
THERE IS NO PLUS-CAPPING DEGREE

Rodney G. Downey

Steffen Lempp

Department of Mathematics, Victoria University of Wellington,

Wellington, New Zealand

downey@math.vuw.ac.nz

Department of Mathematics, University of Wisconsin,

Madison, WI 53706, USA

lempp@math.wisc.edu

Abstract. Answering a question of Per Lindstr�om, we show that there

is no \plus-capping" degree, i.e. that for any incomplete r.e. degree w,

there is an incomplete r.e. degree a > w such that there is no r.e. degree

v > w with a \ v = w.

1. The Theorem. In [2], Feferman de�nes relative interpretability for

extensions of Peano arithmetic. The induced structure D

T

of degrees of

interpretability turns out to be a lattice (cf. [4]). Lindstr�om [5] proved

a number of algebraic facts about this lattice. He recently raised the

question whether one of these, namely

8w < 1 9a (w < a < 1 ^ 8v > w:(a ^ v = w));

also holds in the upper semilattice of r.e. degrees. This question turns

out to be of independent interest to classical recursion theorists as they

try to better understand the algebraic structure of the r.e. degrees. The

purpose of this paper is to answer Lindstr�om's question positively by

proving the following

Key words and phrases. r.e. degrees, capping.

The authors would like to thank Per Lindstr�om for raising the question and Carl

Jockusch for communicating it to them. The �rst author was partially supported by

a U.S./New Zealand binational grant. The second author was partially supported

by NSF grant DMS-9100114 and the U.S./New Zealand binational NSF grant INT-

9020558.

Typeset by A

M

S-T

E

X

1

2 RODNEY G. DOWNEY STEFFEN LEMPP

Theorem. For any incomplete r.e. degree w, there is an incomplete

r.e. degree a > w such that there is no r.e. degree v > w with a\v = w.

This theorem can be abbreviated as \There is no plus-capping degree."

since it stands in contrast with the following theorem by Harrington on

plus-cupping degrees (we quote here a slightly weaker version to point

out the duality):

Plus Cupping Theorem (Harrington, see [3, 6]). There is a nonre-

cursive r.e. degree w such that for any nonrecursive r.e. degree a < w

there is an r.e. degree v < w with a [v = w.

Obviously, our theorem asserts that the dual statement of the Plus

Cupping Theorem (as quoted above) fails, and thus, a fortiori, the dual

statement of the full version of the Plus Cupping Theorem fails.

A related theorem is the following result by Downey and Stob:

Theorem (Downey, Stob [1]). For any nonrecursive r.e. degree w, there

is a nonrecursive r.e. degree a < w such that there is no nonrecursive

r.e. degree v � w with a \ v = 0.

Our notation generally follows Soare [7] with the following exceptions:

The use of a computation �

X

(x) is the largest number actually used in

that computation and is denoted by '(x) (and similarly for other Greek

letters). We assume the \hat-trick" for all functionals � not constructed

by us, i.e.

8x8s(�

X

(x)[s] # ^X � ('(x) + 1)[s] 6= X

s+1

� ('

s

(x) + 1)!

�

X

(x)[s+ 1] "):(1)

Furthermore, we assume the uses of all functionals � not constructed by

us to be nondecreasing in the stage and increasing in the argument, i.e.

(2) 8x8s(�

X

(x)[s] #! '

s

(x) � '

s+1

(x) ^ '

s

(x) < '

s

(x+ 1)):

We set '

s

(x) =1 if �

X

(x)[s] is unde�ned. Finally, when the oracle of

a functional is given as the join of two sets, we assume the use to be

computed separately on each set, i.e.

(3) �

(X�Y)�('(x)+1)

(x) = �

X�('(x)+1)�Y �('(x)+1)

(x):

THERE IS NO PLUS-CAPPING DEGREE 3

2. The Requirements and the Strategies. We �x an r.e. set W

and build an r.e. set A satisfying the following requirements:

N

�

: �

A�W

= K ! 9�(�

W

= K)

for all partial recursive (p.r.) functionals �. (This ensures that a =

deg(A�W) < 0

0

unless w = degW = 0

0

.)

Furthermore, for each r.e. set V , we build r.e. sets B (= B

V

) and

p.r. functionals � (= �

V

) and � (= �

V

) satisfying

P

V

: B = �

A�W

= �

V�W

; and

P

V;	

: B = 	

W

! 9�(V = �

W

)

for all p.r. functionals 	. (Thus b = degB � a; b � v(= deg(V �W));

and b 6� w unless v � w, witnessing :(a \ v = w) unless v � w.)

The strategy for N

�

is the usual Sacks preservation strategy: As the

length of agreement between �

A�W

and K increases, we extend the do-

main of �

W

, and we ensure that if �

A�W

(y) becomes unde�ned (and

thus K(y) can change and �

A�W

(y) can be rede�ned correctly) then

�

W

(y) will become unde�ned also. This will usually be ensured by

A-restraint but sometimes we add a new twist to this. If a link (as

de�ned below) is traveled on the tree of strategies skipping over the

N

�

-strategy then the N

�

-strategy's A-restraint (to protect some com-

putation �

A�W

(y)) may be injured by a lower-priority strategy. In this

case, we ensure that if the approximation to the true path ever returns

to the N

�

-strategy then aW -change must have occurred making �

W

(y)

unde�ned. For this sake, we will arrange the outcomes of an N

�

-strategy

not in the usual way but of order type 2 � ! (= !) where the outcome

2j roughly denotes that �

A�W

� j #= K � j but �

A�W

(j) is unde-

�ned, and the outcome 2j + 1 roughly denotes that �

A�W

� j #= K � j

but �

A�W

(j) #6= K(j). (The precise version of the outcomes is more

complicated as it depends on the order of events leading up to the least

disagreement, which may actually occur at a number j

0

< j.)

The strategy for P

V

simply consists in de�ning �

A�W

and �

V�W

on

larger and larger arguments and in occasionally increasing the use �(x)

of a computation �

V�W

(x) when requested by another strategy. The

P

V

-strategy has only one single outcome.

The P

V;	

-requirement is too complicated for one strategy and is thus

split up into subrequirements

P

V;	;i

: B � (x+ 1) = 	

W

� (x+ 1)! V (i) = �

W

(i)

(where x = x

i

depends on the P

V;	;i

-strategy).

4 RODNEY G. DOWNEY STEFFEN LEMPP

The requirement P

V;	

is now worked on by a P

V;	

-strategy and in�n-

itely many P

V;	;i

-strategies below it, each trying to de�ne �

W

(i). The

P

V;	

-strategy has two outcomes, in�nite and �nite, where the latter

denotes the fact that some P

V;	;i

-strategy below the in�nite outcome

of the P

V;	

-strategy has created a disagreement between 	

W

and B

and that therefore there is no reason to work on P

V;	

until W changes,

allowing 	

W

to be corrected.

A P

V;	;i

-strategy will pick a fresh x, wait for B(x) = 	

W

(x), and

then de�ne �

W

(i) = V (i) with use #(i) = (x). If now V (i) changes

then we have V -permission to put x into B, and we also put
(x) into

A to correct �

A�W

(x). There are two complications arising here:

Firstly, V -permissions for x (to correct �

V�W

(x)) are measured at the

stages at which the P

V

-strategy appears to be on the true path (since the

P

V

-strategy must keep �

V�W

(x) de�ned). The P

V

-strategy cannot let

the P

V;	;i

-strategy act before rede�ning �

V�W

(x) if the latter appears

to be to the left of the true path (i.e. we cannot form a link from the P

V

-

strategy to the P

V;	;i

-strategy) since the P

V;	;i

-strategy's enumerating

(x) into A may injure intermediate N

�

-strategies. Instead, the P

V

-

strategy will increase the use �(x) when V (i) changes so that when the

P

V;	

-strategy again appears to be on the true path, the corresponding

W -change will have made �

V�W

(x) unde�ned.

On the other hand, once �

W

(i) is de�ned and V (i) may change, we

must form a link from the P

V;	

-strategy down to the P

V;	;i

-strategy.

This is because there are many P

V;	;i

-strategies below the P

V;	

-strategy,

all competing to de�ne �

W

(i) for the same i. So when the P

V;	

-strategy

appears to be on the true path and has a link down to a P

V;	;i

-strategy

that has the V � W -permission to put x into B, the former will let

the latter act immediately even if the latter appears to be to the left

of the true path. Again there will be N

�

-strategies between the P

V;	

-

and the P

V;	;i

-strategy that are injured by the enumeration of
(x)

into A. But the P

V;	

-strategy now switches outcome since the P

V;	;i

-

strategy has established 	

W

(x) #6= B(x). If this computation 	

W

(x)

ever disappears then the corresponding W -change will allow the injured

N

�

-strategies to correct their �

W

as long as these �-uses exceed the use

 (x). We will ensure this to be true.

We are now ready to formally describe the construction.

3. The Construction. We use a tree of strategies T � !

<!

, which

we will de�ne inductively. We �rst de�ne satisfaction of a requirement

along a node of T :

De�nition 1. Let � be a node on T .

(i) Requirement N

�

, P

V

, or P

V;	

is satis�ed along � if there is a

THERE IS NO PLUS-CAPPING DEGREE 5

strategy � � � working on N

�

, P

V

, or P

V;	

, respectively.

(ii) Subrequirement P

V;	;i

is satis�ed along � if there is a P

V;	

-

strategy � with �^h1i � � or if there is a P

V;	;i

-strategy
 � �.

(The �rst case here corresponds to � having found a disagree-

ment between 	

W

and B.)

We now �x an e�ective !-ordering of all requirements N

�

, P

V

, P

V;	

,

and all subrequirements P

V;	;i

such that

(i) P

V

precedes all P

V;	

;

(ii) P

V;	

precedes all P

V;	;i

; and

(iii) P

V;	;i

precedes P

V;	;i

0

if i < i

0

.

We de�ne the tree of strategies T � !

<!

inductively as follows:

De�nition 2. Let � be a node on T . Then � works on the requirement R

of highest priority that is not satis�ed along �. (We call � an R-strategy.)

The immediate successors of � on T are the following:

(i) �^hji for all j 2 ! if � is an N

�

-strategy;

(ii) only �^h0i if � is a P

V

- or P

V;	;i

-strategy; and

(iii) �^h0i and �^h1i if � is a P

V;	

-strategy (denoting �'s in�nite and

�nite outcome, respectively).

We next de�ne initialization. An N

�

-strategy is initialized by making

its functional �

W

totally unde�ned. A P

V

-strategy is initialized by mak-

ing its functionals �

A�W

and �

V�W

totally unde�ned and by discarding

its set B. A P

V;	

-strategy � is initialized by making its functional �

W

totally unde�ned and by initializing all the P

V;	;i

-strategies
 � �^h0i.

A P

V;	;i

-strategy is initialized by making all its parameters unde�ned,

by removing any link to it, and by canceling all its requests.

A parameter is de�ned big by setting it to a number greater than any

number mentioned so far.

The construction now proceeds in stages.

At stage 0, we initialize all strategies and let A be the empty set.

A stage s > 0 consists of �nitely many substages t with some addi-

tional action at the end of the stage. At each substage t, a strategy

of length t is eligible to act and will, after it acts as described below,

determine a strategy � of length t+1 eligible to act at the next substage

(unless we end the stage) and initialize all strategies >

L

�. We end the

stage after substage t if s � t and for any P

V;	

-strategy � eligible to act

at a substage � t of stage s which let �^h0i be eligible to act next, and

for any i such that �

W

�

(i) is currently de�ned, some P

V;	;i

-strategy was

eligible to act at a substage � t of stage s.

THERE IS NO PLUS-CAPPING DEGREE 7

We now describe the action of the strategy eligible to act at substage

t of stage s. We distinguish cases depending on the type of strategy

eligible to act.

Case 1: An N

�

-strategy � is eligible to act. De�ne the length of

agreement

(3) `[s] = maxfx j �

A�W

� x [s] #= K

s

� xg

and the maximum length of agreement

m[s] = maxf`[s

0

] j s

0

� s ^ (A�W) � ('(x� 1) + 1)[s

0

] =

(A�W)

s

� ('

s

0

(x� 1) + 1)g :(4)

Let s

�

be the last stage at which � was eligible to act (or let s

�

= 0 if

this is the �rst stage since �'s most recent initialization at which � is

eligible to act). Let m

�

= minfm[s

0

] j s

�

� s

0

� sg. For all y < m

�

such

that �

W

(y) is now unde�ned, set �

W

(y) = K

s

(y) with use

(5)

�(y) = min

�

s

0

j � eligible to act at s

0

^ �

A�W

(y)[s

0

] # ^ y < m

�

[s

0

] ^

(A�W) � ('(y) + 1)[s

0

] = (A�W)

s

� ('

s

0

(y) + 1)g :

If �

A�W

(m

�

)[s

0

] was de�ned for all s

0

2 [s

�

; s] then �^h2m

�

+ 1i is

eligible to act next, otherwise �^h2m

�

i is eligible to act next.

Case 2: A P

V

-strategy � is eligible to act. Since the de�nition of

�

A�W

and �

V�W

can only occur at the end of the stage (to allow the

P

V;	

-strategies to act and to allow the lifting of uses), � merely lets

�^h0i be eligible to act next.

Case 3: A P

V;	

-strategy � is eligible to act. First, check if there is

some P

V;	;i

-strategy
 � �^h0i such that � has let
 diagonalize before

(as de�ned below) at a stage s

0

, say,
 has not been initialized since stage

s

0

, and
's computation 	

W

(x

) has not been destroyed since stage s

0

(i.e.
 is not ready to move from state waitW to state stop). If there is

such a
 then let �^h1i be eligible to act next.

Otherwise, check if there is a link to a P

V;	;i

-strategy
 � �^h0i which

is ready to proceed to state waitW . If so then pick
 leftmost such, let

 diagonalize according to Case 4 below, initialize all N

�

-, P

^

V

-, and

P

^

V ;

^

	

-strategies >
, and let �^h1i be eligible to act next.

Otherwise, i.e. if there is no such
, let �^h0i be eligible to act next.

Case 4: A P

V;	;i

-strategy
 is eligible to act. We describe
's action

using the
ow chart in Diagram 1. After each initialization,
 starts in

stage init, and at each substage at which it is eligible to act, it proceeds

8 RODNEY G. DOWNEY STEFFEN LEMPP

from one state (denoted by a circle) to the next, following the arrows

and along the way executing the instructions (in rectangular boxes) and

deciding the truth of statements (in diamonds, following the y-arrow i�

the statement is true). Some parameters formally de�ned in the
ow

chart have the following intuitive meaning: i is the argument at which

is trying to de�ne �

W

; x is the witness at which
 is trying to diagonalize

B against 	

W

; and s

0

is the (most recent) stage at which
 found a

computation 	

W

(x) #= 0. � and � are the P

V

- and P

V;	

-strategy �
,

respectively. The delayed permission parameter d is de�ned by

(6)

d =min(f'

�

(y) j � � �^h2ji � � _ � � �^h2j + 1i � �) ^

� is an N

�

-strategyg [

f

�

0

(i

0

) j � � �

0

^h0i � � ^ �

0

is a P

V

0

;	

0

-strategy ^ i

0

2 V

0

^

�

0

is linked to a P

V

0

;	

0

;i

0

-strategy

0

^

	

W

0

(x

0

) has not been destroyed since stage s

0;

0

	

):

(We allow d =1 if none of the computations is de�ned. Intuitively, the

delayed permission parameter d is such that a W -change on a number

� d will allow the correction of �

V�W

(x) even if the initial V -permission

(via i entering V) has occurred long before.) The phrase \request �(x) �

d" will be explained below when we specify the de�nition of �

V�W

by

�.

The strategy eligible to act next is
^h0i.

At the end of stage s, i.e. after we end the stage, we let all P

V

-

strategies � � �

t

de�ne their functionals �

A�W

and �

V�W

as follows.

For all x � s such that �

A�W

(x) (or �

V�W

(x)) is currently unde�ned,

� sets �

A�W

(x) = B(x) (or �

V�W

(x) = B(x), respectively). � sets the

�-use
(x) = x and de�nes the �-use by

�(x) = max

�

fxg [f�

s

0

(x

0

) j s

0

< s ^ x

0

� x ^�

V�W

(x

0

)[s

0

] #g [

fd

j
 is a P

V;	;i

-strategy requesting(7)

\�(x

0

) � d

" ^ i

2 V

^ x

0

� xg):

This completes the description of the construction.

4. The Veri�cation. We de�ne the true path f 2 [T] of the construc-

tion by induction on n as follows:

f(n) = �z 2 !((f � n)^hzi is eligible to act in�nitely often):

(Notice that conceivably f(n) may not be de�ned for some (least) n in

which case we assume f = f � n 2 T . We will show in Lemma 2 that if

W <

T

K then this will not happen.)

We begin with a lemma on the N

�

-strategies.

THERE IS NO PLUS-CAPPING DEGREE 9

Lemma 1 (N

�

-Strategy Lemma). Suppose � is an N

�

-strategy that

is initialized at most �nitely often.

(i) There is a stage s

�

after which � is no longer initialized and such

that for all stages s

2

> s

1

� s

�

the following holds: If � de�nes

�

W

(y) (for some y) at stage s

1

with use �(y) = s

1

and at stage

s

2

at which � is eligible to act again we still have �

W

(y) # with

use �(y) = s

1

then the computation �

A�W

(y) from stage s

1

has

also not been destroyed by an (A�W)-change by stage s

2

.

Assume furthermore that � is eligible to act in�nitely often. Then

(ii) � satis�es its requirement; and

(iii) if W <

T

K then lim inf

s

m

�

�

is �nite.

Proof. (i) We proceed by induction on j�j and assume (i) fails for �. Since

�

W

(y) is de�ned with use �(y) � '

s

1

(y) at stage s

1

, the destruction of

the computation �

A�W

(y) at some (least) stage s

3

2 [s

1

; s

2

] must be

caused by the enumeration of some number
(x) = x � '

s

1

(y) into

A by some P

V;	;i

-strategy

0

. This x was originally picked by some

P

V;	;i

-strategy
 at some stage s

4

< s

3

. Then
 must also have de�ned

�

W

(i) = 0 at some stage s

5

2 (s

4

; s

3

). Since x � '

s

1

(y) � s

1

, we have

s

4

< s

1

. If
 6=

0

then

0

<

L

 since whenever a P

V;	;i

-strategy

0

is

initialized (without the corresponding P

V;	

-strategy � being initialized)

while �

W

(i) #= 0 then some P

V;	;i

-strategy

00

<

L

0

is linked to � at

the same stage by the way we end the stage. Furthermore, by the same

reasoning,

(8) 8s 2 [s

5

; s

2

](

0

� �

s

):

We now compare the relative locations of
 (or

0

) and �.

Case 1:

0

< �: This is impossible since then � is initialized by

0

at

s

3

.

Case 2: � <

0

and � <

L

: Let � be the longest common substring

of
 and �. Then � is an N

^

�

- or a P

^

V ;

^

	

-strategy, and s

5

< s

1

by

initialization of
 at s

1

.

Subcase 2a: � is an N

^

�

-strategy: Pick ŷ such that �^h2ŷi � � or

�^h2ŷ+1i � �. Then

^

�

A�W

(ŷ) is de�ned at stage s

5

but is destroyed by

stage s

1

. By induction, we may assume s

5

� s

�

(excluding only �nitely

many s

1

). Then by (i) applied to �, we haveW � (�

�

(ŷ)+1)[s

5

] 6= W

s

1

�

(�

�;s

5

(ŷ) + 1) and �

�;s

5

(ŷ) � s

�

�

[s

5

] < s

5

< s

1

= �

s

1

(y) as desired.

Subcase 2b: � is a P

^

V ;

^

	

-strategy. Pick x̂ such that � lets �^h1i be

eligible to act next at stage s

5

because of a diagonalization

^

	

W

(x̂) 6=

10 RODNEY G. DOWNEY STEFFEN LEMPP

B

�

(x̂). Since �^h0i � � � �

s

1

, we have W � (

^

 (x̂) + 1)[s

5

] 6= W

s

1

�

(

^

s

5

(x̂) + 1) and

^

 (x̂)[s

5

] < s

5

< s

1

= �

s

1

(y) as desired.

Case 3: � <

0

and � �
: Then � �

0

, say �^hji �

0

. Since

�

s

�

1

<

L

�^h2y+1i (for s

�

1

= s

�

[s

1

]) and by (8), we have j � 2y; �x y

0

such

that j = 2y

0

or = 2y

0

+1. Since the computation �

A�W

(y) from stage s

1

is �rst destroyed at s

3

, we have that

0

6� �

s

for any stage s 2 [s

1

; s

3

], and

thus a P

V;	

-strategy � (necessarily � �) lets

0

diagonalize at s

3

. But,

by �^h0i � � � �

s

2

, the computation 	

W

(x) from stage s

5

is destroyed

between stages s

3

and s

2

, so W

s

3

� (

s

5

(x) + 1) 6= W

s

2

� (

s

5

(x) + 1).

Thus

s

5

(x) � s

5

< s

1

= �

s

1

(y) establishes the claim in this case.

(ii) Suppose �

A�W

= K. Fix the stage s

�

from part (i) and an

arbitrary y. By (5) and since �

A�W

(y) is de�ned and lim inf

s

m

�

�

>

y, �

W

(y) is de�ned with (eventually) constant use at almost all the

stages at which � is eligible to act unless �

W

(y) is still de�ned from

before. Thus �

W

(y) is de�ned. By (i) and our assumption on stage s

�

,

any permanent de�nition �

W

(y) made after stage s

�

satis�es �

W

(y) =

�

A�W

(y).

We have thus established that �

A�W

= K implies �

W

(y) = K(y) for

co�nitely many y as desired.

(iii) If W <

T

K then �

A�W

(y) 6= K(y) for some (least) y by (ii). If

�

A�W

(y) is unde�ned, clearly lim inf

s

m

�

�

= 2y by (4). If �

A�W

(y) #

6= K(y) then lim

s

`

�

= y, and so lim

s

m

�

�

must exist and be �nite. �

We can now show that the true path is well-de�ned and has nice

properties, assuming that W is incomplete.

Lemma 2 (True Path Lemma). Assume that W <

T

K, and set

� = f � n for any integer n. Then:

(i) � is initialized at most �nitely often;

(ii) � is eligible to act in�nitely often; and

(iii) f(n) is well-de�ned, and there is a stage after which no strategy

<

L

�^hf(n)i is eligible to act.

Proof. We proceed by simultaneous induction on n:

(i) This vacuous for n = 0, so assume the lemma for n � 1 where

n > 0. Fix a stage s

0

> j�j such that no strategy � <

L

� is eligible to

act after stage s

0

. Then � can be initialized after stage s

0

only if some

P

V;	

-strategy � � � lets a P

V;	;i

-strategy
 < � diagonalize. Each time

this happens, the corresponding i

must have entered V

, so this can

happen at most once for each P

V;	;i

-strategy
. Since there are only

�nitely many P

V;	;i

-strategies
 such that
 � � or
 is eligible to act

by stage s

0

, � cannot be initialized after some stage s

1

� s

0

, say.

(ii) This holds by the de�nition of f(n� 1).

THERE IS NO PLUS-CAPPING DEGREE 11

(iii) Fix a stage s

1

after which no �

0

� � is no longer initialized. If �

is not an N

�

-strategy then the �rst half of the claim is clear since each

time � is eligible to act (except possibly the �rst �nitely many times),

one of the �nitely many immediate successors of � is eligible to act next.

So suppose � is an N

�

-strategy. By Lemma 1, lim inf

s

m

�

is �nite. Thus,

in this case, f(n) = 2m

0

or = 2m

0

+ 1 where m

0

= lim inf

s

m

�

. The

second half of the claim is now obvious since whenever � � � is eligible

to act, � � (j�j+ 1) is eligible to act also. �

It is now easy to show the following

Lemma 3 (N

�

-Satisfaction Lemma). If W <

T

K then all N

�

-

requirements are satis�ed, i.e. A�W <

T

K.

Proof. Fix � and apply Lemmas 1 and 2 to the N

�

-strategy � � f . �

We next turn to the P

V

-requirements.

Lemma 4 (P

V

-Satisfaction Lemma). If W <

T

K then each P

V

-

requirement is satis�ed.

Proof. Fix the P

V

-strategy � � f and an arbitrary x. At each stage

� x at which � is eligible to act, �

A�W

(x) is (re)de�ned with the use of

(x) = x if necessary, and x is put into B only if
(x) enters A at the

same time, destroying the old computation �

A�W

(x) if necessary. Thus

�

A�W

= B as desired.

For the sake of a contradiction, assume �

V�W

(x) 6= B(x) for some

(least) x. First suppose that �

V�W

(x) is unde�ned. Since �

V�W

(x)

is (re)de�ned at each stage � x at which � is eligible to act we have

lim

s

�(x) =1. By (7) and the minimality of x, there must be a P

V;	;i

-

strategy
 � � with x = lim

s

x

and

(9) lim sup

s

d

=1

such that
 requests �(x) � d

. Since x = lim

s

x

, necessarily
 � f .

Since
's request is responsible for lim

s

�(x) =1, we have i

2 V

(using

(7)). Once i

2 V

,
 cannot cancel its request since it would then never

again request �(x) � d

. Therefore, � <

L

f for the P

V;	

-strategy � �
.

Let � � f be maximal with � � �. Since � and f split at �, � must be

an N

�

- or a P

V

0

;�

0

-strategy.

Case 1: � is an N

�

-strategy. Fix j such that �^h2ji � � or �^h2j +

1i � �. By (4) and � <

L

f , �

A�W

(j) is de�ned, and thus lim sup

s

d

�

'(j) by (6), contradicting (9) as desired.

Case 2: � is a P

V

0

;�

0

-strategy. Then �^h0i � � and �^h1i � f . Thus

there is a permanent computation 	

W

0

(x

0

) (for some P

V

0

;	

0

;i

0

-strategy

12 RODNEY G. DOWNEY STEFFEN LEMPP

0

� �^h0i). So again lim sup

s

d

�

0

(x

0

) by (6), contradicting (9) as

desired.

We have thus established that �

V�W

(x) is de�ned. Now by the

construction, x enters B only if �

V�W

(x) is currently unde�ned, so

�

V�W

(x) 6= B(x) is impossible as desired. �

We �nally prove the satisfaction of the P

V;	

-requirements.

Lemma 5 (P

V;	

-Satisfaction Lemma). If W <

T

K then each P

V;	

-

requirement is satis�ed.

Proof. Fix the P

V;	

-strategy � � f and assume 	

W

= B.

First suppose that �^h1i � f . Then there is a �xed P

V;	;i

-strategy

 � �^h0i such that
 has a (permanent) computation 	

W

(x

) #= 0 6=

1 = B(x

) (i.e.
 is eventually permanently in state waitW). So P

V;	

is

clearly satis�ed.

So we may assume that �^h0i � f . By De�nitions 1 and 2, for each

i 2 ! �x the P

V;	;i

-strategy

i

with � �

i

� f . By Lemma 2(i), each

i

is initialized at most �nitely often and will thus eventually have a

permanent witness x

i

= x

i

(unless some P

V;	;i

-strategy
̂

i

<

L

i

acts

for it). We will show that �

W

(i) #= V (i) for almost all i. Since 	

W

= B

and �^h0i � f , each

i

will eventually be permanently in state waitV or

permanently in state stop or permanently in state init. In the last case

some P

V;	;i

-strategy
̂

i

is permanently linked to � and in state waitV

or state stop. We distinguish two cases:

Case 1:

i

(or
̂

i

) is eventually permanently in state waitV : Then

�

W

(i) must be de�ned since almost every time

i

is eligible to act it

attempts to rede�ne �

W

(i) with �xed use s

0

(= the last stage

i

enters

state waitV), or else some P

V;	;i

-strategy <

i

permanently de�ned

�

W

(i). Suppose �

W

(i) is permanently de�ned at stage s

1

by some

P

V;	;i

-strategy
 and i enters V at some stage s

2

> s

1

. Then 	

W

(x

)

cannot be de�ned at stage s

1

with a permanent computation, and so

eventually

i

(or
̂

i

) will proceed to state stop forever.

Case 2:

i

(or
̂

i

) is eventually permanently in state stop: Then

i 2 V . If �

W

(i) is ever set to 1 with use 0, we are done. Again suppose

some P

V;	;i

-strategy
 de�nes �

W

(i) = 0 at some stage s

1

, and this

computation is valid at stage s

2

> s

1

when i enters V . Then

i

(or
̂

i

)

will eventually proceed to state stop directly from state waitV (at a stage

s

3

� s

2

, say) with witness x = x

i

(or x

̂

i

) = x

[s

1

] since �

V�W

(x)

is de�ned at stage s

3

. We will show that this can happen for at most

�nitely many i, namely that this cannot happen if s

1

� s

�

(as de�ned

in Lemma 1(i)) for all N

�

-strategies � � �.

Let � � � be the P

V

-strategy, let s

4

be the least stage � s

2

at which

� is eligible to act. Then at any stage s 2 [s

4

; s

3

), there will be a request

