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Abstract. We construct a strongly minimal (and thus uncountably categorical)

but not totally categorical theory in a �nite language of binary predicates whose

only constructive (or recursive) model is the prime model.

0. Introduction. E�ective (or recursive) model theory studies to which degree

constructions in model theory and algebra can be made e�ective. A presentation of

a countable model M is an isomorphic copy N with universe N = !. An e�ective

(or computable, or recursive) presentation is one where all the relations, functions,

and constants on N are given by uniformly computable functions. Now, for a

countable model M of a �rst-order theory T , there are various degrees to which

the construction of M can be made e�ective: We call the model M constructive

(or recursive, or computable) if it has an e�ective presentation, or equivalently if its

open diagram (i.e., the collection of all quanti�er-free sentences true in (M; a)

a2M
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2 CONSTRUCTIVE MODELS OF UNCOUNTABLY CATEGORICAL THEORIES

(in some presentation) is computable (or recursive)). We call the model M decid-

able if its elementary diagram (i.e., the collection of all �rst-order sentences true

in (M; a)

a2M

, in some presentation) is decidable (i.e., computable). Obviously,

any decidable model is constructive, but the converse fails. In fact, the study of

constructive models is much harder than the study of decidable models since in the

former case, much less is known about the �rst-order theory.

E�ective model theory has been particularly active in cases where the �rst-order

theory has few countable models. A special case here, which is well-understood

classically (i.e., without regard to e�ectiveness), is that of uncountably categorical

theories. Such theories abound in algebra and model theory (e.g., algebraically

closed �elds, vector spaces, etc.) and were in fact the starting point of modern

model theory with Morley's famous categoricity theorem [Mo65]. By a classical

theorem of Baldwin and Lachlan [BL71], the countable models of an uncountably

but not totally categorical theory T form an elementary chain fM

�

g

��!

. (Here,

M

0

is the prime model, and M

!

is the countably saturated model of T .) By a

theorem of Harrington [Ha74] and Khisamiev (or Hisamiev) [Hi74], any countable

model of a decidable uncountably categorical theory is decidable. The situation for

constructive models of uncountably (but not totally) categorical theories T is much

more di�cult: The fact that some countable models of T are constructive does not

imply that all are. In order to show how complicated things can become here, let

us de�ne the spectrum of constructive models of T by

SCM(T ) = f� � ! j M

�

is constructiveg:

Now the following subsets of !+1 can be realized a spectra of constructive models:

(1) easy: SCM(T ) = ! + 1.

(2) Gon�carov [Go78]: SCM(T ) = f0g.

(3) Kuda��bergenov [Ku80]: SCM(T ) = f0; 1; � � � ; ng for arbitrary n 2 !.

(4) Khoussainov, Nies, Shore [KNSta]: SCM(T ) = !.

(5) Khoussainov, Nies, Shore [KNSta]: SCM(T ) = f1; 2; � � � ; !g.

It is unknown exactly which subsets of ! + 1 can be realized as spectra of con-

structive models (see the end of this paper for further comments).

All the above-mentioned results (except (1)) use in�nite languages. The ques-

tion arises whether similar results can also be achieved for �nite languages. The

main result of this paper is to give a �rst a�rmative answer, namely, an analogue

of Gon�carov's result for a �nite language of binary predicates. (Note that any

uncountably categorical theory in a �nite language of unary predicates is actually

totally categorical.)

1. Strongly minimal theories in a binary language. We begin with a de�n-

ition.

De�nition. Let L = fR

1

; : : : ; R

k

g be a �nite relational binary language and M be

an L-structure. M carries in a natural sense the structure of a graph: there is an

edge between two distinct points a and b if there exists i such that R

i

ab or R

i

ba

holds. We freely use graph-theoretic notions and refer thereby to this graph. E.g.,

we say M has �nite valence if every point has only �nitely many neighbors in the

graph. The distance d(a; b) between a; b 2 M is the length of the shortest path
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connecting the points. For a 2 M, B

i

(a) is the set fc 2 Mjd(a; c) � ig and the

connected component of a is the set B(a) =

S

i2!

B

i

(a).

The following lemma is partially contained in Ivanov [Iv89, Iv89']:

Lemma. Let L be a �nite language consisting of binary relation symbols. Let M

be an in�nite L-structure of �nite valence.

a) M is strongly minimal i� for every i 2 ! there exists a �nite L-structure C

i

and c

i

2 C

i

such that for almost all a 2M, (B

i

(a); a)

�

=

(C

i

; c

i

).

b) If M is strongly minimal and the structures C

i

are as in a), then there exists

up to isomorphism a unique connected L-structure C such that for every d 2 C and

i 2 ! (B

i

(d); d)

�

=

(C

i

; c

i

).

c) If M is strongly minimal and C is as in b), then every elementary extension

of M is a disjoint union of M and copies of C.

Proof. Suppose �rst that M is strongly minimal and �x i 2 !. For a 2 M the

isomorphism type of (B

i

(a); a) is a �rst order property of a. As there are only

�nitely many such isomorphism types, there must be a structure (C

i

; c

i

) such that

for in�nitely many a 2 M (B

i

(a); a)

�

=

(C

i

; c

i

). By strong minimality this must

hold for almost all a 2M.

Now let us suppose that the right hand side of a) holds. On the way to proving

that M is strongly minimal, we will prove b) and c). For every i there exists an

embedding from (C

i

; c

i

) into (C

i+1

; c

i+1

). Thus we can suppose that C

i

� C

i+1

and c

i

= c

i+1

. Let C =

S

i2!

C

i

and c = c

i

2 C. Then for every i 2 ! we have

(B

i

(c); c)

�

=

(C

i

; c). In fact (C; c) is uniquely determined by this property: If D is a

connected structure and d 2 D satis�es for every i 2 !: (B

i

(d); d)

�

=

(C

i

; c

i

), then

(D; d)

�

=

(C; c). To see this look at the set fp j 9i 2 ! such that p : (B

i

(d); d)

�

=

(B

i

(c); c)g ordered by extension. This set is a �nitely branching tree with in�nite

height and by K�onig's Lemma it has an in�nite branch in it, which gives rise to an

isomorphism (D; d)

�

=

(C; c). This proves uniqueness in b).

Now let us take an elementary extension M

1

of M. Let i 2 !. As there are

only �nitely many exceptional points b in M not satisfying (B

i

(b); b)

�

=

(C

i

; c), the

same number of points, and in fact the same points, are exceptional in M

1

in this

sense. That means for every a 2 M

1

�M, (B

i

(a); a)

�

=

(C

i

; c), which implies that

(B(a); a)

�

=

(C; c). As all the points in B(a) are also in M

1

�M we have proved

that for every d 2 B(a) and therefore also for every d 2 C: (B

i

(d); d)

�

=

(C

i

; c),

which �nishes the proof of b) and c).

Furthermore, for every a; b 2 M

1

�M there is an automorphism �xing M and

mapping a to b. Thus all the points inM

1

�M have the same type overM, which

means that there exists only one non-algebraic type over M. This implies that M

is strongly minimal. �

From the above lemma it follows that if M is as above, and if a

1

; : : : ; a

n

are

elements inM, then the algebraic closure of these elements is acl(;)[B(a

1

)[ : : :[

B(a

n

). Thus the geometry of the strongly minimal set M is disintegrated. In fact,

the assumption that M has �nite valence is not essential: Let L = fR

1

; : : : ; R

n

g

be the binary language. Let x; y be a generic pair of elements. For every R

i

, if

xR

i

y holds, we replace R

i

by :R

i

. So we can assume that for generic x; y :xR

i

y

holds. This means by strong minimality that for generic x there exists only �nitely
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many y such that xR

i

y holds. Therefore there are only �nitely many points in M

which have in�nitely many neighbors and in fact we can assume there are no such

points, i.e. we can assume that M has �nite valence. In fact a similar argument

works also in the case of an in�nite language. So we have the following proposition.

Proposition. Let T be a strongly minimal theory in a binary relational language.

Then the geometry of the theory is disintegrated.

2. The theorem and proof. The following theorem is the main result of this

paper.

Theorem. There is a �rst-order theory T in a language L of three binary relation

symbols such that

(i) T is an uncountably but not totally categorical theory;

(ii) the prime model of T is constructive; and

(iii) all the other countable models of T are not constructive; in fact, given any

non computable �

0

2

-degree a, there is such a theory T such that the nonprime

models have presentations exactly of any degree � a.

Moreover, T is strongly minimal.

Proof. We construct a prime model M

0

in a language L = fR

0

; R

1

; R

2

g of three

binary relation symbols and show that T = Th(M

0

) and L satisfy the claims of our

theorem. The prime model will consist of the disjoint union of an in�nite number

of �nite so-called Cayley graphs; the other countable models M

�

will then consist

of M

0

plus the disjoint union of � many copies of a �xed in�nite Cayley graph.

The main idea is that the word problem in the �nite groups corresponding to the

�nite Cayley graphs will be uniformly computable while the word problem in the

in�nite group corresponding to the in�nite Cayley graph will be unsolvable.

To this end, we �rst establish a group-theoretical lemma.

Lemma. Let F be a free group of rank 3 (generated by g

0

, g

1

, and g

2

, say). Then

for every �

0

2

-degree a there is a sequence fN

k

g

k2!

of subgroups of F such that

(i) fN

k

g

k2!

is a uniformly computable sequence of normal subgroups of �nite

index in F , so F=N

k

has uniformly solvable word problem;

(ii) for each w 2 F , the set fk 2 ! j w 2 N

k

g is either �nite or co�nite, so that

the pointwise limit N = fw 2 F j fk 2 ! j w 2 N

k

g is co�niteg of the N

k

exists and is again a normal subgroup of F ; and

(iii) N has Turing degree a.

Proof of lemma. Fix a �

2

0

-subset A of natural numbers that belongs to a and

assume that 0 2 A. Also �x an e�ective sequence (A

s

)

s2!

of �nite sets of natural

numbers, such that A is the pointwise limit of the A

s

. Assume further that for

every s, A

s

is contained in [0; s] and 0 2 A

s

.

For the following we need two notions from group theory, the de�nition of which

we include (see, e.g., Rotman [Ro95]):

De�nition. 1. If A and B are groups and ' : B !Aut(A) is a group automorphism

(that is, B acts on A), we de�ne the semidirect product of A and B (which also

depends on ') to be the set A�B equipped with the group operation

(a

1

; b

1

) � (a

2

; b

2

) = (a

1

� (a

2

)

'(b

�1

1

)

; b

1

� b

2

)
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Stated di�erently, the semidirect product of A and B is the group generated by

A and B subject to the relations a

b

= a

'(b)

for a 2 A and b 2 B.

2. If C is a group, 
 a set, and  : B ! Sym(
) a group homomorphism

(that is, an action of B on 
), then we de�ne the wreath product C wrB of C

and B to be the semidirect product of C




and B. Here, C




is the group of

functions from 
 to C where group multiplication is de�ned componentwise, and

if we write an element of C




as (c

i

)

i2


, then the action ' of B on C




is given by

((c

i

)

i2


)

'(b)

= (c

(i

 (b

�1

)

)

)

i2


.

Now, for k > 0, de�ne a �nitely generated group as follows. Let the symmetric

group S

3

be presented as ha; � j a

3

= �

2

= a

�

a = 1i. Now set

H

k

= S

3

wrZ

2k+1

= ha; �; b j a

3

; �

2

; a

�

a; b

2k+1

; [a

b

j

; a

b

j

0

]; [�

b

j

; �

b

j

0

]; [a

b

j

; �

b

j

0

] (�k � j < j

0

� k)i:

(Here, the action of Z

2k+1

under consideration is the natural (regular) action of

Z

2k+1

on a set of size 2k + 1.)

Let L

k

be the subgroup of H

k

generated by a, b, and

t =

Y

j2A

k

�

b

j

:

The subgroup N

k

of the free group F is now the kernel of the canonical homomor-

phism of F = ha; b; ti onto L

k

. (Note here that we have renamed the generators of

F to produce a more group-theoretic notation.)

The sequences (H

k

)

k2!

and (L

k

)

k2!

are uniformly computable sequences of �nite

groups. Namely, H

k

is just the semidirect product of two groups C =

L

�k�j�k

S

3

and D = Z

2k+1

, and each element of H

k

can be uniquely written as c � d with

c 2 C and d 2 D where the multiplication is e�ective. Thus (N

k

)

k2!

is uniformly

computable, and (i) is veri�ed. The best way to visualize L

k

is as follows: a together

with its conjugates by powers of b generates the base of the group, which is of the

form

L

�k�j�k

Z

3

, t acts componentwise as automorphisms on this base swapping

a

b

j

and (a

2

)

b

j

, if j is in A

k

, and b acts as a shift.

We note the following relations holding in L

k

(in addition to the ones obviously

carrying over from H

k

) for all j; j

0

2 [�k; k]:

t

2

= 1

[t

b

j

; t

b

j

0

] = 1;

(a

b

j

)

t

= (a

b

j

)

2

(j 2 A

k

);(*)

(a

b

j

)

t

= a

b

j

(j =2 A

k

):(**)

Note that 0 2 A

k

� [0; k] implies in particular that

(***) a

t

= a

2

and (a

b

j

)

t

= a

b

j

for all j 2 [�k; 0):
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We say that a word w in a, b, t, and their inverses is in normal form if it is of

the form

d

Y

i=�d

(a

t

i

)

b

i

�

d

Y

i=�d

(t

r

i

)

b

i

� b

l

where d 2 !, l 2 Z, and for i 2 [�d; d], t

i

2 f0; 1; 2g and r

i

2 f0; 1g.

We begin by showing that

(1) Given a \word" w 2 F , there is a word w

0

in normal form such that w = w

0

in L

k

for almost all k 2 !.

(2) If w and w

0

are two distinct words in normal form then w 6= w

0

in L

k

for

almost all k 2 !.

To show (1), �x a word w 2 F and observe �rst that we can move the b's in w to

the right (at the expense of conjugating by b's) to obtain a word of the form w

0

� b

l

where w

0

is a product of conjugates of a and t (by powers of b). Next move all the

a-conjugates in w

0

to the left of all the t-conjugates using the fact that

t

b

s

a

b

r

=

�

(a

2

)

b

r

t

b

s

if (r � s) 2 A

a

b

r

t

b

s

otherwise

holds in L

k

for all r; s and all su�ciently large k. We thus obtain a word w

1

�w

2

� b

l

where w

1

is a product of conjugates of a by powers of b and w

2

is a product of

conjugates of t by by powers of b. Finally use a

3

= t

2

= 1 to obtain the desired w

0

in normal form. w = w

0

holds in L

k

for k big enough as A is the pointwise limit of

the A

k

.

To show (2), �x two distinct words w = w

1

�w

2

�b

l

and w

0

= w

0

1

�w

0

2

�b

l

0

in normal

form (where the w

1

's and w

2

's contain only a's and t's, respectively, conjugated by

powers of b). We have to show that w 6= w

0

holds in almost all L

k

or equivalently

in almost all H

k

.

Remember that H

k

is the semidirect product of C =

L

�k�i�k

S

3

and Z

2k+1

.

We can write each of the involved groups S

3

as a semidirect product Z

3

and Z

2

,

where Z

3

is generated by a

b

j

for an appropriate j. So we can also write C as a

semidirect product of

L

�k�i�k

Z

3

and

L

�k�i�k

Z

2

. w

1

is a product of conjugates

of a and therefore always belongs to the �rst group, while w

2

belongs to the second

group and b

l

belongs to Z

2k+1

. This implies that w

1

�w

2

� b

l

= w

0

1

�w

0

2

� b

l

0

holds in

H

k

i� w

1

= w

0

1

and w

2

= w

0

2

and b

l

= b

l

0

holds in H

k

. If therefore the words w

1

and w

0

1

, or the words b

l

and b

l

0

, are distinct, then obviously w

1

�w

2

� b

l

6= w

0

1

�w

0

2

� b

l

0

in almost all H

k

.

So assume l = l

0

and w

1

= w

0

1

from now on, and we simply have to show that

w

2

6= w

0

2

in F implies w

2

6= w

0

2

in almost all H

k

's. For this, it su�ces to show that

any nontrivial word of the form

v =

f

Y

i=e

(t

r

i

)

b

i

does not equal 1 in almost all H

k

's (where e � f are integers, r

i

2 f0; 1g for

i 2 [e; f ], and r

e

= r

f

= 1). Now note that by (***) above, for k � f � e the
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following holds in H

k

:

f

Y

i=e

(t

r

i

)

b

i

� a

b

e

= t

b

e

� a

b

e

�

f

Y

i=e+1

(t

r

i

)

b

i

= (a

2

)

b

e

�

f

Y

i=e

(t

r

i

)

b

i

:

But this means that for k � f � e, (a

b

e

)

v

= (a

b

e

)

2

which implies v 6= 1 as a 6= a

2

in H

k

.

We can now verify the remaining claims of the Lemma as follows:

(ii) holds by (1) and (2) above.

(iii) holds since x 2 A i� ta

b

x

ta

b

x

2 N = lim

k

N

k

(see (*) and (**)) and as the

process of getting a word in normal form is computable in A.

This concludes the proof of the lemma. �

Given the lemma, we can now easily �nish the proof of the theorem. For each

k 2 !, de�ne the Cayley graph C

k

of F=N

k

by setting the universe C

k

= F=N

k

and

de�ning three binary relations R

0

, R

1

, and R

2

on C

k

by setting R

i

(v; w) i� v = wg

i

in F=N

k

(for i � 2). Similarly, we de�ne the Cayley graph C of F=N . We then

de�ne M

0

as the disjoint union of the Cayley graphs C

k

(for all k 2 !). For any

cardinal � > 0, we de�neM

�

to be the disjoint union of M

0

and � many copies of

the Cayley graph C. Let c 2 C.

By (ii) of the group-theoretical Lemma, for any �xed r > 0, B

r

(x) is isomorphic

to B

r

(c) for almost all x 2M

0

, and thus by the Lemma in Section 1,M

0

is strongly

minimal, the other models of the theory being the M

�

.

This establishes (i) of the Theorem. It is clear from the above construction and

(i) and (iii) of the group-theoretical Lemma, respectively, that for � � !, M

�

is

constructive i� � = 0.

We �nish the proof by showing how A is computable from any representation

of M

�

for 1 � � � !. (Recall that by an observation of Knight [Kn86], the set

of degrees of presentations of a countably in�nite model is upward closed i� its

automorphism group does not contain the stabilizer (in the symmetric group) of a

�nite subset of the model.) Pick c 2 M

�

�M

0

. Let x 2 !. To decide if x 2 A

compute B

2k+3

(x) (that is e�ective in the given presentation ofM

�

), which is part

of the Cayley graph of F=N and decide if ta

b

x

= (a

2

)

b

x

t. �

3. Concluding remarks. We remark that our theorem leaves open the question

of exactly which subsets S of !+1 can be realized as spectra of constructive models

of uncountably categorical theories. In fact, it is even unclear whether all such sets

S must be arithmetical.

Closely related to this is the question of how complicated the other countable

models of an uncountably categorical theory of a constructive model can be. By an

observation (jointly with T. Millar), if the language L is �nite, contains only binary

relation symbols, and the prime model M

0

is constructive and strongly minimal,

then the other countable models of Th(M

0

) must have presentations computable in

0

00

, the second Turing jump of the computable Turing degree. Since the geometry

of models in relations of higher arity can be much more complicated, the situation

is unclear in this case and appears quite hard.

If we content ourselves with an uncountably categorical theory as opposed to a

strongly minimal theory, then we can �nd a theory of graphs satisfying the three
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conditions of our theorem. In fact this is true for all the questions of similar type,

e.g. for the ones posed above in this section: We could as well restrict our attention

to graphs.

This is true, because standard techniques in model theory allow one to interpret

any given structure of �nite signature in a graph in a way that respects features

like categoricity or computability (but not strong minimality). For an example

of this technique see, e.g., chapter 10.3 in Ebbinghaus, Flum [EF95]. In fact the

interpretation can be chosen to be a bi-interpretation in the sense of Ahlbrandt,

Ziegler [AZ86]. In the present context we need an interpretation which is e�ective in

both directions. By an e�ective interpretation of one countable structure in another

we mean that the domain and relations of the �rst structure are computable in any

presentation of the second structure. In particular, in the case of an e�ective bi-

interpretation, any presentation of one structure leads to a presentation of the

second structure of the same Turing degree.

Let us sketch how this can be done:

Proposition. Let M be a countable structure in a �nite language. There exists a

graph N , that is bi-interpretable with M; both interpretations are e�ective.

Proof. We can easily suppose that the language of the original structure M is

relational and that the unary predicates give a partition of the domain ofM. First

we introduce for every n-ary relation symbol R (for n > 1) and for every n-tuple

�a from M a new point p

R;�a

. The domain of the new structure M

1

now consists

of all the points from M and the new points. Let V be the set of points from

M. We replace every n-ary symbol R of the old language by unary predicates

Y

R

and N

R

. The interpretation of Y

R

in M

1

is fp

R;�a

jM j= R�ag and of N

R

is

fp

R;�a

jM j= :R�ag (Y and N for Yes and No). We keep the unary predicates

already present in M and their interpretations. Moreover, if n is the maximal

arity of the old language, we introduce n many binary symbols fT

j

g

0�j<n

and T

j

is

interpreted by the relation f(b; p

R;�a

)jb is the j-th component of the tuple �ag. We can

interpret M in M

1

in a computable fashion. E.g., Rx

0

: : : x

n�1

can be de�ned by

the formula 9y(Y

R

y^T

0

x

0

y^: : :^T

n�1

x

n�1

y), which is computable in the structure

M

1

as for every x

0

; : : : ; x

n�1

exactly one of 9y(Y

R

y^T

0

x

0

y^ : : :^T

n�1

x

n�1

y) and

9y(N

R

y ^ T

0

x

0

y ^ : : : ^ T

n�1

x

n�1

y) holds. We can consider the structure M

1

as a

directed colored graph, where the edges and the vertices are colored. Furthermore,

every edge connects a point belonging to V to one not belonging to V .

Now we apply the same procedure to M

1

, except that we only introduce new

points p

S;(a;b)

for each binary relation S in the language of M

1

and each a 2 V

and b 62 V . This su�ces, as only between such points can a relation hold in M

1

.

Furthermore, we can replace the only two relation symbols T

0

and T

1

of the new

structure by the symbol T with the de�ning clause Txy $ (T

0

xy _ T

1

xy _ T

0

yx _

T

1

yx) without losing any information. We call the resulting structure M

2

. M

2

is

a colored graph (where only the vertices are colored), which is bipartite, and which

does not have any isolated points.

Let fU

1

; : : : ; U

r

g be the unary predicates in the language ofM

2

. In the �nal step,

for every point a ofM

2

ifM

2

j= U

j

a, we introduce 2j many new points a

1

; : : : ; a

2j

and we enlarge the interpretation of T by the pairs (a

i

; a

j

), where (i� j) � 1 mod

2j + 1 or (i� j) � �1 mod 2j + 1 (where a

0

= a). In other words, we add a loop
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of size 2j + 1. Let N be the resulting fTg-structure. N is a graph and it is easy

to see that M

2

is interpretable in an e�ective way in N . The clue is that M

2

is

bi-partite, so there are no odd cycles in M

2

. The newly introduced loops are the

only odd cycles in N without repetition. Every point of N belongs to exactly one

such cycle as the unary predicates of M

2

give a partition of M

2

. In every such

cycle there is exactly one point with more than two neighbors.

Now M and N are bi-interpretable, and the interpretations are e�ective. �
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