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Abstract. Working toward showing the decidability of the ∀∃-theory of the

Σ0
2-enumeration degrees, we prove that no so-called Ahmad pair of Σ0

2-enu-
meration degrees can join to 0′

e.

1. Introduction

Enumeration reducibility is a natural counterpart to its more famous cousin,
Turing reducibility, and arises naturally as a notion of relative computability es-
pecially in computable model theory as well as, in slightly modified form, Ziegler
reducibility in group theory.

This paper is devoted to the study of enumeration reducibility in terms of a
degree structure, more specifically, the degree structure of the enumeration degrees
of the Σ0

2-sets, which can be defined also as those enumeration degrees below the
degree 0′

e, i.e., the enumeration degree of the complement K of the halting problem
K = {e | φe(e) ↓ }. (By this double characterization, the Σ0

2-enumeration degrees
can be viewed as the counterpart of both the c.e. Turing degrees and the Turing
degrees ≤ 0′, i.e., the ∆0

2-Turing degrees.)
One of the common questions about a degree structure viewed as a partial order

is that of the complexity of its first-order theory as well as the decidability of
fragments thereof. For most degree structures commonly being considered, the
theory turns out to be as complicated as possible (i.e., equivalent to first-order or
second-order arithmetic), while the ∃- and often even the ∀∃-fragment is decidable
and the ∃∀∃-fragment is not.

For the Σ0
2-enumeration degrees, the first of these questions has been com-

pletely settled: The full first-order theory was shown to be undecidable by Sla-
man and Woodin [16], and equivalent to full first-order arithmetic by Ganchev and
Soskova [3].

As for the second question, the ∃-fragment is easily seen to be decidable, whereas
Kent [7] showed the ∃∀∃-fragment to be undecidable. On the other hand, the
decidability of the ∀∃-fragment remains open.
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The decidability of the ∀∃-fragment can be rephrased algebraically as (uniformly
effectively) deciding the following

Question 1.1. For any given finite partial orders P and Qi ⊇ P (for i ≤ n), can
any embedding of P into the Σ0

2-enumeration degrees be extended to an embedding
of Qi for some i ≤ n (where i may depend on the particular embedding of P)?

Two major subproblems of Question 1.1 have been shown to be decidable:

• Lempp, Slaman and Sorbi [11] showed that the above question is decidable
for n = 0, i.e., given any finite partial orders P ⊆ Q, it is decidable whether
any embedding of P into the Σ0

2-enumeration degrees can be extended to
an embedding of Q.

• Lempp and Sorbi [12] showed that all finite lattices can be embedded, even
preserving 0 and 1. (The lattice embeddings question can be seen as a
disjunction of extending embeddings to certain one-point extensions Qi of
a finite lattice P viewed as a partial order.)

The Σ0
2-enumeration degrees are often compared to the c.e. Turing degrees, where

the situation is somewhat similar but also quite different in other respects: The full
first-order theory is as complicated as first-order arithmetic by Slaman and Woodin
(unpublished, see Nies, Slaman and Shore [13]); the ∃-fragment is easily seen to be
decidable, whereas Lempp, Nies and Slaman [10] showed the ∃∀∃-fragment to be
undecidable; the lattice embeddings problem for the c.e. Turing degrees remains
one of the main open problems dating back to the 1960’s (see Lempp, Lerman and
Solomon [9] for the most recent update), and thus the decidability of the ∀∃-theory
of the c.e. Turing degrees remains wide open as well.

The main algebraic difference between the c.e. Turing degrees and the Σ0
2-enu-

meration degrees was discovered by Ahmad in her Ph.D. thesis [1] (see Ahmad and
Lachlan [2, Corollary 3.2]): There are incomparable Σ0

2-enumeration degrees a,b
(called an “Ahmad pair”) such that any degree x < a is also < b. (This makes a
“non-splitting” (i.e., join-irreducible) and thus cannot happen in the c.e. Turing
degrees by the Sacks Splitting Theorem [14].) More interestingly even, Ahmad also
showed (see Ahmad and Lachlan [2, Theorem 3.3]) that this phenomenon is not
symmetric: For any two incomparable Σ0

2-enumeration degrees a,b, there is either
a degree x < a which is ≰ b, or there is a degree y < b which is ≰ a.

In the language of Question 1.1, Ahmad’s results can be rephrased as stating that
not every embedding of an antichain P = {a, b} can be extended to an embedding
of Q0 = {a, b, x} where x < a and x ≰ b, but that every embedding of P can be
extended to an embedding of either Q0 or of Q1 = {a, b, y} where y < b and y ≰ a.

One of the two main open questions extending the work of the second author,
Slaman and Sorbi [11] asks whether an Ahmad pair of Σ0

2-enumeration degrees
can join to the greatest Σ0

2-enumeration degree 0′
e. In this paper, we answer this

question (communicated to the second author in 2007 by Kent) in the negative:

Main Theorem. There is no cupping Ahmad pair of Σ0
2-enumeration degrees;

i.e., given any two incomparable Σ0
2-enumeration degrees a and b, there is either a

Σ0
2-enumeration degree x < a with x ≰ b, or else a ∪ b < 0′

e.

This result is a small part of a proposed framework for deciding the ∀∃-theory
of the Σ0

2-degrees, which is equivalent to deciding Question 1.1
Given the difficulty of the overall problem of deciding the ∀∃-theory, researchers

are currently concentrating on the following question concerning 1-point extensions:
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Question 1.2. Given a finite antichain P = {a0, . . . , an} and 1-point extensions
QS = {a0, . . . , an, xS} and QT = {a0, . . . , an, xT } for some sets S ∈ S and T ∈ T
(where S, T ⊆ P({0, . . . , n}) − {∅}); xS < ai iff i ∈ S; and xT > ai iff i ∈ T ),
does any embedding of P into the Σ0

2-degrees extend to an embedding into the
Σ0

2-degrees of QS for some S ∈ S or to an embedding of QT for some T ∈ T ?

Note that it is always possible to extend an embedding of a finite antichain P to
an embedding of a larger antichain, so the case S = T = ∅ is not interesting. The
subproblem involving only extensions QT is easy to see: We have extendibility iff
there is a singleton T ∈ T .

Recent work of Goh, the second and third author and M. Soskova [4, 5] gives
a complete (and quite complicated) characterization of the subproblem involving
only extensions QS .

We have no working conjecture that combines the QS and the QT ; our main
result is the only result known to us in this direction.

2. The proof of the Main Theorem

This section is devoted to the proof of our Main Theorem.

2.1. Requirements. Rather than proving the result directly, we use an indirect
approach, trying to “weakly split” the degree of A. Specifically, given two Σ0

2-
sets A and B and an enumeration operator Λ such that K = Λ(A ⊕ B) (K here
denotes the usual Halting set), we construct two sets X0 = Φ0(A) and X1 = Φ1(A)
with these enumeration operators and an enumeration operator Γ, and meet the
following requirements for all enumeration operators ∆:

Global : A = Γ(B ⊕X0 ⊕X1)

N 0
∆ : A = ∆(X0) ⇒ ∃Ω (A = Ω(B))

N 1
∆ : A = ∆(X1) ⇒ ∃Ω (A = Ω(B))

Here, the enumeration operators Ω are built locally by N -requirements; indeed, as
we will see below, each N -requirement will build different versions of Ω based on
different guesses about the higher-priority requirements.

If we succeed with these requirements, then we have that A ≤e B, or that
X0, X1 <e A and A ≤e B⊕X0 ⊕X1, and so the degrees of A and B clearly cannot
form an Ahmad Pair. This corollary is non-uniform in two ways, in that we do not
know whether A ≤e B or which one (or both) of the Xi is not below B, and even
assuming A ̸≤e B, we cannot tell uniformly which of X0 or X1 (or both) is now
below B (in fact, these non-uniformities are unavoidable, as can be shown).

The construction will be a finite-injury construction. The global requirement
should proceed carefully to ensure that we do not end up with a “runaway” Γ-
axiom. The other requirements will be ordered in some way in order type ω which
determines their priority.

Our construction uses the Recursion Theorem with Parameters in that we will
define “agitators” that we enumerate into the Halting set K, which will then force
A ⊕ B to change. More precisely, we assume that we are given an infinite com-
putable list of indices i0, i1, . . . for which we are able to define φiy for every y.
This allows us to be able to use any of these indices as an “agitator”. For any
choice of N -requirement, stage s and potentially numbers a and strings σ ∈ 2<ω,
we may define agitators pa,σ and q for the N -requirement at stage s, picked from
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the aforementioned list of agitators, and the Recursion Theorem with Parameters
allows us to assume that we know what corresponding number will enter K when
we enumerate an agitator.

Agitators and the use of the Recursion Theorem. We provide more details about
agitators and the use of the Recursion Theorem here; the reader who is familiar with
this may skip this subsection. As mentioned above, we assume that we are given
an infinite computable list of indices i0, i1, . . . for which we are able to control the
value of K(iy) for every y. What this means is that for any y, we can assume that
iy ̸∈ K until we choose to enumerate it into K (via making a definition φiy (iy)). If
we never choose to enumerate iy into K, then it will never appear in Ks for any s;
otherwise, if we choose to enumerate it into K, then it must appear in Ks for some
large s which we can then wait for by speeding up the approximation to Ks.

Now it remains to justify the existence of the sequence i0, i1, . . . . To do this, we
require the use of the Recursion Theorem with Parameters, applied in the following
way. We perform infinitely many constructions, rather than just the one described
in the proof, and each construction is given a different label c ∈ ω. These construc-
tions are performed uniformly, and each differs only on the assigned label c. In each
construction, we build infinitely many partial computable functions hc,0, hc,1, . . .
representing the list of potential agitators in that construction. The construction
will guess that hc,y has index φc(c, y) for each y, where c is its assigned label. That
is, the construction believes that hc,y = φφc(c,y) for every y. All constructions pro-
ceed in exactly the same way, except for its guess on the indices for the sequence
hc,0, hc,1, . . . . This allows us to use the s-m-n Theorem to obtain a computable
function f such that hc,y = φf(φc(c,y),c,y) for every c and y. The Recursion The-
orem with Parameters gives an index c such that hc,y = φf(φc(c,y),c,y) = φφc(c,y)

holds for every y. Now the construction which was assigned label c will have the
correct guesses on the indices of the agitators.

2.2. Basic strategies for the requirements. We fix a computable enumeration
{Ks} of K, and let Ks be the complement of Ks. By speeding up the enumeration
of Λ and the approximations to A and B, we may assume at any stage s that for
all numbers p < s, if p ∈ Ks, then currently p ∈ Λ(A⊕B), and if p /∈ Ks, then any
axiom putting p into Λ(A⊕B) at stage s− 1 will no longer apply at stage s.

The global requirement constructing the operator Γ will enumerate axioms into
Γ taking into account more and more of the other requirements’ action; the basic
action of the global requirement is to just enumerate an axiom for a into Γ whenever
it sees a enter A. Specifically, for each a ∈ A, we associate with a fresh numbers
cia > a targeted for Xi for i < 2; we then enumerate cia into Xi via the Φi-axioms
⟨cia, {a}⟩, and we enumerate a new axiom ⟨a,Ba ⊕ C0

a ⊕ C1
a⟩ into Γ where Ba is

some finite subset of B, and Ci
a is a finite subset of Xi containing cia and possibly

other numbers determined later; this will result in a ∈ Γ(B ⊕ X0 ⊕ X1). Now,
when a leaves A, this will remove c0a from X0 and c1a from X1 unless we introduce
additional axioms for either of these numbers. (More generally, ensuring C0

a ̸⊆ X0

or C1
a ̸⊆ X1 or Ba ̸⊆ B would suffice, as will be required later.)

The basic strategy for the N i
∆-requirement is to try to show that A = Ω(B) as

follows: At each stage, the N i
∆-requirement determines the oldest a ∈ A (if any)

which has not yet been confirmed (as defined precisely below) and checks if there
is currently some F such that a ∈ ∆(F ); if no such F exists, the requirement does
nothing for now. If there is such F , the requirement declares a to be confirmed and
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dumps all x ∈ F into Xi by enumerating axioms ⟨x, ∅⟩ into Φi (and thus ensures
that a ∈ ∆(Xi) permanently); it also chooses a fresh agitator pa, keeps pa ∈ K for
now, and waits for pa ∈ Λ(A ⊕ B) (which must happen by the first stage s > pa)
via a Λ-axiom ⟨pa, Fa⊕Ga⟩, say, for which all a′ ∈ Fa have been confirmed already
(which need not ever happen). The N i

∆-requirement then enumerates a into Ω(B)
via the Ω-axiom ⟨a,Ga⟩. If pa leaves Λ(A ⊕ B) before we enumerate pa into K
(if ever), then we wait again for a to re-enter Λ(A ⊕ B) via a possibly different
Λ-axiom ⟨pa, F ′

a ⊕ G′
a⟩ (such that again all a′ ∈ F ′

a are confirmed); then we will
use the (possibly different) set G′

a in redefining a ∈ Ω(B), etc.; this can happen
only finitely often for this fixed pa. If a leaves A after a is confirmed, then we
enumerate the current agitator pa into K; if later a re-enters A, then we pick a
new, fresh agitator p′a, say, for which we proceed as above (finding sets F ′

a and G′
a

and enumerating an Ω-axiom ⟨a,G′
a⟩, etc.). From now on, whenever some agitator

pa ∈ K and for any corresponding set Ga, we see Ga ⊆ B, then the N i
∆-requirement

stops (since it believes that Fa ̸⊆ A while Fa ⊆ ∆(Xi) by dumping). Note that if a
is truly in A, then the final agitator pa for a will stabilize and be in K; on the other
hand, if a /∈ A then a will either appear to be outside A at cofinitely many stages,
or the agitator will never stabilize, and any temporary agitator pa will eventually
be in K.

We need to check two things: First of all, note that the N i
∆-requirement can

act only finitely often unless A = Ω(B) (which would contradict our hypotheses):
If the requirement acts for the sake of infinitely many distinct a, then, since we
always choose a by age, we will have for each a ∈ A that a will be confirmed and
that a ∈ Ω(B) by an axiom using the final agitator pa ∈ K and the B-part Ga of its
Λ-use; and for each a /∈ A we will have that a /∈ Ω(B) since no Ω-axiom can apply:
If a ∈ Ω(B) via some axiom ⟨a,Ga⟩, say, but a /∈ A, then Ga is the B-part of the
Λ-use of some agitator pa, but every such agitator pa will be enumerated into K
and thus Ga ⊆ B will eventually stop the N i

∆-requirement permanently. On the
other hand, the N i

∆-requirement cannot act infinitely often for some fixed a0 since
that would mean that a0 /∈ A and so the age of a0 would keep increasing and we
would choose other numbers infinitely often (assuming here, of course, that A is
infinite).

The second item we need to check is that the N i
∆-requirement satisfies its re-

quirement, so assume that indeed A = ∆(Xi): Then every a truly in A must be
confirmed eventually, but since we may assume A to be infinite, this means that
the N i

∆-requirement acts infinitely often and thus ensures A = Ω(B) as shown in
the previous paragraph.

2.3. Conflicts between the N -requirements and the global requirement.
A single N i-requirement will not conflict with the global requirement building and
correcting Γ since when a leaves A, Γ can always be corrected by extracting c1−i

a

from X1−i (as no requirement has dumped that number into X1−i so far).
So let’s consider the case of a higher-priority N 0-requirement above a lower-

priority N 1-requirement: The main difficulty is that any number x0 dumped by
the N 0-requirement is associated with some number a potentially in A, which in
turn may be associated with a number x1 that the N 1-requirement may dump
into X1, so if both x0 and x1 are dumped, then we may not be able to correct
Γ(B ⊕X0 ⊕X1) if a leaves A, injuring the global requirement.
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So the N 1-requirement, assuming that the N 0-requirement acts only finitely
often, will be modified as follows: Each time the N 0-requirement acts, the N 1-
requirement’s action will be completely undone by enumerating an agitator q (cho-
sen by the N 0-requirement) into K, which will force an (A ⊕ B)-change undo-
ing all Γ-axioms enumerated since the N 0-requirement was last active (and thus
any Γ-axioms enumerated while the N 1-requirement was active since then), where
q ∈ Λ(A ⊕ B) via a Λ-axiom ⟨q, Fq ⊕ Gq⟩, say; now the numbers in Fq are
associated with sets of numbers F i

q in Xi for i < 2, and so we may assume

that each Γ-axiom enumerated since the N 0-requirement was last active contains
Bq⊕C0

q⊕C1
q in its use, thus we will now ensure that when q entersK, this will entail

Bq ⊕ C0
q ⊕ C1

q ̸⊆ B ⊕X0 ⊕X1. This feature will thus prevent the N 1-requirement

from interfering with the global requirement as long as the N 1-requirement cannot
unconditionally dump numbers into X1 like the N 0-requirement.

In addition to this extra initialization, we will now modify the strategy for the
N 1-requirement as follows: Let r be a strict bound on the largest number ever
considered by the N 0-requirement up to this stage, and assume that this bound is
reset each time the computation for q ∈ Λ(A⊕B) changes. (If the N 0-requirement
acts only finitely often, then this number will stabilize eventually.)

The N 1-requirement will now be prevented from making any changes to X1

at any number < r and will work with all possible guesses σ ∈ 2r about A ↾ r.
(Recall here that any number x potentially in X1 is associated with a number
a < x potentially in A, or with no number at all, so a guess about A ↾ r will
eventually give complete information about X1 ↾ r.) Each version of the strategy
for theN 1-requirement (let’s call it theN 1

σ -strategy) will build its own version of the
enumeration operator Ω (call it Ωσ); each N 1

σ -strategy will now act independently,
building not only its own Ωσ but also define its own agitators pa = pa,σ. (On the
other hand, the agitator q is attached to an entire requirement and so can be joint
for all N -strategies working for the same requirement since this is a finite-injury
argument.)

Each N 1
σ -strategy will then, instead of dumping a number x < r into X1, simply

check if its guess about A ↾ r and about Φ1 puts x into X1, and this guess will
eventually be correct about each such x; for numbers x ≥ r, the N 1

σ -strategy can
still simply “dump” numbers into X1 but only with the set Fq (from the Λ-axiom
⟨q, Fq ⊕ Gq⟩) in the A-part of the Φ1-use. (Also, the strategy will stop if it sees a
number a ∈ A ↾ r with σ(a) = 0.) Note that this is sufficient to allow the global
strategy to correct Γ whenever necessary: If any number a leaves A, then the global
strategy can either use X0 to correct Γ if the Γ-axiom for a ∈ Γ(B ⊕X0 ⊕X1) was
defined after the stage sr, say, at which the N 0-requirement last acted (since no
strategy will have dumped any number ≥ r into X0 up to this point), or it can
use X1 or B if the Γ-axiom for a ∈ Γ(B ⊕ X0 ⊕ X1) was defined before stage sr
(since any number dumped into X1 before stage sr must have been dumped by
an N 1

σ -strategy before r was last increased, and thus the corresponding agitator q
of the N 0-requirement from that time was enumerated into K, resulting in a B-
change, or in an A- and thus an X0-change, invalidating any Γ-axiom for a that
might involve a number dumped by an N 1

σ -strategy in its use).
We now have to verify two things: Firstly, the N 1

σ -strategy with the correct
guess σ = A ↾ r will ensure the satisfaction of the N 1-requirement. And secondly,
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any N 1
σ -strategy will act at most finitely often even if its guess σ about A ↾ r is

incorrect.
So suppose first that r is the final value of this parameter and fix σ = A ↾ r. Then,

starting at some stage sr, any number x ∈ X1 ↾ r will forever be in X1 = Φ1(A). So
starting at stage sr, the N 1

σ -strategy can act like the N -strategy in isolation except
that it cannot dump any number x < r into X1, but no such number will be truly
in X1 unless it is so by stage sr, so this does not cause more than finitely many
mistakes for Ωσ in case the N 1

σ -strategy acts infinitely often.
Next, fix any N 1

σ -strategy (irrespective of whether σ = A ↾ r or not). In order
to show that this strategy acts at most finitely often, we distinguish two cases: If
A ↾ r ̸⊆ σ, fix the oldest element a ∈ A ↾ r with σ(a) = 0; in that case, the strategy
clearly stops as soon as a no longer leaves A. On the other hand, if A ↾ r ⊆ σ, then
the strategy will act as in isolation (since it will never want to dump a number
into X1 that it cannot dump) and so must also eventually stop unless A ≤e B.

This concludes the presentation of the intuition behind our construction; we are
now ready to describe it formally in full.

2.4. The full construction. Recall that we are given approximations to Σ0
2-sets A

and B and an enumeration operator Λ such that at any stage s, for any number
p < s, if p ∈ Ks then p ∈ Λ(A ⊕ B)[s], and if p ∈ Ks then p is not in both
Λ(A⊕B)[s−1] and Λ(A⊕B)[s] via the same axiom. Furthermore, we may assume
to be given a good approximation {As ⊕Bs}s∈ω (of finite sets) to A⊕B, i.e., there
are infinitely many true stages, namely, stages s with As ⊕Bs ⊆ A⊕B.

Since we have a finite-injury construction with one global requirement, the action
at each stage s will consist of a single action for the highest-priority N -requirement
requiring attention, followed by some global action. At stage 0, all N -requirements
are initialized and all functionals and agitators are set to be undefined.

We say that an N i
∆,σ-strategy (for σ ∈ 2r and some r ∈ ω) requires attention if

• there is no a ∈ As ↾ r with σ(a) = 0; and
• there is no agitator pa ∈ Ks with Ga ⊆ Bs for the corresponding Λ-axiom

⟨pa, Fa⊕Ga⟩ where pa = pa,σ′ is any agitator ever used by anN i
∆,σ′ -strategy

working for the same N i
∆-requirement; and

• one of the following four conditions holds:
(1) there is some a ∈ Ω(B)[s]− As (with the oldest Ω-axiom applicable);

or
(2) there is some (oldest) a ∈ As − Ω(B)[s] which has already been con-

firmed by the N i
∆,σ-strategy (since its last initialization) via F , say,

and each a′ ∈ F has also already been confirmed by the N i
∆,σ-strategy

(since its last initialization); or
(3) there is some (oldest) a ∈ As which has not yet been confirmed by

the N i
∆,σ-strategy (since its last initialization) and for which there is

a finite set F (of least canonical index) with F ↾ r = Φi(σ) ↾ r and
a ∈ ∆s(F ); or

(4) all the strategies for this N -requirement have not acted since they were
last initialized.

If an N i
∆,σ-strategy requires attention, we also say that the corresponding N i

∆-
requirement requires attention.
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At a stage s > 0, we first check if there is a (highest-priority) N i
∆-requirement

requiring attention; if so, allow all N i
∆,σ-strategies working for this N i

∆-requirement

to act if they require attention. Each such N i
∆,σ-strategy will now act according to

the first clause of the third bullet that applies.
If (1) applies, then the N i

∆,σ-strategy enumerates into K the agitator pa = pa,σ
which was chosen when the current Ωσ-axiom for a ∈ Ωσ(B) was defined. (Note
that pa /∈ Ks since otherwise, the second bullet would have prevented the N i

∆-
requirement from requiring attention.)

If (2) applies, then the N i
∆,σ-strategy, for the current agitator pa = pa,σ and the

(oldest) Λ-axiom putting pa ∈ Λ(A⊕B) with use Fa ⊕Ga, enumerates the axiom
⟨a,Ga⟩ into Ωσ.

If (3) applies, then the N i
∆,σ-strategy declares a to be confirmed via F , chooses

a fresh agitator pa, enumerates all of F − [0, r) (for the threshold r imposed on this
requirement) into Φi(A) with use including all Fq for all agitators q ∈ K defined
by strategies for higher-priority requirements (where q ∈ Λ(A⊕B) via an (oldest)
Λ-axiom ⟨q, Fq ⊕Gq⟩). If now (2) applies to this a, then continue as for that case,
else proceed to the global action for this stage.

If one of (1)-(3) applies, then we also enumerate into K the agitator q of the N -
requirement for which we acted at this stage, choose a new fresh agitator q, choose
a new threshold r above all numbers mentioned so far which will be imposed on
the lower-priority strategies, and initialize all lower-priority N -strategies.

If (4) applies, then the N i
∆-requirement, i.e., the N i

∆,σ-strategies (for all σ ∈ 2r,

where r is the threshold imposed by the higher-priority strategies) simply defines
a new threshold r′ above all numbers mentioned so far which is imposed on all
lower-priority N -strategies.

After the strategies for an N -requirement have acted, the global requirement
building Γ will act. First of all, as we will show in the verification below (see
Lemma 2.3), since all corrections will be automatic there will never be a number a
and a stage s such that a ∈ Γ(B ⊕X0 ⊕X1) − A. So the global requirement will
simply identify the (oldest) a ∈ A− Γ(B ⊕X0 ⊕X1) (which must exist since A is
infinite), let Q be the set of all current agitators q of N -requirements whose current
threshold r is less than < a, and then enumerate an axiom ⟨a,Ba⊕C0

a ⊕C1
a⟩ into Γ

where

• Ba contains all sets Gq such that q ∈ Λ(A⊕B) via a Λ-axiom ⟨q, Fq ⊕Gq⟩
for some q ∈ Q and some finite set Fq,

• C0
a contains all c0a′ for all a′ ∈ Fq such that q ∈ Λ(A ⊕ B) via a Λ-axiom

⟨q, Fq ⊕ Gq⟩ for some q ∈ Q and some finite sets Fq and Gq, as well as a
freshly chosen number c0a for which we enumerate c0a into X0 via a Φ0-axiom
⟨c0a, {a}⟩, and

• C1
a contains all c1a′ for all a′ ∈ Fq such that q ∈ Λ(A ⊕ B) via a Λ-axiom

⟨q, Fq ⊕ Gq⟩ for some q ∈ Q and some finite sets Fq and Gq, as well as a
freshly chosen number c1a for which we enumerate c1a into X1 via a Φ1-axiom
⟨c1a, {a}⟩.

In the last two bullets above, for each a′, if there is no cia′ (for i < 2) which has
not yet been dumped and for which there is a Φi-axiom ⟨cia′ , {a′}⟩, then we pick a
fresh such number cia′ for the Γ-axiom, enumerate a corresponding axiom ⟨cia′ , {a′}⟩
into Φi, and use it in the above Γ-axiom. Also, recall here that each current agitator
q ∈ Q must be in K and thus in Λ(A⊕B).
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This concludes the formal description of the construction.

2.5. Verification. We now verify that our construction satisfies the requirements
in a number of lemmas. In addition to assuming that K = Λ(A⊕B) and that A⊕B
has a good approximation, we will also assume tacitly throughout that A ̸≤e B and
in particular that A is infinite.

We start by verifying that our construction is indeed finite injury:

Lemma 2.1. Each N -requirement acts at most finitely often and eventually defines
a final threshold r and a final agitator q which is in K (unless it does not have an
eventual agitator at all).

Proof. We proceed by induction on the priority of the N -requirement. So fix an
N i

∆-requirement and assume the lemma for all higher-priority N -requirements. Fix
a (least) stage s0 such that no higher-priority N -requirement acts after stage s0.
Let r0 be the maximum of the final thresholds of all these higher-priority N -
requirements, and let Q be the set of the final agitators of all these higher-priority
N -requirements.

Let’s now analyze how the N i
∆-requirement can require attention after stage s0:

First of all, observe that clause (4) of the third bullet can apply at most once after
stage s0.

For the sake of a contradiction, assume that an N i
∆,σ-strategy acts infinitely

often. By the first bullet in the conditions for requiring attention, there can be no
a ∈ A with σ(a) = 0.

Furthermore, clause (3) of the third bullet must apply infinitely often (and thus
infinitely many a will be confirmed by the N i

∆,σ-strategy), since clauses (1) and (2)

of the third bullet can possibly apply to a fixed a only if a /∈ A, but then the age of a
keeps increasing and, since A is infinite, infinitely many other numbers must take
precedence in requiring attention. This implies, by age and clause (3) of the third
bullet, that each a ∈ A must eventually be confirmed, and so, since the first bullet
fails for σ, a ∈ ∆(Xi). But then there will be a final agitator pa = pa,σ, which will

be in K and thus in Λ(A⊕B) via a Λ-axiom ⟨pa, Fa⊕Ga⟩, say. Thus a ∈ Ωσ(B) via
the axiom ⟨a,Ga⟩. Conversely, if a /∈ A, then any axiom ⟨a,Ga⟩ enumerated into Ωσ

cannot apply and put a ∈ Ωσ(B) since otherwise, Ga ⊆ B while the corresponding
agitator pa /∈ K, so the second bullet for requiring attention will eventually prevent
any N i

∆-strategy from acting. We have thus shown that an N i
∆,σ-strategy acting

infinitely often will imply A = Ωσ(B), contrary to assumption.
Thus the N i

∆-requirement will act at most finitely often and eventually define a
final threshold r and a final agitator q (If there is an agitator q ever defined).

Note that the action of the global requirement does not interfere with any of the
above argument. □

We next verify that each N -requirement is satisfied.

Lemma 2.2. Each N i
∆-requirement is satisfied.

Proof. Suppose that A = ∆(Xi). Fix the final threshold r of the higher-priority N -
requirements and set σ = A ↾ r. We will show that the N i

∆,σ-strategy acts infinitely
often, contradicting Lemma 2.1.

First, note that for each a, the first and second bullet of requiring attention will
eventually not prevent the N i

∆,σ-strategy from acting. (This is clear for the first
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bullet by definition of σ, and for the second bullet, we argue that otherwise, pa ∈ K
and Ga ⊆ B implies pa /∈ Λ(A ⊕ B) and so Fa ̸⊆ A, say, a′ ∈ Fa − A. But a′ is
confirmed, so ∈ ∆(Xi)−A, contradicting our assumption.)

But now A = ∆(Xi) implies that every a ∈ A will be confirmed, implying that
the N i

∆,σ-strategy acts infinitely often, again contradicting Lemma 2.1. □

Finally, we need to verify that the global requirement is satisfied.

Lemma 2.3. The global requirement is satisfied: A = Γ(B ⊕X0 ⊕X1).

Proof. We need to prove two directions. Assume first that a ∈ A, so we need to
verify that some Γ-axiom will eventually put a into Γ(B ⊕ X0 ⊕ X1). So find a
stage s such that all thresholds r of N -requirements with r < a, as well as their
potential agitators q, have settled down. Then for each such agitator q, q ∈ K and
thus there will be a stable Λ-axiom ⟨q, Fq ⊕ Gq⟩ putting q ∈ Λ(A ⊕ B), say, all of
this happens by a stage s′ ≥ s. Then by stage s′, the global strategy will have
enumerated a Γ-axiom ⟨a,Ba ⊕C0

a ⊕C1
a⟩ with Ba ⊆ B and Ci

a ⊆ Xi for i < 2, and
so a ∈ Γ(B ⊕X0 ⊕X1).

Conversely, suppose a /∈ A, so we need to show that no valid Γ-axiom puts a
into Γ(B⊕X0⊕X1). For the sake of a contradiction, suppose that at some stage s,
while a ∈ As, the global strategy enumerates a valid axiom ⟨a,Ba⊕C0

a⊕C1
a⟩ into Γ.

We now distinguish two possibilities:
Assume first that after this stage s, no N -requirement with current threshold

r ≤ a acts; then the N -requirements with threshold r ≤ a cannot dump any
numbers cia′ into Xi involved in the Γ-axiom putting a into Γ(B ⊕ X0 ⊕ X1) (for
either i < 2); and only the highest-priority N -requirement with threshold r > a
can dump any such numbers into only one of the Xi, so a /∈ Γ(B⊕X0 ⊕X1) by an
X1−i-change.

On the other hand, suppose that some N -requirement with current threshold
r ≤ a acts, say, the first such requirement is an N j-requirement acting at a stage
s′ > s. In that case, the N j-requirement’s current agitator q will be enumerated
into K, and so the Λ-axiom involving Fq⊕Gq will no longer apply. Now if Gq ̸⊆ B,
then the Γ-axiom will clearly no longer apply for a. If only Fq ̸⊆ A, then we will
need to argue that C0

a ̸⊆ X0 or C1
a ̸⊆ X1 to invalidate the Γ-axiom for a; but by the

choice of the numbers cia′ in the definition of the Γ-axiom for a, both c0a′ and c1a′ will
leave X0 and X1, respectively, unless they will be dumped. However, since any N -
requirement of lower priority than the N j-requirement is prevented from dumping
a number in C1−j

a into X1−j after the N j-requirement acts at stage s′, we know
that C1−j

a ̸⊆ X1−j as long as no N -requirement of higher priority acts later. If that
should happen, we repeat the above argument until there is no even higher-priority
N -requirement acting to dump even smaller numbers. So eventually, we see that
this Γ-axiom cannot apply to a anymore, as desired.

This establishes that the global requirement does indeed succeed as desired,
completing the proof. □
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