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Abstract. We de�ne a family of properties on hyperhypersimple sets and show that they yield

index sets at each level of the hyperarithmetical hierarchy. An extension yields a �

1

1

-complete

index set. We also classify the index set of quasimaximal sets, of coin�nite r.e. sets not having

an atomless superset, and of r.e. sets major in a �xed nonrecursive r.e. set.

0. Introduction. The present paper deals with index sets, i.e., sets of indices of partial

recursive (p.r.) functions and recursively enumerable (r.e.) sets that are de�ned through the

p.r. functions or r.e. sets they code. The early results in index sets used geometric arguments in

one- or two-dimensional arrays: Rogers showed the �

3

and �

3

-completeness of the index sets

of recursive and simple sets, respectively, in a �nite injury argument. Lachlan, D.A. Martin,

R.W. Robinson, and Yates (1968, unpublished, later appearing in Tulloss [Tu71]) showed the

�

4

-completeness of the index set of maximal sets in an in�nite injury argument. Tulloss

[ibid.] also mentions for the �rst time the question whether the index set of quasimaximal

sets is �

5

-complete. However, the geometric method was too complex at higher levels of the

arithmetical hierarchy. During the 1970's, progress in index sets was mainly made in other

areas by several Russian mathematicians as well as L. Hay.

Schwarz [Schta] was the �rst to introduce induction into index set proofs (in the r.e. degrees)

and was able to show that the index sets of low

n

and high

n

r.e. sets are �

n+3

and �

n+4

-

complete, respectively. Solovay [JLSSta] then extended Schwarz's methods to show the �

!+1

-

completeness of the index sets of low

<!

(low

n

for some n) and of high

<!

(high

n

for some n)

r.e. sets as well as the �

!+1

-completeness of the index set of intermediate degrees (degrees

neither low

<!

nor high

<!

).

In this paper, we exhibit a family of algebraically invariant properties L

!

1

;!

-de�nable in

E, that yields index sets at any level of the hyperarithmetical hierarchy. The proof is based

on induction and Lachlan's theorem [La68] that any �

3

-Boolean algebra is isomorphic to the

lattice of r.e. supersets of some r.e. set (modulo �nite sets). It uses tree arguments and the

fact that the Cantor-Bendixson rank of a tree corresponds to certain properties of the lattice

of r.e. supersets of the set constructed. An extension yields a �

1

1

-complete index set. A

corollary shows the �

5

-completeness of the index set of quasimaximal sets, thereby settling

this long-open question. Further results classify the index sets of atomic sets and of r.e. sets

major in a �xed nonrecursive r.e. set.

Our notation is fairly standard and generally follows Soare's forthcoming book \Recursively

Enumerable Sets and Degrees" [Sota].
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2 STEFFEN LEMPP

We consider sets and functions on the natural numbers ! = f 0; 1; 2; 3; : : :g. For a partial

function ', '(x) # denotes that x 2 dom', otherwise we write '(x) ". We identify a set

A with its characteristic function �

A

. f j

n

x denotes f restricted to arguments less than x,

likewise for sets.

We let A � B denote that A � B but A 6= B; A �

�

B that A� B is �nite; and A �

1

B

that A � B and jB �Aj =1. A will denote the complement of A, A t B the disjoint union.

For each n 2 !, we let hx

1

; x

2

; : : : ; x

n

i denote the coded n-tuple (where x

i

� hx

1

; x

2

; : : : ; x

n

i

for each i).

In a partial order, x j y denotes that x and y are incomparable. [k; l) denotes the interval

fn 2 ! j k � n < l g.

The logical connectives \and" and \or" will be denoted by ^ and _, respectively. We allow

as additional quanti�ers (in the meta-language) (9

1

x), (9

<1

x), and (a: e: x) to denote that

the set of such x is in�nite, �nite, and co�nite, respectively.

feg (or '

e

) and W

e

(feg

X

(or �

X

e

) and W

X

e

) denote the eth partial recursive function and

its domain (with oracle X) under some �xed standard numbering. �

1

and �

T

denote one-one

and Turing reducibility, respectively, and �

1

and �

T

the induced equivalence relations.

In the context of trees, �; �; �; : : : denote �nite strings; j�j the length of �; �b� the con-

catenation of � and � ; h a i the one-element string consisting of a; h a

n

b

m

: : : i the �nite string

consisting of n many a's, followed by m many b's, : : : ; � � � (� � �) that � is a (proper)

initial segment of � ; � <

L

� that for some i, � j

n

i = � j

n

i and �(i) <

�

�(i) (where <

�

is a

given order on � and T � �

<!

); and � � � (� < �) that � <

L

� or � � � (� � �).

The set [T ] of in�nite paths through a tree T � �

<!

is f p 2 �

!

j (8n)[p j

n

n 2 T ] g. The

extendible part of a tree T is f� 2 T j (9p 2 [T ])[� � p]g. The part of a tree above � is

T (�) = f� j �b� 2 Tg.

We will �rst prove an easy warm-up theorem to demonstrate our technique for index set

classi�cations in a simple setting. It reproves previously known results and classi�es for the

�rst time the index sets of quasimaximal sets and of coin�nite r.e. sets not having atomless

supersets (the so-called atomic sets) as �

5

- and �

6

-complete, respectively.

First of all, however, we will explain the tree machinery needed to prove the main results

of this chapter. All trees using this machinery will from now on be binary.

1. The Machinery. Lachlan [La68] showed that any �

3

-Boolean algebra can be represented

as the lattice of r.e. supersets (modulo �nite sets) of some hyperhypersimple set A. The proof

uses an argument that can be generalized substantially. From an arbitrary �

2

-tree T 2 2

<!

(i.e., � 2 T i� R(�), for some �

2

-predicate R), Lachlan constructs a (hyperhypersimple) r.e.

set A

T

with a 1{1 correspondence between nodes � 2 T and elements a

�

2 A satisfying the

following two properties:

(1) (8� 2 T )[A [ C

�

is r.e.], and

(2) (8W � A r.e.)(9S � T �nite)[W =

�

A [

S

�2S

C

�

],

where C

�

= f a

�

j � 2 T ^ � � � g is the \cone" of elements of A \above" a

�

.

The idea is now to reduce index set proofs to proofs about trees by the above correspondence

between trees T and r.e. sets A

T

.

Using Lachlan's construction as a starting point, we can break up an index set classi�cation

into easier parts. Suppose we are trying to show that (�

n

;�

n

) �

1

(A;B) for certain disjoint

index sets A and B which are closed modulo �nite sets, i.e., which satisfy

(1) e 2 A ^W

e

=

�

W

i

=) i 2 A;
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and likewise for B. (The technique works just as well if we replace the integer n by a recursive

ordinal �.) Then it su�ces to establish the following two lemmas:

(I) Correspondence Lemma: The mapping index of T 7! index of A

T

maps the �

2

-trees

of S into A, and the �

2

-trees of T into B, for certain disjoint classes of index sets of

binary �

3

-trees S, T .

(II) Reduction Lemma: A recursive function f maps C into the set of recursive trees of S

and C into the set of recursive trees of T .

Here C is a �

m

-complete set (where 2 +m = n), and we require that membership of T in S

and T only depends on [T ], namely, for �

3

-trees T and

~

T ,

(2) T 2 S ^ [

~

T ] = [T ] =)

~

T 2 S;

and likewise for T .

Once we have established (I) and (II), we can complete the proof of the index set classi�-

cation as follows:

Lemma.

(1) We can relativize the construction of f to ;

00

to obtain a recursive function

~

f mapping

a �

;

00

m

-complete (i.e., �

n

-complete) set

~

C to the �

;

00

1

-trees (i.e., �

3

-trees) of S, and

the complement of

~

C to the �

3

-trees of T .

(2) We can approximate the �

3

-trees

~

T obtained in (i) by �

2

-trees

^

T with [

~

T ] = [

^

T ], and

denote this approximation of

~

f by

^

f .

Proof. (i) Straightforward relativization of the construction of f �rst yields a function g �

T

;

00

.

Now it is easy to �nd the desired partial recursive function

~

f such that W

;

00

~

f(e)

=W

;

00

g(e)

(where

these sets code the trees) by \pushing the oracle of the index function into the main oracle".

Since g is total, so is

~

f .

(ii) Notice that for a �

3

-tree (i.e., �

;

0

2

-tree)

~

T , there is a function h �

T

;

0

such that � 2

~

T

i� lim

s

h(�; s) = 1, and � =2

~

T i� lim

s

h(�; s) = 0. Now enumerate

^

T (relative to ;

0

) by putting

� into

^

T at stage s if

j�j � s ^ (8n � j�j)[h(� j

n

n; s) = 1]: �

Now the composition of

^

f with the mapping index of T 7! index of A

T

yields the desired

reduction (�

n

;�

n

) �

1

(A;B). �

Three typical examples of a correspondence as in (I) are the following: A �nite tree T (i.e.,

[T ] = ;) corresponds to a co�nite set A

T

. A �

2

-tree with exactly one in�nite path corresponds

to a maximal set A

T

. A perfect tree T is a tree such that for all � 2 T , there are �

1

; �

2

2 T such

that � � �

1

; �

2

and �

1

j �

2

. A perfect �

2

-tree corresponds to an atomless hyperhypersimple

set A

T

. (We will give a proof below for the latter two correspondences.)

In the Reduction Lemmas below, since the construction is recursive we will ensure that the

tree T constructed is recursive by letting T

s

= T \ 2

�s

, where T

s

is the part of T constructed

by the end of stage s.

2. A Warm-up Theorem.

De�nition. Let A be a coin�nite r.e. set.

(1) A is maximal if for all r.e. sets W � A, either W =

�

A or W =

�

!.
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(2) A is quasimaximal if it is a �nite intersection of maximal sets.

(3) A is atomless if it has no maximal superset.

(4) A is atomic if it has no atomless superset.

(5) A is hyperhypersimple if L(A), the lattice of r.e. supersets of A, forms a Boolean

algebra. (By Lachlan [La68], this is equivalent to the original de�nition.)

Notice that a coin�nite r.e. set having no atomic superset is the same as an atomless set,

so the hierarchy collapses at that level.

Proposition. The index sets of maximal, quasimaximal, atomless, and atomic sets are �

4

,

�

5

, �

5

, and �

6

, respectively.

Proof. By the fact that Max is �

4

and the usual Tarski-Kuratowski algorithm. �

We denote these index sets by Max, QMax, Atomless, and Atomic, respectively. Our

machinery now allows an easy classi�cation of these four index sets:

Theorem A. The following reductions hold:

(1) (�

4

;�

4

) �

1

(Max;QMax�Max);

(2) (�

5

;�

5

) �

1

(QMax;Atomless); and

(3) �

6

�

1

Atomic.

Corollary.

(a) (Lachlan, D.A. Martin, R.W. Robinson, Yates (unpublished); later appearing in Tul-

loss [Tu71]) The index set of maximal sets is �

4

-complete.

(b) The index set of quasimaximal sets is �

5

-complete.

(c) (Jockusch) The index set of atomless sets is �

5

-complete.

(d) The index set of atomic sets is �

6

-complete. �

Proof of Theorem A. We have to establish (I) and (II) above for our machinery to apply. Call

T essentially perfect if Ext(T ) is a perfect tree, i.e., if there is a 1{1 map e from 2

<!

into the

extendible part Ext(T ) of T such that

(a) (8�; � 2 2

<!

)[� � � $ e(�) � e(�)], and

(b) (8� 2 Ext(T ))(9� 2 2

<!

)[� � e(�)].

We de�ne four classes of trees:

(3)

T

1

= fT � 2

<!

tree j j[T ]j = 1 g;

T

2

= fT � 2

<!

tree j [T ] 6= ;; �nite g;

T

3

= fT � 2

<!

tree j T is essentially perfect g;

T

4

= fT � 2

<!

tree j [T ] 6= ; ^ (8� 2 T )[T (�) is not essentially perfect] g:

Correspondence Lemma. Let T � 2

<!

be a �

2

-tree. Then:

(1) If T 2 T

1

then A

T

is maximal, and conversely.

(2) If T 2 T

2

then A

T

is quasimaximal.

(3) If T 2 T

3

then A

T

is atomless.

(4) If T 2 T

4

then A

T

is atomic, and conversely.
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Proof. (i) Let W � A

T

be an r.e. superset. Then W =

�

A

T

[

S

�2S

C

�

for some �nite set

S � T . If S\Ext(T ) = ; thenW =

�

A

T

, and, since j[T ]j = 1, if S\Ext(T ) 6= ; thenW =

�

!.

So A

T

is maximal. The converse is shown analogously.

(ii) Similar to (i).

(iii) Suppose W � A

T

is a maximal superset. Then W =

�

A

T

[

S

�2S

C

�

for some �nite

set S � T . Since W is coin�nite there is some �

0

2 Ext(T ) such that C

�

0

\W = ;. Let

�

0

2 2

<!

be such that �

0

� e(�

0

). Then W �

1

W [ C

e(�

0

bh0i)

�

1

W [ C

e(�

0

)

, contradicting

W 's maximality.

(iv) Suppose W � A

T

is an atomless superset. Then W =

�

A

T

[

S

�2S

C

�

for some �nite

set S � T . Since W is coin�nite there is some �

0

2 Ext(T ) such that C

�

0

\W = ;. Let

W

0

= A

T

[

[

j�j=j�

0

j;�2T�f�

0

g

C

�

:

Then W

0

is coin�nite and W

0

�

�

W , so W

0

is also atomless. We will show that T (�

0

) is

essentially perfect to reach a contradiction. Let T

0

= Ext(T (�

0

)). It su�ces to show that, for

all � 2 T

0

, there exist �

1

; �

2

2 T

0

such that � � �

1

; �

2

and �

1

j �

2

. Suppose �

0

2 T

0

does not

admit such a splitting. Then

W

1

= A

T

[

[

j� j=j�

0

j;�2T

0

�f�

0

g

C

�

0

b�

is maximal by an argument similar to (i).

Conversely, assume that T (�

0

) is essentially perfect for some �

0

. Then

W = A

T

[

[

j�j=j�

0

j;�2T�f�

0

g

C

�

is an atomless superset of A

T

by (iii). �

Reduction Lemma. We have the following reductions (where all images of the reducing

maps are recursive trees):

(1) (�

2

;�

2

) �

1

(T

1

; T

2

� T

1

),

(2) (�

3

;�

3

) �

1

(T

2

; T

3

), and

(3) �

4

�

1

T

4

.

Proof. (i) We choose Inf and Fin, the index sets of in�nite and �nite r.e. sets, respectively, as

�

2

- and �

2

-complete index sets. We will build a reduction k 7! T

k

such that k 2 Inf implies

T

k

2 T

1

, and k 2 Fin implies T

k

2 T

2

� T

1

. Fix k. At stage 0, let T

k;0

= f ; g; at stage 1, we

put h 0 i and h 1 i into T

k;1

. At a stage s � 2, if W

k;s

6=W

k;s�1

, we put h 0

s

i and h 0

s�1

1 i into

T

k;s

; otherwise, we put �bh0i into T

k;s

for the two � 2 T

k;s�1

with j� j = s� 1. Then

(4)

k 2 Inf =) (9

1

s)[W

k;s

6=W

k;s�1

] =) [T

k

] = f h 0

!

i g =) T

k

2 T

1

;

k 2 Fin =) (9

<1

s)[W

k;s

6=W

k;s�1

] =) [T

k

] = f h 0

!

i; h 0

s

0

�1

1 0

!

i g =)

T

k

2 T

2

� T

1

;

where s

0

= maxf s jW

k;s

6=W

k;s�1

g.
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(ii) We choose Cof and Coinf, the index sets of co�nite and coin�nite r.e. sets, respectively,

as �

3

- and �

3

-complete index sets. We will again build a reduction k 7! T

k

such that

k 2 Cof implies T

k

2 T

2

, and k 2 Coinf implies T

k

2 T

3

. Fix k and let W

k;s

= fw

0

k;s

<

w

1

k;s

< w

2

k;s

< : : :g. Let f�

�

g

�22

<!

be a sequence of markers. At stage 0, let n

0

= 0,

let �

;;0

= ;, let all other markers be unde�ned, and put ; into T

k;0

. At a stage s > 0,

let n

s

= min(fn

s�1

+ 1 g [ fn j w

n

k;s�1

6= w

n

k;s

g). For j�j < n

s

, let �

�;s

= �

�;s�1

. For

j�j = n

s

, let �

�;s

be equal to some string � with j� j = s, �

�

2 T

k;s�1

, and � � �

�

�

;s

where

�

�

= � j

n

(j�j � 1), and put all these � into T

k;s

. For j�j > n

s

, let �

�;s

be unde�ned.

Now assume that W

k

is co�nite. Then there is some (least) ~n such that lim

s

w

~n

k;s

=1, so

lim

s

j�

�;s

j =1 for all � with j�j � ~n. But then lim inf

s

jT

k

\ 2

s

j = 2

~n

, so [T

k

] is �nite. [T

k

] is

nonempty by K�onig's Lemma since for all s, T

k

\ 2

s

6= ;. Thus T

k

2 T

2

.

On the other hand, if W

k

is coin�nite, then lim

s

w

n

k;s

<1 exists for all n, so lim

s

n

s

=1.

We can thus de�ne, for all n, a stage s

n

= maxf s j n

s

= n g. Therefore, lim

s

�

�;s

= �

�

exists

for all � 2 2

<!

. The mapping � 7! �

�

now shows that T

k

is essentially perfect.

(iii) The �nal part of the proof is a �rst example of how the uniformity of the construction

can be used to yield more and more complicated index set results.

There is a recursive function g such that

(5)

k 2 ;

(4)

$ (9i)[W

g(k;i)

coin�nite]; and

k =2 ;

(4)

$ (8i)[W

g(k;i)

co�nite]:

Fix k. At stage 0, we let T

k;0

= f ; g. At a stage s > 0, put h 0

s

i and h 0

s�1

1 i into T

k;s

and start the construction described in part (ii) but above h 0

s�1

1 i in place of ; and using

W

g(k;s�1)

in place of W

k

.

Now, if k =2 ;

(4)

, then for all i, W

g(k;i)

is co�nite, so [T

k

(h 0

i

1 i)] is �nite for all i by (ii),

and therefore T

k

(�) is not essentially perfect for any � 2 T

k

. Thus T

k

2 T

4

.

On the other hand, if k 2 ;

(4)

, then W

g(k;i)

is coin�nite for some i, so, again by (ii),

[T

k

(h 0

i

1 i)] is essentially perfect. Thus T

k

=2 T

4

. �

This establishes Theorem A by our machinery. �

3. The Main Theorem. Call a set A � ! 0-atomic i� jAj � 1. Then a set B is co�nite i� B

is in the �lter generated by the 0-atomic sets. A set C is maximal i� its equivalence class is a

coatom of the lattice of r.e. sets modulo the co�nite �lter. A coin�nite set D is quasimaximal

i� D is in the �lter in E generated by the maximal sets, etc. This alternation of generating a

�lter and considering the coatoms leads to the following de�nition:

De�nition. Let A be a hyperhypersimple or co�nite set, � an ordinal, and � a limit ordinal.

Then:

(1) A is 0-atomic if jAj � 1;

(2) A is �-quasiatomic if A is a �nite intersection of �-atomic sets, i.e., if A is in the �lter

generated by the �-atomic sets;

(3) A is (�+1)-atomic if for all r.e. sets W � A, W or A[W is �-quasiatomic, i.e., if A is

�-quasiatomic or its equivalence class is a coatom of the lattice of r.e. sets modulo the

�-quasiatomic �lter (notice here and in (v) that A[W is r.e. if A is hyperhypersimple);

(4) A is <�-atomic if A is �-atomic for some � < �, i.e., if A is in the �lter generated by

the �-atomic sets for � < �;
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(5) A is �-atomic if for all r.e. sets W � A, W or A [W is <�-quasiatomic, i.e., if A is

<�-quasiatomic or its equivalence class is a coatom of the lattice of r.e. sets modulo

the <�-quasiatomic �lter.

The notions of �-atomic, �-quasiatomic, and <�-atomic are natural generalizations of the

notions of co�nite sets, maximal sets, and quasimaximal sets. Namely, A is co�nite i� A is

0-quasiatomic; A is maximal (or co�nite) i� A is 1-atomic; and A is quasimaximal (or co�nite)

i� A is 1-quasiatomic.

Let At

�

, QAt

�

, and At

<�

denote the index sets of �-atomic, �-quasiatomic, and <�-atomic

sets, respectively.

The importance of the above de�nition lies in the correspondence of these properties with

the Cantor-Bendixson rank of binary trees, as explained below. This correspondence allows

the classi�cation of their index sets, yielding a family of index sets of properties L

!

1

;!

-de�nable

over E , which goes all the way through the hyperarithmetical hierarchy.

In the following, we will use ordinal arithmetic to compute expressions like 2�+ 2, etc. A

set of integers is �

�+n

(�

�+n

) (for � a recursive limit ordinal, n 2 ! � f 0 g) i� it is �

;

(�)

n

(�

;

(�)

n

). We use Rogers's book [Ro67] for the background on recursive ordinals. He de�nes

a system of ordinal notations j � j : O ! !

CK

1

from Kleene's O � ! into the set of recursive

ordinals as well as a partial order <

0

on O by

(6)

j1j = 0;

jxj = � =) j2

x

j = �+ 1; and z �

0

x =) z <

0

2

x

;

f'

y

(n) g

n2!

a <

0

-increasing sequence and sup

n

j'

y

(n)j = � =)

j3 � 5

y

j = �; and (9n)[z <

0

'

y

(n)] =) z <

0

3 � 5

y

]:

The hyperarithmetical hierarchy H : O ! 2

!

is then de�ned by

(7)

H(1) = ;;

H(2

x

) = (H(x))

0

;

H(3 � 5

y

) = f hu; v i j u 2 H(v) ^ v <

0

3 � 5

y

g:

Now jxj � jyj implies H(x) �

T

H(y). In particular, the Turing degree of H(3 � 5

y

) does not

depend upon the speci�c notation for a limit ordinal � = j3 � 5

y

j. Thus the de�nition of �

�+n

and �

�+n

does not depend upon which H(3 � 5

y

) with j3 � 5

y

j = � we use for ;

(�)

. (Recall also

that for any y 2 O, fx j x <

0

y g is r.e. uniformly in y.)

The following theorem generalizes Theorem A (i) and (ii) to the hyperarithmetical hierarchy.

We can do so by bounding the Cantor-Bendixson rank of the associated trees more carefully.

Theorem B. Let � be a recursive ordinal and � a recursive limit ordinal. Then:

(1) (�

2�+2

;�

2�+2

) �

1

(At

�

;QAt

�

�At

�

);

(2) (�

2�+3

;�

2�+3

) �

1

(QAt

�

;At

�+1

�QAt

�

); and

(3) (�

�+1

;�

�+1

) �

1

(At

<�

;At

�

� At

<�

).

Corollary 1.

(a) At

�

is �

2�+2

-complete;

(b) QAt

�

is �

2�+3

-complete; and

(c) At

<�

is �

�+1

-complete.
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Proof. By Theorem B and the fact that At

�

, QAt

�

, and At

<�

are �

2�+2

, �

2�+3

, and �

�+1

,

respectively, by the Tarski-Kuratowski algorithm. E.g.,

x 2 At

0

$ (8y)

�

y 2W

x

_ (8z > y)[z 2W

x

]

�

$ (8y)[�

1

_ �

2

];

and

x 2 At

<!

$ (9n)[x 2 At

n

]$ (9n)R(x; n);

where R is a ;

(!)

-recursive predicate. �

Corollary 2.

(a) (Lachlan, D.A. Martin, R.W. Robinson, Yates (unpublished); later appearing in Tul-

loss [Tu71]) The index set of maximal sets is �

4

-complete.

(b) The index set of quasimaximal sets is �

5

-complete.

Proof. Set � = 1 in Corollary 1. �

Proof of Theorem B. The proof for the 0-atomic case does not �t into our machinery but

follows easily from (�

2

;�

2

) �

1

(Fin;Tot). Using the machinery, we again have to prove a

Correspondence Lemma and a Reduction Lemma.

Recall the de�nitions of Cantor-Bendixson derivative and Cantor-Bendixson rank. The

Cantor-Bendixson derivative of a tree T � 2

<!

is T minus its isolated paths, i.e.,

(8) D(T ) = f� 2 Ext(T ) j (9�

1

; �

2

2 Ext(T ))[� � �

1

; �

2

^ �

1

j �

2

] g:

We also de�ne its iterates:

(9)

D

0

(T ) = T;

D

�+1

(T ) = D(D

�

(T ));

D

�

(T ) =

\

�<�

D

�

(T );

where � is an ordinal, � is a limit ordinal. Then the Cantor-Bendixson rank of T is

(10) �(T ) =

8

>

>

>

<

>

>

>

:

�1 if T is �nite;

minf� j D

�+1

(T ) �nite g if T is in�nite

= minf� j j[D

�

(T )]j �nite g and this ordinal exists;

1 otherwise:

It is a well-known fact that D

�

(T ) = D

�

(T ) for any uncountable ordinals � and �; and that

D

�

(T ) �nite for some limit ordinal � implies D

�

(T ) �nite for some � < � by compactness.

These de�nitions lead to the

Correspondence Lemma. Let � be a recursive ordinal, T � 2

<!

a �

2

-tree. Then:

(1) �(T ) = �1 i� A

T

is 0-quasiatomic;

(2) j[D

�

(T )]j � 1 i� A

T

is (1 + �)-atomic; and

(3) �(T ) � � i� A

T

is (1 + �)-quasiatomic.
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Proof. By induction on �:

(i). �(T ) = �1 i� T is �nite i� A

T

is co�nite i� A

T

is 0-quasiatomic.

(ii)

�=0

. By (i) and the Correspondence Lemma for Theorem A.

(ii)

�

!(iii)

�

. Assume (ii) for an ordinal �.

Suppose �rst that �(T ) � �. Then [D

�

(T )] is �nite, say, [D

�

(T )] � f p

1

; p

2

; : : : ; p

n

g. Let

k be large enough such that i 6= j implies p

i

j

n

k 6= p

j

j

n

k. Then j[D

�

(�bT (�))]j � 1 for all

� 2 T \ 2

k

. By induction,

(11) A

�

=

def

A

T

[

[

j� j=j�j;� 6=�;�2T

C

�

is (1 + �)-atomic, thus A

T

=

�

T

�2T\2

k

A

�

is (1 + �)-quasiatomic.

On the other hand, if A

T

is (1+�)-quasiatomic then A

T

=

T

n

i=1

A

i

for a �nite set of (1+�)-

atomic sets A

1

, A

2

, : : : , A

n

. For each i, let A

i

=

�

A

T

[

S

�2S

i

C

�

for some �nite set S

i

� T ,

and let T

i

= T �

S

�2S

i

�bT (�). Then

S

n

i=1

T

i

=

�

T , and, by induction, [D

�

(T

i

)] � f p

i

g for

some p

i

2 2

!

. Thus [D

�

(T )] � f p

1

; p

2

; : : : ; p

n

g is �nite, and �(T ) � �.

(iii)

<�

!(ii)

�

. Assume � > 0, and that (iii) holds for all ordinals less than �. Without loss

of generality, let � be a successor ordinal and put � + 1 = � (if � is a limit ordinal, replace �

by <� throughout this part of the proof).

Suppose �rst that j[D

�

(T )]j � 1, say, [D

�

(T )] � f p g. If W � A

T

is r.e. then W =

�

A

T

[

S

�2S

C

�

for some �nite set S � T (assume that all � 2 S are of the same length, say, k).

Let S

0

= (2

k

� S) \ T , and put W

0

= A

T

[

S

�2S

0

C

�

. Then W

0

is the relative complement

(w.r.t. A

T

) of W (modulo a �nite set). Without loss of generality, suppose that p j

n

k 2 S

0

(the other case is symmetric). Then T

0

= T �

S

�2S

0

C

�

, the tree associated withW

0

, satis�es

[D

�

(T

0

)] =

�

;, and so W

0

is (1 + �)-quasiatomic. Thus A

T

is (1 + �)-atomic.

On the other hand, let A

T

be (1 + �)-atomic. Suppose for the sake of contradiction that

[D

�

(T )] contains two distinct in�nite paths, say, p

1

and p

2

. Let k be large enough that

p

1

j

n

k 6= p

2

j

n

k; let S

1

and S

2

be such that S

1

t S

2

= 2

k

\ T , p

1

j

n

k 2 S

1

, and p

2

j

n

k 2 S

2

;

and let W

1

= A

T

[

S

�2S

1

C

�

and W

2

= A

T

[

S

�2S

2

C

�

. Thus W

1

and W

2

are relative

complements (w.r.t. A) to each other (modulo a �nite set). Then for both T

1

= T �

S

�2S

1

C

�

and T

2

= T �

S

�2S

2

C

�

, [D

�

(T

1

)] and [D

�

(T

2

)] are nonempty (namely, p

1

2 [D

�

(T

2

)] and

p

2

2 [D

�

(T

1

)]), and thus, by induction, neither of their associated r.e. sets W

1

and W

2

is

(1 + �)-quasiatomic, a contradiction. �

4. The Reduction Lemma for the Main Theorem. Let � be a recursive ordinal. We

de�ne

(12)

S

�

= fT 2 2

<!

tree j j[D

�

(T )]j � 1 g;

T

�

= fT 2 2

<!

tree j �(T ) � � g (allow � = �1);

T

<�

=

[

�<�

T

�

:

It remains to prove the

Reduction Lemma. Let � be a recursive ordinal and � a recursive limit ordinal. Then:

(1) (�

2�+2

;�

2�+2

) �

1

(S

�

; T

�

� S

�

);

(2) (�

2�+3

;�

2�+3)

�

1

(T

�

;S

�+1

� T

�

) (also allow � = �1); and

(3) (�

�+1

;�

�+1

) �

1

(T

<�

;S

�

� T

<�

).
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Notice that this lemma is an extension of the Reduction Lemma for Theorem A. Let LOR

be the class of limit ordinals.

Proof. All constructions will be uniform in an ordinal notation for � (or �), so we can use

trans�nite induction and the following four statements for �; � � 0:

(A) (�

1

;�

1

) �

1

(T

�1

;S

0

� T

�1

);

(B) (�

2�+1

;�

2�+1

) �

1

(T

<�

;S

�

� T

<�

) =) (�

2�+3

;�

2�+3

) �

1

(T

�

;S

�+1

� T

�

);

(C) (�

2�+1

;�

2�+1

) �

1

(T

<�

;S

�

� T

<�

) =) (�

2�+2

;�

2�+2

) �

1

(S

�

; T

�

� S

�

); and

(D) (�

�+1

;�

�+1

) �

1

(T

<�

;S

�

� T

<�

).

Then (ii) for � = �1 follows from (A); (ii) for � � 0 and (i) follow from (ii) for � � 1 (if

� =2 LOR) or from (iii) (if � 2 LOR) by (B) and (C), respectively; and (iii) follows by (D).

(Notice that the proof of (D) will require an induction argument separate from the successor

ordinal case (B){(C), as explained later.)

We will now prove (A){(D):

(A) Given k, we will construct a recursive tree T

k

such that

(13)

k 2 ;

0

=) T

k

�nite;

k =2 ;

0

=) j[T

k

]j = 1:

At any stage s, put h 0

s

i into T

k;s

i� fkg

s

(k) ". This construction obviously satis�es the

claim.

(B) By (A) (for � = 0), (B) (for � =2 LOR [ f 0 g), or (D) (for � 2 LOR), we have a

uniformly recursive sequence of trees f

~

T

l

g

l2!

satisfying

(14)

l 2 ;

(2�+1)

=) [D

�

(

~

T

l

)] = ;;

l =2 ;

(2�+1)

=) j[D

�

(

~

T

l

)]j = 1:

Now ;

(2�+3)

�

1

Cof

;

(2�)

, so, given k, it su�ces to uniformly build a recursive tree T

k

such

that

(15)

k 2 Cof

;

(2�)

=) [D

�

(T

k

)] �nite;

k =2 Cof

;

(2�)

=) j[D

�+1

(T

k

)]j = 1:

De�ne a recursive function f such that f(k; l) 2 ;

(2�+1)

i� l 2 W

;

(2�)

k

. Fix k. At stage 0,

put ; into T

k;0

. At any stage s > 0, put h 0

s

i and h 0

s�1

1 i into T

k;s

and start the construction

of

~

T

f(k;s�1)

on top of h 0

s�1

1 i.

If k 2 Cof

;

(2�)

then f(k; l) =2 ;

(2�+1)

for only �nitely many l, say, l

0

is greater than all such l.

Then [D

�

(T

k

(h 0

l

1 i))] = ; for all l � l

0

, so [D

�

(T

k

(h 0

l

0

i))] � f h 0

!

i g. Also [D

�

(T

k

(h 0

l

1 i))]

is �nite for all l < l

0

, so [D

�

(T

k

)] is �nite.

On the other hand, if k =2 Cof

;

(2�)

then f(k; l) =2 ;

(2�+1)

for in�nitely many l, so we have

j[D

�

(T

k

(h 0

l

1 i))]j = 1 for in�nitely many l. Thus [D

�+1

(T

k

)] = f h 0

!

i g.

(C) The proof is similar to the proof for (B). We use the fact that (�

2�+2

;�

2�+2

) �

1

(Tot

;

(2�)

;Cotwo

;

(2�)

), where Tot

X

and Cotwo

X

are the index sets of total functions recursive

in X and functions recursive in X unde�ned for exactly two integers, respectively.
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Given k and f

~

T

l

g

l2!

as in the proof of (B), we have to uniformly build a recursive tree T

k

such that

(16)

k 2 Tot

;

(2�)

=) j[D

�

(T

k

)]j � 1;

k 2 Cotwo

;

(2�)

=) 1 < j[D

�

(T

k

)]j < @

0

:

The construction is the same as in (B).

If k 2 Tot

;

(2�)

then f(k; l) 2 ;

(2�+1)

for all l, so [D

�

(T

k

(h 0

l

1 i))] = ; for all l. Thus

[D

�

(T

k

)] � f h 0

!

i g.

On the other hand, if k 2 Cotwo

;

(2�)

then f(k; l) =2 ;

(2�+1)

for exactly two distinct l, say,

l

1

and l

2

, and so D

�

(T

k

(h 0

l

1 i)) has exactly one in�nite path for l = l

1

or l

2

, and none for all

other l. Thus 2 � j[D

�

(T

k

)]j � 3 (since possibly h 0

!

i 2 [D

�

(T

k

)]).

Part (D) is much harder to prove and requires some preparation.

5. The Reduction Lemma: The Limit Ordinal Case. The �rst lemma generalizes a

lemma by Solovay for � = ! [JLSSta] to arbitrary recursive limit ordinals:

Lemma 1 (Approximation Lemma). Let � be a recursive limit ordinal and f�

n

g

n2!

the

increasing sequence with sup

n

�

n

= � given by our ordinal notation for � (i.e., � = j3 � 5

x

j,

j'

x

(n)j = �

n

). Then there is a recursive function d (uniformly in a notation for �) such that

(17) (8y)

�

y 2 ;

(�+1)

$ (9n)[d(y; n) 2 ;

(�

n

+1)

]

�

:

Here ;

(�+1)

= (H(3 � 5

x

))

0

, and ;

(�

n

+1)

= (H('

x

(n)))

0

.

Proof. Recall that there are recursive functions h

a;b

(uniformly in a, b) and r.e. sets P

a

(uni-

formly in a) such that

(18)

H(a) �

1

H(b) via h

a;b

(for a �

0

b), and;

P

a

= f b j b <

0

a g for a 2 O:

(See Rogers [Ro67] for details.)

Now

(19)

y 2 ;

(�+1)

$ fyg

H(3�5

x

)

(y) #

$ (9u; v; s)

�

fyg

(D

u

;D

v

)

s

(y) #^ D

u

� H(3 � 5

x

) ^

D

v

\H(3 � 5

x

) = ;

�

$ (9u; v; s)

�

fyg

(D

u

;D

v

)

s

(y) #^ (8h z

1

; z

2

i 2 D

u

)[z

1

2 H(z

2

) ^ z

2

<

0

3 � 5

x

] ^

(8h z

1

; z

2

i 2 D

v

)[z

1

=2 H(z

2

) _ z

2

6<

0

3 � 5

x

]

�

$ (9u; v; s; n)

�

fyg

(D

u

;D

v

)

s

(y) #^

(8h z

1

; z

2

i 2 D

u

)[h

z

2

;'

x

(n)

(z

1

) 2 H('

x

(n)) ^ z

2

2 P

'

x

(n);s

^ z

2

2 P

3�5

x

] ^

(8h z

1

; z

2

i 2 D

v

)[(h

z

2

;'

x

(n)

(z

1

) =2 H('

x

(n)) ^ z

2

2 P

'

x

(n);s

) _ z

2

=2 P

3�5

x

]

�

$ (9n)(9u; v; s)

�

�

1

^ (Q)[�

H('

x

(n))

1

^ �

1

^ �

1

] ^ (Q)[(�

H('

x

(n))

1

^ �

1

) _ �

1

]

�
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where (Q) denotes a bounded quanti�er, and fyg

(D

u

;D

v

)

that the computation uses from the

oracle set X at most that z 2 X for z 2 D

u

and that z =2 X for z 2 D

v

.

Now the matrix of the last expression is recursive in H('

x

(n))�;

0

, and thus the expression

following (9n) is recursive in (H('

x

(n + 1)))

0

= ;

(�

n+1

+1)

. This establishes the claim of the

lemma. �

The �rst try at the construction of T

k

at a limit ordinal level � satisfying (D) would

be to build T

�

n

d(k;n)

on top of h 0

n

1 i. However, we only know �(T

�

n

d(k;n)

) = �

n

or < �

n

, so

sup

n

�(T

�

n

d(k;n)

) = � is possible independent of whether k 2 ;

(�+1)

.

Our second try is to let the level �

n

at which we \discover" that k 2 ;

(�+1)

by Lemma 1,

stop the higher levels by some kind of \permission" for extending branches above h 0

m

1 i for

m > n. However, this is hard since T

�

m

d(k;n)

looks very di�erent from T

�

n

d(k;n)

, so we have to

introduce a very strong kind of permission at all branchings of the much bigger tree T

�

m

d(k;m)

.

Keeping this in mind should make the following construction seem less mysterious. This also

requires a new induction argument at the successor ordinal level.

For the sake of convenience, let �(k

1

; k

2

; : : : ; k

n

) = h 0

k

1

1 0

k

2

1 : : : 0

k

n

1 i 2 2

<!

. For � a

recursive ordinal, the �eld of the �-strategy F

�

(i.e., the largest possible tree that T

�

k

could

be) is de�ned by

(20)

F

0

= f h 0

n

i j n 2 ! g;

F

�+1

= f�(n)b� j � 2 F

�

; n 2 ! g [ F

0

;

F

�

= f�(n)b� j � 2 F

�

n

; n 2 ! g [ F

0

for � 2 LOR, � = j3 � 5

y

j, �

n

= j'

y

(n)j:

(Notice that the F

�

's are all recursive sets, and that they do depend upon the particular

ordinal notation chosen. However, since we will always �x an ordinal notation in advance this

will not matter in the following.)

The ordinal �

�

�

associated with a branching node � on F

�

is de�ned by

(21)

�

�

;

= �;

�

�

�b�(k)

=

8

>

<

>

:

�

�

�

� 1 for �

�

�

=2 LOR [ f 0 g;



k

for �

�

�

=  2 LOR,  = j3 � 5

z

j, 

n

= j'

z

(n)j;

unde�ned for �

�

�

= 0:

(Thus �

�

�

is de�ned exactly for all nodes � 2 F

�

of the form � = �(k

1

; k

2

; : : : ; k

n

). The

ordinals �

�

�

will determine the strategy above the node �.)

The following lemma will be essential later:

Lemma 2 (Finite Exceptions Lemma). For any subtree S � F

�

and any in�nite path

p 2 [S], f i j p(i) = 1 g is �nite.

Proof. Otherwise there are n

1

; n

2

; n

3

; � � � 2 ! such that ; � �(n

1

) � �(n

1

; n

2

) � (n

1

; n

2

; n

3

) �

� � � � p, so that all these nodes are in S and thus in F

�

, but then �

�

;

, �

�

�(n

1

)

, �

�

�(n

1

;n

2

)

,

�

�

�(n

1

;n

2

;n

3

)

, : : : is an in�nite descending sequence of ordinals. �

We call a tree T � F

�

�-dense (for � a recursive ordinal) i�

(22) (8n 2 ! \ (�+ 1))(a: e: k

1

)(a: e: k

2

) : : : (a: e: k

n

)

[�(T (�(k

1

; k

2

; : : : ; k

n

))) = �

�

�(k

1

;k

2

;:::;k

n

)

]:
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I.e., in an �-dense tree, all appropriate subtrees of T have maximal rank possible. For example,

the only 0-dense tree is F

0

itself; a tree T � F

1

is 1-dense i� T (�(n)) = F

0

for almost all n,

etc.

Lemma 3 (Density Lemma). Let � > 0 be a recursive ordinal, T � F

�

a tree. Then T is

�-dense i� (a: e:m)[T (�(m)) is �

�

�(m)

-dense].

Proof. (!) Trivial by de�nition.

( ) We only need to show (20) for n = 0. Suppose that for all m > m

0

, �(T (�(m))) =

�

�

�(m)

. Since �

�

�(m)

= � � 1 (for � =2 LOR) or � = sup

m

�

�

�(m)

(for � 2 LOR), we obtain

�(T ) = �. �

Lemma 4 (Intersection Lemma). Let � be a recursive ordinal. If T and

~

T are �-dense,

then so is T \

~

T .

Proof. By induction on �: For � = 0, note that T =

~

T = f h 0

m

i j m 2 ! g. For � > 0, use

Lemma 3 and the fact that �

�

�(m)

< �. �

Notice that this would be false, for example, if we had de�ned �-dense just as having rank

�. For example, then the intersection of T;

~

T � F

1

, both of rank 1, could have rank 0.

The following lemma will be essential later for showing that the nesting of trees works

properly. (It is the �rst example of the property of trees that the subtree above a certain node

�(k

1

; k

2

; : : : ; k

n

) looks exactly as if it were constructed by itself.)

Lemma 5 (Nesting Lemma). Let � < � be two recursive ordinals, and let T � F

�

be a

�-dense tree. Then

~

T = f� 2 F

�

j (8� � �)[� 2 F

�

=) � 2 T ] g is �-dense.

Proof. By induction on �: If � = 0 then T = f h 0

m

i j m 2 ! g, and

~

T = F

�

. If � > 0

then for almost every m, �

�

�(m)

< �

�

�(m)

, and, by Lemma 3, for almost every m, T (�(m))

is �

�

�(m)

-dense. Therefore, by induction, for almost every m,

~

T (�(m)) is �

�

�(m)

-dense. Thus,

again by Lemma 3,

~

T is �-dense. �

The following lemma is the key to the construction. We build trees, again by induction,

but with much stronger properties. (However, in the successor ordinal case, we lose a �nite

number of levels, so we can use this construction only for the proof in the limit ordinal case.)

For the sake of convenience, for an arbitrary � < !

CK

1

with �xed ordinal notation, de�ne

a sequence of predicates fP

�

g

���

(23) P

�

(k)$

�

k 2 ;

(�+1)

if � is an even ordinal;

k =2 ;

(�+1)

otherwise;

where � is an even ordinal if � = �+ 2n for � 2 LOR [ f 0 g and n 2 !.

Lemma 6 (Strong Reduction Lemma). For any recursive ordinal �, there exists (uni-

formly in an ordinal notation for �) a uniformly recursive sequence fT

�

k

g

k2!

of trees T

�

k

� F

�

such that

(24)

P

�

(k) =) (a: e: k

1

)(a: e: k

2

) : : : (a: e: k

m

)[�(T

�

k

(�(k

1

; k

2

; : : : ; k

m

))) < �]; and

:P

�

(k) =) T

�

k

is �-dense;
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where � = �+m, � 2 LOR [ f 0 g, m 2 !.

Proof. For � = 0, use the construction from (A) above.

For � a successor ordinal, say, � = � + 1, assume without loss of generality that � is

even (the odd case is similar). Using (;

(�+2)

; ;

(�+2)

) �

1

(Fin

;

(�)

;Cof

;

(�)

), there are recursive

functions h and h

0

such that

(25)

P

�

(k) =) k 2 ;

(�+2)

=) W

;

(�)

h

0

(k)

�nite =) f l j l 2W

;

(�)

h

0

(k)

g �nite

=) f l j h(k; l) 2 ;

(�+1)

g �nite =) (a: e: l)[P

�

(h(k; l))];

:P

�

(k) =) k =2 ;

(�+2)

=) W

;

(�)

h

0

(k)

co�nite =) f l j l 2W

;

(�)

h

0

(k)

g co�nite

=) f l j h(k; l) 2 ;

(�+1)

g co�nite =) (a: e: l)[:P

�

(h(k; l))]:

Fix k. At stage 0, put ; into T

�

k;0

. At a stage s > 0, put h 0

s

i and h 0

s�1

1 i into T

�

k;s

and

start the construction of T

�

h(k;s�1)

on top of h 0

s�1

1 i. The claim that this works is immediate

by (25) and Lemma 3.

For � a limit ordinal, let � = j3 � 5

x

j, �

n

= j'

x

(n)j, so f�

n

g

n2!

is an increasing sequence

of ordinals with � = sup

n

�

n

. Slightly modify the function d from Lemma 1 so that

(26) (8y)

�

y 2 ;

(�+1)

$ (9n)[P

�

n

(d(y; n))]

�

;

and, for simplicity,

(27) (8n)[P

�

n

(d(y; n)) =) P

�

n+1

(d(y; n+ 1))]:

Given � 2 2

<!

, we de�ne the branch number b(�) = maxfn j h 0

n

i � � g, and the decision

set D(�) = f � � � j (9~�)[~�bh1i = � ] g. (b(�) will determine the main strategy at �, the nodes

of D(�) the secondary strategies from lower levels.)

The construction for � a recursive limit ordinal now proceeds as follows: Fix k. At stage

0, put ; into T

�

k;0

. At a stage s > 0, put h 0

s

i and h 0

s�1

1 i into T

�

k;s

; also put any � 2 2

<!

into T

�

k;s

for which the following conditions are satis�ed:

(1) j�j = s, � j

n

(s� 1) 2 T

�

k;s�1

,

(2) � 2 F

�

, and

(3) (8� 2 D(�))(8m � b(�))[�

m

� �

�

�

^ � 2 �bF

�

m

=) � 2 �bT

�

m

d(k;m)

].

(Notice here that the construction is arranged in such a way that to any �(k

1

; k

2

; : : : ; k

m

),

the construction above it looks the same as to a �(n) above it. This will be an essential feature

for the veri�cation.)

Now suppose �rst that k 2 ;

(�+1)

, i.e., by the modi�cation of Lemma 1, P

�

n

(d(k; n))

holds for all n � some �xed n

0

. We then claim that �(T

�

k

(�(n))) � �

n

0

for all n, thus

�(T

�

k

) � �

n

0

+ 1 < � as desired. The proof requires induction on �

n

0

. (Of course, there is

nothing to prove for �

n

� �

n

0

.)

�

n

0

= 0: Let ~� = �(n). Then ~�bF

�

n

0

= f�(n)bh0

m

i j m 2 ! g, so h 0

m

0

i =2 T

�

n

0

d(k;n

0

)

for

some m

0

, and thus T

�

k

(~�bh0

m

0

i) is �nite. As for T

�

k

(�(n;m)) for m < m

0

, apply the same

proof to ~� = �(n;m), etc. By Lemma 2, there is no in�nite sequence �(n), �(n;m), �(n;m; l),

: : : of such ~� 's, so T

�

k

(�(n)) is �nite and �(T

�

k

(�(n))) � �

n

0

.
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�

n

0

= � + 1: There is m

0

such that P

�

(h(d(k; n

0

);m)) holds for all m � m

0

where h

is the function for �

n

0

and � mentioned above in the proof for the successor ordinal case.

Now the �

n

0

-construction works at �(n), and thus the �-construction at �(n;m) for all m,

through condition (iii) of the construction (putting � = �(n)). Thus by induction (replacing

�

n

0

and �

n

by � and �

�

n

�(m)

), there is some m

0

such that �(T

�

k

(�(n;m))) � � for all m � m

0

,

so �(T

�

k

(�(n)bh0

m

0

i)) � �

n

0

. As for T

�

k

(�(n;m)) for m < m

0

, apply the same proof with

� = �(n;m), etc. By Lemma 2, there is no in�nite sequence �(n), �(n;m), �(n;m; l), : : :

of such � 's, so T

�

k

(�(n)) consists of �nitely many subtrees, each of rank � �

n

0

, and thus

�(T

�

k

(�(n))) � �

n

0

.

The above establishes �(T

�

k

(�(n))) � �

n

0

< � for all n, so �(T

�

k

) � �

n

0

+ 1 < � in the

successor ordinal case of �

n

0

.

�

n

0

2 LOR: Then f �

�

n

0

�(m)

g

m2!

is an increasing sequence with limit �

n

0

. There is m

0

such

that P

�

�

n

0

�(m)

(

~

d(d(k; n

0

);m)) holds for all m � m

0

where

~

d is the counterpart of f for �

n

0

as

a limit ordinal. Now the �

n

0

-construction works at �(n), and thus the �

�

n

0

�(m)

-construction at

�(n;m) for all m, through condition (iii) of the construction (putting � = �(n)). Thus by

induction (replacing �

n

0

and �

n

by �

�

n

0

�(m)

and �

�

n

�(m)

), we have that �(T

�

k

(�(n;m))) � �

�

n

0

�(m

0

)

for all m � m

0

(this part does not follow by induction for m with �

�

n

�(m)

� �

�

n

0

�(m)

but in

that case it is trivial anyway). Therefore, �(T

�

k

(�(n)bh0

m

0

i)) � �

n

0

. As for T

�

k

(�(n;m))

for m < m

0

, apply the same proof with � = �(n;m), etc. By Lemma 2, there is no in�nite

sequence �(n), �(n;m), �(n;m; l), : : : of such � 's, so T

�

k

(�(n)) consists of �nitely many

subtrees, each of rank � �

n

0

, so �(T

�

k

(�(n))) � �

n

0

.

The above establishes �(T

�

k

(�(n))) � �

n

0

< � for all n, so �(T

�

k

) � �

n

0

+ 1 < � in the

limit ordinal case of �

n

0

.

On the other hand, assume that k =2 ;

(�+1)

. Then P

�

n

(d(k; n)) does not hold for any n.

We claim that T

�

k

is �-dense (and thus [D

�

(T

�

k

)] = f h 0

!

i g). We proceed by induction on

� = �

n

, using Lemma 3:

�

n

= 0: We have T

�

k

(�(n)) = T

0

d(k;n)

= f h 0

m

i j m 2 ! g, so �(T (�(n))) = �

n

.

�

n

> 0: We have

(28) T

�

k

(�(n)) = f� 2 F

�

n

j (8~� � �)(8� 2 D(~�) [ f ; g)(8m � n)

[�

m

� �

�

n

�

^ ~� 2 �bF

�

m

=) ~� 2 �bT

�

m

d(k;m)

] g:

Among these restrictions, we can distinguish three types:

(a) � 6= ; (and thus m < n);

(b) � = ; and m = n; and

(c) � = ; and m < n.

Thus T (�(n)) is the intersection of the following three trees:

(a) T

1

= f� 2 F

�

n

j (8~� � �)(8� 2 D(~�))(8m < n)[�

m

� �

�

n

�

^ ~� 2 �bF

�

m

=) ~� 2

�bT

�

m

d(k;m)

] g;

(b) T

2

= f� 2 F

�

n

j (8~� � �)[~� 2 T

�

n

d(k;n)

] g = T

�

n

d(k;n)

; and

(c) T

3

= f� 2 F

�

n

j (8~� � �)(8m < n)[~� 2 F

�

m

=) ~� 2 T

�

m

d(k;m)

] g =

T

m<n

f� 2 F

�

n

j

(8� � �)[� 2 F

�

m

=) � 2 T

�

m

d(k;m)

] g. (Call these trees T

3;m

for m < n.)

By Lemma 4, it su�ces to show that each of T

1

, T

2

, and the T

3;m

is �

n

-dense.

(a) Recall again the remark that the construction above �(n) looks to �

n

just as it does
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to � above ;. For all l,

(29) T

1

(�(l)) = f� 2 F

�

�

n

�(l)

j (8~� � �)(8� 2 D(~�) [ f ; g)(8m < n)

[�

m

� �

�

n

�(l)b�

^ ~� 2 �bF

�

m

=) ~� 2 �bT

�

m

d(k;m)

] g:

Therefore, by induction on � = �

n

in (28) (with �

�

n

�(l)

in place of �

n

, and �

�

n

�(l)b�

in

place of �

�

n

�

), T

1

(�(l)) is �

�

n

�(l)

-dense for almost every l. Thus, by Lemma 3, T

1

is

�

n

-dense.);

(b) T

2

is �

n

-dense by induction on the overall construction; and

(c) each T

3;m

is �

n

-dense by induction and Lemma 5.

This concludes the proof of Lemma 6. �

Lemma 6 now implies part (D) of the proof of the Reduction Lemma, and thus Theorem

B has been established. �

6. A �

1

1

-Complete Index Set. We can extend the above techniques to obtain a �

1

1

-complete

index set. (This follows up a suggestion by J. Steel.) We will use the fact that Kleene's set O

of ordinal notations is a �

1

1

-complete subset of !.

Call a map f from a partially ordered set (poset) X into a poset Y an order embedding if

(30) (8x; y 2 X)[x �

X

y $ f(x) �

Y

f(y)]:

(In particular, any order embedding is a 1{1 map.) Then we de�ne:

De�nition. Let A � ! be a hyperhypersimple or co�nite set. Then A is B-atomic if there is

no order embedding f from the countable atomless Boolean algebra B into L

�

(A), the lattice

of r.e. supersets of A (modulo �nite sets).

The following equivalent de�nition is easier to handle:

Proposition. Let A � ! be a hyperhypersimple or co�nite set. Then A is B-atomic i� A is

�-atomic for some ordinal �.

Proof. We will represent the countable atomless Boolean algebra B by certain subsets of 2

<!

.

Given � 2 2

<!

, let U

�

= f � 2 2

<!

j � � � g be the \cone" above �. Let T � 2

<!

be a

tree. Call U � T a �nite regular cut in T if:

(i) U is of the form U = T \

S

�2S

U

�

for some �nite (possibly empty) set S � T ; and

(ii) for any � 2 T � U , there is some � � � such that � 2 T � U .

Then the set of �nite regular cuts in T forms a Boolean algebra under the following operations

(see, e.g., Jech [Je78], for a similar construction):

U _ V = least �nite regular cut containing U [ V(join)

= f� 2 T j (8� 2 T )[� � � =) (U [ V ) \ U

�

6= ;] g

U ^ V = U \ V(meet)

�U = greatest �nite regular cut disjoint from U

(complement)

= f� 2 T j U \ U

�

= ; g

U � V $ U � V

(ordering)
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Let B be the set of �nite regular cuts in 2

<!

. Then B is the countable atomless Boolean

algebra (since for any � 2 2

<!

, U

�

� U

�bh0i

� ;).

First assume that A is not �-atomic for any ordinal �. Then de�ne the following increasing

sequence of �lters in L

�

(A). Let F

0

be the one-element �lter, let F

�+1

be the �lter in L

�

(A)

generated by the coatoms in L

�

(A)=F

�

, and let F

�

=

S

�<�

F

�

for � a limit ordinal. Since A

is not �-atomic for any �, L

�

(A)=F

�

is not �nite for any ordinal �. Since L

�

(A) is countable,

F

�

0

= F

�

0

+1

for some �

0

< !

1

. Therefore, L

�

(A)=F

�

0

is the countable atomless Boolean

algebra. Fix an isomorphism i from B into L

�

(A)=F

�

0

. The idea is now to \lift" i to an

order embedding f from B into L

�

(A). Let h be a map from L

�

(A)=F

�

0

into L

�

(A), picking

a representative for each equivalence class. Now de�ne

(31)

f(;) = A

�

;

f(U

;

) = h(i(U

;

));

f(U

�bhki

) = f(U

�

) \ h(i(U

�bhki

)) for � 2 2

<!

, k 2 2.

This obviously induces an order homomorphism from B into L

�

(A). It remains to check that

f is 1{1. But i is 1{1, and h(U) = f(U) (mod F

�

0

); therefore f has to be 1{1 also.

Conversely, assume that there is a hyperhypersimple set A which is �-atomic for some �

but not B-atomic. Pick �

0

to be the minimal such ordinal. We will reach a contradiction by

showing that �

0

cannot be minimal.

Let A be �

0

-atomic but not B-atomic. Let g be an order embedding from B into L

�

(A). If

g(U

h 0 i

) is in the <�

0

-atomic �lter F then put A

0

= g(U

h 0 i

), and f j

n

fU 2 B j U

h 0 i

� U g

is an order embedding of a countable atomless Boolean algebra into L

�

(A

0

). Otherwise,

since A is �

0

-atomic (and thus jL

�

(A

0

)=Fj � 2), we have that A = g(U

h 0 i

) (mod F). So

A

0

= A[g(U

h 0 i

) is <�

0

-atomic, and the map fU 2 B j U � U

h 0 i

g ! L

�

(A

0

), U 7! A[g(U)

is an order embedding of a countable atomless Boolean algebra into L

�

(A

0

).

In either case, we have a <�

0

-atomic (say, a �

0

-quasiatomic) set A

0

and an order embedding

f from B into L

�

(A

0

). Let F

0

be the <�

0

-quasiatomic �lter in L

�

(A

0

). Then L

�

(A

0

)=F

0

is

�nite since A

0

is �

0

-quasiatomic. If jL

�

(A

0

)=F

0

j � 2 then A

0

is �

0

-atomic, and we have

already reached a contradiction. Otherwise, pick two sets A

1

� A

2

, satisfying the following

conditions:

(i) there are U

1

; U

2

2 B such that f(U

1

) = A

�

1

, f(U

2

) = A

�

2

, and U

1

� U

2

;

(ii) B

0

= fU 2 B j U

1

� U � U

2

g forms a countable atomless Boolean algebra; and

(iii) A

�

1

and A

�

2

represent distinct equivalence classes c

1

and c

2

in L

�

(A

0

)=F

0

such that

there is no c 2 L

�

(A

0

)=F

0

with c

1

< c < c

2

.

Let h be the map W 7! W [ A

2

. Then h � (f j

n

fW

�

j A

1

� W � A

2

r.e. g) is an order

embedding from B

0

into L

�

(A

1

[ A

2

), and A

1

[ A

2

is �

0

-atomic, a contradiction. �

Let At

B

be the index set of B-atomic sets. We are now in a position to exhibit a �

1

1

-complete

index set. Recall that Kleene's O, the set of ordinal notations, is �

1

1

-complete.

Theorem C. O �

1

At

B

.

Corollary. The index set of B-atomic sets is �

1

1

-complete.

Proof. It su�ces to show that At

B

is �

1

1

. But

(32) x 2 At

B

$ :(9f : B! !)(8U; V 2 B)[W

x

�W

f(U)

^ (U � V $W

f(U)

�

�

W

f(V )

)]:
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(Of course, B can easily be coded by the integers.) �

Proof of Theorem C. Extending our machinery to �

1

1

, we again have to prove a Correspondence

Lemma and a Reduction Lemma.

Correspondence Lemma. Let T � 2

<!

be a �

2

-tree. Then �(T ) <1 i� A

T

is B-atomic.

Proof. By the Correspondence Lemma for Theorem B and the above proposition, �(T ) < 1

i� (9�)[�(T ) � �] i� (9�)[A

T

is (1 + �)-quasiatomic] i� A

T

is B-atomic. �

Now let T = fT � 2

<!

j �(T ) <1g.

Reduction Lemma. There is a 1{1 reduction O �

1

indices of recursive trees of T .

Proof. Let us �rst analyze how we can \discover" that some integer x is not an ordinal

notation. We will illustrate this with the help of a partial map S

x

(predecessor tree) from !

<!

to !. De�ne S

x

: !

<!

7! ! by induction as follows:

(33)

S

x

(;) = x;

S

x

(�bhii) =

8

>

<

>

:

y if S

x

(�) = 2

y

and y 6= 0;

fzg(i) if S

x

(�) = 3 � 5

z

;

unde�ned otherwise.

Let P

x

(set of predecessor notations of x) be the set P

x

= fS

x

(�) # j � 2 !

<!

� f; g g.

Then x is not an ordinal notation i� one of the following holds:

(i) S

x

contains an in�nite path (i.e., there is an in�nite descending chain of predecessors

of x);

(ii) for some � 2 !

<!

and some i, S

x

(�) # 6= 1 and S

x

(�bhii) "; or

(iii) for some � 2 !

<!

and some i < j, S

x

(�) is of the form 3 � 5

z

and S

x

(�bhii) # =2

P

S

x

(�bhji)

.

Now, given x, construct a recursive tree T

x

as follows. The tree will be recursive by

induction on the length of strings � 2 2

<!

. De�ne

(34) T

x

=

8

>

>

>

<

>

>

>

:

f h 0

i

i j i 2 ! g if x = 1;

T

1

[

S

i2!

(h 0

i

1 0 ibT

y

) [

S

i2!

(h 0

i

1

2

ibT

y

) if x = 2

y

and y 6= 0;

T

1

[

S

i2!

(h 0

i

1 0 ib

~

T

z;i

) [

S

i2!

(h 0

i

1

2

ib

~

T

z;i

) if x = 3 � 5

z

;

2

<!

otherwise.

Here,

~

T

z;i

is de�ned as follows:

(35)

~

T

z;i

=

8

>

<

>

:

2

<s

[ (h 0

s

ibT

fzg(i)

) if fzg

s

(i) # and, if i 6= 0,

fzg

s

(i� 1) #2 P

fzg(i);s

(with s minimal);

2

<!

otherwise:

First suppose that x is an ordinal notation. We prove by induction on jxj that �(T

x

) =

jxj <1. There are three cases:

x = 1: Then j[T

x

]j = 1 and �(T

x

) = 0 <1.

x = 2

y

: Then �(T

x

) = �(T

y

) + 1 = jyj+ 1 = jxj <1.
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x = 3 � 5

z

: Then �(

~

T

z;i

) = jfzg(i)j and therefore �(T

x

) = sup

i2!

jfzg(i)j = jxj.

On the other hand, assume that x is not an ordinal notation. Then one of the above

conditions (i){(iii) holds:

(i) There is an in�nite descending chain of predecessors of x, say, x = x

0

; x

1

; x

2

; x

3

; : : : .

Then, by construction, there is a sequence �

1

; �

2

; �

3

; : : : of binary strings such that, for all

i > 0,

(36) ; 6= �

1

bhk

1

ib�

2

bhk

2

ib : : : b�

i

bhk

i

ibT

x

i

� T

x

for any i-tuple (k

1

; k

2

; : : : ; k

i

) 2 2

i

. Therefore

(37) � 7! �

1

bh�(1)ib�

2

bh�(2)ib : : : b�

j� j�1

bh�(j� j � 1)i

is a mapping from 2

<!

into a perfect subtree of T

x

, and so �(T

x

) =1.

(ii) For some � 2 !

<!

and some i 2 !, S

x

(�) # 6= 1 and S

x

(�bhii) ". Then �bT

S

x

(�)

� T

x

for some � 2 2

<!

; and for the construction of T

S

x

(�)

, the second clause of (35) or the fourth

clause of (34) applies. Therefore, �bh0

i

1 0ib2

<!

� T

x

, and so �(T

x

) =1.

(iii) For some � 2 !

<!

and some i < j, S

x

(�) = 3 � 5

z

and S

x

(�bhii) # =2 P

S

x

(�bhji)

.

Then again �bT

S

x

(�)

� T

x

for some � 2 2

<!

, and the second clause of (35) applies for

~

T

z;j

.

Therefore, �bh0

j

1 0ib2

<!

� T

x

, and so �(T

x

) =1. �

This concludes the proof of Theorem C. �

7. An Index Set in Major Subsets. Lachlan [La68] de�ned the following notion of two

r.e. sets A �

1

B being \close" to each other:

De�nition. Let A �

1

B be r.e. sets. Then A is major in B (A �

m

B) i�

(38) (8W r.e.)[B �

�

W =) A �

�

W ]:

(38) is equivalent to either of the following two conditions:

(8W r.e.)[B �W =) A �

�

W ];(38')

L

�

(A) = L

�

(B);(38")

where L

�

(X) is the lattice of r.e. supersets of X (modulo �nite sets).

The classi�cation of the index set f h e; i i jW

e

�

m

W

i

g has been one of the open questions

in index sets for a while. The major obstacle here is that A �

m

B implies that B is nonre-

cursive. This makes the uniformity required for the classi�cation hard. We present below a

partial result towards the classi�cation of this index set:

Theorem D. Let V be a nonrecursive r.e. set. Then the index set Maj

V

= f k jW

k

�

m

V g

is �

4

-complete.

Proof. It is easy to see that Maj

V

is �

4

:

(39)

W

k

�

m

V $W

k

�

1

V ^ (8e)[V [W

e

6= ! _W

k

[W

e

=

�

!]

$ �

3

^ (8e)[�

2

_ �

3

]

$ �

4

:
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We will build (uniformly in k) an r.e. set A

k

�

1

V such that A

k

�

m

V i� k =2 ;

(4)

. (We

will usually suppress the index k on A from now on.)

We use the fact that there is a recursive function h such that

(40)

k =2 ;

(4)

=) (8i)[W

h(k;i)

co�nite];

k 2 ;

(4)

=) (9i)[W

h(k;i)

coin�nite]:

Fix k from now on, and let W

h(k;i);s

= fh

s

i;0

< h

s

i;1

< h

s

i;2

< : : : g.

The idea of the proof is now to have for each i two conicting strategies, a positive strategy

trying to establish (38') for W

i

, and a negative strategy trying to build a counterexample B

to A �

m

V . Which strategy succeeds will depend on whether W

h(k;i)

is co�nite or not. (If

W

h(k;i)

is coin�nite then the strategies working on i

0

> i will not matter.)

For the basic module of the positive P

e

-strategy, we use a variant of Lachlan's strategy

[La68] to construct a major subset. Let

~

W

e;s

= fx 2W

e;s

j (8y < x)[y 2W

e;s

[ V

s

] g, and let

~

W

e

=

S

s

~

W

e;s

. Then W

e

=

~

W

e

if W

e

� V , and

~

W

e

is �nite if W

e

6� V . In the former case, we

have to take action for the sake of W

e

; in the latter case, the strategy will only have a �nite

e�ect on the rest of the construction. Furthermore, let f be a 1{1 enumeration of V (recall

that V has to be in�nite). Finally, let V

s

� A

s

= f d

s

0

; d

s

1

; d

s

2

; : : : ; d

s

n

s

g where the markers d

s

n

need not be in order. (The markers d

s

n

will be unde�ned for n > n

s

.)

At stage 0, let A

0

= ;, let d

0

0

= f(0), and let d

0

n

be unde�ned for n > 0. At a stage s+ 1,

�rst determine if f(s + 1) 2

~

W

e;s

and d

s

~n

=2

~

W

e;s

for some ~n � n

s

. If so, for the least such

~n, put d

s

~n

into A

s+1

, let d

s+1

~n

= f(s + 1), and let d

s+1

n

= d

s

n

for all n 6= ~n (for the sake of

A �

�

W

e

). Otherwise, let d

s+1

n

s

+1

= f(s+ 1), and let d

s+1

n

= d

s

n

for n 6= n

s

+ 1 (for the sake of

A �

1

V ).

Since V is nonrecursive, V is not r.e. Suppose V � W

e

(and thus W

e

=

~

W

e

). Since

fx j (9s)[x 2

~

W

e;s

^ x 2 V

s

] g is r.e. and contains V we have that

(41) (9

1

s)(9x)[x 2 V

s+1

� V

s

^ x 2

~

W

e;s

]:

Therefore, f(s+ 1) 2

~

W

e;s

for in�nitely many s, so any marker d

s

n

will be moved until it is in

~

W

e

, and so A �

~

W

e

. (These strategies will later be combined using e-states as �rst introduced

by Friedberg in his maximal set construction [Fr58].)

The basic module for the negative N -strategy tries to build a set B refuting A �

m

V , i.e.,

such that V � B and that V � (A [ B) is in�nite. At the nth time the strategy acts, it will

wait for jV � (A [ B)j > n, then put min(V ) into B (for the sake of V � B) and restrain

another element of V � (A [B) from entering A (to make V � (A [ B) in�nite).

Suppose that A �

1

V . Then the strategy will act in�nitely often (else B and thus V � A

would be �nite). So V � B and V � (A [ B) is in�nite. (Notice that we really only have to

restrain forever from A an in�nite subset of the restrained elements of V � (A [B).)

We have to let the success (or failure) of the N -strategy depend on whether W

h(k;i)

is

coin�nite (or co�nite). Recall that W

h(k;i);s

= fh

s

i;0

< h

s

i;1

< h

s

i;2

< : : :g. Let the N -strategy

only restrain at stage s + 1 at most m

s

= minfn j h

n

i;s+1

6= h

n

i;s

g many elements. If W

h(k;i)

is coin�nite then lim

s

m

s

= 1, so the N -strategy can eventually restrain more and more

elements from A permanently. If W

h(k;i)

is co�nite then m = lim inf

s

m

s

< 1, so the N -

strategy can restrain at most m elements permanently from A. (Notice that if one N -strategy

is allowed to succeed the lower-priority P-strategies will not matter since this N -strategy will

satisfy the overall requirement A 6�

m

V .)
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Combining all strategies requires two minor changes:

First of all, a stronger P-strategy may injure a weaker N -strategy by putting in�nitely

many elements into A that are restrained by the N -strategy. So the latter has to be able to

predict which elements the P-strategy will put into A. This is done in a straightforward tree

argument fashion.

Secondly, if a P-strategy is forced to always observe the current restraint of the stronger N -

strategies then a synchronization problem may arise. Good elements (i.e., numbers f(s+1) 2

~

W

e;s

) may come up only when the restraint is high, so the P-strategy may not achieve its

objective even if the lim inf of the restraint is �nite. To resolve this conict, we will, roughly

speaking, make the P-strategy only observe (for d

s

n

) the lowest restraint since some d

s

m

with

m � n moved. (This will be done through the control function Q. An alternative way to

resolve this conict would be to delay putting the elements into A.)

Before describing the full construction, we will de�ne all the parameters. Let �

1

= ! and

�

2

= 2 be the sets of outcomes of the N - and P-strategies, respectively. Let

T = f� 2 (�

1

[ �

2

)

<!

j (8i < j�j)[(i even =) �(i) 2 �

1

) ^ (i odd =) �(i) 2 �

2

)] g;

and let T

1

and T

2

be the sets of nodes of even and odd length in T , respectively. For each k, let

fW

h(k;i)

g

i2!

be a uniformly r.e. sequence of sets such that k 2 ;

(4)

i� (9i)[W

h(k;i)

coin�nite].

Without loss of generality, assume that W

h(k;i);s

6=W

h(k;i);s+1

for all k, i, s. The construction

of A = A

k

will be controlled by markers h

n

i;s

where W

h(k;i);s

= fh

0

i;s

< h

1

i;s

< h

2

i;s

< : : :g.

Fix a recursive 1{1 enumeration f of V , and let V

s

= f f(0); f(1); f(2); : : : ; f(s) g. Let

~

W

e;s

= fx 2 W

e;s

j (8y < x)[y 2 W

e;s

[ V

s

] g, and let

~

W

e

=

S

s

~

W

e;s

. De�ne the e-states

�(e; x; s) = f e

0

� e j x 2

~

W

e

0

;s

g, and �(e; x) = lim

s

�(e; x; s). Denote the elements of the

di�erence set V � A by markers d

s

n

so that V

s

� A

s

= f d

s

0

; d

s

1

; d

s

2

; d : : : ; d

s

n

s

g. The order of

these markers will be determined by the construction, and markers d

s

n

will be unde�ned for

n > n

s

.

Each N -strategy � 2 T

1

builds its own set B

�

, trying to disprove A �

m

V by B

�

. It has

to take into account the action of stronger P-strategies in building B

�

and imposing restraint

of A. So it will use

(42) U

�;s

=

def

�

(

\

2e

0

<j�j;�(2e

0

+1)=0

~

W

e

0

;s

) \ V

s

�

� (A

s

[ B

�;s

)

(instead of V

s

� (A

s

[ B

�;s

) as in the basic module). Notice that U

�

=

�

V � (A [ B

�

) if �

has a correct guess about the higher-priority P-strategies.

We de�ne �

s

(with j�

s

j = 2s), the recursive approximation to the true path, by induction:

(43)

�

s

(2e) = minfn j h

n

e;s

6= h

n

e;s

0

g where s

0

= max(f 0 g [ f t < s j �

s

j

n

2e � �

t

g);

�

s

(2e+ 1) =

8

>

<

>

:

0 if

~

W

e;s

6=

~

W

e;s

0

where

s

0

= max(f 0 g [ f t < s j �

s

j

n

(2e+ 1) � �

t

g);

1 otherwise:

For P-strategies � = �bhmi 2 T

2

, de�ne the restraint function by:

(44) r

s

(�bhmi) =

8

>

<

>

:

minf r j jU

�;s

\ [0; r)j = m if � � �

s

or s = 0,

_ r = 1 +max(U

�;s

) g

r

s�1

(�bhmi) otherwise.
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(Recall that restraint is imposed by N -strategies � 2 T

1

, but the restraint that � imposes

depends onW

h(k;i)

and thus di�ers below distinct outcomesm (the current guess for jW

h(k;i)

j)

of �.)

For P-strategies � 2 T

2

, de�ne the control function by:

(45) Q

s

(�) =

8

>

<

>

:

1 if � � �

s

or � >

L

�

s

or s = 0,

n if � <

L

�

s

and � moved �

n

at stage s (as de�ned below);

Q

s�1

(�) otherwise.

The construction of the r.e. set A and the r.e. sets B

�

(for all � 2 T

1

) now proceeds as

follows:

At stage 0, let A

0

= B

�;0

= ; (for � 2 T

1

), let d

0

0

= f(0), and let d

0

n

be unde�ned for all

n > 0.

At a stage s+ 1, perform the following two steps:

For all N -strategies � 2 T

1

with � � �

s

, put min(V

s

[ B

�;s

) into B

�;s+1

if jU

�;s

j > jB

�;s

j.

Secondly, for the sake of the P-strategies, choose n

0

to be the least n � n

s

such that

(46) (9e � n)[�(e� 1; f(s+ 1); s) = �(e� 1; d

s

n

; s) ^

f(s+ 1) 2

~

W

e;s

^ d

s

n

=2

~

W

e;s

^ d

s

n

> maxf r

s

(�) j � �  ^ � 2 T

2

g

(where  � �

s

is leftmost with jj = 2e+ 1 and Q

s

() > n)]:

If n

0

exists then put d

s

n

0

into A

s+1

, let d

s+1

n

0

= f(s+1), and let d

s+1

n

= d

s

n

for n 6= n

0

. (We say

 moved �

n

0

at stage s+1.) Otherwise, let d

s+1

n

s

+1

= f(s+1), and let d

s+1

n

= d

s

n

for n 6= n

s

+1.

This concludes the construction.

Lemma 1 (Marker Convergence Lemma). For all n, d

n

= lim

s

d

s

n

is de�ned. (Thus

A �

1

V .)

Proof. By induction on n: Suppose d

m

is de�ned for all m < n, and d

s

m

= d

m

for all s � s

0

,

say. Then d

s

n

is de�ned for all s > s

0

and changes only �nitely often since it increases its

n-state each time (and the n-state is nondecreasing between these changes). �

Lemma 2 (True Path Existence Lemma). If W

h(k;i)

is co�nite for all i < i

0

, then

�

0

= lim inf

s

�

s

j

n

2i

0

exists.

Proof. By the de�nition of �

s

, we have for i < i

0

:

(47)

�

0

(2i) = jW

h(k;i)

j;

�

0

(2i+ 1) =

�

0 if

~

W

i

is in�nite;

1 otherwise : �

Lemma 3 (Outcome Lemma). Fix i

0

.

(1) If �

0

= lim inf

s

�

s

j

n

2i

0

exists, then V � B

�

0

, and

(48) �

0

= �

0

bhmi ^ (9

<1

s)[�

s

<

L

�

0

] =)

(8� 2 T

2

)[� � �

0

=) r(�) = lim inf r

s

(�) <1 exists] ^ jU

�

0

\ [0; r(�

0

))j = m:

(2) If 

0

= lim inf

s

�

s

j

n

(2i

0

+ 1) exists, then either

~

W

i

0

is �nite (if 

0

bh1i = lim inf

s

�

s

j

n

(2i

0

+ 2)) or A �

�

W

i

0

(if 

0

bh0i = lim inf

s

�

s

j

n

(2i

0

+ 2)).
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Proof. By simultaneous induction on i

0

:

(i) We �rst establish V � B

�

0

. By the construction, it su�ces to show that B

�

0

is in�nite

(since we always put min(V

s

[B

�

0

;s

) into B

�

0

). Suppose for the sake of a contradiction

that B

�

0

is �nite. Then for all s with �

0

� �

s

, jU

�

0

;s

j � jB

�

0

;s

j. But U

�

0

is a di�erence

of r.e. sets, so jU

�

0

j � jB

�

0

j. By (ii), A �

�

~

W

i

for i < i

0

with �

0

(2i) = 0, and therefore

U

�

0

=

�

V � (A [B

�

0

). But then U

�

0

=

�

V � A is �nite, contradicting Lemma 1.

Let us now show (48). By induction on (i), choose s

0

such that

(49) (8s � s

0

)(8� 2 T

2

)[� � �

0

j

n

(2i

0

� 1) =) r

s

(�) = r(�)]:

(This assumption is vacuous for i

0

= 0.) Next, by our assumption on �

0

and the de�nition of

r

s

(�), pick s

1

� s

0

such that

(50) (8s � s

1

)(8� 2 T

2

)[� < �

0

^ � j

n

(j�j � 1) 6= �

0

=) r

s

(�) = r(�)]:

Furthermore, since by the construction Q

s

(�) cannot increase while � <

L

�

s

, and since � has

a correct guess about the P-strategies  � �, pick s

2

� s

1

such that

(51) (8s � s

2

)(8� 2 T

2

)

�

(� <

L

�

0

=) Q

s

(�) = lim

t

Q

t

(�)) ^

(8 � �

0

)[jj = 2i+ 1 ^ �

0

(2i+ 1) = 1 =)  does not move any element at stage s]

�

:

Finally, let � = f i < i

0

j

~

W

i

in�nite g. Then by (ii),

(52) (9n

0

)(8n � n

0

)[�(i

0

� 1; d

n

) = �]:

Pick s

3

� s

2

such that

(53) (8s � s

3

)(8n < n

0

)[d

s

n

= d

n

]:

We will now show (48) by induction on m (for �xed �

0

). For m = 0, trivially r(�

0

) = 0.

Let m > 0. Let r = 1 +max(f r(�

0

bhm� 1i) g [ f d

n

j n < n

0

g). Pick s

4

� s

3

such that

(54) (8s � s

4

)[r

s

(�

0

bhm� 1i) = r(�

0

bhm� 1i) ^

X

s

4

j

n

(r + 1) = X j

n

(r + 1) for all X =W

i

(for i < i

0

), V , A, and B

�

0

]:

By the �rst part of (i), we have lim supf jU

�

0

;s

j j �

0

� �

s

g = 1, so pick s

5

� s

4

such that

�

0

� �

s

5

and jU

�

0

;s

5

j � m.

We claim that

(55) (8s � s

5

)[r

s

(�

0

) � r

s+1

(�

0

) ^ jU

�

0

;s

\ [0; r

s

(�

0

))j � m]:

Suppose for the sake of a contradiction that for some s � s

5

, U

�

0

;s

\ [0; r

s

(�

0

)) 6� U

�

0

;s+1

\

[0; r

s

(�

0

)). Then some x 2 U

�

0

;s

entered B

�

0

or A. The former is impossible by the construc-

tion of B

�

0

(since x 2 V

s

). But x cannot enter A since:

(a) no  � �

0

bhmi can move x by the restraint imposed;

(b) no  <

L

�

0

bhmi can move x, or else Q

s

() > Q

s+1

(), contradicting the assumption

on s

2

; and

(c) no  � �

0

will move x since either x =2

~

W

i;s

(if jj = 2i+ 1 and �

0

(2i+ 1) = 0), or 

no longer moves any element (if jj = 2i+ 1 and �

0

(2i+ 1) = 1).
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(Notice that r

s

(�

0

) may still drop a �nite number of times as U

�

0

gets new small elements.)

Now (55) establishes (48).

(ii) By (i), pick s

0

such that

(56) (8s � s

0

)(8 2 T

2

)[ � 

0

=) r() = r

s

()]:

Let R(

0

) = maxf r() j  � 

0

^  2 T

2

g. Since 

0

� �

s

for in�nitely many s, we also

have lim

s

Q

s

(

0

) =1. Let � = f i � i

0

j

~

W

i

in�nite g, and assume that

~

W

i

0

is in�nite. Then

~

W

�

=

T

i2�

~

W

i

� V . By induction on (ii), pick n

0

> i

0

such that

(57) (8n � n

0

)[�(i

0

� 1; d

n

) = � � f i

0

g]:

Since V is not recursive,

(58) (9

1

s)[f(s+ 1) 2

~

W

�;s

]:

Suppose that �(i

0

; d

n

) = � � f i

0

g for some n � n

0

with d

n

> R(

0

). Pick s

1

� s

0

such that

(59) (8s � s

1

)

�

Q

s

(

0

) > n ^ (8n

0

� n)[d

s

n

0

= d

n

0

]

�

:

Then d

n

will be moved by (58), contradicting our assumption. Thus W

i

0

=

~

W

i

0

�

�

A. �

It is now easy to see that the lemmas imply Theorem D.

First suppose that k 2 ;

(4)

. Then W

h(k;i

0

)

is coin�nite for some (least) i

0

. By Lemma 2,

�

0

= lim inf

s

�

s

j

n

2i

0

exists, and

(60) (8m)(9

<1

s)[�

s

<

L

�

0

bhmi]:

Therefore, by Lemma 3 (i), V � B

�

0

, and U

�

0

is in�nite. But then V � (A [B

�

0

) is in�nite,

so B

�

0

witnesses that A 6�

m

V .

On the other hand, assume that k =2 ;

(4)

. Then W

h(k;i)

is co�nite for all i. By Lemma 2,

lim inf

s

�

s

j

n

2i exists for all i. Therefore, by Lemma 3 (ii), either

~

W

i

is �nite or A �

�

~

W

i

=W

i

for all i. Furthermore, by Lemma 1, A �

1

V . Thus A �

m

V .

This concludes the proof of Theorem D. �
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