
A HIGH STRONGLY NONCAPPABLE DEGREE

STEFFEN LEMPP

ABSTRACT. An r.e. degree a:/= 0,01 is called strongly noncappable if it has no inf with any incomparable r.e.

degree. We show the existence of a high strongly noncappable degree.

O. Introduction. The early study of R revealed certain ('nice>' properties. For exa1nple 1 the Sacks

Splitting Theore1n [Sa63] showed that any nonrecursive r.e. degree is the supremum of t'vo incomparable

r.e. degrees. The Sacks Density Theorem [Sa64J showed that R is a dense partial order. These and

other results led Shoenfield [Sh65] to conjecture that if a E R satisfies a diagram D(x') in the language

f, = {0,1,S,u} of upper semilattices and D0 (x,y) is a consistent extension of D(x'), then there is bER

such that a and b satisfy D0 (X, y). A consequence of this would be that no two incomparable r.e. degrees

have an infimum (cap to some lower r.e. degree). This was refuted independently by Lachlan [La66] and

Yates (Ya66) through the construction of a minimal pair (capping to 0). Yates [ibid.] also showed that

some r.e. degrees are noncappable (not half of a minimal pair).' Soare [So80] defined the notion of a strongly

noncappable (s.n.c.) degree (an r.e. degree -=f. O, O' that does not have an infimum with any incomparable

r.e. degree). Am hos-Spies [AS84] proved the existence of s.n.c. degrees and various stronger results, but all

his such degrees were constructed by finite injury arguments and thus are low. The 0 111-priority argument

in this paper establishes the existence of a strongly noncappable degree, which is high. This is a step in the

characterization of the range of the jump operator on certain classes of r.e. degrees. Which degrees actually

are the jumps of s.n.c. degrees still remains an open question. A recent related result by Cooper [Cota[

(and independently by Shore [Shtaj) shows that the range of the jump operator on the set of cappable

degrees is not the set of all degrees r.e. in and above (REA in) 01
•

Our notation is fairly standard and generally follows Soare's forthcoming book "Recursively Enumerable

Sets and Degrees" [Sota].

We consider sets and functions on the natural numbers w = { O, 1, 2, 3, ... }. Usually lower-case Latin

letters a, b, c, ... denote natural numbersj f, g, h, ... total functions on w; Greek letters q>, W, ... , cp, 'lj;, ...

partial functions on w; and upper-case Latin letters A, B, C, ... subsets of w. For a partial function cp,

cp(x) 1 denotes that x E domcp, otherwise we write cp(x) t. We identify a set A with its characteristic

function XA· f ~ x denotes f restricted to arguments less than x, likewise for sets.

We let A C B denote that A ~ B but A of B; and A ~* B that A - B is finite. A U B will

denote the disjoint union. For each n E w, we let { x1, x2, ... , Xn} denote the coded n-tuple (where

Xi::; {x1,x2, ... ,xn) for each i); and (x)i the ith projection function, mapping {x1,x2, ... ,xn) to Xi.

Ai•I = {y I (y,k,E)A} denotes the kth "row" of A.

This paper is part of the author's thesis. He wishes to thank his thesis advisor, R.I. Soare, as well as T.A. Slaman for many

helpful suggestions and comments.

In a partial order, x I y denotes that x and y are incomparable. The logical connectives ((and" and "or')

will be denoted by A and V, respectively. We allow as an additional quantifier (in the meta.language)

(3ocix) to denote that the set of such xis infinite.

{e} (or \Oe) and W, ({e}X (or if>~) and W,x) denote the eth partial recursive function and its domain

(with oracle X) under some fixed standard numbering. :::;:T denotes Turing reducibility, and =T the induced

equivalence relation. The use of a computation 4); (x) (denoted by u(X; e, x)) is 1 plus the largest n u1n her

from oracle X used in the co1nputation if if?; (x) !; and 0 otherwise (likewise for u(X; e, x, s)) the use at

stage s). Sets) functionals, and parameters are often vie\ved as being in a state of for1nation, so, \vhen

describing a construction, we may write A (instead of the full Lachlan notation As, A[s), or Ads] for the

value at the end of stage s or at the end of substage t of stage s).

In the context of trees, p, er, r, ... denote finite strings; la! the length of a; a"'r the concatenation of O'

and r; (a) the one-element string consisting of a; a ~ r (a c r) that a is a (proper) initial segment of Tj

a <L r that for some i, er ~ i = r ~ i and a(i) <A r(i) (where <A is a given order on A and T ~ A <w);

and" :S r (D" < r) that O" <L r or er<:; r (D" C r). The set IT] of infinite paths through a tree T <:; A <w is

{p E Aw I (Vn)[p ~ n ET]}.

We use the following conventions: Upper-case letters at the beginning of the alphabet are used for sets

A, B, O,, .. and functionals r, ll.1 .,. constructed by us; those at the end of the alphabet are used for sets

U, V, W, ... and functionals if?, W, ... constructed by the opponent. A functional 4) (W, e, ...) is viewed as

an r.e. set of triples (x,y,D") (denoting il>0 (:i:) L= y), and the corresponding Greek lower.case letter \0

(if!,{), ...) denotes a modified use function for iI> (w, 0, ...), namely, \O(:i:) = l<J"l-1 (so changing X at \O(:i:)

will change q>X (x)). Parameters, once assigned a value, retain this value until reassigned.

Strategies are identified with strings on the tree corresponding to their guess about the outcomes of

higher-priority strategies and are viewed as finite automata described in flow charts. In these flow charts,

states are denoted by circles, instructions to be executed by rectangles, and decisions to be made by

diamonds. To initialize a strategy means to put it in to state init and to set its restraint to zero. A strategy

is initialized at stage 0 and whenever specified later. At a stage when a strategy is allowed to act, it will

proceed to the next state along the arrows and according to whether the statements in the diamonds are

true (y) or false (n). Along the way, it will execute the instructions. Half~circles denote points in the

diagram where a strategy starts from through the action of another strategy. Sometimes, parts of a flow

chart are shared1 the arrows are then labeled i and ii. The strategy control decides which strategy can act

when. For some further background on 0 111·priority arguments, we refer to Soare ([Sota] or [So85])

1. The Theorem. Soare [So80] defined:

DEFINITION: An r.e. degree a of O, 01 is strongly noncappable (s.n.c.) if a does not have an infimum with

any incomparable r.e. degree v, i.e., in the r.e. degrees,

(1) (Vv)(Vu)[a Iv Au :Sa, v-> (3b)[b :Sa, v Ab'/, u]].

2

A
re,i v ------ii e

!::,.e,i <I>c
;::;
-e

u.

Diagram 1.

------Be
ill;

Sets and functionals used

An1 hos-Spies {AS84] showed the existence of various low s.n.c. degrees. We will sho,v:

THEOREM. There is a high strongly noncappable degree.

PROOF: Actually, we will prove, similarly to Ambos-Spies, a slightly stronger result, na1nely, we will

construct a high r.e. degree a f:. O' such that in the r.e. degrees,

(2) (Vv)(Vu}[u <a Av 1, a-+ (3b)lb :'>a, v Ab 1, ul].

(This implies (1) by letting u :'> v also.)

2. The Requirements. We will build a high r.e. set A of s.n.c. degree by satisfying the following three

requirements:

To ensure that A is high we let J be an r.e. set which in the limit codes 0" as follows:

(3) (Ve) [(e E 0"-+ Jl2•J =' 0) A (e </C 0"-+ Jl2•l = wl2•l)J.

Then the usual thickness requirements will suffice to make A high:

(4) p, : Af2eJ =* J[2eJ,

To make A incomplete we require for all e:

(5)

where K = 0' (although we could in this construction replace K by any nonrecursive r.e. set W). Our basic

strategy for J/e will be the Sacks preservation strategy, using a typical tree argument to deal with infinite

injury from the P-strategies but a new coding strategy for such injury from the S-strategies as explained

below.

To ensure (2) for st1·ong noncappability1 we stipulate that for all e,

(6) R, : U, = iJ?~ -+ (A :'>r U, V V, :'>r A V (3B,)[B, :'>r A, Ve A B, ir U,I],

where { Ue, Ve, <Pe }eEw is an enumeration of all triples of r.e. sets U, V and functionals <P (given by the

opponent), and where the B, are built by us. (See Diagram 1.)

3

However, the Re are still too co1nplicated to be satisfied at one level of the tree, so we split each Re up

into

(7)

and for all i E w,

(8)

where { i!i, }iEw is an enumeration of all functionals \Ii (given by the opponent).

For the sake of/?" we will build functionals E>" 3, such that

(9) n • U _ ... A • B _ oA /\ B _ .,v,
"'e · e - ':!! e ___.,, e - 'Cle e - e ·

For Seji) we will construct functionals r e,i, .6.e,i such that

(10) S . u - ... A /\ B - ,,,u, A -* • u, v v. -* rA e,i • e - """e e - 'J:' i ---+ - l..l.e,i e - e,i •

The Re and Se,i will correspond to actual strategies.

The strategies for satisfying the requirements will be arranged on nodes of a tree. Each strategy will

be responsible for one requirement of type)./, P, R, or S and will from now on be called J./-, P-, R-, or

$-strategy. (We will suppress indices whenever they are clear from the context.)

3. Making A S.N.C. and Incomplete. In order to be able to restrain U through A, we will require

that

(11)

Then <1>Afu[s] ~ x = U, ~ x and A, ~ u =A ~ u implies U, ~ x = U ~ x. We also tacitly assume that all use

functions <p8 (x), etc. are increasing in x and nondecreasing ins.

For satisfying Re, we have to ensure first of all Re. Each Re-strategy a: will build its version of Be as

direct permitting on a-stages (V.,, ~ x =Ve~ x /\ s ES"-> B,,,(x) = Be(x)), and we will therefore not

mention Se any more. However, Ve and Be are used by many strategies on the cone below the Re-strategy.

Therefore, in our infinite injury setting, direct permitting requires that the strategy responsible for building

a. (i.e., the R.-strategy) allow a strategy below on the tree to act immediately if the latter wants to put

a number into Be and thus needs a Ve~change to correct Be. A version of the functional 8e will be built

explicitly by each R,,-strategy as the length of agreement between U and w: increases. Notice thus that an

R-strategy only builds a functional, but does not enumerate numbers into any set or impose any restraint.

Its outcomes are q;A 7" U (called 1, in which case 0 will be finite), and (a guess that) i!>A = U (called 0,

in which case it has to ensure that eA is total and eA = B).

4

An Se,i-strategy {3, which will only ever act if it is below the outcome 0 of an Re-strategy on the

tree, will mainly try to "code V, into A" by gradually building r,,; and putting ·1e,1(x) into A whenever

r~1 (x) t t V,(x) (to ensure the correctness of r,,i). If V, = K then this would make A complete and

thus injure one of the J./-strategies below, say, "I;::) (3. So the key to the whole construction is the feature

that the .!/-strategy 7 helps the S,,;-strategy (3 prove B, t wf· and then immediately shuts (3 off. The

outcomes of the S,,;-strategy (3 are again 0 (infinite action) and 1 (finite action).

No'v consider an .Afemstrategy 7, and assume it is on the true path and thus has to satisfy its requirement.

The strategies to the left of '1 only have finite effect; "I will put up restraint against the strategies to the

right of and below "I· So the only strategies dangerous to I lie above it on the tree, and they are either

Pe' or S-strategies. The former are no problem since "I knows theh· outco1ne (either Al2e'] =* wl2e'] or

Ai2e'J =' 0). For each $-strategy (3 c '1 for which 7 guesses that (3 puts infinitely many numbers into A,

7 will try to take over (J's responsibility and to put up a candidate x for B(x) 7' Wu (x).

If I succeeds in finding a suitable candidate, there are two possibilities: Either V will change and allow

x into B, while the .!/-strategy preserves wu(x) = O; thus B(x) = 1 t 0 = wu(x). Then (J's requirement

has been satisfied by 7, therefore (3 can be shut off and has finite outcome. So 7 is not on the true path

after all, and its restraint will have the same priority as if it were imposed by fJ (since no e 2 fJ~(0) will

act ever again unless (3 is initialized). The other possibility is that V does not change, which constitutes

another step towards showing that V ;O;T A.

The strategy "f may have to act even when it is not its turn since it needs to redefine a functional of much

higher priority. Thus/ might injure higher-priority strategies which have increased their restraint since

I acted last. Therefore, whenever some JI-strategy 1' changes states (while it is its turn), the strategy

control will initialize all strategies e > 7 1 to prevent them from injuring 7 1
• This is compatible witl1 the

rest of the construction since each JI-strategy "f on or to the left of the true path will act only finitely

often.

On the other hand, if 7 fails to find a suitable candidate, then (3 has to make A total and ensure that

t:,,U =A. So again (J's requirement will be ensured by 7.

Candidates x for showing B 7' wu must have the property that '9(x) > \O(?f.>(x)) so that we can put x

into B, put '9(x) into A to correct eA(x), and at the same time restrain A ~ (\O(?f.>(x)) + 1) to preserve

U ~ (.P(x) + 1) and thus wu(x) = 0. Now an R-strategy can wait with the definition of eA(x) until

q,A ~ (y + 1) is defined (for some y depending on x), but not for wu (x) (which may not be defined at all).

So we introduce the A-recursive computation function of A1

cA(x) = µs!A, ~ (x+ 1) =A~ (x+ 1)]

for the given enumeration of A, and its recursive approximation

cA(x, s) = (µt ;O; s)IA, ~ (x + 1) =A, ~ (x + 1)].

5

Now if U <r A, 'I/; is a U-recursive function, and Sis an infinite U-recursive set then

and th us if in addition <!>A = U and <p is increasing then

(300 x E S)lip(i/J(x)) < ip(cA(x))J.

H U <T A, this 'vill ensure that an)../~strategy belo'v an $-strategy can find enough candidates x for

B(x) I" wu(x) with .?(x} > ip(i/J(x)) by having at stages+ 1 the R-strategy put .?(x) > ip(cA(x,s)).

(The function CA is Ambos-Spies's function "I as explained in Lemma 1 of [AS84].) On the other hand,

if an .JI-strategy "I cannot find a suitable candidate for an $-strategy (3 C "{,we can allow"{ to shut off (3

eventually.

The outcome of the JI-strategy I is the liminf of the restraint that '1 imposes on the lower-priority

strategies. Note that only the JI-strategies want to restrain A.

4. The Full Construction. We will first describe the tree of strategies and then give the full module for

each type of strategy (in a flow chart) and explain the strategy control to see how the strategies interact.

Let AN, Ap, AR., and As be the sets of outcomes of the .JI-, P-, R-, and S-strategies (where AN= wand

Ap = AR. = As = { 0, 1}), and let A be their union. The tree of strategies is

(12} T = {EE A <w [(Vk < [E[)IE(k} E AN, Ap, AR., As fork= 0, 1, 2, 3 mod 4j }.

To each node EE T, we assign a type of strategy (.JI, P, R, S for [E[= O,l,2,3mod4} and a number

e(E) (or (e(e),i(E))) = lel4-k (forsomekE {0,1,2,3}}sothat Eworksonrequirement JI,(€)• P,(<)• R,(€)•

or S,(e),i(e)- Then for each infinite path h E [Tj, there is exactly one strategy E C h working on each

requirement. Fixing e and i, notice that if °' is the /(,,-strategy °' C h and (3 is the $,,;-strategy (3 c h,

we have that °' C (3. (Furthermore, (3 will not act at all unless c>~(0) ,;; (3, i.e., unless (3 guesses that

<!>~ = U,.)

Each ?,-strategy E is assigned to De = wl2 e[for its thickness strategy. Each strategy E of type R or S

is effectively assigned to an infinite recursive subset De of w so that

(13} LJ De= LJ wl2,+iJ,
e of type R or S eEw

All JI-strategies "I 2 c>~(0) (where °' is a fixed R,-strategy} also help each S,,;-strategy (3 with c>~(0) ,;;

fi C 1 build its part of the set Be, so each "f is effectively assigned an infinite recursive subset E~ such that

for fixed °',

(14) LJ
"2a ~(0)

"I of type)/

6

E~ =w.

y

put least such

x into A

(:Jx > r')

[x E Jl2eJ - Al2•Jj

Diagram 2. The J'-strategy

Let also r('r) (or r, for short) denote the A-restraint imposed by the J.1-strategy '1 (as defined below), and

(15) r'(() =max{ r('r) J 7 < e}

(or r', for short) the A-restraint imposed on (by all stronger strategies. (Recall that only J./-strategies

impose restraint, so r(€) = -1 for all other strategies e.)
At each stages, we will build substage by substage the approximation 6, =max{ e I E acts at stage s}

to the true path f E [TJ (where J6,J ~ s). We says is a €-stage (s E 8°) iff E <::; 6,. In the construction

below, each strategy that acts at substage t of stage s will decide which strategy will act at substage t + 1

(or whether we should go on to stage s + 1, e.g., when t = s). 0 will always be the strategy to act at

substage 0. (When an R- or an S-strategy E lets an J./-strategy '1 below it act first, then the action of '1 will

not count towards the definition of 88 or as a separate substage.) Any strategy € >L 68 will be initialized

as soon as 6, has been defined far enough (i.e., at the least substage t at which 6t[s) <L E).

The P-strategies are the easiest to describe. They ensure that A is high. Recall that the r.e. set J codes

011 in the limit on the even rows. Then a Pe-strategy ~ acts as described in Diagram 2.

The strategy to play next will be >~(0) if A~2'1 of A\2 '1 where t =max{ t' < s J t' E S'}, and >~(1)

otherwise.

Each Re-strategy a is responsible for building its version of the functional ee, and it is the node where

the construction of its version of the r.e. set Be originates on the tree. Then a proceeds as described in

Diagram 3.

7

let leftmost

such / act

n

is ready to special-act

for some $,,;-strategy f3

(3x)

IE>A (x) i /I
\PA ~ (cA(x, s) + 1) =

U ~ (cA(x, s) + l)]

for least such x:
let eA(x) = B(x),

t?(x) = m(x)

Diagram 3. The R-strategy

let C µ = 0, let /d be undefined

delay #1

delay #3

some

.>.'-strategy / :::> f3
has a permitted

candidate for (3
y

some

delay #2 .>.'-strategy / :::> f3
is ready to leave

waiti for

let left most such
/ go to next state

for some

12(3~(0): /~/d,

/ E C13, and"/ is in
wait3 for

f3 = f3ul

f3 = f3(3') .._Y-'------

y
>=------~ let "/d be the leftmost such "/

and "/ is in wait i

for (3 = f3ui n

add leftmost such / to C µ

n

/\ r1 < 7(x))]

let "/d be undefined

put 7(x) into A;
for the leftmost J./-strategy
"/ ;;;:> (3~(0) such that 7(x) ~ r("t),
let I perform injury action;

cancel all E > /

Diagram 4. The S-strategy

let r = r0 = O, let p = -1

let r = max{ old r, u}

ii

let j = 1

increment y

put X(k) into B(k)> if etk)(x(k)) l
then put u(kj(X(k)) into A;

let ro = r, cane~] all ~ > 1

p by +I, let r0 = r

n

y 11

put up least x E Cui as candidate

X(j) for f3u1, increment j by +I,

let r = max{old r,\?(j)(,P111 (xu1))} ii

Diagram 5. The)./-strategy

Here m(x) (the assigned use for EJA(x)) is the least y E Da - A such that y ~previous values of O(x)

and greater than O(x - 1), p(cA (x, s)), and r'.

An N-strategy "f 2 a~(0) is ready to special-act if:

(i) "f has put up a candidate "(k) for an S,,;-strategy f3(k) 2 a~(0) at a previous stage so;

(ii) I has not been initialized since stage so;

(iii) no element entered A ~ (r,, ('y) + 1) since stage s0 , but V(k) ~ "(k) has changed since stage so; and

(iv) no candidate for any f3(;) with i ~ k has been permitted since "f was initialized for the last time.

In this case, "f goes to spactk and on to the next state and gets a permitted candidate "(k) for f3(k)

through its special action (until 1 is initialized if ever).

The strategy control will end the current stage if a lets some }/-strategy special-act. Otherwise, the

next strategy to act will be a~(0) if a just (re)defined eA (x) for some x, else it will be a~(1).

An S,,;-strategy f3 will only ever act if a~(0) s:; f3 for the !<,-strategy a c {3. In this case, it will try to

code Ve into A by building its version of r e,i to show r:,i =Ve unless some JI-strategy below it helps it to

satisfy Se,i in some other way. Therefore, f3 can be delayed in its action in various ways by JI-strategies

below. An $,,;-strategy will th us act as described in Diagram 4.

Here n(x) is the least y E Dp - A such that y ~previous values of "f(x) and greater than "f(X -1), O(x),

and r'.

An N-strategy "f 2 {3~(0) performs infury action by going to injk (where f3 = f3(k)) and on to the next

state.

Roughly speaking, "fd is the strategy that caused delay #3 the last time f3 could act. (We agree that

"f ~ "f<l is satisfied vacuously if "fd is undefined.) Its role is to eventually stop f3 if some N-strategy below

cannot find a candidate for {3. Before 1 can delay /3, however, it has to be injured at least once (by the

definition of Cµ). We need Cµ in Lemma 2 since for any s, Cp[s] is finite and thus well-ordered, whereas

u.Ew Gp[s] may not be well-ordered.

The next strategy to act will be {3~(0) if f3 (re)defined rA (x) for some x, else it will be {3~(1).

(It is worthwhile to intuitively distinguish the different delays for f3 here: Delay #1 is immediate and

permanent and corresponds to the fact that B =f iJ!U. Delay #2 is always temporary, the N -strategy below

changes states, and then (3 resumes its action. Delay #3 is permanent again, but \Vill only be activated

eventually, corresponding to the outcome that A ~T U. If f3 is on the true path f and makes its r total,

then each N -strategy "f with f3 C "f c f will eventually no longer be injured by fl since "f's candidate

protects "f against {3.)

Finally, we will describe the most complicated of all strategies, the N-strategy. Recall that an N­

strategy "f is trying to restrain A in order to ensure { e }A =f K. Towards the strategies e > "f, "f will

use the usual Sacks preservation strategy; "/ will have a guess about the P-strategies ~ C "Ii against the

11

(potentially infinite) injury by the s,',i'"strategies (3 with (3~(0) ~ 'Y. 'Y will try to put up candidates to

show Wf,"1 f:. Be'. The strategy ')' ,vill th us proceed as described in Diagram 5.

Here, p, r, and ro are parameters defined in the diagra1n, roughly denoting the protected length of

agreement of K = {e}A, the A-restraint imposed by '"f, and the part of the A-restraint to preserve the

protected length of agreement, respectively.

The other parameters are defined as follows: We call a computation {e}A(x) L '¥-correct iff

{16) (Ve'< J~J)(\lz E wl2 ''1 = D,f(•''+l))

['Y(4e1 + 1) = 0 /\ r'('Y ~ (4e1 +1)) < z < u(A; e, x)---> z EA],

i.e., if all ?-strategies I c 'Y that act infinitely often will not destroy the computation {e }A(x) t. Then the

length of agreement of K = { e }A is defined by

{17) e =max{ y I (\lz < y)IK(z) = {e}A(z)] /\ {e}A(y) t

via ')'-correct computations}.

The use of the protected length of agreement is

{18) u =max{ u(A; e, y) I y :'Op+ 1 }.

For the sake of simplicity, for fixed 'Y, we denote all $-strategies such that f3(1) ~(0) c f3(z) ~(0) c · · · c

f3(m)~(O) ~ 'Y by f3(1), .. .,f3(m) (these are the strategies against which 'Y must put up a candidate), and

all of the parameters of f3(f) are temporarily denoted by B(i), .P(i) etc.

Let "(i) be the R'U> -strategy such that "(i) C f3(f). The set G(j) of possible candidates for f3(f) is

defined as the set of ally E EJ(J) such that:

(i) y > r' and y > any previous candidate that 'Y put up for f3(fp

(ii) wf,<{' (y) i = O;

(iii) U(i) ~ (.P(J)(Y) + 1) =.Pf;)~ (.P(f)(Y) + 1) i via a '"I-correct computation;

(iv) E>f;) ~ (y + 1) i via a '"I-correct computation and .?(i){Y) > r', r; and

(v) CA(Y,s) > .PuJ(y).

If 'Y changed states then all strategies e > 'Y will be initialized, and a new stage is started. Otherwise, the

next strategy to act will be 'Y~ (max{ r, r'}) . (Recall that special action or injury action does not count

as 'Y's turn, and that after special action the current stage is ended.)

(Intuitively, an _,\/,-strategy tries to protect one by one the length of agreement of K = {e}A against

stronger S-strategies. Once it is in state getcandk and th us has a per1nitted candidate for one of them, it

assumes that it is to the left of the true patl1 and will no longer protect longer lengths of agreement.)

5. The Verification. Let 6, be the string of strategies that act at stage s {except for special action and

injury action by the .N'-strategies). Let f = liminf, 6, be the true path on the tree T.

The verification consists of several lemmas:

12

LEMMA 1 (INJURY LEMMA). No strategy e in1ures a strategy f < e by putting into A an element

x ~ r(().

PROOF: An !<-strategy does not put elements into A at all. The P- and S-strategies observe restraints by

stronger strategies explicitly. Moreover, when an .A/~strategy puts up a candidate, it is greater than stronger

restraint so we only have to show that this restraint will not increase until the candidate is cancelled or

put into A. But only the }/~strategies e' <~impose stronger restraint. Whenever this restraint increases,

some JI-strategy e' < e has changed states, and therefore€ must have been initialized. I

LEMMA 2 (JI-STRATEGY LEMMA). Each JI, -strategy"/ c f is injured at most finitely often, is eventually

in state waitl (waiting for£ to increase), and lim 11 £ < oo exists. {Thus lim8 r < oo exists, K =f {e}A, and

JI, is satisfied.}

PROOF: First notice that any strategy e <L f acts only finitely often. This is trivial except for N­

strategies. But whenever an JI-strategy ry <L f performs special action or injury action, it will need

"/ ~ 6, to act the next time.

We now use induction on 111 and the fact that "f:::; liminf8 68 • Let Bo be minimal such that, after stage

so, if any e <"/acts then e is not an JI-strategy and e c "/, and such that every JI-strategy 7' c "/is in

state w aitl and is not injured after stage Bo.

Th us, "/ is initialized after stage s0 only if some $-strategy fi(J) (as defined for 7) with fi(J) ~(0) ~ "/

lets 7 perform injury action. Since no JJ-strategies 1' <L 7 ever act after stage so, none of these will

start delaying any $-strategies fi(J) (as defined for 7) after stage so more than once (i.e., after they entered

Cpw); but fi(JJ~(O) cf, and therefore eventually, say, after stage s1 <': s0 , none of these will ever delay

any $-strategy fi(J)· So after stage s1, for all j = 1, 2, .. ., m, we have that 7!fl <': "/· Thus after stage s1,

once/ E GpU>, "f can delay fi(i) until it has a candidate against it. "/will therefore eventually no longer

be injured. (Recall that "/ knows which elements will be put into A by ?-strategies > C "/ after stage

so.) But then as in the usual Sacks preservation strategy, K = {e}A would imply that K is recursive, so

lim8 f.. < (X) exists and "I will eventually stop acting and be in state waitl forever (waiting for l to increase).

So Jim, r < 00 exists, K i' { e }A' and JI, is satisfied. m

LEMMA 3 (?-STRATEGY LEMMA). For all e, Ai2 '1 =* Ji2 '1. Thus A is high.

PROOF: Only the N'-strategies impose restraint on A. Lemma 2 shows that this restraint is finite along

the true path. m

LEMMA 4 (CORRECT 0, LEMMA). If U,

B =GA ' ' .

if!:, then the !<,-strategy " c f makes e, total and

PROOF: Suppose by induction that after stage so, e: ~ x has been defined A-correctly; that if strategy

e < " acts then e c " and e is not an JI-strategy; that x is already a candidate for the JI-strategy "/ ::J "

(if it ever will be) where x EE~; and that if!A ~ (cA(x) + 1) has settled down. But then m(x) changes

13

at most once, namely, when 1 puts 19(.x) into A, and afterwards x will never again be a candidate. So

m(x) will eventually be constant, and thus eA (x) will eventually be defined A-correctly. Thus eA is total.

Furthermore, B = eA since B only changes on x when eA (x) is or becomes undefined. II

LEMMA 5 (DELAY # 3 LEMMA). For any S -strategy (3 C f, if (3 is delayed by delay #9 co finitely often,

then eventually (3 is always delayed by delay #9 by some fixed J.1-strategy 'Y = Jim, 'Yd.

PROOF: Suppose (3 is not initialized after stage so. If (3 is delayed cofinitely often by delay #3, then

Gp,== U,Ew Gp[s] is finite and thus well-ordered. Let 'Yo be the leftmost 'YE Gp,= that causes delay #3

for (3 infinitely often. Then 'Yo= Jim, 'Y<l[s] since whenever 'Yd[s] >'Yo and later 'Y<l[s'] ='Yo then (3 is not

delayed by delay #3 at least once between stages s ands' by the arrangement of delay #3. (This is the

reason for having "l<l and G 13 in this construction.) 11

LEMMA 6 (CORRECT r LEMMA). If U, = if!: then the $,,;-strategy (3 C f makes its version of r~i

total and v = r e,i unless (3 is eventually permanently delayed by one fixed)./-strategy 'Y 2 (3~(0) through

delay #1 or delay #9.

PROOF: Suppose that if any strategy e < (3 acts after stage so then€ c (3 and€ is not an }./-strategy;

and that no e ~ f3 is initialized after stage So. Then /3 is never initialized after stage so, and so either it

is permanently delayed by one fixed J./-strategy (by Lemma 5 for delay #3 and by the construction for

delay #1) and (3~(1) c f; or (3 is not delayed at infinitely many (3-stages. (Recall that delay #2 was only

temporary.) In the latter case, f3 can define or redefine re,i infinitely often.

Suppose by induction that after stage s 1 :;:: s0 , r~, ~ x has been defined A-correctly; and that V, ~

(x + 1) = V,,, ~ (x + 1) and e: ~ (x + 1) t A-correctly, Then n(x) is constant after stage s1 , so r~;(x)

will eventually be defined A-correctly. Thus r,,; is total. Furtherm01·e, V,(x) = r~;(x) at least for all

x >Jim, r'[s] {since 'Y(x) ::>'. x). I

LEMMA 7 (CORRECT 8,/R-STRATEGY LEMMA). Let" Cf be the R,-strategy. Then the version of

Be that ori'ginates at a is recursive in Ve by direct permitting on a-stages. Thus Re is satisfied th1·ough a 's

versions of ee, Be and Be {by thi's lemma and Lemma 4).

PROOF: Element x can enter Be only as a candidate through special action of the JI-strategies"/ :::> a.

This special action can only occur until the first a-stage s at which V ~ x = V[s] ~ x. I

LEMMA 8 ($-STRATEGY LEMMA), Let " C f be the R,-strategy. If, for "'s version of B, and fixed i,

U, = if!:, Uc <r A, and B, = wf• then the S,,;-strategy (3 c f is not eventually permanently delayed by

N-strategies. {Thus, by Lemma 6, re,i is total and Ve= r:,i, so Se,i is satisfied.}

PROOF: By Lemma 5, we only have to show that no single }./-strategy 'Y delays (3 forever. This can only

happen if 'Y 2 (3~(0) and (3~(1) c f. Suppose that after stage so, 6, ::>'. (3~(1), that no strategy injures

/ ever again (since otherwise "f cannot delay f3 at the next ,B-stage), and that '1 does not act ever again.

14

If 1 delays fJ by delay #1 then B, t wf• through the permitted candidate since 1 is no longer injured. If

1 delays fJ by delay #3 then we show that A :S:r U, as follows (this defines b.,,; implicitly): 1 delays fJ

because it cannot find a candidate for it. Let a be the set of all y E EJ - Be (where a is the Re-strategy

a c fl) sucl1 that (at some stage s > so):

(i) y > r'("!)[s] and y >any previous candidate that 1 put up for flui;

(ii) Wu (y)[sj != O;

(iii) U ~ (¢(y) + l)[s] = q;A ~ (¢(y) + l)[s] ! via a 1-correct computation; and

(iv) EJA [s] ~ (y + 1) ! via a 1-correct computation and .J[s](y) > r' (1)[s], r("!)[s].

Since U = <I>A and B = wu and r and r1 settle down, this is an infinite U-recuTsive set, but then

C = C n { y I cA(Y) > ¢(y)} has to be finite, or else the JI-strategy "f would find a candidate eventually.

Since 1/J is total, we have that 1/1 :ST U, and 'ljJ dominates CA on the set 6. Therefore, A is recursive in U.

This concludes the proof of the theorem. I

REFERENCES

fASB4] K. Ambos-Spies, On Pairs of Recursively Enumerable Degrees, Trans. Amer. Math. Soc. 283 (1984), 507-531.

!Cota] S.B. Cooper, A Jump Class of Non-Cappable Degrees, J, Symbolic Logic (to appear).

[La66] A.H. Lachlan, Lower Bounds for Pairs of Recursively Enumerable Degrees, Proc. London Math. Soc. 16 (1966), 537-569.

[Sa63J G.E. Sacks, On the Degrees Leas than 0 1, Annals of Mathematics 77 (1963}, 211-231.

[Sa64] ____ ,, The Recursively Enumerable Degrees Are Dense, Annals of Mathematics 80 (1964), 300-312.

[Sh66] J .R. Shoenfield, ApplicaUon of Model Theory to Degrees of Un.solvability, in 11Symposium on the Theory of Modelsu, Ed.

J.W. Addison, L. Henkin, and A. Tarski, North Holland, Amsterdam, pp. 359-363,

!Shtaj R.A. Shore, A Non-Inversion Theorem for the Jump Operator, Annals of Pure and Applied Logic (to appear).

[So80) R.I. Soare, F\tndamental Methods for Comtructing Recursively Enumerable Degrees, in "Recursion Theory: Its Generaliza­

tions and Applications11
, Proceedings of Logic Colloquium '79, Leeds, August 1979, Ed. F .R. Drake and S.S. Wainer,

Cambridge University Press, Cambridge, 1980.

[So86J ----• Iree Arguments t'n Recursion Theory and the 0 111-Pri'ority Method in Recursion Theory, in "Proceedings of

Symposia in Pure Mathematics No. 42", Amer. Math. Soc., Providence, pp. 53-106.

(Sota] , "Recursively Enumerable Sets and Degrees" 1 Springer-Verlag, Heidelberg (to appear).

[Ya66] C.E.M. Yates1 A Minimal Pair of Recursively Enumerable Degrees, J. Symbolic Logic 31 (1966), 159-168.

Yale University, New Haven, CT 06520

15

