
Case 2: The general case of a map f : X → Y can be reduced to the above case of an
inclusion by using the mapping cylinder of f , i.e.,

Mf := (X × I) t Y/(x, 1) ∼ f(x).

Figure 5.1: The mapping cylinder of f , Mf

Note that Mf contains both X = X×{0} and Y as subspaces, and Mf deformation retracts
onto Y . Moreover, the map f can be written as the composition of the inclusion i of X into
Mf , and the retraction r from Mf to Y :

X = X × {0} ↪→Mf
r−→ Y, (f = r ◦ i, for i : X × {0} ↪→Mf ).

SinceMf is homotopy equivalent to Y via r, it suffices to show thatMf deformation retracts
onto X, so we can replace f with the inclusion map i. If f is a cellular map, then Mf is a
CW complex having X as a subcomplex. So we can apply Case 1. If f is not cellular, than
f is homotopic to some cellular map g, so we may work with g and the mapping cylinder
Mg and again reduce to Case 1.
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We can now prove Corollary 5.4.2:

Proof. (of Corollary 5.4.2)
After replacing Y by the mapping cylinder Mf , we may take f to be an inclusion X ↪→ Y .
As Hn(X) ∼= Hn(Y ) for all n, we have by the long exact sequence for the homology of the
pair (Y,X) that Hn(Y,X) = 0 for all n.

Since X and Y are simply-connected, we have π1(Y,X) = 0. So by the relative Hurewicz
Theorem 5.4.3, the first non-zero πn(Y,X) is isomorphic to the first non-zero Hn(Y,X). So
πn(Y,X) = 0 for all n. Then, by the homotopy long exact sequence for the pair (Y,X), we
get that

πn(X) ∼= πn(Y )

for all n, with isomorphisms induced by the inclusion map f . Finally, Whitehead’s theorem
yields that f is a homotopy equivalence.

Example 5.4.6. Let X = RP2 and Y = S2 × RP∞. First note that π1(X) = π1(Y ) ∼= Z/2.
Also, since S2 is a covering of RP2, we have that

πi(X) ∼= πi(S
2), i ≥ 2.

Moreover, πi(Y ) ∼= πi(S
2)× πi(RP∞), and as RP∞ is covered by S∞ =

⋃
n≥0 S

n, we get that

πi(Y ) ∼= πi(S
2)× πi(S∞), i ≥ 2.

To calculate πi(S∞), we use cellular approximation. More precisely, we can approximate any
f : Si → S∞ by a cellular map g so that Image g ⊂ Sn for i� n. Thus, [f ] = [g] ∈ πi(Sn) =
0, and we see that

πi(X) ∼= πi(S
2) ∼= πi(Y ), i ≥ 2.

Altogether, we have that X and Y have the same homotopy groups. However, as can
be easily seen by considering homology groups, X and Y are not homotopy equivalent. In
particular, by Whitehead’s theorem, there cannot exist a map f : RP2 → S2×RP∞ inducing
isomorphisms on πn for all n. Indeed, if such a map existed, it would have to be a homotopy
equivalence.

Example 5.4.7. As we will see later on, the CW complexes S2 and S3×CP∞ have isomorphic
homotopy groups, but they are not homotopy equivalent.

Let us now prove another important result:

Theorem 5.4.8. If f : X → Y induces isomorphisms on homotopy groups πn for all n,
then it induces isomorphisms on homology and cohomology groups with G coefficients, for
any group G.

Proof. By the universal coefficient theorems, it suffices to show that f induces isomorphisms
on integral homology groups H∗(−;Z).
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We only prove the assertion here under the extra condition that X is simply connected
(the general case follows easily from spectral sequence theory). As before, we can also
assume that f by an inclusion (by replacing Y with the homotopy equivalent space defined
by mapping cylinder Mf of f). Since by the hypothesis, πn(X) ∼= πn(Y ) for all n, with
isomorphisms induced by the inclusion f , the homotopy long exact sequence of the pair
(Y,X) yields that πn(Y,X) = 0 for all n. By the relative Hurewicz theorem (as π1(X) = 0),
this gives that Hn(Y,X) = 0 for all n. Hence, by the long exact sequence for homology,
Hn(X) ∼= Hn(Y ) for all n, and the proof is complete.

Example 5.4.9. Take X = RP2 × S3 and Y = S2 ×RP3. They have isomorphic homotopy
groups πn for all n, but H5(X) 6∼= H5(Y ). So there cannot exist a map f : X → Y inducing
the isomorphisms on the πn.

Example 5.4.10. Any abelian group G can be realized as πn(X) with n ≥ 2 for some space
X. In fact, for a finitely generated group G = 〈g1, . . . , gs | r1, . . . , rk〉, we can can take

X =
( s∨
i=1

Sni

)
∪

k⋃
j=1

en+1
j ,

for en+1
j attached to

∨s
i=1 S

n
i by the map f : Snj →

∨s
n=1 S

n with [f ] = rj.

Example 5.4.11. Eilenberg-MacLane spaces
For any group G and n ∈ Z, one can define a space K(G, n) = X with πn(X) = G and
πi(X) = 0 for all i 6= n. (These spaces unique up to homotopy!) Some familiar such spaces
are:

• K(Z/2, 1) = RP∞

• K(Z, 1) = S1

• K(Z, 2) = CP∞

For the last example, we can see that π2(CP∞) ∼= π1(S1) = Z by using the fibration (see
next section for a definition)

S1 ↪→ S∞ −→ CP∞

which gives the long exact sequence of homotopy groups

· · · → π2(S∞)→ π2(CP∞)→ π1(S1)→ π1(S∞)→ · · ·

together with the fact that π2(S∞) = π1(S∞) = 0, giving π2(CP∞) ∼= π1(S1) by exactness.
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5.5 Fibrations and Fiber Bundles
Definition 5.5.1. Homotopy Lifting Property
A map p : E → B has the homotopy lifting property with respect to X if, given a homotopy
gt : X → B, and a lift g̃0 : X → E, of g0, there exists a homotopy g̃t : X → E lifting gt and
extending g̃0.

X
g̃0 // E

p

��
X

g̃t

??

gt
// B

Remark 5.5.2. This is a special case of the lift extension property. A map p : E → B
has the lift extension property with respect to a pair (Z,A) if for all maps f : Z → B and
g : A → E, there exists a lift f̃ : Z → E of f extending g. (Think of Z = X × [0, 1], and
A = X × {0}.)

E

p

��
A

g

77

� � // Z

f̃

??

f
// B

Definition 5.5.3. A fibration p : E → B is a map having the homotopy lifting property with
respect to all spaces X.

Definition 5.5.4. Homotopy Lifting Property for a pair (X,A)
A map p : E → B has the homotopy lifting property with respect to a pair (X,A) if each
homotopy gt : X → B lifts to a homotopy g̃t : X → E starting with a given lift g̃0 and
extending a given lift g̃t : A→ E.

Remark 5.5.5. The homotopy lifting property with respect to the pair (X,A) is the lift
extension property for (X × I,X × {0} ∪ A× I).

Remark 5.5.6. The homotopy lifting property for a disk Dn is equivalent for the homotopy
lifting property for (Dn, ∂Dn) since the pairs (Dn × I,Dn × {0}) and (Dn × I,Dn × {0} ∪
∂Dn × I) are homeomorphic. This implies that a fibration has has the homotopy lifting
property with respect to all CW pairs (X,A). Indeed, the homotopy lifting property for discs
is in fact equivalent to the homotopy lifting property with respect to all CW pairs (X,A).
This can be easily seen by induction over the skeleta of X, so it suffices to construct a lifting
g̃t one cell of X \ A at a time. Composing with the characteristic map Dn → X of a cell
then gives the reduction to the case (X,A) = (Dn, ∂Dn).
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Theorem 5.5.7. Given a fibration p : E → B, points b ∈ B and e ∈ F := p−1(b), there
is an isomorphism p∗ : πn(E,F, e)

∼=→ πn(B, b) for all n ≥ 1. Hence, if B is path connected
there a long exact sequence of homotopy groups:

· · · → πn(F, e)→ πn(E, e)
p∗→ πn(B, b)→ πn−1(F, e)→ · · · π0(E, e)→ 0

Proof. To show that p∗ is onto, represent an element of πn(B, b) by a map f : (In, ∂In) →
(B, b), and note that the constant map to e is a lift of f to E over Jn−1 ⊂ In. The homotopy
lifting property for the pair (In−1, ∂In−1) extends this to a lift f̃ : In → E. This lift satisfies
f̃(∂In) ⊂ F since f(∂In) = b. So f̃ represents an element of πn(E,F, e) with p∗([f̃ ]) = [f ]

since pf̃ = f .
To show injectivity of p∗, let f̃0, f̃1 : (In, ∂In, Jn−1)→ (E,F, e) be so that p∗(f̃0) = p∗(f̃1).

Let H : (In×I, ∂In×I)→ (B, b) be a homotopy from pf̃0 to pf̃1. We have a partial lift given
by f̃0 on In × {0}, f̃1 on In × {1} and the constant map to e on Jn−1 × I. The homotopy
lifting property for CW pairs extends this to a lift H̃ : In × I → E giving a homotopy
f̃t : (In, ∂In, Jn−1)→ (E,F, e) from f̃0 to f̃1.

Finally, the long exact sequence of fibration follows by plugging πn(B, b) in for πn(E,F, e)
in the long exact sequence for the pair (E,F ). The map πn(E, e)→ πn(E,F, e) in the latter
sequence becomes the composition πn(E, e) → πn(E,F, e)

p∗→ πn(B, b), which is exactly
p∗ : πn(E, e) → πn(B, b). The surjectivity of π0(F, e) → π0(E, e) follows from the path-
connectedness of B, since a path in E from an arbitrary point x ∈ E to F can be obtained
by lifting a path in B from p(x) to b.

Definition 5.5.8. Fiber Bundle
A map p : E → B is a fiber bundle with fiber F if, for all points b ∈ B, there exists
neighborhood Ub of b with a homeomorphism h : p−1(Ub) → Ub × F so that the following
diagram commutes:

p−1(Ub)
h //

p

""

Ub × F

pr

||
Ub

Remark 5.5.9. Fibers of fibrations are homotopy equivalent, while fibers of fiber bundles
are homeomorphic.

Theorem 5.5.10. (Hurewicz)
Fiber bundles over paracompact spaces are fibrations.

Example 5.5.11. Examples of fiber bundles

1. If F is discrete, a fiber bundle with fiber F is a covering map.

2. The Möbius band I× [−1, 1]/(0, x) ∼ (1,−x)→ S1 is a fiber bundle with fiber [−1, 1],
induced from the projection map I × [−1, 1]→ I.
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3. By glueing the unlabeled edges of a Möbius band, we get K → S1 (where K is the
Klein bottle), a fiber bundle with fiber S1.

4. The following is a fiber bundle with fiber S1:

S1 ↪→ S2n+1(⊂ Cn+1)→ CPn

(z0, . . . , zn) 7→ [z0 : . . . : zn]

For [z] ∈ CPn, there is an i such that zi 6= 0. Then we have

U[z] = {[z0 : . . . : 1 : . . . : zn]} ∼= Cn

(with the entry 1 in place of the ith coordinate), with a homeomorphism

p−1(U[z])→ U[z] × S1

(z0, . . . , zn) 7→ ([z0 : . . . : zn], zi/|zi|).

From this we get the fibration diagram from our discussion of Eilenberg-MacLane
spaces,

S1
� q

""

S1
� q

""

· · · S1
� p

""
S2n+1

��

S2n+3

��

. . . S∞

��

' {pt}

CPn ⊂ CPn+1 . . . CP∞

In particular, from the long exact sequence of the fibration

S1 ↪→ S∞ → CP∞

with S∞ contactible, we obtain that

πi(CP∞) ∼= πi−1(S1) =

{
Z i = 2
0 i 6= 2

i.e.,
CP∞ = K(Z, 2).
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Remark 5.5.12. For any topological group G, there exists a “universal fiber bundle"
classifying the space of (principal) G-bundles. That is, any G-bundle over a space X
is determined (by pull-back) by (the homotopy class of) a map f : X → BG.

G

��

G

!!
E

��

EG

��

' {pt}

X
f
// BG

5. Other examples of fibrations (in fact fiber bundles) are provided by the orthogonal and
unitary groups:

O(n− 1) ↪→ O(n)→ Sn−1

A 7→ Ax,

where x is a fixed unit vector in Rn. (If we assume n is large, the associated long exact
sequence will give us that πi(O(n)) is independent of n.) Similarly, there is a fibration

U(n− 1) ↪→ U(n)→ S2n−1

A 7→ Ax,

with x a fixed unit vector in Cn.

In the remaining of this section, we show that any map is homotopic to a fibration.
Given f : A→ B, define

Ef := {(a, γ) | a ∈ A, γ : [0, 1]→ B with γ(0) = f(a)}.

Then A can be regarded as a subset of Ef , by mapping a ∈ A to (a, cf(a)), where cf(a) is the
constant path based at the image of a under f . Define

Ef
p−→ B

(a, γ) 7→ γ(1)

Then p|A = f , and f = p ◦ i where i is the inclusion of A in Ef . Moreover, i is a homotopy
equivalence, and p is a fibration with fiber A.

Remark 5.5.13. If A = {b} ↪→ B, where f is the inclusion of b in B, then Ef is the
contractible space of paths in B starting at b:
In this case, the above construction yields a fibration

ΩB = p−1(b) ↪→ Ef → B,

where ΩB is the space of all loops based at b. Since Ef is contractible, the associated long
exact sequence of the fibration yields that

πi(B) ∼= πi−1(ΩB).
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Exercises
1. Let f : X → Y be a homotopy equivalence. Let Z be any other space. Show that f
induces bijections:

f∗ : [Z,X]→ [Z, Y ] and f ∗ : [Y, Z]→ [X,Z] ,

where [A,B] denotes the set of homotopy classes of maps from the space A to B.

2. Find examples of spaces X and Y which have the same homology groups, cohomology
groups, and cohomology rings, but with different homotopy groups.

3. Use homotopy groups in order to show that there is no retraction RPn → RPk if n > k > 0.

4. Show that an n-connected, n-dimensional CW complex is contractible.

5. (Extension Lemma)
Given a CW pair (X,A) and a map f : A→ Y with Y path-connected, show that f can be
extended to a map X → Y if πn−1(Y ) = 0 for all n such that X \A has cells of dimension n.

6. Show that a CW complex retracts onto any contractible subcomplex. (Hint: Use the
above extension lemma.)

7. If p : (X̃, Ã, x̃0) → (X,A, x0) is a covering space with Ã = p−1(A), show that the map
p∗ : πn(X̃, Ã, x̃0)→ πn(X,A, x0) is an isomorphism for all n > 1.

8. Show that a CW complex is contractible if it is the union of an increasing sequence
of subcomplexes X1 ⊂ X2 ⊂ · · · such that each inclusion Xi ↪→ Xi+1 is nullhomotopic.
Conclude that S∞ is contractible, and more generally, this is true for the infinite suspension
Σ∞(X) :=

⋃
n≥0 Σn(X) of any CW complex X.

9. Use cellular approximation to show that the n-skeletons of homotopy equivalent CW
complexes without cells of dimension n+ 1 are also homotopy equivalent.
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10. Show that a closed simply-connected 3-manifold is homotopy equivalent to S3. (Hint:
Use Poincaré Duality, and also the fact that closed manifolds are homotopy equivalent to
CW complexes.)

11. Show that a map f : X → Y of connected CW complexes is a homotopy equivalence if
it induces an isomorphism on π1 and if a lift f̃ : X̃ → Ỹ to the universal covers induces an
isomorphism on homology.

12. Show that π7(S4) is non-trivial. [Hint: It contains a Z-summand.]

13. Prove that the space SO(3) of orthogonal 3× 3 matrices with determinant 1 is homeo-
morphic to RP3.

14. Show that if Sk → Sm → Sn is a fiber bundle, then k = n− 1 and m = 2n− 1.

15. Show that if there were fiber bundles Sn−1 → S2n−1 → Sn for all n, then the groups
πi(S

n) would be finitely generated free abelian groups computable by induction, and non-zero
if i ≥ n ≥ 2.
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