TA name	disc. day/hour
al Exam	
ary and no p ow all the de rite legibly.	
vı	vrite legibly.

Problem 1. Determine if the following statements are true or false, and **circle "True" or "False"** for an answer. *No justification is necessary.* (No partial credit.)

a) (10 points). The set V of all those vectors (x, y, z) in \mathbb{R}^3 whose components satisfy $z = x^2 + y^3$ is a subspace.

TRUE FALSE

b) (10 points). Two non-zero functions f(x) and g(x) are linear dependent if there exists a non-zero constant c such that f(x) = cg(x) for some x.

TRUE FALSE

c) (10 points). If A and B are square matrices, then $det(AB) = det(A) \cdot det(B)$.

TRUE FALSE

d) (10 points). Linearly independent vectors in \mathbb{R}^n are pairwise orthogonal.

TRUE FALSE

e) (10 points). If A is a 3×3 matrix such that the system $A\underline{x} = \underline{0}$ has only the trivial solution, then the system $A\underline{x} = \underline{b}$ has a solution for every \underline{b} in \mathbb{R}^3 .

TRUE FALSE

f) (10 points). Let A and B be $n \times n$ matrices, and suppose that rank(AB) = n. Then A is invertible.

TRUE FALSE

g) (10 points). If W is a subspace of V and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W.

TRUE FALSE

h) (10 points). Suppose a matrix A is row equivalent to echelon matrix E. Then non-zero rows of E form a basis of Row(A).

TRUE FALSE

i) (10 points). Let y_1 and y_2 be two different solutions of 2nd order differential equation 2y'' + 3y' + y = 0. Then any solution of 2y'' + 3y' + y = 0 is $c_1y_1 + c_2y_2$ for some constants c_1 and c_2 .

TRUE FALSE

j) (10 points). If v_1 and v_2 are eigenvectors for the matrix A, then $v_1 + v_2$ is also an eigenvector of A.

TRUE FALSE

Problem 2.(25 points). Solve the following differential equations: a) (10 points). $\frac{dy}{dx} = 3\sqrt{xy}$.

b) (15 points).
$$\frac{dy}{dx} = (1 - y)\cos x, \ y(\pi) = 2.$$

Problem 3.(25 points).

- a) (10 points) Find the general solution y = y(x) of $y^{(4)} + 4y'' + 4y = 0$.
- a) (10 points) Find a particular solution for $y'' + 4y = 3\cos(x) 4x$.
- b) (5 points) Find a linear homogeneous differential equation whose general solution is given by $y(x) = c_1 + c_2 e^{-3x} + c_3 e^x$.

Problem 4.(25 points). Find the general solution for the linear system of differential equations given by:

$$\begin{cases} x_1' = 5x_1 + 7x_2\\ x_2' = -2x_1 - 4x_2 \end{cases}$$

Problem 5.(25 points). Let V be the subspace of \mathbb{R}^5 spanned by the vectors $v_1 = (1, 2, 3, 1, 3)$, $v_2 = (1, 3, 4, 3, 6)$ and $v_3 = (2, 2, 4, 3, 5)$. Find a basis for the orthogonal complement V^{\perp} of V.