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Abstrat. We establish a number of results on numberings, in partiular on Fried-

berg numberings, of families of d. . e. sets:

(1) There exists a Friedberg numbering of the family of all d. . e. sets. We also

show that this result, patterned on Friedberg's famous theorem for the family of all

. e. sets, holds for the family of all n-. e. sets for any n > 2.

(2) There exists an in�nite family of d. . e. sets without a Friedberg numbering.

(3) There exists an in�nite family of . e. sets with a numbering (as a family of

d. . e. sets) whih is unique up to equivalene.

(4) There exists a family of d. . e. sets with a least numbering (under reduibility)

suh that this numbering is a Friedberg numbering but not the only numbering

(modulo reduibility).

1. The theorems

In one of the early fundamental papers of lassial omputability theory, Fried-

berg [Fr58℄ onstruted an e�etive enumeration of the family of all omputably

enumerable sets of nonnegative integers without repetition, i. e., he built a uniformly

omputably enumerable sequene of sets f�

n

g

n2!

suh that eah omputably enu-

merable set ours exatly one in this sequene.

This theorem an be viewed as an example of a result in the theory of numberings,

a �eld initiated by Kolmogorov in the mid-1950's, whih has sine then been pursued
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2 FRIEDBERG NUMBERINGS OF FAMILIES OF n-C. E. SETS

mainly in the (former) Soviet Union, in partiular by the Novosibirsk shool under

Mal'tsev and Ershov. (See Ershov [Er73-77, Er77, Er99℄ for more bakground.

There is also some work in the 1960's by Lahlan [La65-67℄, Pour-El and oauthors

[PH64, PP65℄, and others.)

A numbering tries to enable the algorithmi study of a (ountable) family S

of objets by giving \names" (i. e., integer indies) to the objets in S. More

preisely, a numbering of S is a map � from the set ! of natural numbers onto

the family S. Of ourse, an objet in S an have many \names" under �, i. e.,

� is generally not assumed to be 1{1. If, however, � is 1{1, it is usually alled a

Friedberg numbering due to the above-mentioned result of Friedberg, whih was the

�rst example of a Friedberg numbering. Friedberg numberings play an important

role in the theory of numberings sine they are minimal under reduibility on the

olletion of numberings of a family S. (This reduibility, for numberings �; � of S,

is de�ned by � � � i� there is a omputable funtion f suh that � = �Æf , i. e., from

any �-index of an objet in S one an e�etively ompute a �-index of this objet.

One an then de�ne an equivalene relation on the olletion of numberings of S by

setting � � � i� � � � and � � �. These equivalene lasses now form a natural

upper semilattie under the ordering indued by �; and Friedberg numberings are

only found in minimal elements of this semilattie.)

A natural extension of the notion of a omputably enumerable set was de�ned

by Putnam [Pu65℄: Call a set A � ! 1-omputably enumerable if it is omputably

enumerable; and (n+1)-omputably enumerable if it is of the form A

0

�A

1

where

A is omputably enumerable and A

1

is n-omputably enumerable. Equivalently, a

set A � ! is n-omputably enumerable if there is a uniformly omputable sequene

of sets fA

s

g

s2!

suh that for all x,

x =2 A

0

;

A(x) = lim

s

A

s

(x); and

jfs 2 ! j A

s

(x) 6= A

s+1

(x)gj � n:

Given a family S of n-omputably enumerable sets, we all a numbering � of S

omputable if the relation \x 2 �(e)" is n-omputably enumerable, i. e., if the

sequene f�(e)g

e2!

is uniformly n-omputably enumerable. (Note that this notion

depends not only on the family S but also on n sine S might onsist of (n � 1)-

omputably enumerable sets only.)

In this notation, Friedberg's above-mentioned result now states that there is a

omputable Friedberg numbering of the family of all omputably enumerable sets.

Surprisingly, the question of whether, for any �xed n > 1, there is a Friedberg

numbering of the family of all n-omputably enumerable sets has thus far been

open. We answer this question in the aÆrmative by the following

Theorem 1. For any n > 1, there is an e�etive enumeration of the family of

all n-omputably enumerable sets without repetition. In other words, there is a

omputable Friedberg numbering of the family of all n-omputably enumerable sets.

Lahlan [La65℄ and Pour-El and Putnam [PP65℄ gave an example of an in�nite

family of . e. sets without Friedberg numbering: For any nonomputable . e. set
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A, the family ff2n; 2n + 1g j n 2 Ag [ ff2ng; f2n + 1g j n =2 Ag is omputable

but has no omputable Friedberg numbering. Gonharov[Go80℄ gave examples of

omputable families with any �xed �nite number of nonequivalent Friedberg num-

berings. Mal'ev [Mf65℄ and Kummer [K90℄ gave suÆient onditions on families

with Friedberg numberings. In the papers [Go82, GYY93℄, many results were es-

tablished about families with in�nitely many nonequivalent Friedberg numberings.

Gonharov [Go83℄ proved that a family with a omputable Friedberg numbering

whih is not the least numbering has in�nitely many positive omputable number-

ings.

Theorem 2.

(1) There exists an in�nite family of d. . e. sets without Friedberg numbering.

(2) There exists an in�nite family of . e. sets whih (onsidered as a family of

d. . e. sets) has a unique numbering (up to equivalene).

(3) There exists a family of d. . e. sets with a least numbering (under re-

duibility) suh that this numbering is a Friedberg numbering but not the

only numbering (modulo reduibility).

The rest of the paper is devoted to the proof of our theorems.

2. The proof of Theorem 1

Our proof is loosely modeled on Friedberg's proof, as presented in Odifreddi

[Od89℄. (Note, however, an error in the proof in [Od89℄: In the notation there,

a least index e of a omputably enumerable set W need not have a follower if W

is �nite of the form [0; x℄ for some x.) We �rst present the proof of Friedberg's

theorem (i. e., the ase n = 1) in a way that an be easily generalized to arbitrary

n � 1.

Proof for n = 1. Suppose we are given a omputable numbering f�

n

g

n2!

of the

family S of all omputably enumerable sets. Without loss of generality, we assume

that �

0

= !. We now build a omputable numbering f�

n

g

n2!

of S and a ;

0

-partial

omputable funtion f (approximated by uniformly partial omputable funtions

f

s

in the sense that f(n) # = m if f

s

(n) = m for o�nitely many s, and f(n) is

unde�ned otherwise). We meet the following

Requirements:

(i) If �

n

= �

n

0

for some n

0

< n then f(n) is unde�ned.

(ii) If �

n

6= �

n

0

for all n

0

< n then either f(n) is de�ned and �

n

= �

f(n)

; or

�

n

is of the form [0; x℄ for some x, and there is m 2 ! � ran(f) suh that

�

n

= �

m

.

(iii) Any set �

m

with m =2 ran(f) is of the form [0; x℄ for some x.

(iv) For any set of the form [0; x℄ for some x, there is a uniquem with �

m

= [0; x℄.

Constrution: At stage s = 0, we de�ne �

0

= ! and f(0) = f

0

(0) = 0, while

f

0

(n) is unde�ned for all n > 0.

At a stage s+ 1, we perform the following steps:

Step 1: If f

s

(n) is de�ned and for some n

0

< n,

�

n

0

;s

� (f

s

(n) + 1) = �

n;s

� (f

s

(n) + 1)
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(i. e., if n does not appear to be the least index for �

n

, then let f

s+1

(n) be unde�ned

(and keep f

s

(n) permanently out of the range of f from now on).

Step 2: If f

s

(n) is de�ned, n > 0, and, for some s

0

< s and some m 2 ran(f

s

0

)�

ran(f

s

),

�

m;s

� (f

s

(n) + 1) = �

f

s

(n);s

� (f

s

(n) + 1)

(i. e., if the set �

m

seems to appear twie in the �-sequene of sets, inluding one

as a set with index no longer in the range of f), then let f

s+1

(n) be unde�ned (and

keep f

s

(n) permanently out of the range of f from now on).

Step 3: If f

s

(n) is de�ned but f

s+1

(n) is unde�ned (i. e., if f(n) just beame

unde�ned via Step 1 or Step 2), then for eah suh n (in inreasing order of n), set

�

f

s

(n)

= �

f

s

(n);s+1

= [0; x℄

for some x larger than any number mentioned thus far in the onstrution.

Step 4: If f

s

(n) is unde�ned for n � s, then for eah suh n (in inreasing order

of n), let f

s+1

(n) be the least m not in

S

s

0

�s

ran(f

s

0

) and not equal to f

s+1

(n

0

) for

some n

0

< n.

Step 5: If f

s+1

(n) is de�ned then let �

f

s+1

(n);s+1

= �

n;s+1

.

Veri�ation: We �rst note that sine for eah m there is at most one n suh

that f

s

(n) = m at some stage s, Step 5 an be arried out sine no number has to

be removed from �

f

s+1

(n)

to arry out Step 5. Similarly, sine x is hosen large in

Step 3, this step an be arried out without removing numbers from �

f

s

(n)

.

We now verify the satisfation of the above requirements:

(i) If �

n

= �

n

0

for some n

0

< n then f

s

(n) is unde�ned for in�nitely many s by

Step 1.

(ii) If �

n

6= �

n

0

for all n

0

< n then f(n) beomes unde�ned via Step 1 at

most �nitely often. If f(n) beomes unde�ned via Step 2 for the same m in�nitely

often then �

n

= �

m

as desired. Otherwise, sine �

n

is omputably enumerable,

�

n;s

= [0; x℄ at various stages s for larger and larger x; thus �

n

= !, and so n = 0

and Step 2 never applies to n.

(iii) This is immediate by Step 4.

(iv) Fix x. Steps 2 and 4 ensure that there is at most onem suh that �

m

= [0; x℄.

Fix n least suh that �

n

= [0; x℄. Then either f(n) is de�ned and �

f(n)

= [0; x℄; or

else we an argue as in (ii) above that there is some m suh that �

m

= [0; x℄.

Proof for n > 1. We merely note some minor modi�ations to the above needed

for n > 1: Fix a omputable numbering f�

n

g

n2!

of the family S of all n-omputably

enumerable sets. Without loss of generality, we assume that �

0

= ! if n is odd,

and that �

0

= ; if n is even. We again build a omputable numbering f�

n

g

n2!

of

S and a ;

0

-partial omputable funtion f , meeting the same requirements (i){(iv)

as above exept that in (iii) and (iv), we replae [0; x℄ by !� [0; x℄ in the ase that

n is even.

Constrution: We perform Steps 1{5 as above, exept that in Step 3, we replae

[0; x℄ by ! � [0; x℄ in the ase that n is even.

Veri�ation: We proeed as above, but note that we need a new argument that

Step 3 an be arried out as presribed. But this holds sine x is larger than any
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number mentioned thus far in the onstrution. So, in the ase that n is even,

Step 3 does not add numbers into �

f

s

(n)

; and in the ase that n is odd, Step 3 does

not remove numbers from �

f

s

(n)

.

Conluding Remarks. We remark in losing that, as for the ase n = 1, the

above onstrution an be adapted, for any �xed n > 1, to any uniformly om-

putable family S of n-omputably enumerable sets as long as S ontains all �nite

sets (if n is odd) or all o�nite sets (if n is even, respetively). If ! (if n is odd) or

the empty set (if n is even, respetively) is not in S, we an add it to S and then

later hange the numbering � by removing it again, whih is possible sine !, or

the empty set, respetively, appears only one in f�

m

g

m2!

.

3. The proofs for Theorem 2

The proofs for Theorem 2 are fairly simple onstrutions.

The proof of part (1). We �x an e�etive list of all omputable numberings

f�

e

g

e2!

of d. . e. sets and build a omputable numbering � of d. . e. sets (enu-

merating a family S of d. . e. sets).

For eah e 2 !, we at as follows:

1. Enumerate 2e into �(2e), and 2e+ 1 into �(2e+ 1).

2. Wait for a stage s and distint indies i and j suh that 2e 2 �

e;s

(i) and

2e+ 1 2 �

e;s

(j).

3. Extrat 2e and 2e+ 1 from �(2e) and �(2e+ 1), respetively.

4. Wait for 2e and 2e + 1 to leave �

e

(i) and �

e

(j), respetively, by a stage

s

0

> s, say.

5. Enumerate both 2e and 2e+ 1 into �(e

0

) for all e

0

6= 2e; 2e+ 1.

Now suppose that �

e

is a numbering of a family T of d. . e. sets. If a stage s

and indies i and j as above do not exist for �

e

then S ontains two distint sets

ontaining 2e and 2e+1, respetively, but T does not; so S 6= T . If stage s exists as

above but stage s

0

does not then T ontains a set ontaining either 2e or 2e+1 but

S does not; so again S 6= T . Finally, if stage s

0

exists as above then the only set in

S not a superset of f2e; 2e+1g is �(2e) = �(2e+1), but f2e; 2e+1g 6� �(i); �(j), so

S = T implies �(i) = �(j) for distint indies i and j; thus � annot be a Friedberg

numbering.

The proof of part (2). We again �x an e�etive list of all omputable number-

ings f�

e

g

e2!

of d. . e. sets and build a omputable numbering � of d. . e. sets

(enumerating a family S of . e. sets).

For eah e 2 !, we at as follows:

1. Enumerate the oded pair hn; ei into �(n) for eah n.

2. For all k; n 2 ! for whih f

e

(k) and g

e

(n) are urrently unde�ned, if hn; ei

enters �

e

(k) then de�ne f

e

(k) = n and g

e

(n) = k (indiating our predition

that �

e

(k) = �(n)).

3. If ever hn; ei leaves �

e

(k) while f

e

(k) = n and g

e

(n) = k, then enumerate

hn; ei into �(n

0

) for all n

0

6= n (so that �

e

annot be a omputable numbering

of S as a family of d. . e. sets).
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Now suppose that �

e

is a numbering of S as a family d. . e. sets. First suppose

that Step 3 above never applies. Then eah �(n) ontains exatly one element of

the form hn

0

; ei, namely, hn; ei. Thus, if �

e

is a numbering of S, then eah set �

e

(k)

must ontain exatly one element of the form hn; ei, and for eah n there must

be at least one k suh that �

e

(k) ontains hn; ei; thus f

e

and g

e

are omputable

redutions witnessing that � and �

e

are equivalent numberings. On the other hand,

if Step 3 ever applies to hn; ei and k, say, then �

e

(k) does not ontain hn; ei but

�(n

0

) does for all n

0

, so �

e

annot be a omputable numbering of S as a family of

d. . e. sets.

The proof of part (3). We �x e�etive lists of all omputable numberings

f�

e

g

e2!

of d. . e. sets and of all partial omputable funtions fh

i

g

i2!

. We build

two omputable numberings � and � of d. . e. sets (enumerating the same family S

of d. . e. sets) as well as a omputable funtion f and a ;

0

-omputable funtion g

(approximated by a uniformly omputable sequene of funtions fg

s

g

s2!

), meeting

the following requirements:

� = � Æ f;(3.1)

� = � Æ g;(3.2)

8i (� 6= � Æ h

i

); and(3.3)

8e (ran�

e

= ran� ! 9 omputable funtion k

e

(� = �

e

Æ k

e

)):(3.4)

Note that requirements (3.1) and (3.2) ensure that � and � enumerate the same

family of d. . e. sets S and that � � � . Requirement (3.3) now implies that � < � ,

while requirement (3.4) ensures that � represents the least of the Rogers semilattie

of S. Our onstrution will also ensure that � is a Friedberg numbering.

Requirement (3.3) is met by diagonalization: We �x an index j =2 ran f and wait

for h

i

(j) to be de�ned. Then we enumerate h0; 2ii into �(j) and keep h0; 2ii out of

�(h

i

(j)).

Requirement (3.4) is met by strongly using the fat that the sets in S are d. . e. as

follows: We enumerate hn; 2e+ 1i into �(n) for eah n. Now, for eah n, we wait for

hn; 2e+ 1i to appear in �

e

(j

n

) for some j

n

(distint from all j

n

0

found previously).

We now extrat hn; 2e+ 1i from �(n) (so that no �-set ontains hn; 2e+ 1i at this

point). When hn; 2e+ 1i leaves �

e

(j

n

), then we set k

e

(n) = j

n

and enumerate

hn; 2e+ 1i into �(n

0

) for all n

0

6= n. (Note that if �

e

is indeed a numbering of

S then for eah n, j

n

must eventually be de�ned and later hn; 2e+ 1i must leave

�

e

(j

n

). But then hn; 2e+ 1i =2 �

e

(j

n

), so �(n) = �

e

(j

n

) sine �(n) is now the only

�-set not ontaining hn; 2e+ 1i.)

Requirements (3.1) and (3.2) are met by diretly onstruting f and g: To build

f , we simply math up eah �-set with a � -set, leaving an in�nite omputable set

J of � -indies outside the range of f (so that we an use these j 2 J to meet

requirement (3.3)). Similarly, to build g, we math eah � -set with a �-set. We

now opy �(i) into �(f(i)) and vie versa. We also opy �(j) into �(g(j)) unless

requirement (3.3) prohibits this sine we need to enumerate into �(j) but keep it

out of �(g(j)) (i. e., �(g(j)), for the urrent value of g(j), and �(h

i

(j)) are supposed
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to be the same set). In that ase, we simply hange g(j) to a new �-index i

0

never

used before so that �(i

0

) an opy �(j).

It is now not hard to see how to ombine these strategies into a �nite-injury

priority argument, the details of whih we leave to the reader.
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