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Abstra
t

The Nielsen-S
hreier Theorem states that every subgroup of a free group is free.

To formalize this theorem in weak subsystems of se
ond order arithmeti
, one has to


hoose between de�ning a subgroup in terms of a set of group elements and de�ning

it in terms of a set of generators. We show that if subgroups are de�ned by sets, then

the Nielsen-S
hreier Theorem is provable in RCA

0

, while if subgroups are de�ned by

generators, the theorem is equivalent to ACA

0

.

1 Introdu
tion

The fundamental question in reverse mathemati
s is to determine whi
h set existen
e axioms

are required to prove parti
ular theorems of ordinary mathemati
s. In this arti
le, we 
onsider

the Nielsen-S
hreier Theorem that every subgroup of a free group is free. While this se
tion

�
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provides some ba
kground material on reverse mathemati
s, the reader who is unfamiliar with

this area is referred to [4℄ or [1℄ for more details.

Reverse mathemati
s uses subsystems of se
ond order arithmeti
 to gauge the proof the-

oreti
 strength of a theorem. Here, we are 
on
erned with only two subsystems: RCA

0

and

ACA

0

. RCA

0


ontains the ordered semiring axioms for the natural numbers, plus �

0

1


om-

prehension, �

0

1

formula indu
tion, and the set indu
tion axiom

8X

��

0 2 X ^ 8n(n 2 X ! n+ 1 2 X)

�

! 8n(n 2 X)

�

:

The �

0

1


omprehension s
heme 
onsists of all axioms of the form

8n

�

'(n)$  (n)

�

! 9X 8n

�

n 2 X $ '(n)

�

where ' is a �

0

1

formula,  is a �

0

1

formula, and X does not o

ur freely in either ' or  .

In this s
heme, ' may 
ontain free set variables other than X as parameters. We use N to

denote the set de�ned by the formula x = x. The �

0

1

formula indu
tion s
heme 
ontains the

following axiom for ea
h �

0

1

formula ':

�

'(0) ^ 8n

�

'(n)! '(n+ 1)

��

! 8n

�

'(n)

�

:

Although it is not 
ontained in the axioms, indu
tion over �

0

1

formulas also holds in RCA

0

.

A model for RCA

0

is a two sorted �rst order stru
ture A whi
h satis�es these axioms. If

the �rst order part of A is isomorphi
 to !, then A is 
alled an !-model. In this 
ase, A is

often denoted by the subset of P(!) whi
h spe
i�es the se
ond order part of the model.

The 
omputable sets form the minimum !-model of RCA

0

, and any !-model of RCA

0

is


losed under both Turing redu
ibility and the Turing join. RCA

0

is strong enough to prove

the existen
e of a set of unique 
odes for the �nite sequen
es of elements from any set X. We

use Fin

X

to denote this set of 
odes. Also, we use ha; bi, or more generally hx

0

; : : : ; x

n

i, to

denote pairs, or longer sequen
es, of elements of N. For any sequen
es � and � , we denote the

length of � by lh(�), the k

th

element of � by �(k), and the 
on
atenation of � and � by �� .

ACA

0


onsists of RCA

0

plus the 
omprehension s
heme over all arithmeti
 formulas. Any

!-model of ACA

0

is 
losed under the Turing jump, so the arithmeti
 sets form the minimum

!-model of ACA

0

.

We use RCA

0

as our base system, whi
h means that if we 
annot �nd a proof of a theorem

T in RCA

0

, but do �nd a proof of T in ACA

0

, then we try to show that RCA

0

+T suÆ
es to

prove the extra 
omprehension axioms in ACA

0

. When proving su
h a reversal, the following

well-known result is extremely useful (see [4℄).

Theorem 1.1. (RCA

0

) The following are equivalent.

1. ACA

0

.

2. The range of every one-to-one fun
tion exists.

Given the 
hara
terizations of the !-models of RCA

0

and ACA

0

in terms of Turing degrees,

it is not surprising that equivalen
es in reverse mathemati
s have immediate 
onsequen
es
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in 
omputable mathemati
s. Any theorem provable in RCA

0

is e�e
tively true, while the

e�e
tive version of any theorem equivalent to ACA

0

does not hold.

The �rst question one has to de
ide when developing a bran
h of mathemati
s in se
ond

order arithmeti
 is how to de�ne the relevant obje
ts. In most 
ases the 
hoi
e is straightfor-

ward, but in the 
ase of 
ombinatorial group theory, some variation is possible. It is natural to

de�ne a free group in terms of a set of generators and the trivial relations on those generators.

The elements of the free group are the redu
ed words over the set of generators and their

inverses, and multipli
ation is de�ned by 
on
atenation followed by free redu
tion.

Moving away from free groups, the 
hoi
es be
ome more 
ompli
ated. In 
ombinatorial

group theory, a group is often given by a presentation; however, RCA

0


annot go from a

presentation with unsolvable word problem to the set of elements in the group. Therefore,

the di�eren
e between de�ning a group in terms of a presentation and de�ning a group by

the set of elements is signi�
ant. In this arti
le, we explore the proof theoreti
 strength of

the Nielsen-S
hreier Theorem using ea
h of these de�nitions for a subgroup. If we require

that the subgroup be given by a set, the result is provable in RCA

0

. However, if we allow the

subgroup to be de�ned by a presentation, the theorem is equivalent to ACA

0

.

In Se
tion 2, we give the formalism for free groups in RCA

0

and introdu
e notation that

will be used throughout the arti
le. In Se
tion 3, we use a known proof of the Nielsen-S
hreier

Theorem to show that whenever a subgroup of a free group is given by its set of elements,

RCA

0

suÆ
es to prove that it is free. The proof that ACA

0

is required if a subgroup is de�ned

in terms of its generators is presented in Se
tion 4.

2 Free Groups

Our approa
h to free groups follows [2℄. To de�ne the free group on a set of generators A � N ,

it is 
onvenient to think of the elements of A as distin
t symbols in some alphabet. Let a

1

stand for the pair ha; 1i and a

�1

stand for the pair ha;�1i. Here, � will always denote either

1 or �1, and hen
e a

�

is either ha; 1i or ha;�1i.

De�nition 2.1. (RCA

0

) If A � N , then the set of words over A, denoted by Word

A

, is the

set of �nite sequen
es of pairs ha; �i, where a 2 A and � 2 f+1;�1g. The empty sequen
e in

Word

A

is denoted by 1

A

.

In keeping with standard mathemati
al notation, we write a

�

1

1

� � �a

�

k

k

for the sequen
e

� 2 Word

A

with �(i) = a

�

i

i

for 1 � i � k. We write w

1

w

2

for the 
on
atenation of the

sequen
es w

1

and w

2

in Word

A

, and we abbreviate the sequen
e ww � � �w of length k by w

k

.

A sequen
e x 2Word

A

is 
alled redu
ed if there is no pla
e in the sequen
e where a

1

and

a

�1

appear next to ea
h other for any a 2 A.

De�nition 2.2. (RCA

0

) The set of redu
ed words over A, denoted by Red

A

, 
ontains all

x 2Word

A

su
h that

8i < (lh(x)� 1)

�

�

1

(x(i)) 6= �

1

(x(i + 1)) _ �

2

(x(i)) = �

2

(x(i + 1))

�

;

where �

1

and �

2

are the standard proje
tion fun
tions on pairs.
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The de�nitions of both Word

A

and Red

A

use �

0

0

formulas, so RCA

0

suÆ
es to prove these

sets exist. Two words are 
alled 1-step equivalent if either they are the same sequen
e or one

results from the other by deleting a pair of elements a

1

and a

�1

that appear next to ea
h

other.

De�nition 2.3. (RCA

0

) Two words x; y 2 Word

A

are 1-step equivalent, denoted x �

1

y,

if one of the following 
onditions holds.

1. x = y.

2. lh(x) = lh(y) + 1 and

9i < lh(x)

�

8j < i

�

x(j) = y(j)

�

^

^ 8j � i

�

j < lh(y)! y(j) = x(j + 2)

�

^

^ �

1

(x(i + 1)) = �

1

(x(i)) ^ �

2

(x(i+ 1)) + �

2

(x(i)) = 0

�

:

3. Same as 2 with the roles of x and y swit
hed.

The 
onditions in this de�nition are �

0

0

, so RCA

0

proves the existen
e of the set of all

pairs hx; yi with x �

1

y.

De�nition 2.4. (RCA

0

) Two words x; y 2Word

A

are freely equivalent, denoted x � y, if

there is a �nite sequen
e � of elements of Word

A

su
h that

1. �(0) = x,

2. �(lh(�)� 1) = y, and

3. �(i) �

1

�(i+ 1) for all i < lh(�)� 1:

Noti
e that the 
ondition in this de�nition is �

0

1

. To prove the existen
e of the set of pairs

hx; yi with x � y in RCA

0

, we use the fun
tion � : Word

A

! Red

A

de�ned by re
ursion:

�(1

A

) = 1

A

, �(a

�

) = a

�

for a 2 A and � 2 f�1;+1g, and if �(u) = a

�

1

1

� � �a

�

k

k

, then

�(ua

�

) =

(

a

�

1

1

� � �a

�

k

k

a

�

if a 6= a

k

or a = a

k

^ �

k

+ � 6= 0

a

�

1

i

� � �a

�

k�1

k�1

if a = a

k

^ �

k

+ � = 0:

Lemma 2.5. (RCA

0

) The following properties hold of � for all words w, w

1

and w

2

in Word

A

and all a 2 A.

1. �(w) 2 Red

A

.

2. �(w) � w.

3. w 2 Red

A

! �(w) = w.

4. �(w

1

w

2

) = �(�(w

1

)w

2

).

4



5. �(wa

�

a

��

) = �(w).

6. �(w

1

a

�

a

��

w

2

) = �(w

1

w

2

).

Proof. The proofs are all by indu
tion either on the length of w or on the length of w

2

. To

prove that �(w) 2 Red

A

, we prove 8n'(n) by indu
tion, where '(n) is the �

0

0

formula

(w 2Word

A

^ lh(w) = n)! �(w) 2 Red

A

:

The only element of Word

A

with length 0 is 1

A

. Sin
e �(1

A

) = 1

A

, we have that '(0) holds. If

lh(w) = 1, then w = a

�

for some a 2 A. By the de�nition of �, �(a

�

) = a

�

, and so '(1) holds.

In the 
ase when lh(w) > 1, we write w as the 
on
atenation w = ua

�

. By the indu
tion

hypothesis, �(u) 2 Red

A

. Assume �(u) = a

�

1

1

� � �a

�

k

k

, and split into two 
ases.

If a

k

6= a, or if a

k

= a but �

k

+ � 6= 0, then by de�nition �(w) = a

�

1

1

� � �a

�

k

k

a

�

and

�(w) 2 Red

A

. If a

k

= a and �

k

+ � = 0, then �(w) = a

�

1

1

� � �a

�

k�1

k�1

. Again, sin
e �(u) 2 Red

A

,

we have �(w) 2 Red

A

. This proves Property 1.

To prove �(w) � w, we use �

0

1

indu
tion on lh(w). Formally, we use indu
tion to show

8n'(n), where '(n) is the �

0

1

formula

(w 2Word

A

^ lh(w) = n)! �(w) � w:

If lh(w) = 0 or lh(w) = 1, then the argument is the same as for Property 1. Assume

lh(w) > 1 and w = ua

�

with u � �(u) = a

�

1

1

� � �a

�

k

k

. Let � be the sequen
e whi
h shows the

free equivalen
e of u and �(u). Split into the same two 
ases as in the proof of Property 1. If

�(w) = a

�

1

1

� � �a

�

k

k

a

�

, then ~� gives the free equivalen
e of w and �(w), where ~� is de�ned from

� by ~�(i) = �(i)a

�

. If �(w) = a

�

1

1

� � �a

�

k�1

k�1

, then ~� gives the free equivalen
e of w and �(w),

where ~� is de�ned by

8i < lh(�)(~�(i) = �(i)a

�

)

and ~�(lh(�)) = �(w):

The proofs of the remaining properties involve similar 
ase analysis, ex
ept for Property

6, whi
h is a dire
t 
onsequen
e of the earlier properties. For more details, see [2℄.

Lemma 2.6. (RCA

0

) If x � y, then �(x) = �(y).

Proof. From the de�nition of 1-step equivalen
e and Property 6 of Lemma 2.5, it follows

that if x �

1

y, then �(x) = �(y). Assume x � y, and let � be the sequen
e that shows

x � y. Sin
e �(i) �

1

�(i + 1) for all i < (lh(�) � 1), we have �(�(i)) = �(�(i + 1)). Thus,

�(�(0)) = �(�(lh(�)� 1)), and so �(x) = �(y).

Proposition 2.7. (RCA

0

) For every x 2Word

A

, there is a unique y 2 Red

A

su
h that x � y.

Proof. Sin
e �(x) 2 Red

A

and x � �(x), we know that there is at least one y 2 Red

A

su
h that

x � y. It remains to show that if x � y and y 2 Red

A

, then y = �(x). Be
ause x � y implies

that �(x) = �(y) and y 2 Red

A

implies that �(y) = y, we have �(x) = y as required.
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Be
ause free equivalen
e is an equivalen
e relation, it follows that if �(x) = �(y), then

x � y. Together with Lemma 2.6, this shows that x � y if and only if �(x) = �(y). The set

of pairs hx; yi su
h that x � y 
an be formed by �

0

0


omprehension:

fhx; yi j x � yg = fhx; yi j �(x) = �(y)g:

We 
an now give the formal de�nition of the free group on the set of generators A.

De�nition 2.8. (RCA

0

) Let A � N . The set of elements of the free group on the set of

generators A is Red

A

. The empty sequen
e 1

A

is the identity element, and multipli
ation

is de�ned by x � y = �(xy).

3 Set subgroups of free groups

In this se
tion, we show that RCA

0

proves the Nielsen-S
hreier Theorem when the subgroups

are de�ned by sets. Our proof is a slight variation of the one given in [3℄, originally due to

A.J. Weir. The main modi�
ations involve proving the existen
e of a S
hreier transversal in

RCA

0

and handling various normal 
losures in RCA

0

, where they must be treated formally

as �

0

1

obje
ts.

De�nition 3.1. Let F be the free group on X. A set subgroup of F is a set G � F su
h

that G is a subgroup of F . Su
h a set subgroup is denoted by G < F .

De�nition 3.2. Let F be the free group on X, and let � : Word

X

! Red

X

be de�ned as in

Se
tion 2. A set subgroup G of F is free if there exists B � G su
h that

1. 8g 2 G 9w 2 Red

B

(�(w) = g), and

2. If w

1

6= w

2

2 Red

B

, then �(w

1

) 6= �(w

2

).

Noti
e that there is a distin
tion between Red

B

and Red

X

, but sin
e B �Word

X

, we 
an

apply � to elements of Red

B

. In what follows, we frequently 
onsider the right 
osets Gw of

G in F and use the fa
t that Gw = Gu if and only if wu

�1

2 G. Noti
e that RCA

0

suÆ
es

to prove that ea
h 
oset Gw exists, sin
e Gw = fujwu

�1

2 Gg.

De�nition 3.3. A transversal of G < F is a set of unique representatives for the right


osets of G. That is, T � F is a transversal for G if for every t

1

6= t

2

2 T , t

1

t

�1

2

62 G, and

for every x 2 F , there is a t 2 T su
h that xt

�1

2 G. A transversal T is 
alled a S
hreier

transversal if for every t 2 T , all initial segments of the word t are in T .

For any G < F , we 
an de�ne a transversal for G by 
hoosing the N-least representative

of ea
h 
oset.

De�nition 3.4. Let G < F and D � F be a �nite set. We say that D has the S
hreier

property (with respe
t to G) if D is a �nite approximation to a S
hreier transversal. For-

mally, we require that for all x 6= y 2 D, xy

�1

62 G, and if x 2 D, then all initial segments of

x are in D.

6



Noti
e that 1

F

2 T for any S
hreier transversal T , and so 1

F

represents the identity 
oset

of G. Similarly, if D has the S
hreier property, then 1

F

2 D.

Lemma 3.5. (RCA

0

) Let F be the free group on X and G < F . There exists a S
hreier

transversal for G.

Proof. We de�ne a primitive re
ursive fun
tion f : F � Fin

F

! F � Fin

F

, where Fin

F

is

the set of all �nite subsets of F . The idea is that if f is given an input (w;D), where D

has the S
hreier property, then f returns a pair (ŵ;

^

D) su
h that ŵ 2

^

D, D �

^

D,

^

D has the

S
hreier property, and Gw = Gŵ (that is, ŵw

�1

2 G). Thus, f has extended D to in
lude a

representative for Gw.

Formally, f(w;D) is de�ned by primitive re
ursion on lh(w). Let f(1

F

; D) = (1

F

; D).

Assume w 6= 1

F

and pro
eed as follows.

1. If there is a ŵ 2 D su
h that Gw = Gŵ, then f(w;D) = (ŵ; D).

2. Otherwise, let w = vx

�

for some x 2 X. Noti
e that lh(v) < lh(w).

(a) If Gw = Gv, then f(w;D) = f(v;D).

(b) If Gw 6= Gv, then

i. if Gv = Gu for some u 2 D, then f(w;D) = (ux

�

; D [ fux

�

g).

ii. if Gv 6= Gu for all u 2 D, then f(w;D) = (v̂x

�

;

^

D [ fv̂x

�

g) where f(v;D) =

(v̂;

^

D).

A simple indu
tion establishes that if D has the S
hreier property, w 2 F , and f(w;D) =

(ŵ;

^

D), then

^

D has the S
hreier property, D �

^

D, ŵ 2

^

D, and Gŵ = Gw.

We use f to de�ne T : N ! Fin

F

by primitive re
ursion. Set T (0) = f1

F

g and

T (n+ 1) =

�

T (n) if n 62 F

�

2

(f(n+ 1; T (n))) if n 2 F

where �

2

is the proje
tion fun
tion onto the se
ond 
omponent for pairs. Let T = [

1

i=1

T (n).

T exists sin
e for every w 2 F , there is a ŵ 2 T (w) su
h that Gw = Gŵ, and therefore,

w 2 T if and only if w 2 T (w). It is 
lear from the de�nition of T (n) that T is a S
hreier

transversal for G.

Theorem 3.6. (RCA

0

) Every set subgroup of a free group is free.

Proof. Let F be free on X, G < F , and T be a S
hreier transversal for G. Most of this

proof works without the assumption that T has the S
hreier property, but we will use this

property near the end. For any w 2 F , let [w℄ denote the element of T su
h that Gw = G[w℄.

Noti
e that [1

F

℄ = 1

F

sin
e 1

F

2 T , that [u℄ = 1

F

for all u 2 G, and that for any u; v 2 F ,

[u℄v[uv℄

�1

2 G.

The outline of the proof is as follows. First, we de�ne an auxiliary free group

^

F and a

homomorphism � :

^

F ! G. Se
ond, we show that � is onto, and hen
e G is isomorphi
 to

7



^

F=ker(�). Third, we show that ker(�) is generated by a subset of the generators of

^

F . Hen
e,

G is isomorphi
 to the free group on the generators of

^

F whi
h are not in ker(�).

Let

^

F be the free group on T �X, and let y

ix

denote the generator 
orresponding to i 2 T

and x 2 X. De�ne � :

^

F ! G by sending y

ix

7! [i℄x[ix℄

�1

and extending a
ross

^

F . Noti
e

that [i℄ = i sin
e i 2 T .

To verify the required properties of � , we use the map f : T �F !

^

F de�ned below. It is

best to think of f as a sequen
e of maps f

i

: F !

^

F for i 2 T . De�ne f by primitive re
ursion

on the length of u 2 F . Set f(i; 1

F

) = 1

^

F

, f(i; x) = y

ix

for x 2 X, and f(i; x

�1

) = y

�1

[ix

�1

℄x

,

also for x 2 X. For u 2 F with u = vz, z 2 X [ X

�1

, de�ne f(i; u) = f(i; v)f([iv℄; z). The

maps f

i

are not group homomorphisms, but the following three properties 
an be veri�ed.

8u; v 2 Red

F

(f(i; uv) = f(i; u)f([iu℄; v)): (1)

8v 2 Red

F

(f(i; v

�1

) = f([iv

�1

℄; v)

�1

): (2)

8v 2 Red

F

8i 2 T (�(f(i; v)) = [i℄v[iv℄

�1

): (3)

Properties (1) and (3) follow by indu
tion on the length of v (for details see [3℄), and Property

(2) follows from applying Property (1) with v = u

�1

.

Next, we de�ne  : G !

^

F by  (u) = f(1

F

; u). Properties (1) and (2) guarantee that

 is a group homomorphism, and Property (3) shows that � : G ! G is the identity map.

Therefore, � is onto (whi
h was our se
ond goal), and  is one-to-one.

It remains to examine ker(�). Let � =  � :

^

F !

^

F . Sin
e  is one-to-one, we have

ker(�) = ker(�).

Claim. ker(�) is equal to the normal 
losure in

^

F of y

�1

ix

�(y

ix

) for i 2 T and x 2 X.

The normal 
losure of these elements is de�ned by a �

0

1

formula, so we 
annot immediately


laim that RCA

0

proves its existen
e. Formally we de�ne the normal 
losure using the fun
tion

C : N � N �

^

F ! f0; 1g de�ned as follows.

C(0; m; z) =

�

1 if 9i; x � m(z = y

�1

ix

�(y

ix

))

0 otherwise

C(n+ 1; m; z) =

8

>

>

>

>

<

>

>

>

>

:

1 if C(n;m; z) = 1 or

C(n;m; z

�1

) = 1 or

9a; b � m(C(n;m; a) = 1 ^ z = b

�1

ab) or

9a; b � m(C(n;m; a) = C(n;m; b) = 1 ^ z = ab)

0 otherwise

We write z 2 N for 9n;m(C(n;m; z) = 1) until we prove that N exists in RCA

0

. RCA

0

proves the following properties of N by dire
t 
al
ulation.

8z 2 N(z

�1

2 N)

8a; b 2 N(ab 2 N)

8a 2 N 8w 2

^

F (w

�1

aw 2 N)

8i 2 T 8x 2 X(y

�1

ix

�(y

ix

) 2 N)

8z 2 N 8w 2

^

F 9ẑ 2 N(zw = wẑ)
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To show N exists in RCA

0

, we show that N = ker(�). First, to see that N � ker(�), re
all

that � : G! G is the identity map. Therefore, we 
an 
an
el � inside �

2

=  � � to get

�

2

= �. The following equalities show that y

�1

ix

�(y

ix

) 2 ker(�).

�(y

�1

ix

�(y

ix

)) = �(y

ix

)

�1

�

2

(y

ix

) = �(y

ix

)

�1

�(y

ix

) = 1

^

F

:

As mentioned above, ker(�) = ker(�). Therefore, sin
e ker(�) is 
losed under multipli
ation

and 
onjugation, it follows by �

0

1

indu
tion that z 2 N implies z 2 ker(�).

To prove the 
laim, it remains to show that ker(�) � N . First, by indu
tion on the

length of w 2

^

F , we get w

�1

�(w) 2 N . For the details of this indu
tion, see [3℄. Se
ond, if

w 2 ker(�), then �(w) = 1

^

F

. We have w

�1

�(w) = w

�1

2 N , and therefore w 2 N as required.

This statement �nishes the proof that N = ker(�).

Claim. ker(�) is the normal 
losure of the elements f(1

F

; u) for u 2 T � F .

As in the �rst 
laim, we formalize this statement by de�ning a fun
tion D : N � N �

^

F !

f0; 1g su
h that z 2

^

F is in the normal 
losure if and only if 9n;mD(n;m; z) = 1. We write

z 2 M for 9n;mD(n;m; z) = 1, and we show M exists in RCA

0

by proving it is equal to

ker(�).

To show that M � ker(�), noti
e that by Property (3) above

�(f(1

F

; u)) = [1

F

℄u[1

F

u℄

�1

= uu

�1

= 1

G

;

for u 2 T . From here, use indu
tion.

To show that ker(�) �M , it suÆ
es by the �rst 
laim to show that y

�1

ix

�(y

ix

) 2 M for all

i 2 T and x 2 X. Fix i 2 T and x 2 X.

�(y

ix

) = f(1

F

; �(y

ix

)) = f(1

F

; [i℄x[ix℄

�1

) = f(1

F

; [i℄x)f([ix℄; [ix℄

�1

)

= f(1

F

; [i℄)f([i℄; x)f([ix(ix)

�1

℄; [ix℄)

�1

= f(1

F

; [i℄)y

ix

f(1

F

; [ix℄)

�1

:

Both f(1

F

; [i℄) and f(1

F

; [ix℄)

�1

are in M . Just as in the �rst 
laim,M has the property that

8z 2M 8w 2

^

F 9ẑ 2M (zw = wẑ):

Therefore, y

�1

ix

�(y

ix

) 2M as required. This 
ompletes the proof of the se
ond 
laim.

To �nish the proof, we 
onsider the set A of all y

ix

su
h that y

ix

2 ker(�), and we let S

denote the normal 
losure of A in

^

F . Of 
ourse, as above, we use a fun
tion to formalize S

as a �

0

1

de�ned obje
t. Clearly, S � ker(�), but we also make the following 
laim (whi
h, as

above, shows that S is a set in RCA

0

).

Claim. ker(�) = S.

First, we show why this 
laim �nishes the proof. Let C be the set of y

ix

whi
h are not

in A. Sin
e G is isomorphi
 to

^

F=ker(�), we see that G is isomorphi
 to the subgroup of

^

F

generated by C. But, this subgroup is exa
tly the free group on C, whi
h we denote by H.

Hen
e, there is an isomorphism ' : G! H.

To see that this fa
t implies that G is free in the sense of De�nition 3.2, let B = '

�1

(C)

(whi
h exists sin
e ' is an isomorphism). Noti
e that we 
annot apply ' to an arbitrary
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w 2 Red

B

sin
e w might not be X-redu
ed, and hen
e might not be a member of G. However,

we 
an de�ne a map � : Word

B

!Word

C

by

�(b

�

1

1

b

�

2

2

� � � b

�

n

n

) = '(b

1

)

�

1

'(b

2

)

�

2

� � �'(b

n

)

�

n

for any B-symbols b

1

; b

2

; : : : ; b

n

. The point is that ea
h B-symbol is an element of G, so '


an be applied to it. The following properties of � follow from the de�nition of B and the

fa
t that ' is an isomorphism.

8w 2 Red

B

(�(w) 2 Red

C

^ �(w) = '(�(w))) (4)

8u 2 Red

C

(�

�1

(u) 2 Red

B

) (5)

8w

1

6= w

2

2 Red

B

(�(w

1

) 6= �(w

2

)) (6)

To verify Condition 2 in De�nition 3.2, suppose w

1

6= w

2

2 Red

B

, but �(w

1

) = �(w

2

).

Then, by Property (4) above,

�(w

1

) = '(�(w

1

)) = '(�(w

2

)) = �(w

2

):

This statement 
ontradi
ts Property (6). To verify Condition 1 in De�nition 3.2, 
onsider any

g 2 G. We have '(g) 2 Red

C

, so �

�1

('(g)) 2 Red

B

. Let w = �

�1

('(g)). By Property (4),

we know �(w) = '(�(w)). From the de�nition of w, we get �(w) = '(g), and hen
e, sin
e '

is one-to-one, g = �(w).

It remains to prove the last 
laim by showing that ker(�) � S. By the se
ond 
laim above,

it suÆ
es to show that f(1

F

; u) 2 S for ea
h u 2 T . The result then follows by indu
tion.

We show f(1

F

; u) 2 S by indu
tion on the length of u. If lh(u) = 1, then u is either x or x

�1

for some x 2 X. Tra
ing through the de�nitions, f(1

F

; x) = y

1

F

x

and f(1

F

; x

�1

) = y

�1

[x

�1

℄x

. In

either 
ase, f(1

F

; u) 2 ker(�), so y

1

F

x

and y

�1

[x

�1

℄x

are in S as required.

If lh(u) > 1, then either u = vx or u = vx

�1

, where lh(v) < lh(u) and x 2 X. Be
ause T

is a S
hreier transversal, we know that v 2 T and so the indu
tion hypothesis applies to v. If

u = vx, then we have

f(1

F

; u) = f(1

F

; v)f([v℄; x);

whi
h means that

f(1

F

; u)f(1

F

; v)

�1

= y

[v℄x

:

The left side of this equation is in ker(�), so y

[v℄x

2 ker(�), and hen
e y

[v℄x

2 S. By indu
tion,

f(1

F

; v) 2 S, so f(1

F

; u) 2 S as required.

The 
ase for u = vx

�1

is similar. We have the following equalities.

f(1

F

; u) = f(1

F

; v)f([v℄; x

�1

):

f(1

F

; u)f(1

F

; v)

�1

= f([vx

�1

℄; x)

�1

= y

�1

[vx

�1

℄x

:

The left side of the bottom equation is in ker(�), so, reasoning as above, f(1

F

; u) 2 S, whi
h

�nishes the proof.
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4 Presented subgroups of free groups

In this se
tion, we show that ACA

0

is equivalent to the Nielsen-S
hreier Theorem when

subgroups are de�ned by generating sets.

De�nition 4.1. Let F be the free group onX. Given a set A � F , the subgroup presented

by A is

hAi = f g 2 F j 9w 2Word

A

(g = �(w)) g:

hAi is free if there is a B � F su
h that

1. 8b 2 B9w 2Word

A

(�(w) = b),

2. 8w 2Word

A

9ŵ 2Word

B

(�(w) = �(ŵ)), and

3. 8w

1

6= w

2

2 Red

B

(�(w

1

) 6= �(w

2

)).

Su
h a set B is 
alled a set of free generators for hAi.

Theorem 4.2. (RCA

0

) The following are equivalent.

1. ACA

0

.

2. Every presented subgroup of a free group is free.

Proof. Case. (1)) (2)

ACA

0

suÆ
es to prove the existen
e of the set of elements in a presented subgroup.

Theorem 3.6 shows that RCA

0

suÆ
es to prove from here that the presented subgroup is free.

Case. (2)) (1)

Let f : N ! N be a one-to-one fun
tion. By Theorem 1.1, it suÆ
es to 
ode the range of

f . Pi
k an in�nite set of generators X = fx

i

ji 2 Ng, let F be the free group on X, and let

� : Word

X

! Red

X

be as in Se
tion 2. De�ne A by

A = fx

2

i

ji 2 Ng [ fx

2s+1

i

jf(s) = ig;

and let B be a set of free generators for hAi.

Claim. We 
an form fn j x

n

2 hAi g in RCA

0

.

For all n 2 N , we know that x

2

n

= �(w) for some w 2 Red

B

. Also, x

n

2 hAi if and only

if x

n

= �(u) for some u 2 Red

B

. Therefore, if su
h a u exists, then w �

B

u

2

. Our strategy

is to give a method (eventually formalized by a �

0

0

formula) for determining from w whether

there is su
h a u. To do this, we need limits both on the length of u in terms of B-symbols

and on whi
h B-symbols 
ould o

ur in u.

Assume that lh(u) = n, where the length is measured in B-symbols. We 
laim that

n < lh(u

2

) � 2n, where by lh(u

2

) we mean the length in B-symbols of the B-redu
ed word

11



equivalent to u

2

. To see this fa
t, 
onsider �rst the 
ase in whi
h lh(u) = 2m+1 for some m.

Then

uu = (b

1

� � � b

m

b

m+1

b

m+2

� � � b

2m+1

) � (b

1

� � � b

m

b

m+1

b

m+2

� � � b

2m+1

)

At worst, the last m symbols of the �rst w 
ould 
an
el with the �rst m symbols of the se
ond

w, leaving us with b

1

� � � b

m+1

b

m+1

� � � b

2m+1

, whi
h has length 2m+ 2 = n + 1.

Se
ond, 
onsider the 
ase when lh(u) = 2m. If w = b

1

� � � b

2m

, then the maximum amount

of 
an
ellation in u

2

would leave us with b

1

� � � b

m

b

m+1

b

m

b

m+1

� � � b

2m

. Be
ause w is redu
ed,

b

m

and b

m+1

do not 
an
el. Therefore, the shortest possible length for the redu
ed form of u

2

in B-symbols is 2m + 2 = n+ 2.

If w �

B

u

2

and w 2 Red

B

, then by this 
al
ulation, lh(u) < lh(w), so we have our

required bound on the length of u. This argument also shows that every symbol whi
h o

urs

in u o

urs in the B-redu
ed form of u

2

. However, the B-redu
ed form of u

2

is w, so every

B-symbol whi
h o

urs in u also o

urs in w.

We 
an now form the set fnjx

n

2 hAig using �

0

0


omprehension, be
ause n is in this set

if and only if there is a u 2 Red

B

su
h that �(u) = x

n

, lh(u) � lh(w) (where w 2 Red

B

and

�(w) = x

2

n

), and every B-symbol in u o

urs in w.

The following 
laim �nishes the proof of the theorem.

Claim. The range of f is equal to fn j x

n

2 hAi g.

From the de�nition of A, it is 
lear that if n is in the range of f , then x

n

2 hAi. Before

proving the other dire
tion, we introdu
e some terminology. Assume w 2 F and some x 2 X

o

urs in w as a positive symbol (that is, it o

urs as x as opposed to as x

�1

). We say that a

parti
ular o

urren
e of x has the form x

n

, for some n 2 N , if the maximum blo
k of x's whi
h

in
ludes this o

urren
e of x has length n. Noti
e that sin
e w is redu
ed, all o

urren
es of

x in this blo
k must be positive. Similarly, if x o

urs in w as x

�1

, then this o

urren
e has

the form x

�n

if the maximum blo
k of x

�1

's whi
h in
lude this o

urren
e has length n.

Assume that n is not in the range of f . We need to show that for every w 2 Word

A

,

�(w) 6= x

n

(re
all that � represents redu
tion in F in terms of X-symbols). To a

omplish

this goal, we prove that for every w 2Word

A

, if x

n

o

urs as an X-symbol in �(w) (either as

x

n

or as x

�1

n

), then every o

urren
e of x

n

in �(w) is of the form x

2k

n

for some integer k. This

fa
t suÆ
es to �nish the proof of the 
laim, sin
e x

n

does not o

ur an even number of times

in x

n

, and hen
e �(w) 6= x

n

.

The proof pro
eeds by indu
tion on the A-length of w. If w 2 A, then this statement is


lear. Suppose the A-length of w is greater than 1 and w = va, with v 2 Word

A

and a 2 A.

We have �(va) = �(�(v)a), and by indu
tion, all o

urren
es of x

n

in �(v) are of the form

x

2k

n

. If a is not x

2

n

, then a does not mention x

n

and we are done. If a = x

2

n

, then split into

the 
ase in whi
h �(v) ends in x

2k

n

and the 
ase in whi
h it ends in an X-symbol other than

x

n

. In either 
ase, the 
laim holds.
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