
DECIDABILITY OF THE TWO-QUANTIFIER THEORY OF THE

RECURSIVELY ENUMERABLE WEAK TRUTH-TABLE

DEGREES AND OTHER DISTRIBUTIVE UPPER SEMI-

LATTICES

KLAUS AMBOS-SPIES, PETER A. FEJER, STEFFEN LEMPP, AND MANUEL LERMAN

Abstract. We give a decision procedure for the 89-theory of the weak truth-

table (wtt) degrees of the recursively enumerable sets. The key to this decision

procedure is a characterization of the �nite lattices which can be embedded into

the r.e. wtt-degrees by a map which preserves the least and greatest elements:

A �nite lattice has such an embedding if and only if it is distributive and

the ideal generated by its cappable elements and the �lter generated by its

cuppable elements are disjoint.

We formulate general criteria that allow one to conclude that a distributive

upper semi-lattice has a decidable two-quanti�er theory. These criteria are

applied not only to the weak truth-table degrees of the recursively enumerable

sets but also to various substructures of the polynomial many-one (pm) degrees

of the recursive sets. These applications to the pm degrees require no new

complexity-theoretic results. The fact that the pm-degrees of the recursive

sets have a decidable two-quanti�er theory answers a question raised by Shore

and Slaman in [21].

1. Introduction

If r is a reducibility between sets of natural numbers, we let D

r

denote the set

of r-degrees, ordered by �

r

, and R

r

denote the set of recursively enumerable r-

degrees, also ordered by �

r

. For the commonly studied reducibilities r, except

for 1- reducibility, D

r

is an upper semi-lattice with least element, and R

r

is a

bounded upper semi-lattice. (For many-one (m-) reducibility, we must ignore the

m-degrees of ; and ! in order to get a least element.) It is natural to ask, for each

of these structures, whether the structure (in the language f�g) is decidable. For

the commonly studied structures, the answer is no. For R

wtt

, (wtt stands for weak

truth-table reducibility) this undecidability is a recent result of Ambos-Spies, Nies

and Shore [6].

The methods used to show the undecidability of these structures in fact show

that some quanti�er level of the theory of the structure is undecidable, and, thus,

an obvious next step is to try to �nd the exact quanti�er level at which the theory

of the structure becomes undecidable.
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Any �nite partial order can be embedded, as a partial order, into any of these

structures and this easily shows that the one-quanti�er theory of these structures

in the language f�g is decidable. Lattice-embedding results allow one to conclude

that for many of these structures the one- quanti�er theory remains decidable if _;^

and 0 (and, in the case of R

r

, sometimes 1 as well) are added to the language. (^

must be added as a three-place relation symbol.) However, even at this seemingly

simple level, our knowledge is incomplete { it is not known whether or not the one-

quanti�er theory of R

T

(where T stands for Turing reducibility) in the language

f�;_;^g is decidable.

At the two-quanti�er level, there are only a few results known so far. In [9],

Degtev showed that the two-quanti�er theory of D

m

in the language f�;_; 0g

and the two-quanti�er theory of R

m

in the language f�;_; 0; 1g are decidable.

Lerman [18] and Shore [20] showed that the two-quanti�er theory of D

T

in the

language f�; 0g is decidable and, recently, Jockusch and Slaman [15] extended this

result by showing that the two-quanti�er theory of D

T

in the language f�;_; 0g is

decidable.

In this paper, we show that the two-quanti�er theory of R

wtt

in the language

f�; 0; 1g is decidable. The structure R

wtt

is quite di�erent from D

m

, R

m

and

D

T

. Every �nite lattice is isomorphic to an initial segment of D

T

, and for D

m

and

R

m

, every �nite distributive lattice is isomorphic to an initial segment, while no

nondistributive lattice can be lattice-embedded into the structure. These initial

segments results play a strong role in the two-quanti�er decision procedures for

these structures. By contrast, in R

wtt

, one has both density and Sacks Splitting;

in fact, these two results can be combined ([16]). Thus, each nontrivial interval of

R

wtt

has a rather complicated structure, and, in particular, cannot be �nite. These

di�erences mean that our decision procedure requires new techniques.

One advantage we have in deciding the two-quanti�er theory of R

wtt

is the fact

that it is a distributive upper semi-lattice, i.e., it satis�es

(8a; b; c)(c � a _ b! (9a

0

� a)(9b

0

� b)(c = a

0

_ b

0

))

(the structures D

m

and R

m

are also distributive) and, hence, no nondistributive

lattice can be lattice-embedded into it. In addition to distributivity, the main

ingredients in our decision procedure are a characterization of the lattices that

can be lattice-embedded into R

wtt

preserving 0 and 1, given in Section 2, and the

extension-of-embeddings result for R

wtt

given in [12]. In Section 3, we give general

criteria under which a distributive upper semi-lattice for which the extension-of-

embeddings result of [12] holds has a decidable two-quanti�er theory in the language

with �; 0 and, if appropriate, 1. We apply these criteria not just to R

wtt

, but also

to various complexity-theoretic structures. In particular, we answer a question of

Slaman and Shore by showing that the two-quanti�er theory of the polynomial

many-one degrees of the recursive sets in the language f�; 0g is decidable. Our

complexity-theoretic applications require no new results in complexity theory. All

that was missing was the algebraic analysis of Section 3.

The best undecidability result for quanti�er levels of the theory ofR

wtt

is Lempp

and Nies's recent result [17] that the four-quanti�er theory is undecidable. Thus,

the exact point at which the theory of R

wtt

becomes undecidable is unknown, but

the gap is small. A reasonable next step would be to try to decide the two-quanti�er

theory of the structure in the language f�;_; 0; 1g.
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We refer the reader to Soare [22] for unde�ned terms and notations. If A;B � !,

we say that A is weak truth-table reducible to B (A �

wtt

B) if for some e, A =

feg

B

and there is a recursive function f such that for all x, u(B; e; x) � f(x). If

e = he

0

; e

1

i, and A is any set, we de�ne

[e]

A

(x) =

8

>

<

>

:

fe

0

g

A

(x) if fe

0

g

A

(x) # and fe

1

g(x) # and

u(A; e

0

; x) � fe

1

g(x);

" otherwise;

and for all s, we de�ne

[e]

A

s

(x) =

8

>

<

>

:

fe

0

g

A

s

(x) if fe

0

g

A

s

(x) # and fe

1

g

s

(x) # and

u(A; e

0

; x) � fe

1

g(x);

" otherwise.

Then, A �

wtt

B if and only if for some e, [e]

B

= A, and if fA

s

g

s2!

is a recursive

enumeration of an r.e. set A, then, for all x, lim

s!1

[e]

A

s

s

(x) = [e]

A

(x).

We assume that h�;�i is a standard pairing function and write hx; y; zi for

hx; hy; zii and similarly for hx; y; z; wi.

If we use a script letter as the name of a poset, then we assume that the domain

of the poset is named by the corresponding Roman letter and the ordering is � with

the script letter as a subscript. Thus, for example, a poset P will be assumed to be

(P;�

P

). We denote the least element of P , if any, by 0

P

, and similarly for 1

P

, and

we use _

P

, ^

P

to denote joins and meets in P . We sometimes drop the P subscript

when there is no risk of confusion. If X and Y are posets, we write X � Y to

mean that X � Y and �

X

=�

Y

j�X . If X ;Y are posets with least element, X �

0

Y

means X � Y and 0

X

= 0

Y

. If X ;Y are bounded posets, X �

0;1

Y means X �

0

Y

and 1

X

= 1

Y

.

Let X and Y be posets. A poset embedding of X into Y is a function f : X ! Y

such that, for all x; y 2 X , x �

X

y if and only if f(x) �

Y

f(y). A poset embedding

is necessarily one-to-one. If X is an upper semi- lattice, a usl embedding of X into

Y is an injective function f : X ! Y which preserves joins, i.e., for all x; y 2 X ,

f(x_

X

y) = f(x)_

Y

f(y) . A usl embedding is necessarily a poset embedding. If X

is a lattice, a lattice embedding of X into Y is a usl embedding that also preserves

meets. A function f : X ! Y is said to preserve least element (or preserve 0) if

f(0

X

) = 0

Y

when X and Y both have least elements. (So, if either X or Y fails

to have a least element, every function from X to Y preserves least element.) The

terms preserve greatest element (preserve 1) are de�ned similarly.

If U is an upper semi-lattice, a subset I of U is an ideal of U if I is nonempty, I

is downwards closed (i.e., if x 2 U , y 2 I and x �

U

y, then x 2 I) and I is closed

under join (i.e., if x; y 2 I , then x _ y 2 I). If U has a least element and S � U ,

then there is a smallest ideal I(S) of U which contains S. If S 6= ;, an element x

of U is in I(S) if and only if x �

U

W

A for some nonempty �nite subset A of S. A

subset F of U is a �lter of U if F is nonempty, F is upwards closed (i.e., if x 2 F ,

y 2 U and x �

U

y, then y 2 F ) and closed under meet (i.e., if x; y 2 F and x ^ y

exists, then x ^ y 2 F ). A subset F of U is a strong �lter of U if F is nonempty,

upwards closed and for every x; y 2 F , there is a z 2 F with z �

U

x; y. A strong

�lter of U is clearly a �lter of U . If U has a greatest element, then for any subset S
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of U , there is a smallest �lter F (S) of U which contains S. If U is in fact a lattice

and S 6= ;, then an element x of U is in F (S) if and only if

V

A �

U

x for some

nonempty �nite subset A of S.

If U is a bounded upper semi-lattice, we say that an element x of U is cuppable

if there is a y 6= 1

U

with x _ y = 1

U

. We denote the set of cuppable elements of U

by CUP

U

or just CUP if U is clear from the context. Dually, an element x of U is

cappable if there is a y 6= 0

U

such that x ^ y = 0

U

. The notations CAP

U

and CAP

are de�ned in the obvious way.

2. Lattice Embeddings

We now turn to the characterization of the �nite lattices that can be embedded

into R

wtt

by maps that preserve least and greatest elements.

Theorem 1. Let L be a �nite lattice. Then, there is a lattice embedding of L into

R

wtt

that preserves 0 and 1 if and only if L is distributive and

F (CUP

L

) \ I(CAP

L

) = ;:(2.1)

The \only if" direction follows from results in the literature. First, a lemma

due to Lachlan shows that all sublattices of R

wtt

are distributive. A proof of this

lemma is given in Stob [23].

Lemma 2. The upper semi-lattice R

wtt

is distributive. Hence, no nondistributive

lattice can be lattice-embedded into R

wtt

.

Next, we use some results on the distribution of the cuppable, the cappable, and

the noncappable r.e. wtt-degrees. We will write CUP

wtt

for CUP

R

wtt

and similarly

for CAP

wtt

. We also write NC

wtt

for R

wtt

� CAP

wtt

. Part (a) of the following

lemma is shown in Ambos- Spies [1] and Part (b) is shown in Ambos-Spies et al. [5].

Lemma 3. (a) CAP

wtt

is an ideal of R

wtt

and NC

wtt

is a strong �lter of

R

wtt

.

(b) CUP

wtt

� NC

wtt

.

Now, to show that the embedding condition in Theorem 1 is necessary, let L be

a �nite lattice and let f : L! R

wtt

be a lattice embedding that preserves 0 and 1.

By Lemma 2, it su�ces to show that (2.1) holds. Obviously, f(CUP

L

) � CUP

wtt

and f(CAP

L

) � CAP

wtt

, so f(F (CUP

L

)) and f(I(CAP

L

)) are contained in the

�lter generated by CUP

wtt

and the ideal generated by CAP

wtt

, respectively. By

Lemma 3, the former is contained in NC

wtt

while the latter is CAP

wtt

. Thus,

f(F (CUP

L

)) � NC

wtt

and f(I(CAP

L

)) � CAP

wtt

whence F (CUP

L

) \ I(CAP

L

) = ;.

In the remainder of this section, we show that the embedding condition of Theo-

rem 1 is su�cient. We �rst need some more lattice-theoretic notations and results.

If L is lattice, we denote the set of (nonzero) join-irreducible elements of L by J

L

and for a 2 L, we let

J(a) = fj 2 J

L

jj �

L

ag:
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Note that if L is �nite, then a =

W

J(a) for every a 2 L, where

W

; = 0

L

by

convention. (This is easily shown by induction on jfb 2 Ljb �

L

agj.)

The next lemma gives some simple properties of �nite distributive lattices which

we will need for our proof.

Lemma 4. Let L be a �nite distributive lattice.

(a) For every j 2 J

L

and A � L such that j �

L

W

A, there is an a 2 A with

j �

L

a.

(b) For every a; b 2 L with a 6�

L

b, there is a j 2 J

L

such that j �

L

a and

j 6�

L

b.

(c) For every a 2 L, there is a least b 2 L such that a _ b = 1

L

.

(d) For every a 2 CUP and b >

L

a, there is a c <

L

b with a _ c = b.

(e) For every a 2 CUP, there is a j 2 CUP \ J(a).

(f) Let CUP

min

= fa 2 CUPj8b <

L

a(b 62 CUP)g. Then, CUP

min

� J

L

and

1

L

=

W

CUP

min

.

Proof. Part (a) is straightforward by distributivity. Part (b) follows from the ob-

servation that a =

W

J(a).

For a proof of Part (c), for a contradiction, assume that the claim fails. Then,

there are incomparable elements b

0

and b

1

that are minimal such that a _ b

0

= 1

L

and a _ b

1

= 1

L

. But then, by distributivity, a _ (b

0

^ b

1

) = 1

L

, contrary to

minimality of b

0

and b

1

.

Part (d) is an immediate consequence of distributivity.

For a proof of Part (e), take b 6= 1

L

with a _ b = 1

L

and �x a maximal element

j of J(a) such that j 6�

L

b. Then, j �

L

a, 1

L

= j _ (

W

(J(a) � J(j)) _ b) and

j 6�

L

W

(J(a)� J(j)) _ b, by (a). So, j 2 J

L

\CUP.

The �rst part of (f) is immediate by (e). To show the second part, for a con-

tradiction, assume that

W

CUP

min

<

L

1

L

. Then, by de�nition of CUP

min

and (c),

there is a least a 2 L� f1

L

g such that a _

W

CUP

min

= 1

L

and a 62 CUP

min

. So,

there are b <

L

a and c <

L

1

L

such that b 2 CUP

min

and b_ c = 1

L

. Hence, by (d),

a = b _ c

0

for some c

0

<

L

a and

1

L

= a_

_

CUP

min

= (b_c

0

)_

_

CUP

min

= c

0

_(b_

_

CUP

min

) = c

0

_

_

CUP

min

;

contrary to choice of a.

For the remainder of this section, we �x a �nite distributive lattice L such that

Condition (2.1) holds. For each join-irreducible j 2 L, let

J

j

= fj

0

2 J

L

jj

0

6�

L

jg

and let min

F

be the least element of F (CUP) and max

I

be the greatest element of

I(CAP).

Since I(CAP) is closed downwards, Condition (2.1) implies that min

F

6�

L

max

I

and hence, by Part (b) of Lemma 4, there is a join- irreducible element j

0

of L such

that

j

0

�

L

min

F

and j

0

6�

L

max

I

:(2.2)

Moreover, we may de�ne two functions u,d from J

L

to J

L

such that for each j 2 J

L

,
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u(j) �

L

j; j

0

and d(j) �

L

j; j

0

:(2.3)

(The existence of u and d is shown as follows. By Lemma 4 (a) and (f), for every

j 2 J

L

, there is a join-irreducible j

0

2 CUP such that j �

L

j

0

. So, we may let u(j)

be any such j

0

. For the existence of d(j), note that j

0

is noncappable, so there is

some nonzero a 2 L with a �

L

j; j

0

. Now, we can take d(j) to be any element of

J(a).)

In the following, let j

0

; : : : ; j

p

be some ordering of J

L

where j

0

is chosen as

in (2.2).

We now turn to the construction of an embedding of L into R

wtt

. By a standard

in�nite injury tree argument, we construct disjoint r.e. sets A

j

(j 2 J

L

) such that

for

A

J

=

[

j2J

A

j

(J � J

L

)

the function

f : L! R

wtt

de�ned by

f(a) = deg

wtt

(A

J(a)

)

for a 2 L will be a lattice embedding of L intoR

wtt

that preserves least and greatest

elements.

Note that f(0

L

) = 0 and, for any a; b; c 2 L,

a �

L

b) f(a) �

wtt

f(b)(2.4)

and, since A

J(a)[J(b)

= A

J(a_

L

b)

,

c = a _

L

b) f(c) = f(a) _

wtt

f(b):

So, it su�ces to ensure that the function f has the following properties:

f(1

L

) = 0

0

(greatest element)(2.5)

a 6�

L

b) f(a) 6�

wtt

f(b) (nonordering)(2.6)

c = a ^

L

b) f(c) = f(a) ^

wtt

f(b) (meets)(2.7)

To satisfy these conditions, it su�ces to ensure that the sets we will construct

have the following properties:

K �

wtt

A

J

L

;(2.8)

for some wtt-complete r.e. set K,

A

j

6�

wtt

A

J

j

(2.9)

for j 2 J

L

, and

C �

wtt

A

J(a)

; A

J(b)

) C �

wtt

A

J(a)\J(b)

(2.10)

for any set C and a; b 2 L.

(Note that A

J(a)\J(b)

= A

J(a^

L

b)

, so (2.7) is a direct consequence of (2.10)

and (2.4).)
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Conditions (2.9) and (2.10) are broken up into the following diagonalization and

meet requirements, respectively (for j 2 J

L

, a; b 2 L, e = he

0

; e

1

i):

D

j;e

: A

j

6= [e]

A

J

j

M

a;b;e

: [e

0

]

A

J(a)

= [e

1

]

A

J(b)

; total) [e

0

]

A

J(a)

�

wtt

A

J(a)\J(b)

:

Let hD

n

: n � 0i and hM

n

: n � 0i be recursive listings of the D and M

requirements, respectively, and let R

2n

= M

n

and R

2n+1

= D

n

. The strategies

for both the D and M requirements will have two possible outcomes. Hence, the

priority tree of the construction is T = 2

<!

and we assign requirement R

n

to the

n-th level of T so that any strategy � with j�j = 2n (2n + 1) is a strategy for

M

n

(D

n

). We write R

�

for the requirement for which � is a strategy. As usual, a

strategy � will be allowed to act at �-stages, i.e., at stages at which its guess about

the outcomes of the higher priority strategies seems to be correct.

The strategies for satisfying (2.8) and the D and M requirements are as follows.

Condition (2.8) is ensured by direct coding: Let K be a wtt-complete r.e. set

such that K � !

[0]

and let fK[s] : s � 0g be a recursive enumeration of K such

that K[0] = ; and jK[s+ 1]�K[s]j = 1, say k

s

2 K[s+ 1]�K[s]. We will ensure

that for any s, either (by the activity of some strategy)

A

j

[s] j�k

s

+ 1 6= A

j

[s+ 1] j�k

s

+ 1

for some j 2 J

L

, or

9j 2 J

L

\ F (CUP)(k

s

2 A

j

[s+ 1]�A

j

[s]):(2.11)

Obviously, this implies (2.8).

For a meet requirement M

n

= M

a;b;e

, we have two di�erent types of strategies

depending on whether J(a) \ J(b) = ; or not. If J(a) \ J(b) = ;, we call M

n

a

minimal pair requirement, and we call M

n

a proper meet requirement otherwise.

For the proper meet requirements, we adapt Fejer's meet strategy (from [11]) to

wtt-reductions. For the minimal pair requirements, we use the standard minimal

pair technique, but impose some additional restraint.

For M

n

=M

a;b;e

(e = he

0

; e

1

i), let

l

n

[s] = maxfx : 8y < x([e

0

]

A

J(a)

(y)[s] #= [e

1

]

A

J(b)

(y)[s] #)g

be the length of agreement between [e

0

]

A

J(a)

and [e

1

]

A

J(b)

at the end of stage s.

Note that

[e

0

]

A

J(a)

= [e

1

]

A

J(b)

; total i� lim

s

l

n

[s] = ! i� lim sup

s

l

n

[s] = !:(2.12)

(Notice that for Turing reductions (2.12) in general fails.) The behavior of a

strategy � (j�j = 2n) for M

n

depends on the hypothesis of M

n

. If the hypothesis

is true, i.e., lim

s

l

n

[s] = !, then � is in�nitary (outcome 0); otherwise, it is �nitary

(outcome 1).

Now, if M

n

is a proper meet requirement, then a strategy � (j�j = 2n) for M

n

works roughly as follows: If s is the �rst stage such that x < l

n

[s] (and � has
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highest priority to act), then � de�nes a set COR(�; x)[s+1] of correction markers

for x:

COR(�; x)[s+ 1] = fhs+ 1; 2n; x; yi : 0 � y � sg;(2.13)

i.e., COR(�; x)[s + 1] consists of s + 1 numbers all greater than s and, by con-

struction, none of them has been enumerated in any set under construction by

the end of stage s. Now, after stage s, a correction marker for x will be put

into A

J(a)\J(b)

only in order to let A

J(a)\J(b)

compute [e

0

]

A

J(a)

(x) = [e

1

]

A

J(b)

(x)

(if these computations are equal and de�ned): If there are stages t and u such

that s � t � u, [e

0

]

A

J(a)

(x)[t] #= [e

1

]

A

J(b)

(x)[t] # and u is the least stage such

that [e

0

]

A

J(a)

(x)[t] #6= [e

0

]

A

J(a)

(x)[u] # and [e

1

]

A

J(b)

(x)[t] #6= [e

1

]

A

J(b)

(x)[u] #, then

the least marker in COR(�; x)[s + 1] not yet used is put into A

J(a)\J(b)

at stage

u + 1. Notice that, as x < l

n

[s], we have maxffe

0

g(x); fe

1

g(x)g < s, whence

this can happen at most s times. So, COR(�; x)[s + 1] contains su�ciently many

markers for these corrections and, moreover, assuming that [e

0

]

A

J(a)

= [e

1

]

A

J(b)

is total, for the greatest element y of COR(�; x)[s + 1] and any stage v � s, if

A

J(a)\J(b)

[v] j�y = A

J(a)\J(b)

j�y and [e

0

]

A

J(a)

(x)[v] #= [e

1

]

A

J(b)

(x)[v] #, then these

computations are correct. Since y will be computable from x, this will imply that

[e

0

]

A

J(a)

�

wtt

A

J(a)\J(b)

.

Once appointed, the set COR(�; x)[s+1] will not change during the construction

unless the strategy � is initialized. (In this case, we might de�ne a new copy of

COR(�; x) later.) We let COR(�; x)[t] be the current copy of COR(�; x) at the

end of stage t (if there is one) and we let

cor(�; x)[t] = min(COR(�; x)[t] �A

J(a)\J(b)

[t]):(2.14)

To satisfy a diagonalization requirement D

n

= D

j;e

, we use the Friedberg-

Muchnik strategy: we pick a follower x, wait for [e]

A

J

j

(x) = 0, put x into A

j

and preserve the computation [e]

A

J

j

(x) by a restraint. So, the possible outcomes

for a D

n

-strategy are either that we wait forever for [e]

A

J

j

(x) #= 0 (outcome 1) or

that we ensure that A

j

(x) = 1 6= 0 = [e]

A

J

j

(x) (outcome 0).

The restraints for the diagonalization and meet strategies are as follows: First,

by initialization of lower priority strategies, computations will be protected against

followers of diagonalization strategies and correction markers of proper meet strate-

gies of lower priority.

A second type of restraint is imposed by the diagonalization strategies to protect

their computations against the coding requirement (2.11): When a diagonalization

strategy �, j�j = 2n+ 1, D

n

= D

j;e

completes a diagonalization via follower x at

stage s + 1, it will impose restraint on A

J

u(j)

of length s + 1 (and of priority �)

to protect the computation [e]

A

J

j

(x) = 0. (Note that, by (2.3), in general, this

is more than restraining A

J

j

which would be su�cient solely for the protection of

[e]

A

J

j

(x). This stronger restraint will help the minimal pair strategies succeed.)

This restraint applies to coding only, i.e., it gives a targeting procedure for coding

numbers as in the Sacks splitting theorem.

A third type of restraint is imposed by minimal pair strategies �. This restraint

is put on at �-expansionary stages and applies to the correction markers of proper

meet strategies only. (Note that by (2.1), coding has no direct impact on the
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minimal pair strategies.) The goal of this restraint is to target the correction

markers of the in�nitary meet strategies � below � (i.e., �0 � �) into the side

which has been (possibly) destroyed at the �-expansionary stage. Here, we will

give �'s restraint priority �1 to ensure that the restraint of another minimal pair

strategy 
 above the in�nitary outcome of � (i.e., �0 � 
) has higher priority than

that of �. The � restraint will be cancelled only if � (not �1) is initialized.

These minimal pair restraints are further supported by ensuring that any meet

requirement M

a;b;e

with j

0

2 J(a) \ J(b) will correct above j

0

so that correction

markers for such requirements cannot enter either side of the minimal pair strate-

gies.

Finally, to have a better way of controlling the side e�ects on correction markers

of K-coding or diagonalizations, at each stage of the construction we put numbers

into exactly one set A

j

.

We now turn to the formal construction:

�-stages s and, for meet strategies �, �-expansionary stages s and the certi�ed

length function l

�

[s] of � at the end of stage s are de�ned by induction on s and

j�j as follows:

s = 0. Stage 0 is an �-stage for all � and �-expansionary for all � with j�j even.

For the latter, l

�

[0] = 0.

s > 0. Stage s is a �-stage (where � is the empty string). If j�j is even, i.e., R

�

is a meet requirement M

n

=M

a;b;e

(e = he

0

; e

1

i), then

l

�

[s] = l

n

[s]

if M

n

is a minimal pair requirement and

l

�

[s] =maxfx : 8y < x([e

0

]

A

J(a)

(y)[s] #= [e

1

]

A

J(b)

(y)[s] #

^ (cor(�; y)[t+ 1] #! [[e

0

]

A

J(a)

(y)[s] = [e

0

]

A

J(a)

(y)[t] _

[e

1

]

A

J(b)

(y)[s] = [e

1

]

A

J(b)

(y)[t] _

A

J(a)\J(b)

[t] j�cor(�; y)[t+ 1] + 1 6= A

J(a)\J(b)

[s] j�cor(�; y)[t+ 1] + 1

_ � has been initialized at some stage v with t+ 1 < v � s]

where t is the greatest �-expansionary stage < s)g

(2.15)

if M

n

is a proper meet requirement. Moreover, for � as above such that s is an

�-stage, we say s is �-expansionary if

l

�

[s] > maxfl

�

[t] : t < s ^ t is an �-stageg;

s is an �0-stage if s is �-expansionary, and s is an �1-stage, otherwise. (The

purpose of the seemingly complicated de�nition in (2.15) is to ensure that if s is

an �-expansionary stage for some proper meet strategy �, then no correction for

� is needed at stage s + 1.) Finally, if s is an �-stage, with j�j odd, i.e., R

�

is a

diagonalization requirement D

n

= D

j;e

, then s is an �0- stage if there is a follower

x of � at the end of stage s such that x 2 A

j

[s]; otherwise, s is an �1-stage.

We say that � is accessible at stage s+ 1 if s is an �-stage and j�j � s and we

let �[s] be the unique string of length s accessible at stage s+ 1.
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A strategy � requires attention at stage s + 1 if one of the following two cases,

depending on the type of R

�

, applies:

Case 1: R

�

is a diagonalization requirement D

n

= D

j;e

and one of the following

holds:

� � �[s] and � has no follower.(2.16)

� � �[s] and there is an �-follower x such that A

j

(x) = [e]

A

J

j

(x) = 0[s].

(2.17)

� � �[s] and k

s

is less than the current � restraint.(2.18)

Case 2: R

�

is a proper meet requirementM

n

=M

a;b;e

and there is a number y

such that

� � �[s] ^ s > 0 ^ cor(�; y)[t+ 1] #� k

s

^ [e

0

]

A

J

(a)

(y)[s] #6= [e

0

]

A

J

(a)

(y)[t]

^ [e

1

]

A

J(b)

(y)[s] #6= [e

1

]

A

J(b)

(y)[t]

^A

J(a)\J(b)

[s] j�cor(�; y)[t+ 1] + 1 = A

J(a)\J(b)

[t] j�cor(�; y)[t+ 1] + 1

^ � has not been initialized at any stage v with t+ 1 < v � s;

where t is the greatest �-expansionary stage less than s.

(2.19)

Note that in (2.18), we only require � � �[s], while in (2.16), (2.17) and (2.19)

we require � � �[s].

If we initialize a strategy, we cancel all parameters associated with the strat-

egy. Otherwise, a parameter of a strategy at some stage will be unchanged at the

following stages unless we explicitly rede�ne it.

Construction.

Stage 0: Initialize all strategies.

Stage s + 1: The stage consists of four steps. A number can enter a set only in

Step 1.

Step 1: Fix � (if there is any) minimal such that � requires attention and

distinguish the following cases.

Case 1: R

�

is a diagonalization requirement D

n

= D

j;e

. Distinguish the follow-

ing two subcases depending on the clause via which � requires attention. In either

case, initialize all strategies � with � < �.

Case 1.1: (2.16) or (2.18) holds. Put k

s

into A

u(j)

. If (2.16) holds, appoint

hs+ 1; 2n+ 1; 0i as an �-follower.

Case 1.2: (2.17) holds. If k

s

< x, put k

s

into A

u(j)

. Otherwise, put x into A

j

and impose an �- restraint of length s+ 1 (and priority �) on A

J

u(j)

.

Case 2: R

�

is a proper meet requirement M

n

= M

a;b;e

. Fix the least y for

which (2.19) holds and let c = cor(�; y)[t + 1]. Distinguish the following two

subcases. In either case, initialize every strategy � with �1 � �.

Case 2.1: j

0

2 J(a) \ J(b). Put c into A

j

0

.
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Case 2.2: Otherwise. Fix �1 minimal such that � is a minimal pair strategy

which imposes a restraint > c on a set A

J

d(j)

with d(j) 2 J(a) \ J(b). Put c into

A

d(j)

. If no such � exists, put c into the least j 2 J(a) \ J(b).

Case 3: No � requires attention. Put k

s

into A

j

0

and initialize all strategies �

with �[s] � �.

Step 2: Let j be the unique element of J

L

such that a number enters A

j

at step

1. Call s+ 1 a j-stage.

Step 3: Let � (j�j = 2n, M

n

= M

a;b;e

) be any proper meet strategy that has

not been initialized in Step 1 and such that �0 � �[s]. For any x < l

�

[s] such

that COR(�; x) is not de�ned at the end of stage s, de�ne COR(�; x)[s + 1] and

cor(�; x)[s + 1] by (2.13) and (2.14), respectively.

Step 4: Let � (j�j = 2n, M

n

= M

a;b;e

) be any minimal pair strategy that

has not been initialized in Step 1 and such that �0 � �[s]. Cancel any previous

�-restraint (if any) and impose a new �-restraint on A

J

d(j)

of length s+1 (for j as

in step 2).

This completes the construction.

Veri�cation. Let f be the true path of the construction, i.e., the leftmost path

such that for every n

9

1

s(f j�n � �[s])

and let s

n

be a stage such that, for every s � s

n

, f j�n � �[s].

Note that elements of K, followers of diagonalization strategies and correction

markers for proper meet requirements are all of di�erent forms (namely h0;�i,

hs+1; 2n+1; 0i, and hs+1; 2n;�;�i, respectively). Moreover, for di�erent (�; x),

the sets COR(�; x) are mutually disjoint (and so are di�erent copies of COR(�; x)

de�ned at di�erent stages following initialization of �). So if, in Step 1 of stage s+1,

we say that we put a number x into A

j

, then this number is not in any of the sets

A

j

0

[s], j

0

2 J

L

; in particular, x 2 A

j

[s + 1]� A

j

[s]. It follows that fA

j

jj 2 J

L

g is

a disjoint family of sets.

Note also that if � requires attention at stage s+1 by Case 2 and y and t are as

in (2.19), then l

�

[s] � y. Since cor(�; y)[t+ 1] #, there must be an �-expansionary

stage t

0

< s with y < l

�

[t

0

]. Thus, s is not �-expansionary.

Claim 1. K �

wtt

A

J

L

.

Proof. Since at any stage s+1 a number x � k

s

enters one of the sets A

j

, the claim

follows by permitting.

Claim 2. Let � � f .

(1) � is initialized only �nitely often.

(2) If R

�

is a diagonalization requirement, then � requires attention only

�nitely often and the restraint for � goes to a (�nite) limit.

(3) If R

�

is a proper meet requirement and �1 � f , then � requires attention

only �nitely often.

Proof. Routine.

Claim 3. For all j 2 J

L

and e, D

j;e

is met.
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Proof. Fix � � f such that j�j = 2n + 1 and D

n

= D

j;e

. By Claim 2, let t be

the last stage at which � was initialized. Again by Claim 2, � requires attention

only �nitely often. Since there are in�nitely many stages s with � � �[s], we may

conclude that there is a least stage u � t such that a follower x for � is appointed

at stage u+ 1 and that this follower is permanent. Now, distinguish two cases:

Case 1: x 2 A

j

.

Fix v > u such that x enters A

j

at stage v + 1. Then, by (2.17), [e]

A

J

j

(x)[v] = 0,

and, at stage v + 1, all strategies � with � < � are initialized, and � imposes a

restraint on A

J

u(j)

of length v + 1. So it su�ces to show that

A

J

j

[v] j�v + 1 = A

J

j

j�v + 1:

We will show more, namely

8y < v + 1(y 2 A

J

L

�A

J

L

[v]! y 2 A

j

[A

u(j)

):(2.20)

For a proof of (2.20), we �rst note that, since � is not initialized after v, no di-

agonalization strategy � with � < � and no proper meet strategy � with �1 � �

receives attention after stage v. It follows that for no w � v do we have �[w] < �.

Moreover, since at stage v + 1, all strategies � with � > � are initialized, we may

conclude that the only numbers y < v + 1 which can enter A

J

L

after stage v are

elements of K, followers of �, or correction markers of proper meet strategies �

with �0 � �. Now, no number from K enters A

J

L

at stage v + 1 and, by �'s

restraint which is permanent from stage v + 1 on, elements y of K with y < v + 1

that enter A

J

L

later enter A

u(j)

. Since x is permanent, it is �'s only follower after

v and it enters A

j

. This leaves the correction markers. For a contradiction, assume

that s + 1 is the least stage > v + 1 at which a correction marker y < v + 1 of a

meet strategy � with �0 � � { say j�j = 2m and M

m

= M

a;b;e

{ enters a set A

j

0

with j

0

6= j; u(j). Let s

0

be the greatest �-expansionary stage less than s. Then,

by construction, there must be numbers z

a

; z

b

< y < v + 1 that entered A

J(a)

and

A

J(b)

, respectively, after stage s

0

and before stage s+1, but no number < y entered

A

J(a)\J(b)

at such a stage. Since, by �0 � �, v is �-expansionary, i.e., v � s

0

, it

follows from minimality of s that z

a

and z

b

entered A

j

or A

u(j)

. Since j �

L

u(j),

this implies z

a

2 A

J(a)\J(b)

or z

b

2 A

J(a)\J(b)

, a contradiction.

Case 2: x 62 A

j

.

It su�ces to show that we don't have [e]

A

J

j

(x) = 0. For a contradiction, assume

that [e]

A

J

j

(x) = 0. Then, � will require attention in�nitely often via (2.17) and x.

This contradicts Claim 2.

Claim 4. Let M

n

=M

a;b;e

with e = he

0

; e

1

i and assume that

[e

0

]

A

J(a)

= [e

1

]

A

J(b)

= g is total.(2.21)

Then, (f j�2n)0 � f .

Proof. Let � = f j�2n. Then, there are in�nitely many �-stages and, by (2.21)

and (2.12),

lim

s

l

n

[s] =1:(2.22)

So, if M

n

is a minimal pair requirement, there are in�nitely many �-expansionary

stages, whence, �0 � f . So, without loss of generality, we may assume thatM

n

is a
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proper meet requirement and, for a contradiction, that �1 � f . Then, by Claim 2,

we may choose t such that no stage > t is �-expansionary and at no such stage

does � require attention. By (2.22), choose an �-stage s > t such that

l

n

[s] > maxfl

n

[u] : u < s ^ u is an �-stageg

and such that

K

s

j�N = K j�N

where N is the largest number ever assigned to be a correction marker for �. (There

are only �nitely many numbers ever assigned to be correction markers for � since

such markers are only assigned at �-expansionary stages.) By de�nition, either s

is �-expansionary or � requires attention at stage s + 1. But this contradicts the

choice of t.

Claim 5. Let u; t; �; j be given such that

R

�

is a minimal pair requirement.(2.23)

�0 � �[u](2.24)

u+ 1 is a j-stage.(2.25)

u < t:(2.26)

� is not initialized at any stage v with u < v � t.(2.27)

No stage v with u < v < t is �-expansionary.(2.28)

Then

8j

0

2 J

L

(j

0

6�

L

j

0

^ j

0

6= d(j)! A

j

0

[u+ 1] j�u+ 1 = A

j

0

[t] j�u+ 1)(2.29)

and

d(j) 6= j

0

! A

d(j)

[u+ 1] j�minfy; u+ 1g = A

d(j)

[t] j�minfy; u+ 1g:(2.30)

where y is the unique number that enters A

j

at stage u+ 1.

Proof. The proof is by induction on u. Fix a; b; e such that R

�

=M

a;b;e

. By (2.25)

and our choice of y,

A

j

[u+ 1]�A

j

[u] = fyg and A

j

0

[u] = A

j

0

[u+ 1] for j

0

6= j:

Moreover, at stage u + 1, � imposes a target restraint for correction markers on

A

J

d(j)

of length u+ 1, all strategies � with �0 <

L

� are initialized at stage u+ 1,

and, since � is not initialized at any stage v with u < v � t, no diagonalization

strategy � with � � � and no proper meet strategy � with �1 � � acts at such

a stage. So, the only strategies that can act at stage u + 1 are strategies � with

�0 � � and the only strategies that can act at a stage v+1 with u+1 < v+1 � t

are proper meet strategies � with �0 � �, diagonalization strategies 
 with �0 � 


that are receiving attention via (2.18), and strategies � with �0 <

L

�.
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Now, for a contradiction, assume that (2.29) or (2.30) fails. Fix v with t �

v+1 > u+1 minimal witnessing the failure of (2.29) or (2.30) and pick the unique

j

0

and z such that

j

0

6�

L

j

0

^ j

0

6= d(j) ^ z � u ^ z 2 A

j

0

[v + 1]�A

j

0

[v](2.31)

or

j

0

= d(j) ^ d(j) 6= j

0

^ z < minfy; u+ 1g ^ z 2 A

j

0

[v + 1]�A

j

0

[v]:(2.32)

Since j

0

6�

L

j

0

, z is not a coding number. Moreover, since at stage v + 1 only

diagonalization strategies 
 with �0 <

L


, i.e., strategies which have been initialized

at stage u+ 1, can become active via (2.17), z is too small to be a follower. So, z

is a correction marker of a proper meet strategy � with �0 � �. (The correction

markers of �'s with �0 <

L

� are too big for z and no other proper meet strategies

may act.)

Fix c; d; e

0

= he

0

0

; e

0

1

i such that R

�

= M

c;d;e

0

and let u

0

be the greatest �-

expansionary stage < v. Note that, as �0 � �, u

0

� u. Let z = cor(�;w)[u

0

+ 1].

Then, [e

0

0

]

A

J(c)

(w)[u

0

] #= [e

0

1

]

A

J(d)

(w)[u

0

] # and the use in both computations is � z.

By the end of stage v, both of these computations have been destroyed, so we may

take m

c

;m

d

< z � u with m

c

2 A

J(c)

[v]� A

J(c)

[u

0

] and m

d

2 A

J(d)

[v]�A

J(d)

[u

0

].

By minimality of v and the fact that u

0

� u, m

c

either entered some A

j

00

with

j

00

�

L

j

0

, or m

c

entered A

d(j)

, or m

c

= y and m

c

entered A

j

at stage u+ 1. The

same is true for m

d

. We now consider six cases and derive a contradiction in each

one. Often, the contradiction will be \self-correction", namely, showing that either

m

c

or m

d

is in A

J(c)\J(d)

. This is a contradiction because then � does not require

attention at stage v + 1 through w.

Case 1: j

0

2 J(c) \ J(d).

By Case 2.1 of the construction, z will enter A

j

0

, a contradiction.

Case 2: j

0

62 J(c) [ J(d).

Since J(c) and J(d) are downwards closed subsets of J

L

, no j

00

with j

00

�

L

j

0

is

in J(c) or J(d). Thus, m

c

enters either A

j

or A

d(j)

and the same holds for m

d

.

Since d(j) �

L

j, d(j) 2 J(c) \ J(d), so if either m

c

or m

d

enters A

d(j)

, we get

self-correction. If m

c

;m

d

both enter A

j

(so m

c

= m

d

= y), then j 2 J(c) \ J(d),

and we again have self-correction.

Case 3: j 2 J(c) \ J(d).

By Case 1 and symmetry, w.l.o.g. j

0

62 J(c) and, hence, no j

00

�

L

j

0

is in J(c).

Thus, m

c

enters either A

j

or A

d(j)

. Since d(j) �

L

j and j 2 J(d), m

c

also enters

A

J(d)

and we have self-correction.

Case 4: j 62 J(c) [ J(d).

By Cases 1 and 2, w.l.o.g. j

0

is in exactly one of the sets J(c); J(d), say j

0

2

J(c) � J(d). Then, m

d

enters A

d(j)

. Since d(j) �

L

j

0

, m

d

is also in A

J(c)

, and we

have self- correction.

Case 5: j; j

0

2 J(c)� J(d) or j; j

0

2 J(d)� J(c).

By symmetry, we need only consider the former possibility. As in Case 4, m

d

must

enter A

d(j)

and hence also enters A

J(c)

.
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Case 6: Otherwise.

By symmetry, we may assume that

j

0

2 J(c)� J(d) and j 2 J(d)� J(c):

Since, for j

00

with j

00

�

L

j

0

, j

00

62 J(d), it follows from minimality of v+1 that only

numbers � minfy; u+1g have entered A

J(d)

since the last �-expansionary stage u

0

and before stage v + 1. Thus, z � minfy; u+ 1g, so minfy; u+ 1g � z � u. This

implies minfy; u+ 1g = y and hence z � y. Thus, (2.32) fails.

Now, since � is not initialized after stage u and before stage t + 1 and since u

is the greatest �-expansionary stage less than t, the target restraint of � of length

u+1 > z imposed on A

J

d(j)

at stage u+1 is still in force at stage v+1. Moreover, by

case assumption, d(j) 2 J(c)\J(d). So, the fact that z does not enter A

d(j)

implies

that there is a minimal pair strategy �

0

with �

0

1 < �1 and with valid restraint of

length l > z on some A

d(j

00

)

with j

00

6= j.

Now, �

0

1 < �1 implies that either �

0

<

L

�, �0 � �

0

, or �

0

1 � �. If �0 � �

0

,

then every �

0

-expansionary stage is an �-expansionary stage and hence there are

no such stages > u and < v + 1. If either of the other two possibilities holds, then

at any �

0

-expansionary stage, � would be initialized. Thus, if u

00

is the greatest

�

0

-expansionary stage < v + 1, we have u

00

� u and hence, by j

00

6= j, u

00

< u.

So, (2.23)-(2.28) hold for u

00

; v; �

0

and j

00

in place of u; t; � and j. Since y < l =

u

00

+1, it follows, by inductive hypothesis, from (2.29) (for u

00

; v; �

0

and j

00

in place

of u; t; �, and j) that y enters A

d(j

00

)

at stage u+1, whence j = d(j

00

). So, j �

L

j

0

,

contrary to case assumption.

Claim 6. For all a; b 2 L and e = he

0

; e

1

i, M

a;b;e

is met.

Proof. Fix n and � such thatM

n

=M

a;b;e

and � is the strategy forM

n

on the true

path f . Moreover, w.l.o.g. assume that (2.21) holds so that, by Claim 4, �0 � f .

By Claim 2, �x s

�

minimal such that � is not initialized after this stage. By �0 � f ,

there are in�nitely many stages s with �0 � �[s]. So, for each x, we can let s

�;x

be the least stage � s

�

such that �0 � �[s

�;x

] and l

�

[s

�;x

] > x. Now, distinguish

the following two cases depending on whetherM

n

is a proper meet or minimal pair

requirement.

Case 1: J(a) \ J(b) 6= ;.

By choice of s

�;x

,

[e

0

]

A

J(a)

(x)[s

�;x

] = [e

1

]

A

J(b)

(x)[s

�;x

] #

and the set

COR(�; x)[s

�;x

+ 1] = fhs

�;x

+ 1; 2n; x; yi : 0 � y � sg

of correction markers de�ned at stage s

�;x

+ 1 will be permanent. So for any two

consecutive �-expansionary stages u and v with s

�;x

� u < v,

[e

0

]

A

J(a)

(x)[u] = [e

1

]

A

J(b)

(x)[u] = [e

0

]

A

J(a)

(x)[v] = [e

1

]

A

J(b)

(x)[v]

unless

A

J(a)\J(b)

[u] j�m(x) 6= A

J(a)\J(b)

[v] j�m(x)

where

m(x) = max(COR(�; x)[s

�;x

+ 1]) + 1:
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So,

g(x) = [e

0

]

A

J(a)

(x) = [e

0

]

A

J(a)

(x)[t

x

];

where

t

x

= �s > s

�;x

(A

J(a)\J(b)

[s] j�m(x) = A

J(a)\J(b)

j�m(x) and s is �-expansionary);

whence, g �

wtt

A

J(a)\J(b)

.

Case 2: J(a) \ J(b) = ;.

We will show that

g(x) = [e

0

]

A

J(a)

(x)[s

�;x

]:(2.33)

Obviously, this will imply that g is recursive.

To prove (2.33), it su�ces to show that for any two consecutive �-expansionary

stages u and v with v > u � s

�;x

,

[e

0

]

A

J(a)

(x)[u] = [e

0

]

A

J(a)

(x)[v]:

Since, by choice of v and u,

[e

0

]

A

J(a)

(x)[u] = [e

1

]

A

J(b)

(x)[u] and [e

0

]

A

J(a)

(x)[v] = [e

1

]

A

J(b)

(x)[v]

this will follow from

A

J(a)

[u] j�u+ 1 = A

J(a)

[v] j�u+ 1 or A

J(b)

[u] j�u+ 1 = A

J(b)

[v] j�u+ 1:

But this is immediate by Claim 5. (Since J(a)\J(b) = ;, if u+1 is a j-stage, then

for some c 2 fa; bg, d(j) 62 J(c). If j

0

�

L

j

0

, then j

0

�

L

d(j), so j

0

62 J(c). Thus,

by (2.29) and the fact that j 62 J(c) (so no number enters A

J(c)

at stage u + 1),

A

J(c)

[u] j�u+ 1 = A

J(c)

[v] j�u+ 1.)

3. The Two-Quantifier Decision Procedure

In this section, we show how the characterization given in the last section of

the �nite lattices lattice-embeddable into R

wtt

preserving 0 and 1, together with

an already known extension-of-embeddings result, can be used to give a decision

procedure for the two-quanti�er theory of R

wtt

in the language f�; 0; 1g. We will in

fact formulate general conditions under which a distributive upper semi-lattice has

a decidable two-quanti�er theory and we will use these general conditions to show,

using results already in the literature, that several complexity-theoretic structures

also have decidable two-quanti�er theories.

In order to give our decision procedure, we must �rst develop some algebraic

background.

Lemma 5. Let U = (U;�

U

) be an upper semi-lattice and let S be a �nite subset

of U . Then, the closure of S in U under join is �nite.

Proof. Let S

0

= f

W

F j; 6= F � Sg. Then S

0

is closed under join, since (

W

F ) _

(

W

F

0

) =

W

(F [ F

0

), and contains S, so it follows that S

0

is the closure of S under

join, and S

0

is �nite.

The following result is known in lattice theory. (It is for instance Exercise 2 on

page 146 of [8] and follows from Theorem 1 on page 80 of [13].)
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Lemma 6. Let L be a distributive lattice and let S be a �nite subset of L which

generates L under join and meet. Then, jLj � 2

2

jSj

.

If U = (U;�

U

) is an upper semi-lattice, we let ID

U

denote the set of ideals of U

and I

U

denote the structure (ID

U

;�). For each a 2 U , # a denotes fb 2 U jb �

U

ag,

which is easily seen to be in ID

U

. The ideal # a is called the principal ideal generated

by a.

Part (a) of the following lemma, in the case that U is a distributive lattice, goes

back to Stone [24]. (See for example Theorem 7 on page 141 of [8].) It is no harder

to show the result when U is just a distributive upper semi-lattice, and this is done

in the proof of Proposition VI.1.11 in Odifreddi [19]. The other two parts are easy

to show.

Lemma 7. Let U be a distributive upper semi-lattice with least element. Then:

(a) I

U

is a distributive lattice. If I; J 2 ID

U

, then I ^

I

U

J = I \ J and

I _

I

U

J = fa _

U

bja 2 I and b 2 Jg.

(b) I

U

has least element f0

U

g and greatest element U .

(c) The mapping � : U ! I

U

given by �(a) = # a is a usl embedding which

preserves 0 and 1.

Lemma 8. Let U be an upper semi-lattice with least and greatest elements and let

I be an ideal of U .

(a) If I is cuppable (in I

U

), then some element of I is cuppable (in U).

(b) If I is cappable (in I

U

), then every element of I is cappable (in U).

Proof. First suppose that I 2 ID

U

is cuppable in I

U

, say I_

I

U

J = U with J 2 ID

U

,

J 6= U . Then 1

U

2 I _

I

U

J , so 1

U

= a _

U

b for some a 2 I; b 2 J . Since b 2 J ,

b 6= 1

U

, so a 2 I is cuppable.

Now, suppose that I 2 ID

U

is cappable. Then, there is J 2 ID

U

, J 6= f0

U

g, with

I \ J = f0

U

g. Take b 2 J , b 6= 0

U

. For every a 2 I , if c 2 U and c �

U

a; b, then,

since I and J are closed downwards, c 2 I \J , so c = 0

U

. Thus, a^

U

b = 0

U

, which

means that a is cappable.

Lemma 9. In I

R

wtt

, I(CAP ) \ F (CUP ) = ;.

Proof. Let I = I

R

wtt

and suppose, for a contradiction, that I is an ideal of R

wtt

that is in I(CAP

I

) \ F (CUP

I

). Since I 2 I(CAP

I

), there are ideals J

1

; : : : ; J

k

(k > 0) of R

wtt

that are cappable in I such that I � J

1

_

I

� � � _

I

J

k

. Hence, every

element of I can be expressed as a

1

_

wtt

� � � _

wtt

a

k

with a

i

2 J

i

for 1 � i � k.

By Lemma 8(b), each a

i

is cappable in R

wtt

. Since, by Lemma 3, the cappable

elements of R

wtt

are an ideal, it follows that each element of I is cappable.

Since I 2 F (CUP

I

), there are ideals K

1

; : : : ;K

r

(r > 0) of R

wtt

that are

cuppable in I such that K

1

\ � � � \K

r

� I . By Lemma 8(a), each K

i

, 1 � i � r,

contains an element cuppable in R

wtt

, say b

i

. Since, by Lemma 3, each cuppable

element ofR

wtt

is noncappable, each b

i

is noncappable. We claim that K

1

\� � �\K

r

contains a noncappable element. Indeed, set c

1

= b

1

and suppose that 1 � j < r

and we have c

j

a noncappable element of R

wtt

with c

j

2 K

`

for 1 � ` � j. Since,

again by Lemma 3, the noncappable elements of R

wtt

from a strong �lter, there is
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a noncappable element c

j+1

of R

wtt

with c

j+1

�

wtt

c

j

; b

j+1

. Since the K

i

's are all

ideals of R

wtt

, c

j+1

2 K

`

for 1 � ` � j + 1. The element c

r

constructed by this

process is noncappable and is in K

1

\ � � �\K

r

� I . This contradicts the conclusion

of the previous paragraph that every element of I is cappable.

Lemma 10. Let U be an upper semi-lattice with least and greatest elements such

that the diamond lattice can be lattice-embedded into I

U

preserving 0 and 1. Then,

the diamond lattice can be lattice-embedded into U preserving 0 and 1.

Proof. If the diamond lattice can be lattice-embedded into I

U

preserving 0 and 1,

there are ideals I and J of U , neither equal to U , such that I _

I

U

J = U and

I \ J = f0

U

g. There must be x 2 I; y 2 J with x _

U

y = 1

U

and, since I; J are

not equal to U , x; y are not equal to 1

U

. If z 2 U is such that z �

U

x; y, then

z 2 I \ J , so z = 0

U

. Thus, x ^

U

y = 0

U

. It follows that the diamond lattice can

be lattice-embedded into U preserving 0 and 1.

The following pullback lemma is due to Ershov [10]. It is Proposition VI.1.12 of

Odifreddi [19].

Lemma 11. If U is a distributive upper semi-lattice with least element, S is a

nonempty �nite subset of U closed under join, and L = (L;�

I

U

j�L) is the sublattice

of I

U

generated by �(S) (where � is the canonical embedding of Lemma 7(c)), then

there is a sub-upper semi-lattice L

0

of U such that S � L

0

and L

0

is isomorphic to

L by an isomorphism that extends � j�S.

An important step in determining the two-quanti�er theory of a poset U is to

solve an extension-of-embeddings problem appropriate for U . When U has distinct

least and greatest elements, the appropriate extension-of-embeddings problem for U

is the 0,1-extension-of-embeddings problem, which we now describe. An instance of

the 0; 1-extension-of-embeddings problem is a pair (X ;Y) of �nite bounded posets

such that X �

0;1

Y and 0

X

6= 1

X

. If U is a bounded poset, a positive instance

of the 0; 1-extension-of-embeddings problem for U is an instance (X ;Y) of the 0,1-

extension-of-embeddings problem such that every partial-order embedding of X

into U preserving 0 and 1 can be extended to a partial-order embedding of Y into

U . In Fejer-Shore [12], it is shown that an instance (X ;Y) of the 0,1-extension-

of-embeddings problem is a positive instance for R

wtt

if and only if the following

condition is met:

There are no subsets A and B of X such that, in X , every upper bound

for A is greater than or equal to every lower bound for B, but, in Y ,

there is an upper bound z for A and a lower bound z

0

for B such that

z

0

6�

Y

z.

(3.1)

If (X ;Y) is an instance of the 0,1-extension-of-embeddings problem and X is a

lattice, we claim that condition (3.1) is equivalent to the following condition:

For all x

1

; x

2

2 X , and y 2 Y , if x

1

; x

2

�

Y

y, then x

1

_

X

x

2

�

Y

y, and,

if x

1

; x

2

�

Y

y, then x

1

^

X

x

2

�

Y

y.

(3.2)
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To see this, �rst suppose that (3.1) holds. If x

1

; x

2

2 X; y 2 Y and x

1

; x

2

�

Y

y,

take A = fx

1

; x

2

g; B = fx

1

_

X

x

2

g. Then, in X , every upper bound for A is greater

than or equal to every lower bound for B, and, in Y , y is an upper bound for A

and x

1

_

X

x

2

is a lower bound for B, so, by (3.1), x

1

_

X

x

2

�

Y

y. The other half

of (3.2) is shown similarly.

Conversely, suppose that condition (3.2) holds and that A and B are subsets of

X such that, in X , every upper bound for A is greater than or equal to every lower

bound for B. Then,

W

X

A �

X

V

X

B. If, in Y , z is an upper bound for A and z

0

is a lower bound for B, then, by (3.2), z �

Y

W

X

A �

Y

V

X

B �

Y

z

0

. Thus, (3.1)

holds.

From the point of view of two-quanti�er decision procedures, the important facts

about condition (3.2) are that it is e�ective and that the following lemma holds.

Lemma 12. Let (X ;Y) be a pair of �nite partial orders such that X � Y and X

is a lattice, let U be a poset and let f be a lattice embedding of X into U . Then, if

there is a poset embedding f

0

of Y into U that extends f , (X ;Y) satis�es (3.2).

Proof. The result is immediate.

With these lemmas out of the way, we can state a general result which gives a

decision method for the two-quanti�er theory of many of the bounded distributive

upper semi-lattices that occur in recursion and complexity theory.

Theorem 13. Let U be a bounded, distributive upper semi-lattice such that

� if X is a �nite lattice that can be lattice-embedded into U preserving 0 and

1 and (X ;Y) is an instance of the 0,1-extension-of-embeddings problem

satisfying (3.2), then (X ;Y) is a positive instance of the 0,1-extension-of-

embeddings problem for U ,

� if a �nite lattice can be lattice-embedded into I

U

preserving 0 and 1, then

it can be lattice-embedded into U preserving 0 and 1,

and let ' = 8x

1

� � � 8x

n

9y

1

� � � 9y

m

 be a sentence over the language f�; 0; 1g with

 quanti�er-free and x

1

; : : : ; x

n

; y

1

; : : : ; y

m

all distinct. Then, U j= ' if and only

if the following condition is met:

for every �nite lattice L that can be lattice- embedded into U preserv-

ing 0 and 1 and each n-tuple ~a = (a

1

; : : : ; a

n

) of elements of L such

that fa

1

; : : : ; a

n

; 0

L

; 1

L

g generates L under join and meet, there exists a

bounded poset P and an m-tuple

~

b = (b

1

; : : : ; b

m

) of elements of P such

that:

� jP � Lj � m,

� L �

0;1

P,

� (L;P) satis�es (3.2), and

� P j=  [~a;

~

b].

(3.3)

Proof. First suppose that U j= '. We show that (3.3) holds. Let L be a �nite lattice

that can be lattice-embedded into U preserving 0 and 1, and let ~a = (a

1

; : : : ; a

n

) be

an n-tuple of elements of L. Fix a lattice embedding f of L into U that preserves 0

and 1. Since U j= ', there is anm-tuple

~

b

0

= (b

0

1

; : : : ; b

0

m

) of elements of U such that

U j=  [f(~a);

~

b

0

]. Let P

0

= f(L)[fb

0

1

; : : : ; b

0

m

g and de�ne P

0

= (P

0

;�

U

j�P

0

). Since f

preserves 0 and 1, 0

U

; 1

U

2 P

0

, so P

0

is a substructure of U when U is considered as a
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structure for the language f�; 0; 1g. Since  is quanti�er-free, P

0

j=  [f(~a);

~

b

0

]. We

now construct P to be an isomorphic copy of P

0

which contains L in the same way

that P

0

contains f(L). To be precise, let T be a set of objects not in L of cardinality

jfb

0

i

j1 � i � m and b

0

i

62 f(L)gj and let g : T ! fb

0

i

j1 � i � m and b

0

i

62 f(L)g be a

bijection. Let P = L [ T and de�ne f

0

: P ! P

0

by

f

0

(z) =

(

f(z) if z 2 L

g(z) if z 2 T .

Then, f

0

is a bijection. De�ne P = (P;�

P

) where z �

P

w if and only if f

0

(z) �

U

f

0

(w) and let

~

b = ((f

0

)

�1

(b

0

1

); : : : ; (f

0

)

�1

(b

0

m

)). We show that P and

~

b are as

desired. We have P a bounded poset and

~

b an m-tuple of elements of P . We also

have L � P and jP � Lj = jT j � m. If x; y 2 L, then x �

P

y is equivalent to

f

0

(x) �

U

f

0

(y), which in turn is equivalent to f(x) �

U

f(y) and, since f is a lattice

embedding, this last is equivalent to x �

L

y. Thus, L � P . Since f preserves 0

and 1, 0

P

= 0

L

and 1

P

= 1

L

, so L �

0;1

P . Also, the lattice embedding f of L into

U can be extended to a poset embedding f

0

of P into U , so, by Lemma 12, (L;P)

satis�es (3.2). Finally, P is isomorphic to P

0

via f

0

, P

0

j=  [f(~a);

~

b

0

], f

0

(a

i

) = f(a

i

)

(since a

i

2 L) for 1 � i � n, and f

0

(b

i

) = f

0

((f

0

)

�1

(b

0

i

)) = b

0

i

for 1 � i � m, so

P j=  [~a;

~

b], as desired.

Now, suppose that (3.3) holds. We show that U j= ', i.e., that for every n-tuple

~a

0

= (a

0

1

; : : : ; a

0

n

) of elements of U , there is an m-tuple

~

b

0

= (b

0

1

; : : : ; b

0

m

) of elements

of U such that U j=  [~a

0

;

~

b

0

]. Let ~a

0

= (a

0

1

; : : : ; a

0

n

) be an n-tuple of elements of U

and let S be the closure in U of fa

0

1

; : : : ; a

0

n

; 0

U

; 1

U

g under join. By Lemma 5, S is

�nite. Let � be the canonical embedding of U into I

U

and let L = (L;�) be the

sublattice of I

U

generated by �(S). By Lemma 6 and the fact that I

U

is distributive,

L is �nite. Since S contains 0

U

and 1

U

and � preserves 0 and 1, L contains 0

I

U

and 1

I

U

, so the identity map is a lattice embedding of L into I

U

preserving 0 and

1. By the second hypothesis on U , L can be lattice-embedded into U preserving 0

and 1. De�ne an n- tuple ~a = (a

1

; : : : ; a

n

) of elements of L by a

i

= �(a

0

i

). Since

fa

0

1

; : : : ; a

0

n

; 0

U

; 1

U

g generates S under join, � preserves joins, 0, and 1, and �(S)

generates L under join and meet, it follows easily that fa

1

; : : : ; a

n

; 0

L

; 1

L

g generates

L under join and meet. Thus, by (3.3), there is a bounded poset P = (P;�

P

) and

an m-tuple of elements

~

b = (b

1

; : : : ; b

m

) of P such that jP � Lj � m, L �

0;1

P ,

(L;P) meets condition (3.2) and P j=  [~a;

~

b]. Then, (L;P) is an instance of the 0,1-

extension-of- embeddings problem satisfying condition (3.2), so, (L;P) is a positive

instance for U , by the �rst hypothesis on U . By Lemma 11, there is a subset L

0

of U which contains S and a function �

0

: L

0

! L which extends � j�S and is an

isomorphism of (L

0

;�

U

j�L

0

) with L. Since (�

0

)

�1

: L ! U is a poset embedding

(although not necessarily a lattice embedding) of L into U which preserves 0 and

1 and (L;P) is a positive instance of the 0,1-extension-of-embeddings problem for

U , there is a poset embedding �

00

: P ! U of P into U which extends (�

0

)

�1

. Let

~

b

0

= (�

00

(b

1

); : : : ; �

00

(b

m

)). Since  is quanti�er-free and �

00

is a poset embedding

which preserves 0 and 1, U j=  [�

00

(~a); �

00

(

~

b)]. By de�nition, �

00

(

~

b) =

~

b

0

. For

1 � i � n, a

i

= �(a

0

i

) and a

0

i

2 S. Since �

0

extends � j�S, a

i

= �

0

(a

0

i

) and a

i

2 L

0

.

Since �

00

extends (�

0

)

�1

, �

00

(a

i

) = (�

0

)

�1

(�

0

(a

0

i

)) = a

0

i

. Thus, �

00

(~a) = ~a

0

and

U j=  [~a

0

;

~

b

0

], as desired.
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Corollary 14. If U is a bounded distributive upper semi-lattice such that

� the set of �nite lattices that can be lattice-embedded into U preserving 0 and

1 is decidable,

� if X is a �nite lattice that can be lattice-embedded into U preserving 0 and

1 and (X ;Y) is an instance of the 0,1-extension-of-embeddings problem

satisfying (3.2), then (X ;Y) is a positive instance of the 0,1-extension-of-

embeddings problem for U ,

� if a �nite lattice can be lattice-embedded into I

U

preserving 0 and 1, then

it can be lattice-embedded into U preserving 0 and 1,

then the two-quanti�er theory of U in the language f�; 0; 1g is decidable.

Proof. If U is such an upper semi-lattice, Theorem 13 applies to it. Any 89 sentence

of the language f�; 0; 1g can be e�ectively translated into one of the form required

in Theorem 13 by dropping redundant quanti�ers. Thus, we need only to verify

that condition (3.3) can be tested e�ectively. Since U is distributive, every lattice

which is lattice-embeddable into U must be distributive. By Lemma 6, if L is a

distributive lattice generated under join and meet by n + 2 elements, then we get

a recursive bound on the size of L. Thus, there are only �nitely many L to check,

and, since we are assuming that the class of �nite lattices lattice-embeddable into

U preserving 0 and 1 is decidable, we can e�ectively �nd all the L and ~a we need

to check. For each such L and ~a, the test for the existence of the required P is

e�ective, since jP � Lj � m and condition (3.2) can be checked e�ectively.

Theorem 15. The two-quanti�er theory of R

wtt

in the language f�; 0; 1g is de-

cidable.

Proof. We want to apply Corollary 14. We have R

wtt

a bounded distributive up-

per semi-lattice. Theorem 1 shows that the set of �nite lattices that are lattice-

embeddable intoR

wtt

preserving 0 and 1 is decidable and it is shown in [12] that the

positive instances of the 0,1-extension-of-embeddings problem for R

wtt

are exactly

those satisfying (3.1). As discussed previously, this gives the second condition of

Corollary 14. Thus, we only need to show that R

wtt

meets the third condition. Let

I be I

R

wtt

, let L be a �nite lattice that can be lattice-embedded into I preserving

0 and 1 and let f be such an embedding of L. Then, f maps CAP

L

into CAP

I

and

CUP

L

into CUP

I

, so f maps I(CAP

L

) into I(CAP

I

) and F (CUP

L

) into F (CUP

I

).

Since, by Lemma 9, I(CAP

I

) \ F (CUP

I

) = ;, I(CAP

L

) \ F (CUP

L

) = ;. In ad-

dition, since I is distributive, L is distributive. Thus, by Theorem 1, L can be

lattice-embedded into R

wtt

preserving 0 and 1, as desired.

We are now going to apply Corollary 14 to some complexity-theoretic structures

U , speci�cally, to ideals of the pm-degrees of the recursive sets. In [2], it is shown

that the upper semi-lattice of the pm-degrees of the recursive sets is distributive.

In [21], the extension-of-embeddings problem for the structure of the pm-degrees of

the recursive sets is taken up. There, Shore and Slaman show that if X and Y are

�nite posets with least element, X �

0

Y , X is a lattice and (X ;Y) satis�es (3.2),

then any poset embedding of X into the pm-degrees of the recursive sets preserving

0 can be extended to a poset embedding of Y into this structure.
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Theorem 16. The structures of the pm-degrees of the exponential-time computable

sets and the pm-degrees of the exponential-space computable sets have decidable two-

quanti�er theories in the language f�; 0; 1g.

Proof. Let U stand for either of these structures. As discussed above, U is a distribu-

tive upper semi-lattice. The existence of complete problems for the exponential-

time and exponential-space computable sets under pm-reducibility is well-known.

(See for instance Exercise 21 on page 96 of [7] for a complete exponential-time com-

putable set and page 353 of [14] for a complete exponential-space computable set.)

Thus, U is a bounded distributive upper semi-lattice. It follows from results in the

literature that the �nite lattices that are lattice-embeddable into U preserving 0

and 1 are exactly those �nite lattices L such that L is distributive, L has more than

one element, and the diamond lattice cannot be lattice-embedded into L preserving

0 and 1. Indeed, in [3], it is shown that any such lattice can be lattice-embedded

into U preserving 0 and 1, while, in [4], it is shown that the diamond lattice cannot

be lattice-embedded into U preserving 0 and 1, which implies that no �nite lattice

not in the given class can be lattice-embedded into U preserving 0 and 1.

If (X ;Y) is an instance of the 0,1-extension-of-embeddings problem with X a

lattice, (X ;Y) satis�es (3.2) and f is a poset embedding of X into U , then, by

the result of Shore and Slaman mentioned above, there is a poset embedding f

0

of Y into the pm-degrees of the recursive sets that extends f . Since 1

Y

= 1

X

,

f

0

is actually an embedding of Y into U , so (X ;Y) is a positive instance of the

0,1-extension-of-embeddings problem for U .

Thus, we have the �rst two conditions on U needed to apply Corollary 14 and all

that is left is to show that if L is a �nite lattice that can be lattice-embedded into

I

U

preserving 0 and 1, then L can be lattice-embedded into U preserving 0 and 1,

i.e, L is distributive, L has at least two elements and the diamond lattice cannot

be lattice-embedded into L preserving 0 and 1. The �rst two of these conclusions

are immediate. If the diamond lattice could be lattice-embedded into L preserving

0 and 1, then it could be lattice-embedded into I

U

preserving 0 and 1, and then,

by Lemma 10, the diamond lattice could be lattice-embedded into U preserving 0

and 1, contradicting the characterization of embeddable lattices given earlier.

Many structures in recursion and complexity theory do not have greatest ele-

ments. A version of Theorem 13 and Corollary 14 can be obtained for such struc-

tures as well, if we consider a slightly di�erent extension-of-embeddings problem.

An instance of the 0-extension-of-embeddings problem is a pair (X ;Y) of �nite posets

with least element such that X �

0

Y . If U is a poset with least element, a positive

instance of the 0-extension-of-embeddings problem for U is an instance (X ;Y) of

the problem such that every poset embedding of X into U that preserves 0 can be

extended to a poset embedding of Y into U .

Theorem 17. Let U be a distributive upper semi-lattice with least element such

that

� if X is a �nite lattice that can be lattice-embedded into U preserving 0

and (X ;Y) is an instance of the 0-extension-of-embeddings problem satisfy-

ing (3.2), then (X ;Y) is a positive instance of the 0-extension-of-embeddings

problem for U ,
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� if a �nite lattice can be lattice-embedded into I

U

preserving 0, then it can

be lattice-embedded into U preserving 0,

and let ' = 8x

1

� � � 8x

n

9y

1

� � � 9y

m

 be a sentence over the language f�; 0g with  

quanti�er-free and x

1

; : : : ; x

n

; y

1

; : : : ; y

m

all distinct. Then, U j= ' if and only if

the following condition is met:

for every �nite lattice L that can be lattice- embedded into U preserv-

ing 0 and each n-tuple ~a = (a

1

; : : : ; a

n

) of elements of L such that

fa

1

; : : : ; a

n

; 0

L

g generates L under join and meet, there exists a poset

P with least element and an m-tuple

~

b = (b

1

; : : : ; b

m

) of elements of P

such that:

� jP � Lj � m,

� L �

0

P,

� (L;P) satis�es ( 3.2), and

� P j=  [~a;

~

b].

Proof. The proof is a slight modi�cation of that of Theorem 13.

Corollary 18. If U is a distributive upper semi-lattice with least element such that

� the set of �nite lattices that can be lattice-embedded into U preserving 0 is

decidable,

� if X is a �nite lattice that can be lattice-embedded into U preserving 0

and (X ;Y) is an instance of the 0-extension-of-embeddings problem satis-

fying ( 3.2), then (X ;Y) is a positive instance of that problem for U , and

� if a �nite lattice can be lattice-embedded into I

U

preserving 0, then it can

be lattice-embedded into U preserving 0,

then the two-quanti�er theory of U in the language f�; 0g is decidable.

Proof. As for Corollary 14.

Our next theorem answers a question raised by Shore and Slaman in [21]. The

solution involves no new complexity-theoretic facts, but just the algebraic analysis

that goes into Corollary 18.

Theorem 19. Let U be an ideal of the pm-degrees of the recursive sets that has no

greatest element (e.g., the pm-degrees of the elementary recursive sets, the primitive

recursive sets, or all the recursive sets). Then, the two-quanti�er theory of U in the

language f�; 0g is decidable.

Proof. As mentioned previously, any such U is a distributive upper semi-lattice

with least element. In [2], it is shown that every �nite distributive lattice can be

lattice-embedded into U preserving 0.

Let X be a �nite lattice and let (X ;Y) be an instance of the 0-extension-of-

embeddings problem satisfying (3.2). By the Shore-Slaman result mentioned above,

any poset embedding f of X into U can be extended to a poset embedding f

0

of Y

into the pm-degrees of the recursive sets. However, since Y can add elements above

1

X

, there is no guarantee that f

0

is an embedding of Y into U . Thus, we consider

partial orders X

�

;Y

�

, obtained from X ;Y , respectively, by adding (the same) new

element 1

�

as a new greatest element. Then, it is easily checked that X

�

�

0

Y

�

,

X

�

is a lattice, and (X

�

;Y

�

) satis�es (3.2). If f is a poset embedding of X into U ,
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Figure 1. (a) A bounded distributive upper semi-lattice U . (b)

The lattice I

U

= Q

U

. (c) A lattice that can be lattice-embedded

into I

U

preserving 0 and 1, but cannot be lattice-embedded into

U .

then, since U is an upper semi-lattice without greatest element, there must be an

element z of U with z >

U

f(1

X

). Thus, we may extend f to a poset embedding f

�

of X

�

into U . By the Shore-Slaman result, there is a poset embedding f

0

�

of Y

�

into the pm-degrees of the recursive sets that extends f

�

. Then f

0

�

in fact embeds

Y

�

into U , so f

0

, the restriction of f

0

�

to Y , is a poset embedding of Y into U that

extends f . Thus, (X ;Y) is a positive instance of the 0-extension-of- embeddings

problem for U .

The theorem follows immediately from Corollary 18.

We close with some remarks about the third condition on a usl U given in

Corollaries 14 and 18. If U is an upper semi-lattice, then an ideal of U is called

quasi-principal if it is the intersection of �nitely many principal ideals. If U is a

distributive upper semi-lattice with least element, then it is not hard to show that

Q

U

, the set of all quasi-principal ideals of U ordered by set inclusion, is a sublattice

of I

U

. The canonical embedding � of U into I

U

actually maps U into Q

U

. It follows

that the third condition of Corollaries 14 and 18 can be weakened by replacing I

U

with Q

U

. For the particular structures we have considered, the weakened condition

is no easier to show than the original condition, but use of the weakened condition

in other situations could conceivably be advantageous.

The ease with which we have been able to show the third condition of Corollary 14

for the structures U we have considered might tempt one to conjecture that for

any bounded distributive upper semi-lattice U , if L is a �nite lattice that can be

lattice-embedded into I

U

preserving 0 and 1, then L can be lattice-embedded into

U preserving 0 and 1. This conjecture is false. For instance, let U consist of a copy

of ! with an exact pair above it, plus a greatest element. (See Figure 1a.)
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It is easily checked that U is a distributive upper semi-lattice. The lattices I

U

and Q

U

are the same. They contain only one element besides the principal ideals,

namely, the ideal consisting of the copy of !. (See Figure 1b.) The lattice given

in Figure 1c can be lattice-embedded into I

U

preserving 0 and 1, but it cannot be

lattice-embedded into U . It would be interesting to have some general conditions

which apply to recursion and complexity-theoretic structures and guarantee that

they satisfy the third condition of Corollary 14.

Similar considerations apply to the third condition of Corollary 18.
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