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Abstract. We show that the top of any diamond with bottom 0 in the r.e. degrees is also the top of a
stack of n diamonds with bottom 0.

Let R be the upper semilattice of the recursively enumerable degrees.

A minimal pair consists of two incomparable r.e. degrees with infimum equal to the recursive degree 0.
An r.e. degree is cappable if it is one half of a minimal pair. An r.e. degree a is the top of a diamond
(or 1-diamond ) if a is the join of a minimal pair. For any n > 1, a is the top of an n-diamond if there
is a nontrivial splitting ap and a; of a such that the infimum of ay and a; exists and is the top of an
(n — 1)-diamond.

Lachlan [1966] and Yates [1966] proved that there is a minimal pair in R. Ambos-Spies, Jockusch, Shore
and Soare [1984] proved that M, the set of all cappable r.e. degrees, is an ideal in R, and R — M, which
coincides with the class of all promptly simple r.e. degrees, is a strong filter in R. We mention some facts
about the distribution of the r.e. degrees which are tops of diamonds. Let T be the set of such degrees.
Then T has no maximal or minimal elements since M is not a principal ideal, and given any nonrecursive
r.e. degrees ap and a; there exist 0 < by < ap and 0 < b; < a; such that by Ub; < ag U a;. Furthermore,
by a recent result of Downey, Lempp, and Shore [1993], there is a high, r.e. degree bounding only degrees
in T.

In this paper we shall modify Lachlan’s construction (Lachlan [1980]) of splitting any nonrecursive
r.e. degree into two r.e. degrees with infimum to show that every top of a diamond is the top of an n-
diamond for every n > 0.

Theorem 1. Given any nonrecursive r.e. sets Ap and A;, there exist r.e. sets By, By, C, Cy, and C} such
that Ao © Ay =yt Bo © By >wit C >wie Co © C1; By, By £1 C; 0 <wtt Co <wit Ao; 0 <wit C1 <wie A1; and
degr(C) = degr(C & By) Ndegr(C & By).

Corollary 2. Every top of a diamond is the top of a double diamond (i.e. a 2-diamond), and hence the top
of an n-diamond for any n > 1.

Proof. Let a = ag U a; be the top of a diamond, where ag and a; form a minimal pair, and let Ag
and A; be sets of degree ap and aj, respectively. Let by, by, ¢, ¢g, and ¢; be the Turing degrees of the
sets in Theorem 1, respectively. Thus ¢ = by N'b; and a = by U b;. Since C <y Ag & A1 and by the
distributivity of Ry, the upper semilattice of the r.e. wtt-degrees, there exist r.e. sets Dy and D; such
that Do <wtt Ao, D1 <wts A1, and Dy @ D1 =1 C. Clearly Dy and D; are not recursive, else C' would be
recursive in Ag or A;. As apNa; = 0,degy (Do) Ndegr(D;1) =0, and so a is the top of the double diamond
formed by a, by, b, c,degr(Dy), degr(D;), and 0.

Proof of Theorem 1. Fix any r.e. sets Ap and A; of degrees ag and a;, respectively, and set A = Ao ®d A;. We
shall recursively enumerate sets By, By, C, Cy, and C such that C <y Ao P Ay. Foreverye,j € w,i=0,1
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the construction will satisfy the following requirements:

Jo 1 Ao @ Ay =it Bo @ By,

J1 Ao Zwie Co, A1 Zwie C1,
Re;:Ci #Fw—-W,,

Jy 1 C >y Co @ Ch,
P.;:B; # ®.(C & By_;), and

Nj : {j}9%Bo = {j1C®B1 = f total — f; <1 C.

We use a modified Sacks splitting strategy to split A into By and B; and satisfy Jy and P, ; for every
e €w,i=0,1. At any stage s we define the length of agreement and restraint functions

1(6,7:, S) = max{x : vy < I(Bi,s(y) = ‘pe,s(Cs S Bl—i,s; y))}a
r(e,i,s) = max{u(Cs & Bi_is;€,y,5) : y < l(e,i,9)}.

At any stage s, if n € Ay — As_1 then we attempt to enumerate n into B;, where (e, ) is the least pair such
that n < r(e,i,s).

We code Cy & (' directly into C' to satisfy Jo.

To satisfy IV;, at any stage s we define the length of agreement and use functions

1(j,s) = max{z : ¥y < z({j}5*EP0 (y) = {7} ()},
po(j,ﬂf,s) = U(Cs D BO,s?jamas)a and
p1(j,l',5) = U(Cs D BLs;j,I,S)-

At any stage s, if [(j,s) > x and there is an n < p;(j, x, s) enumerated into B; then, until the B;-side of
the computations at x recovers, say until stage ¢ > s, we attempt to enumerate elements of A into the same
side B;. Since we must simultaneously satisfy requirements P, ;/, there may be an element enumerated into
Bi_;, which allows f; s(x) # fj¢(x); in this case, we shall enumerate a certain element into C to trace such
a change of f;(x).

The priority tree is the complete binary tree. We assign N; to every node « of length j, and assign P, ;
to aif | a|=4e+1; Re;to aif | a |= 4e +i+ 2. We define the string s (of length s) of nodes accessible at
stage s by

Bs(4) =0Vt <s(B: 2 Bs[5 — 1(5, 1) <1(j,s)).

We say s is y-ezpansionary if "0 C (s, and that s is a y-stage if v C (5. We define the length of
~v-agreement I(7, s) and y-restraint function r(vy, s) by

_ l(‘],s) if 7A0§ ﬂs:
l(y,s) = {l(v,s —1) otherwise;

,,_(,y S) — max{po(j,y,S),pl(j,y,S) Y <l(j75)} lfVAogﬂs:
’ r(v,s—1) otherwise,

where | v |= j. A strategy £ is initialized at stage s by setting all of ¢’s parameters (followers for R) to 0.
We shall define a restraint function K, an index function I and a trace marker function F on any a.
Let a be a strategy for some requirement P, ;. At any stage s, if @ C (s, and K(«) is undefined or K(a)
is defined and max{l(e,i,s),r(e,i,s)} > K(a) then define K () to be great enough to preserve ®. ;(Cs &
Bi_;s)[l(e,i,s), {j}sCS@BO'S [1(7,s), and {j}fSEBBl’S [1(,s) for every j < 4e + i such that s is j-expansionary.
Define F'(a) to be the least unused number > K(a), and I(a) = i.
Hence, at any stage s, let a = 3474, and

fisll(a,s) = {33700 [U(a, 5) = {5}5 P TU(a, 5),
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then at stage s we define or redefine K (vy) for any v > a such that K(v) > r(a, s) to ensure that for any
t > s, and any z < l(a, s) either

{3357 () = (7}5-0P0 ()
{7} @) = {7} (a)

or
In < sy(n € Cy — Cs)

(where {sg}zew is a C-recursive sequence). If there is an n < r(q, s) enumerated into A then let v be least
such that n < K(v), enumerate n into Bj(,) (where I(7) is as defined in the previous paragraph) and F'(v)
into C, and move F(7) to be an unused number. Until we go back to «, we shall enumerate the elements
n' < K(v) of A into the same side By, if v is least such that K(y) > n'. Any n' < K(v') for some 7' < v

enumerated into A at s’ > s may be enumerated into the other side Bi_p(), because it may be the case that

I(y) = 1-1I(v"). In this case, Fy(7") is enumerated into C to trace the injuries to {j}SCSEBBO’S (y), {j}SCSEBBl’S (y)

for any y such that K(y') <n < pr+)(J,v,s) and n' < K(¥') < p1_1(1)(J, v, ).

To satisfy J; we use a direct permitting argument. To satisfy R, ;, for any e and ¢, let a be a strategy
for R. ;. At any stage s, if @ C s, Re,; is not satisfied and there is no unrealized follower, i.e., z' € W, for
every follower 2’ of R, ;, then firstly we assign an unused number z to be a follower of a, and secondly we
define K (a) such that K(«) > ¢ and I(a) = i. ¢ is canceled at any stage t > s only if « is initialized. We
shall show that if « is on the true path then « is initialized only finitely often by showing that every positive
requirement requires attention only finitely often if Ag and A; are not recursive.

If there isan n € A; s — A; ;1 and a realized follower z of a such that n < z, and « is least such that
n < K(a) then enumerate x into C;,n into By(,) and F(a) into C, and R, ; is satisfied. Hence, if o is on
the true path and R, ; is not satisfied then there are infinitely many uncanceled followers = of a such that
K () is reset infinitely often and no element < K(«) is enumerated into A; after x is realized. Therefore,
either R, ; is eventually satisfied or A; is recursive.

We say that a requires attention at s if a C 5, and

(1) a is a strategy for P, ;,; and K («) is undefined, or it is defined and max{r(e,,s),l(e,i,s)} > K(a);
or

(2) «a is a strategy for R, ;, every follower = of a is realized (i.e., x € W, ), and R, ; is not satisfied.

Construction:

Stage 0: Initialize every node a.

Stage s > 0: Find the least @ C [, requiring attention. If « requires attention via (2) then assign an
unused number x > s to be a follower of «, set I(«) =i (as defined via the requirement requiring attention),

K(a) =max{F(7),z:v < a},

and set F'(a) > K(«a) to be an unused number. Initialize every v > .
If « requires attention via (1) then define I(a) = i (again defined via the requirement requiring atten-
tion),
K(a) =max{F(y),s+1:7 < a},

and set F'(a) > K (o) to be an unused number. Initialize every v > a.

Let n € Ay — As_1. Let a be least such that n < K(«a). (If « fails to exist then enumerate n into By
and initialize every v > f;.) Enumerate F'(a) into C' and n into By(,). If o is a strategy for some R, ;, x is
realized at s, n € A; s — A;s—1, and > n, where x is currently the largest follower of «, then enumerate
z into C; and R, ; is satisfied. Move F'(a) equal to the first unused number > K(«), and initialize every
v > Q.

This ends the description of the construction.

Let
B = liminf, B

be the true path.



Lemma 3. Assume that Ay and A; are not recursive. Let a C . Then (i) K(«) and F(«) are eventually
constant; (ii) the positive requirement assigned to « is satisfied; (iii) a requires attention at most finitely
often; and (iv) any v > « Is initialized at most finitely often.

Proof. Assume that the lemma holds for any v C a. Then « is initialized only finitely often, and hence,
K («) becomes defined eventually.

(i) If K () is reset infinitely often then K («) is reset at a stage s only if « is initialized at a stage s’ < s,
or L(a, s) increases, where

Lia, s) = max{r(e,i,s),l(e,i,s)} if ais a strategy for some P, ;,
T otherwise,

where z is currently the largest follower of a. Hence, if K(«) is reset infinitely often then L(a,s) tends to
infinity, and so does K(a). Eventually any number < K(a) entering A is enumerated into By(q), and no
number < K'(a) enumerated in B;_j(q) ® C. Hence By_j(o) ® C is recursive. If a is a strategy for some R, ;
then no number < L(a, s) enters Aj(,) after L(a, s) is realized, hence Ay, is recursive. If a is a strategy for
some P ; then, by a similar argument, Bj(,) is recursive, contradicting requirement Jo, which is obviously
satisfied.

(ii) (iii) Let so be the least stage such that a < §, for all s > sp, and such that no v requires attention
and no set changes below K () for any v < «.

First assume that « is a strategy for some R, ;. At any stage s > so, if s is an a-stage and any uncanceled
follower of « is realized then an unused number x is assigned to «, and K («) is defined such that K(«) >
and I(a) = 4. « is initialized at any stage ¢ > s only if §; < a or there is a 7 < « requiring attention at ¢.
By the choice of sg, neither case ever occurs. If R, ; is not satisfied then there are infinitely many a-stages
s such that an unused number x is assigned to R, ;, K(«) is reset at s such that K(a) > z, I(a) =i, and
there is no element < z to be enumerated into A; after z is realized, otherwise,  would be enumerated into
C; and R, ; is satisfied. Since x tends to infinity, A; is recursive, a contradiction. Hence, R, ; is satisfied,
and « requires attention at most finitely often.

Now assume that « is a strategy for some P, ;. If I(e,i,s) is unbounded for a-stages s then there
exists an a-stage s > so at which a requires attention. By the choice of so, K(a) is reset at any ¢t > s
only if L(a,t) > L(a,s) and B O a. Now I(a) = i, and K(«) is reset to preserve P11 on elements
< r(e,i,t) < K(a) by directing elements into By(,). So if L(a,t) tends to infinity then B; ; and C' are
recursive, so is B; <t B;_; & C. Hence, A is recursive, a contradiction. And again a requires attention at
most finitely often.

(iv) This is obvious since « requires attention at most finitely often, so « initializes any ~y only finitely
often and eventually no number < K(a) enters any set.

Lemma 4. Let a C . Then N\, is satisfied.

Proof. Let a C /3 such that |a| = j. We assume that f; = {j}“9P0 = {;j}9®B1 is total. Let s* be the
least stage after which no v < «a requires attention and such that no F(v) for any v < « is reset at any
s > s*. To C-recursively compute f;(z) for any given z, find an a-expansionary stage s, > s* and a v > «
such that I(«,s;) > z, K () is being defined or redefined at s,, no number < F(7v) is ever enumerated
into C, and {j}“9Bo(z)[s,] = {j}¢PP1(z)[s,] are C-correct. We claim that f;(z) = fjs. ().

We now claim that at any stage s > s, at least one of the two computations holds. (This obviously
finishes the argument.) Our proof very closely follows Lachlan’s original argument [1980].

For the sake of a contradiction, suppose this fails at some least stage s > s,, say, via a number n entering
B; or C and destroying the remaining computation {j}“®5i(z).

We distinguish cases as to how n enters C' or B;:

Case 1: n enters C via an R, ;-strategy v': Then n equals some witness, which by our hypothesis on s,
must have been picked after stage s,. By the construction and cancellation of markers, we must have ' <
and that n was picked at an a-expansionary stage s’ > s,, say. But then n > s’ > p;(j, z,s'), and the latter
use cannot have increased unless the witness n is canceled.

Case 2: n enters C as a marker F'(7'): Then some number n' < K(7') must enter A at the same stage.
Again by our hypothesis on s, F'(7") must have been picked after stage s,, and we reach a contradiction as
in Case 1.



Case 3: n enters B;: Then n enters A at the same stage. By the arguments of Cases 1 and 2, the
computation {j}¢®P1-i(z) on the “other” side must have been destroyed by a number n' entering B; ;
since the most recent a-expansionary stage s', say. By the cancellation of markers, n < n/, and some number
< n' must enter C' at stage s, leading to a contradiction as in Case 2.
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