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Abstra
t

We show that every �nite latti
e is embeddable into the �

0

2

enumer-

ation degrees via a latti
e-theoreti
 embedding whi
h preserves 0 and 1.

1 Introdu
tion

Informally, a set A is enumeration redu
ible to a set B if there is some e�e
tive

pro
edure for enumerating A, given any enumeration of B. This informal notion

of redu
ibility 
an be formalized using the notion of enumeration operator. Let

fW

i

g

i2!

be the standard listing of the 
omputably enumerable (
.e.) sets. With

every 
.e. set W

i

, one 
an asso
iate a mapping �

i

: P (!)! P (!) (where P (!)

is the power set of the set of natural numbers !) by letting, for every B,

�

B

i

= fx : (9u)[hx; ui 2 W

i

& D

u

� B℄g

(where h�; �i is the usual pairing fun
tion, providing a 
omputable one-one bi-

je
tion of !

2

onto !; and D

u

is the �nite set with 
anoni
al index u, i.e. D

u

denotes the �nite set D for whi
h u =

P

x2D

2

x

; see e.g. [Soa87℄. In the follow-

ing, �nite sets will be often identi�ed with their 
anoni
al indi
es). A mapping

� : P (!) ! P (!) is 
alled an enumeration operator (or simply an e-operator)

if � = �

i

for some i.

Given sets of numbers A and B, we say that A is enumeration redu
ible (or

simply e-redu
ible) to B if A = �

B

for some e-operator �. This redu
ibility is

�
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easily seen to be a partial preordering relation, whi
h will be denoted by the

symbol �

e

.

The degree stru
ture indu
ed by �

e

is the stru
ture of the enumeration

degrees (simply e-degrees), denoted by D

e

. The e-degree of a set X will be

denoted by deg

e

(X). D

e

is in fa
t an upper semilatti
e with least element 0

e

,

with 0

e

= deg

e

(W ) where W is any 
.e. set. It is known (Gutteridge, see also

[Coo82℄) that D

e

does not have minimal elements (although the stru
ture is

not dense, see [Coo87℄; Calhoun and Slaman, [CS96℄), have shown that there

exist �

0

2

e-degrees a < b su
h that b is a minimal 
over of a). An important

substru
ture of D

e

is given by the �

0

2

e-degrees, i.e. the e-degrees of the �

0

2

sets.

Let S denote the stru
ture of the e-degrees of the �

0

2

sets. Cooper ([Coo84℄)

shows that S = D

e

(�

e

0

0

e

) where 0

0

e

= deg

e

(K), K being the 
omplement of the

halting set (for a de�nition of the jump operation on the e-degrees, see [Coo84℄

and [MC85℄). Cooper ([Coo84℄) shows that S is dense.

An interesting feature of the e-degrees is that they provide a wider 
ontext

for the Turing degrees. Indeed, let D

T

denote the stru
ture of the Turing

degrees. One 
an de�ne an embedding � : D

T

�! D

e

whi
h is 0-, [- and

jump-preserving (simply de�ne �(deg

T

(A)) = deg

e

(


A

) where deg

T

(A) and 


A

denote the Turing degree and the 
hara
teristi
 fun
tion of A, respe
tively). It

is interesting to noti
e that the 
.e. Turing degrees (whose stru
ture we denote

by R) are isomorphi
, under �, to the �

0

1

e-degrees, as one 
an prove (see for

instan
e [Coo84℄) that for every e-degree a,

a 2 range(� � R), a 2 �

0

1

:

Say that an e-degree a is low if a

0

� 0

0

e

. Cooper and M
Evoy (see [MC85℄)

give the following useful 
hara
terization of the low e-degrees.

Theorem 1.1 ([MC85℄) Given an e-degree a, the following are equivalent:

1. a is low;

2. for every set B, deg

e

(B) � a) B 2 �

0

2

;

3. there exists a set A 2 a, together with a �

0

2

approximation fA

s

g

s2!

to

A (i.e. a uniformly 
omputable sequen
e of 
omputable sets su
h that

A = fx : (9t)(8s � t)[x 2 A

s

℄g) su
h that, for every e; x, lim

s

�

A

s

e;s

(x)

exists.

The main sour
es for notation and terminology are [Odi89℄, [Rog67℄, [Soa87℄.

If A is an expression and s is a stage then (as in [Soa87℄, p. 315), the symbol

A[s℄ denotes the evaluation of the expression A at stage s. If fW

s

i

g

s2!

is a 
om-

putable approximation to W

i

via �nite sets (in the sense of [Soa87℄, p. 18), then

we get a 
orresponding 
omputable approximation f�

s

i

g

s2!

to the e-operator

2



�

i

. If 	 is an e-operator with 
omputable approximation f	

s

g

s2!

, and fX

s

g

s2!

is a �

0

2

approximation to a set X, then f	

X

[s℄g

s2!

denotes the �

0

2

approxima-

tion to the set 	

X

des
ribed in Proposition 5 of [MC85℄: �rst, for every �nite

set D � X

s

, de�ne t(D; s) to be the least t � s for whi
h D � X

u

, for every

u su
h that t � u � s; then, if x 2 	

s

X

s

, let D(x; s) be the least �nite set D

su
h that hx;Di 2 	

s

and D � X

s

, and t(D; s) � t(D

0

; s) for every other �nite

set D

0

with the same property (let D(x; s) be unde�ned if x =2 	

s

X

s

). Finally

de�ne by indu
tion 	

X

[0℄ = ; and

	

X

[s+ 1℄ = fx 2 	

s+1

X

s+1

: D(x; s+ 1) = D(x; s)g:

(Noti
e that if there are axioms hx; F

s

i 2 	, su
h that, for 
o�nitely many s,

F

s

� X

s

but, for no s, F

s

� X, one 
ould have x 2 	

s

X

s

for 
o�nitely many

s, but x =2 	

X

: The de�nition of f	

X

[s℄g

s2!

avoids this problem. Noti
e also

that the sequen
e f	

X

[s℄g

s2!

is uniform in the given sequen
es f	

s

g

s2!

and

fX

s

g

s2!

.)

1.1 The embeddability question

One of the most important open problems 
on
erning the 
.e. Turing degrees

is the so-
alled Embeddability Question, i.e. the question of whi
h �nite latti
es


an be embedded into R. We brie
y review the existing literature 
on
erning

this question. In the following, by an embedding of a latti
e L into an upper

semilatti
e U we shall mean a 1-1 mapping f from L into U, preserving _ and ^

(hen
e for every a; b 2 L, h(a)^h(b) must exist in U, and h(a^b) = h(a)^h(b)).

Thomason ([Tho71℄) proved that every �nite distributive latti
e is embed-

dable into R. La
hlan (unpublished) and Lerman (unpublished) showed that

the 
ountable atomless Boolean algebra is embeddable into R via a 0-preserving

embedding (see for instan
e [Soa87℄ for a proof of this theorem). This implies

that every 
ountable distributive latti
e 
an be embedded into R, preserving 0.

On the other hand, Ambos-Spies ([AS80℄) proved that the 
ountable atomless

Boolean algebra is embeddable into R via a 1-preserving embedding. Thus ev-

ery 
ountable distributive latti
e is so embeddable into R. La
hlan ([La
72℄)

showed also that the two �ve-element nondistributive latti
es M

5

and N

5

are

embeddable into R (hen
e R is not a distributive upper semilatti
e).

As to negative results, La
hlan and Soare ([LS80℄) proved that the latti
e

S

8


annot be embedded into R. It was 
onje
tured for some years (Downey's


onje
ture) that the only obsta
le to embeddability should be the existen
e of a


riti
al triple a; b; 
 in the latti
e (i.e. a triple of pairwise in
omparable elements

a; b; 
 su
h that a [ 
 = a [ b and b \ 
 � a), together with a pair p; q su
h that

b � p\ q � b[ 
. However, Lempp and Lerman (see [LL97℄) showed that there

exists a �nite latti
e (
alled L

20

in [LL97℄) without 
riti
al triples that is not

embeddable into R.
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As to 0; 1-preserving embeddings, the question as to whi
h �nite distributive

latti
es 
an be embedded into R has been settled. Ambos-Spies, Lempp and

Lerman ([ASLL94℄) showed that a �nite distributive latti
e 
an be embedded

into R preserving 0; 1 if and only if the latti
e 
ontains a join-irredu
ible non-


appable element. This theorem supersedes several known nonembeddability

results, in
luding the famous La
hlan Nondiamond Theorem ([La
66℄), stating

that the diamond (i.e. the four-element Boolean algebra) 
annot be embedded

into R preserving 0; 1.

What is the situation for S? Cooper (see [AL99℄) asks for a 
hara
terization

of the latti
es whi
h are embeddable in S. Useful information is provided by

the following observation due to Cooper and M
Evoy:

Theorem 1.2 ([MC85℄) If a;b are �

0

1

e-degrees and a is low then

(8
)[
 � a;b) (9e 2 �

0

1

)[
 � e � a;b℄℄:

Thus, if L is a latti
e and h : L �! R is a latti
e theoreti
 embedding

su
h that range(h) 
ontains only low Turing degrees then the 
omposition

� Æ h : L �! S is a latti
e theoreti
 embedding as well.

Sin
e every latti
e whi
h is known to be embeddable into R is known to

embed in fa
t into the low Turing degrees, one 
on
ludes that every latti
e whi
h

is known to be embeddable into R is also embeddable into S. For instan
e, it

follows by the above mentioned results for R that every 
ountable distributive

latti
e is embeddable into S, and M

5

and N

5

are embeddable into S. On the

other hand, Nies and Sorbi ([NS99℄) showed that S

8


an be embedded into S,

thus in fa
t the 
lass of �nite latti
es that are embeddable into S properly

extends that of the �nite latti
es that are known to be embeddable into R.

If one is interested in 0; 1-preserving embeddings, the starting point is the

following result, proved by Ahmad, see [Ahm91℄:

Theorem 1.3 The diamond 
an be embedded into S preserving 0; 1.

1.2 The theorem

We extend Ahmad's result to show that indeed every �nite latti
e is embeddable

into S, preserving 0; 1. As far as �nite latti
es are 
on
erned, this answers the

above mentioned question raised by Cooper.

Theorem 1.4 Every �nite latti
e is embeddable into the �

0

2

enumeration de-

grees via an embedding whi
h preserves 0 and 1. Moreover, the range of the

embedding 
ontains only low e-degrees, ex
ept for the image of 1.

The following se
tions are devoted to the proof of this theorem.
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2 The proof

Let L = hL;_;^; 0; 1;�i be a �nite latti
e and let J be the set of join-irredu
ible

elements of L. De�ne

J = fJ � J : (8i; j)[j 2 J & i � j ) i 2 J ℄g:

For every a 2 L, let J

a

= fj 2 J : j � ag: thus J

a

2 J. Noti
e the following

Lemma 2.1 For every a 2 L, a =

W

J

a

.

Proof: Clearly

W

J

a

� a. To show the 
onverse, it is 
lear that in a �nite latti
e

every element is the join of some set of join-irredu
ible elements. Thus, let

J � J be su
h that a =

W

J ; then J � J

a

, and therefore a �

W

J

a

. �

Lemma 2.2 For every a; b; 
 2 L, if a ^ b = 
 then

J

a

\ J

b

= J




:

Proof: If a^b = 
 then 
learly J




� J

a

and J




� J

b

. On the other hand, suppose

that j 2 J

a

\ J

b

. Then j � a; b, so j � 
 and thus j 2 J




. �

In the 
onstru
tion below, for every j 2 J we de�ne a �

0

2

set B

j

(with B

0

= ;

and B

j

� !

j

(= fx : (9y)[x = hj; yi℄g if j > 0) through �

0

2

approximations

fB

s

j

: s 2 !g where B

s

j

is de�ned at step s of the 
onstru
tion. For every a 2 L,

we let A

a

=

L

j2J

a

B

j

(we think of J as a subset of !; thus if X � J then

it is 
onvenient to identify

L

i2X

B

i

=

S

i2X

B

i

; a

ordingly, if fF

i

: i 2 Xg

where X � J is a family of sets and where F

i

� !

i

for every i 2 X, then we

let

L

i2X

F

i

=

S

i2X

F

i

). Given X � J , we also let A

X

=

L

i2X

B

i

. If F is any

set of numbers then we let F

j

= F \ !

j

.

We observe that ea
h A

a

and ea
h A

X

are �

0

2

sets, with �

0

2

approximations

determined by the �

0

2

approximations to the sets B

j

with j 2 J . Let also

K

s

= fx : x =2 K

s

& x � sg where fK

s

: s 2 !g is some nonde
reasing


omputable sequen
e of �nite sets whose union is K.

2.1 The requirements

For all a; b; 
 2 L, all j 2 J and all X 2 J, and for all pairs of e-operators �;	,

�x the requirements

J

j;X

: j �

W

X ) B

j

= �

A

X

j;X

M

a;b;
;�;	

: a ^ b = 
) [�

A

a

= 	

A

b

) �

A

a

= �

A




a;b;
;�;	

℄

Q

j;a;�

: j 6� a) B

j

6= �

A

a

L

a;x;�

: a < 1) lim

s

�

A

s

a

s

(x) exists

5



where �

j;X

and �

a;b;
;�

are e-operators to be 
onstru
ted.

If 1 is join-redu
ible in L then we also have for ea
h z 2 ! the requirement

R

z

: K(z) = �

A

J

(z)

where � is an e-operator to be 
onstru
ted. (Of 
ourse, � must be 
onstru
ted

uniformly in z, but for te
hni
al reasons, we spread its 
onstru
tion over the

entire tree of strategies.)

2.1.1 The embedding

De�ne � : L �! S,

�(a) =

�

deg

e

(A

a

) if a 6= 1

0

0

e

otherwise

We now show that if all the requirements are satis�ed then � is a latti
e-theoreti


embedding, preserving 0 and 1.

(1) If a � b then J

a

� J

b

, and thus A

a

�

e

A

b

;

(2) assume that a ^ b = 
; then A




�

e

A

a

and A




�

e

A

b

by (1); on the other

hand, if Z �

e

A

a

and Z �

e

A

b

then there exist e-operators �;	 su
h that

Z = �

A

a

= 	

A

b

; therefore by satisfa
tion of the requirement M

a;b;
;�;	

we have that Z �

e

A




, thus getting

deg

e

(A

a

) \ deg

e

(A

b

) = deg

e

(A




)

as desired;

(3) assume that a _ b = 
; then A

a

�

e

A




and A

b

�

e

A




by (1); on the other

hand, for every j 2 J ,

j 2 J




) j � a _ b

) j �

_

J

a

_

_

J

b

=

_

X

where X = J

a

[ J

b

and X 2 J; hen
e A

j

�

e

A

X

by satisfa
tion of the

requirement J

j;X

. In 
on
lusion, A




�

e

A

X

�

e

A

a

� A

b

. Noti
e that this

is true also if 
 = 1; indeed, if 
 is join-irredu
ible then a = 1 or b = 1.

Items (2) and (3) above show that � is a latti
e theoreti
 homomorphism. We

now pro
eed with showing that � is 1� 1 and preserves 0 and 1:

(4) assume that a 6� b; then by Lemma 2.1, there exists some j 2 J

a

su
h that

j 6� b; hen
e B

j

6�

e

A

b

by satisfa
tion of the requirements Q

j;b;�

; it follows

that A

a

6�

e

A

b

;

(5) we have �(0) = deg

e

(A

0

) = deg

e

(B

0

) = deg

e

(;) = 0

e

; thus � preserves 0;

(6) if 1 is join-irredu
ible then trivially �(1) = 0

0

e

; otherwise, � is 1-preserving

by satisfa
tion of the requirements R

z

.
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2.2 Strategies in isolation

We brie
y explain our plan for satisfying the requirements.

Remark 2.3 In the following, we will make the following assumptions when


onsidering a requirement:

1. when dealing with a requirement J

j;X

, we will always assume that j =2 X

(otherwise satisfa
tion of the requirement is automati
 by our de�nition

of A

X

);

2. when dealing with a requirement Q

j;a;�

, we will always assume that j 6� a;

3. when dealing with an L-requirement L

a;x;�

, we will always assume that

a < 1;

4. �nally, when dealing with an M-requirement M

a;b;
;�;	

, we will assume

that 
 = a^ b and ajb (if a � b or b � a then the requirement is automat-

i
ally satis�ed by our de�nition of A

a

and A

b

).

2.2.1 The J -requirements

Consider a requirement J

j;X

. If we need to enumerate a number x into B

j

then,

as we also need x 2 �

A

X

j;X

, we sele
t numbers y

i

x

2 !

i

(with y

j

x

= x), we add an

axiom hx;

L

i2X

fy

i

x

gi into �

j;X

, and for every i 2 X, we enumerate y

i

x

into B

i

.

On the other hand, if i 2 X and i �

W

Y with i =2 Y and Y 2 J, then we add

also the axiom hy

i

x

;

L

k2Y

fy

k

x

gi into �

i;Y

, and enumerate ea
h y

k

x

into B

k

for

every k 2 Y , as we must get y

i

x

2 �

A

Y

i;Y

; we must pro
eed in this way, until all

the relevant e-operators �

i;Y

are updated. We 
all this pro
edure the fun
tional

updating pro
edure.

We are therefore led to the following de�nition.

De�nition 2.4 Given any j 2 J , let �

j

be the least set � of pairs (i; Y ) with

i 2 J ; Y 2 J, i =2 Y su
h that:

� (j; Y ) 2 � for every Y su
h that j =2 Y and j �

W

Y ;

� if (i; Y ) 2 � then (i

0

; Y

0

) 2 � for every pair (i

0

; Y

0

) su
h that i

0

2 Y ,

i

0

=2 Y

0

and i

0

�

W

Y

0

.

Let also �(j) = fi : i = j or (9k; Y )[(k; Y ) 2 �

j

& i 2 Y ℄g:

The set �

j

tells us whi
h e-operators �

i;Y

must be updated, following the

enumeration of a number in B

j

. The set �(j) tells us whi
h sets B

i

are involved

in this updating pro
edure via enumeration of some number in B

i

.

7



Sin
e a number x may be enumerated into and extra
ted from some B

j

�nitely often, the operation of appointing new numbers y

i

x

with i 2 J may be

repeated several times. For ea
h i we thus end up appointing �nitely many

numbers y

i

x

.

The 
onstru
tion will ensure that, whenever we need to extra
t x from B

j

at some given stage, we are able to sele
t some set Z � J su
h that extra
-

tion of suÆ
iently many numbers y

i

x

from B

i

for ea
h i 2 Z not only gives

�

j;X

-re
ti�
ation at x, i.e. x =2 �

A

X

j;X

, but automati
ally provides all needed re
-

ti�
ations of all e-operators whi
h are involved in this 
hain of extra
tions.

2.2.2 The M-requirements

Consider the requirement M

a;b;
;�;	

. The strategy here basi
ally 
onsists in

de�ning an e-operator �

a;b;
;�;	

su
h that if Z = �

A

a

= 	

A

b

then Z = �

A




a;b;
;�;	

;

stage by stage, if x 2 �

A

a

\ 	

A

b

via, say, axioms hx;

L

i2J

a

G

i

i 2 � and

hx;

L

i2J

b

H

i

i 2 	 where G

i

� B

i

for every i 2 J

a

and H

i

� B

i

for every

i 2 J

b

then we de�ne a suitable axiom hx;

L

i2J




G

i

[H

i

i 2 �

a;b;
;�;	

.

The extra
tion a
tivity of both lower-priority R

z

- and lower-priority Q-

requirements may interfere with this strategy in that, at some given stage, it may

entail some x being extra
ted from Z without entailing x being extra
ted from

�

A




a;b;
;�;	

. If for instan
e x is extra
ted from �

A

a

then, sin
e x 2 �

A




a;b;
;�;	

, there

is no a priori obsta
le to restraining x 2 	

A

b

, following, if needed, reinsertion of

x 2 	

A

b

via enumeration or re-enumeration of suitable sets F

i

in B

i

for every

i 2 J

b

. We rely therefore on the possibility of restraining some su
h number x

in either �

A

a

or in 	

A

b

, at the same time keeping su
h a number x out of the

other set, thus getting x 2 �

A

a

�	

A

b

or x 2 	

A

b

� �

A

a

.

More details on this a
tion instigated by the extra
tion a
tivity of lower-

priority R

z

- or other lower-priority Q-requirements will be given in 2.3.2.

On the other hand, the lowness of A

a

and A

b

will ensure that lim

s

�

A

a

(x)[s℄

and lim

s

	

A

b

(x)[s℄ exist. We therefore distinguish two possible out
omes of our

strategy: Either we are able to for
e a permanent disagreement x 2 �

A

a

�	

A

b

or x 2 	

A

b

� �

A

a

for some x; or ea
h su
h attempt fails, giving Z = �

A




a;b;
;�;	

if Z = �

A

a

= 	

A

b

.

2.2.3 The Q-requirements

Consider Q

j;a;�

. The strategy for satisfying the requirement is the following:

1. 
hoose a witness 
; enumerate 
 2 B

j

and apply the pro
edure of fun
-

tional updating (thus sele
ting suitable numbers y

i




with y

j




= 
);

2. await 
 2 �

A

a

;

8



3. restrain 
 2 �

A

a

via restraining some �nite sets F

i

� B

i

for i 2 J

a

;

4. extra
t y

i




from B

i

for every i su
h that i =2 J

a

.

We observe that the extra
tions in 4. not only provide 
 =2 B

j

, sin
e j 6� a,

but also ensure automati
 re
ti�
ations of all relevant e-operators, as 
an be

seen easily from the following lemma:

Lemma 2.5 For every (i; Y ) 2 �

j

, if i 6� a then there exists y 2 Y su
h that

y 6� a.

Proof: This is 
ertainly true of all pairs (j; Y ) 2 �

j

. Suppose now that this fails

for a pair (i; Y ) 2 �

j

with i 6� a; then y � a for every y 2 Y , thus

W

Y � a,

and so i � a, 
ontradi
tion.

2.2.4 The L-requirements

Consider the requirement L

a;x;�

with a < 1. The strategy for this simply


onsists in waiting for �nite sets F

j

with j 2 J

a

su
h that x 2 �

F

a

, and

restraining su
h a �nite set F

a

in A

a

.

2.2.5 The R

z

-requirements

If z 2 K then we sele
t j-tra
es y

j

z

and we enumerate the axiom hz;

L

j2J

fy

j

z

gi

into � together with enumerating y

j

z

into B

j

so as to get z 2 �

A

J

. For every

pair i 2 J and X 2 J su
h that i =2 X and i �

W

X, add also the axiom

hy

i

z

;

L

j2X

fy

j

z

gi into �

i;X

.

If and when z leaves K, we extra
t all the numbers y

j

z

from the respe
tive

sets B

j

.

2.3 Combining the strategies

We examine here some of the main problems that arise from 
ombining the

strategies.

2.3.1 R

z

injuring other strategies

Suppose that z leaves K and we still need to extra
t z from �

A

J

at s (i.e. we

a
tivate the R

z

-strategy. We re
all that the R

z

-strategy 
an be a
tivated only

at even stages). For any given j, it is, of 
ourse, possible that some y

j

z

might have

been extra
ted and inserted (for instan
e, due to the e�e
ts of the instigation

a
tions explained later, or due to strategies for lowness) several times in and

out of B

j

, entailing 
orresponding pro
edures of fun
tional updating. Let Y

j

(z)

be the set of elements whi
h are sele
ted during this pro
ess and enumerated
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at some time in B

j

. It is 
lear that the extra
tion of y

j

z

might not be enough

for re
tifying all the relevant e-operators �

i;X

. This re
ti�
ation pro
ess would

be, however, a
hieved if we 
ould extra
t all of Y

j

(z) from B

j

, for every j.

These extra
tions might, however, interfere with the restraining a
tivity of

some higher-priority requirements. More pre
isely, let P be a higher priority

requirement on behalf of whi
h we want to restrain a �nite set, say F

a

� A

a

,

and there are elements j 2 J

a

su
h that Y

j

(z)\F

j

6= ;: We say in this 
ase that

R

z

injures P. Then we 
hoose the highest-priority requirement whi
h is injured

in this way; for every j 2 J �J

a

, we de�ne E

j

= Y

j

(z) (for the 
urrent value of

Y

j

(z) at the 
urrent stage), we extra
t E

j

from B

j

, and we start the pro
edure

of fun
tional updating on behalf of those numbers whi
h are restrained in A

a

by

P but might have lost some of their tra
es due to the above extra
tion a
tivity.

We noti
e that, following this updating pro
edure, some new tra
es might be

appointed, and 
onsequently some Y

j

(z) might be
ome larger without, however,

modifying our previous 
hoi
e of E

j

.

This a
tion satis�es R

z

(sin
e we will see that we 
an always assume that

J � J

a

6= ;). Moreover, it will be shown that at the same time it guarantees

automati
 re
ti�
ation of all the operators involved in the required 
hain of

extra
tions. The reason for this is roughly the following. Suppose that j �

W

X

and y is extra
ted from B

j

, sin
e y 2 Y

j

(z) and Y

j

(z)(= E

j

) is extra
ted from

B

j

. If we do not a
hieve �

j;X

�re
ti�
ation relatively to y (i.e. y is not extra
ted

from �

A

X

j;X

), then this is be
ause the restraining a
tivity required by the strategy

for meeting P (i.e. the highest-priority requirement whi
h is injured by R),

prevents us from extra
ting some Y

i

(z), with i 2 X. But this 
an not be the


ase. Indeed, assume that P prevents �

j;X

�
orre
tion. If P = L

a;x;�

, with

a < 1, then we have that X � J

a

and j 6� a, but also j � a sin
e j �

W

X, thus

getting a 
ontradi
tion. On the other hand, if P = M

a;b;
;�;	

and P requires,

say, restraining in A

b

, then we have that j 2 J

a

� J




and X � J

b

; but then

j � 
, again a 
ontradi
tion. Finally, if P = Q

i;Y;�

, with i =2 Y , then X � Y ,

but then i =2 X, 
ontrary to the assumption that P prevents us from re
tifying

�

A

X

j;X

(y).

Finally, we observe that ea
h P may be injured only �nitely many times by

the requirements R

z

sin
e, as we shall see, the restraining a
tivity of P only

refers to some �nite set, whi
h therefore 
an 
ontain only �nitely many tra
es

relative to �nitely many numbers z.

2.3.2 Instigation

We now brie
y look at another aspe
t of the intera
tion between an M-

requirement with R

z

, or between an M-requirement and a Q- requirement of

lower priority. Let us 
onsider M = M

a;b;
;�;	

, and let P be either R

z

or a

Q-requirement.
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There are no a priori problems, of 
ourse, if the strategy forM has a �nitary

out
ome 
orresponding to some x su
h that �

A

a

(x) 6= 	

A

b

(x). In this 
ase R

z

intera
ts with M just via the injury pro
ess des
ribed in the previous se
tion.

What happens if P assumes that �

A

a

= 	

A

b

? Suppose that P wants to

extra
t E

j

from B

j

for some j 2 J . It might be that this extra
tion 
auses x

to leave �

A

a

\ 	

A

b

for some x but not x leaving �

A




a;b;
;�;	

. We say in this 
ase

that P instigates the M-strategy. If, for instan
e, x leaves �

A

a

then we have

the opportunity, possibly at the expense of re-enumerating (with a 
onsequent

fun
tional updating pro
ess) numbers in A

b

, of restraining x 2 �

A

b

, without

interfering with the e�e
ts of the extra
tions from A

a

whi
h give x =2 �

A

a

;

similarly, if x leaves 	

A

b

then we have the opportunity of restraining x 2 �

A

a

.

(If x leaves �

A

a

[ 	

A

b

then we simply 
hoose whi
h side we want to restrain.)

The e�e
ts of this instigation pro
ess remain valid until x re-enters �

A

a

\	

A

b

.

2.4 The tree of out
omes

Let T = 2

<!

be the tree of out
omes. We assume throughout a requirement

assignment fun
tion R, e�e
tively assigning to ea
h node � of the tree, a require-

ment R(�) su
h that along any path of T , ea
h requirement is assigned exa
tly

on
e, where R(�) is either an R

z

-, or a Q-requirement, or an M-requirement,

or an L-requirement. Finally we assume also that if � � � then R(�) has higher

priority than R(�).

Notation and terminology relative to strings are standard and 
an be found

e.g. in [Soa87℄. For 
larity, we use � and � for the nonstri
t and stri
t lexi
o-

graphi
al ordering on a tree T � 2

<!

, respe
tively; and � �

L

� to denote � � �

but � 6� � .

Let f�

j

�

g

�2T; j2!

be a 
omputable partition of the odd numbers into in�nite


omputable sets, and let f�

j

z

g

j;z2!

be a 
omputable partition of the even num-

bers su
h that �

j

�

; �

j

z

� !

j

for every j; �; z. Finally, if � 2 T and j�j > 0 then

let �

�

= � � (j�j � 1).

2.5 Des
ription of the 
onstru
tion along the true path

We explain in this se
tion the meaning of the main auxiliary fun
tions appear-

ing in the 
onstru
tion, and we give a little more insight into the way in whi
h

the di�erent strategies are 
ombined along the true path f , with a brief de-

s
ription of some of their out
omes. The following refers to some stage s of

the 
onstru
tion; 
onsequently, the various auxiliary fun
tions are understood

to be evaluated at stage s; also we assume that by stage s, the higher-priority

requirements have, so to speak, already settled down.

The strategies, dire
tly or via instigation, may enumerate and restrain, or

extra
t elements from, B

j

with j 2 J . If o is the out
ome at stage s of the
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strategy R(�) lo
ated at � then, for every j 2 J , we use the symbol F

j

(�bo)

to denote the value of some �nite set whi
h R(�) wants to restrain in B

j

, and

we use the symbol E

j

(�bo) to denote the value of some �nite set whi
h R(�)

wants to extra
t from B

j

.

The R

z

-nodes. For ea
h z, there is an R

z

-node devoted to 
oding z in �

A

X

.

If z 2 K then �b1 � f and F

j

(�b1) = fy

j

z

g. If z =2 K then we look (at

even stages) for an opportunity to extra
t the set Y

j

(z) from B

j

for j 2 J .

There might be possible 
on
i
ts (through the injury me
hanism, des
ribed in

2.3.1) with F

j

(�), with � � � (i.e. Y

j

(z) \ F

j

(�) 6= ;) for some j, as we also

want to restrain at � some �nite sets F

j

(�) for, say, j 2 J

a

for some a. We


hoose the least su
h � ; we de�ne E

i

(�) = Y

i

(z), and we extra
t E

i

(�) from B

i

for ea
h i 2 J � J

a

; we apply the pro
edure of fun
tional updating in relation

to those numbers y 2 Y

j

(z) \ F

j

(�) for whi
h new tra
es are needed be
ause

of this extra
tion; we put z into �(�). (Thus, �(�) re
ords the set of numbers

z =2 K whi
h � takes the responsibility of keeping out of �

A

X

. Sin
e F

j

(�) is

eventually �nite, it follows that �(�) is eventually �nite as well.) On the other

hand, if no 
on
i
t arises with any � � � then we have �b0 � f and we let

E

j

(�b0) = Y

j

(z). In this 
ase, we let �(�b0) = fzg. Noti
e that if z =2 K then

there is exa
tly one node � along f su
h that z 2 �(�).

The instigation pro
ess. Let �b0 � �, and assume that R(�) =M

a;b;
;�;	

.

Then, a

ording to 2.3.2, � instigates R(�) if we have, for some x;X and j 2 X,

M

j2X

E

j

�

leaves

M

j2X

B

j

) x leaves �

A

a

\ 	

A

b

;

(where E

j

�

=

S

���

E

j

(�)�

S

���

F

j

(�)) but x does not leave �

A




�

. If � is the least

node for whi
h R(�) is instigated by � at the 
urrent stage then we a

ordingly

de�ne x(�b1), E

j

(�b1), F

j

(�b1) where the sets E

j

(�b1) are designed to keep

x(�b1) out of �

A

a

(	

A

b

, respe
tively), whereas the sets F

j

(�b1) are designed

to keep x(�b1) in 	

A

b

(�

A

a

, respe
tively).

Following this instigation pro
ess we 
lose step s and we move to next stage

(thus, at ea
h stage, we have at most one instigation).

We now 
onsider the e�e
ts of the instigation for R(�) at the next � -true

stage. If f is the true path then, sin
e �b1 6� f , none of these instigations has

a permanent e�e
t. We must argue in this 
ase that

�

A

a

= 	

A

b

) �

A

a

= �

A




:

To this end, assume that �

A

a

= 	

A

b

and, for instan
e, x =2 �

A

a

but x 2 �

A




.

To show that this is not possible, we use the fa
t that we eventually make A

a

low. Indeed, if � � f is su
h that �b0 � � and R(�) = L

a;x;�

then, when a
ting
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at �, we look for an opportunity of restraining x 2 �

A

a

via some �nite sets

F

j

(�b0) for j 2 J

a

su
h that F

j

(�b0) \ E

j

�

= ;. If this is not possible then we


an argue that some �

0

with �b0 � �

0

� � 
an permanently instigate R(�). But

�b1 6� f and this implies that eventually x 2 �

A

a

, 
ontradi
tion.

The restraints are eventually permanent. We will need to show that

F

j

(�) � B

j

for every � � f and j 2 J . After de�ning F

j

(�) (for a given

j), if we extra
t some x 2 F

j

(�) from B

j

at some later stage then this 
an

happen only be
ause � instigates some R(�) with �b0 � �. Indeed, � might

instigate R(�) in order to 
reate a diagonalization at some y, i.e. y 2 �

A

a

�	

A

b

or y 2 	

A

b

� �

A

a

, and require reinsertion of elements of E

i

(�) into some B

i

,

whi
h are i-tra
es for some z =2 K so that, at some subsequent even stage,

the requirement R

z

, fa
ing the impossibility of extra
ting all of E

i

(�) from B

i

,

might have no 
han
e of a
hieving �-re
ti�
ation for z other than extra
ting

elements that are in F

j

(�).

Noti
e that, be
ause of these reinsertions and 
onsequent fun
tional updat-

ing pro
edures, we might have to provide new larger de�nitions of the sets Y

i

(z),

and 
onsequently, new de�nitions of E

i

(�) and F

j

(�), at subsequent �

�

-true

stages.

We shall show that this 
an happen only �nitely many times. Indeed, there

are only �nitely many axioms hy;Gi 2 �

�

su
h that G 
ontains elements from

the sets E

i

(�). First of all, noti
e that we de�ne axioms hy;Gi 2 �

�

only at

�b0-true stages. At these stages, we may assume that the elements of E

i

(�),

whi
h have been reinserted in B

i

in order to 
reate a diagonalization and win

R(�), will be extra
ted again (on behalf of R(�), sin
e the diagonalization has

failed), so that no new axiom enumerated in �

�

will use these numbers. If

this is so, then by our lowness strategy, we 
an argue as before that � 
annot

instigate in�nitely many times on behalf of the same number y and therefore

� 
an instigate only �nitely many times. How do we a
hieve that �

�

-axioms

de�ned when working below �b0 avoid elements from E

i

(�)? This task is taken


are of by the auxiliary fun
tion �

i

(�): When we de�ne and extra
t E

i

(�) from

B

i

, we put the elements of E

i

(�) into the sets �

i

(�), for every � � � (thus

in
luding �

i

(�)) and we demand that possible future �

�

-axioms avoid elements

from �

i

(�). Of 
ourse, when the out
ome at � is 1, then we extra
t from �

i

(�),

for every � � � , all the numbers that we �x in B

i

: The reason for this is that

if �b0 � � and � is also an M-node, then, at �b1-true stages s at whi
h we

reinsert elements from E

i

(�) into B

i

, �

�

-axioms must be allowed to use these

elements.
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2.6 The 
onstru
tion

We assume, of 
ourse, that 1 is join-redu
ible in L. (Otherwise, we 
an simply

add an element x to L in
omparable to all elements y 2 L� f0; 1g.) For every

� 2 T and j 2 J , at step s we use the following notation: We let

F

j

�

(s) =

[

���

F

j

(�; s)

E

j

�

(s) =

[

���

E

j

(�; s)� F

j

�

(s)

(F

j

�

(s) is de�ned as the union over the strings � � �, rather than over all

the strings � � �, be
ause the R

z

-strategies must be given the possibility to

freely injure the �xing a
tivity undertaken by a
tions to the left of the true

path; on the other hand, noti
e that, apart from the R

z

-strategies, no strategy

lo
ated to the right of the true path interferes, in the limit, with any �xing

a
tivity performed while a
ting on behalf of strategies lo
ated on the true path.

Contrary to this, the extra
ting a
tivity must be prote
ted against the �xing

a
tivity performed by strategies, e.g. on behalf of lowness requirements, lo
ated

at nodes to the right of the true path.)

We borrow the following de�nition from [Coo87℄:

De�nition 2.6 If 	 is an enumeration operator (with �nite approximations

f	

s

: s 2 !g) and x 2 ! then let

" �(	; x) = fE : E �nite and x =2 	

!�E

g

" �(	; x; s) = fE : E �nite and x =2 	

!�E

[s℄g

The next de�nition des
ribes an a
tion whi
h will be repeatedly performed

in the 
onstru
tion.

De�nition 2.7 (Fun
tional updating) Let F be a family of �nite sets. As-

sume that, for every F 2 F, there exists j 2 J su
h that F � !

j

. De�ne

fun
tional updating at F at s to be the following a
tion. For every F 2 F with,

say, F � !

j

, and every y 2 F pro
eed as follows:

� if y is odd and y = y

j

(�; t) for some Q-node � and some least t � s then

for every i 2 �(j) de�ne F

i

(y; s) = fy

i

(�; t)g;

� if y is even and y 2 Y

j

(z; s � 1) for some z, then for every i 2 J 
hoose

a new y

i

2 �

i

z

(
alled a j-tra
e for z). For every i, enumerate y

i

into

Y

i

(z; s) and, for every i 2 �(j), de�ne F

i

(y; s) = fy

i

g. Add the axiom

hy

i

;

L

i

0

2Y

fy

i

0

gi into �

s

i;Y

for every pair (i; Y ) 2 �

j

.
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(When this a
tion, whi
h merely 
onsists in de�ning some sets and possibly

some axioms, is performed on behalf of some strategy R(�), at some stage s,

and o is the out
ome at � at s, then we will let F

i

(y; s) � F

i

(�bo; s), for every

i 2 �(j), F 2 F, y 2 F .)

We now formally de�ne the notion of instigation of an M-strategy, already

mentioned in the intuitive des
ription of the 
onstru
tion.

De�nition 2.8 (Instigation) Let � and � be nodes su
h that � is anM-node

(with, say, R(�) =M

a;b;
;�;	

) and �b0 � �. We say that � instigates R(�) at x

at s if x 2 �

!

�

[s℄ and one of the following holds:

1. E

a

�

(s) 2" �(�; x; s) and E




�

(s) =2" �(�

�

; x; s); or

2. E

b

�

(s) 2" �(	; x; s) and E




�

(s) =2" �(�

�

; x; s).

If (1) holds then we say that � instigates R(�) at x at s via a; otherwise we

say that � instigates R(�) at x at s via b.

De�nition 2.9 (Instigation a
tion at x) If � instigates R(�) = M

a;b;
;�;	

at x at s via a (a similar de�nition will apply if � instigates R(�) via b, in-

ter
hanging a with b) then (by Remark 2.10) 
hoose the least (with respe
t to

their 
anoni
al indi
es) �nite sets F

i

su
h that for every i 2 J

b

, F

i

\E

i

�

�

(s) = ;

and x 2 	

F

b

[s℄; de�ne

x(�b1; s) = x

for every i 2 J

b

, de�ne

F

i

(�b1; s) = F

i

and for every i 2 J

a

let

E

i

(�b1; s) = E

i

�

(s):

We say that �b1 needs fun
tional updating at any stage t � s prior to the least

stage s

0

> s su
h that � � Æ

s

0

. We also say that �b1 is a-related (respe
tively,

b-related if � instigates R(�) via b) at any stage t � s prior to the least stage

s

0

> s at whi
h we de
lare that �b1 is b-related (a-related, in the other 
ase).

Finally, for every z 2 �(�; s) we extra
t z from �(�; s + 1) for every �. (The

reason for this is that the instigation a
tion may enumerate new elements into

Y

j

(z; t), for some j, at a later stage through the pro
ess of fun
tional updating

so that z may require a
tivation again of the R

z

-strategy if we take again a
tion

at � at some later stage.)

Remark 2.10 Sin
e at ea
h step, the 
onstru
tion instigates at most on
e,

then, in the situation illustrated by De�nition 2.9, we have that no � with

� � � � � instigates R(�), thus E

b

�

�

(s) =2" �(	; x; s) or E




�

�

(s) 2" �(�

�

; x; s),

and so we 
an �nd �nite sets F

i

as in the de�nition.
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We now pro
eed with the 
onstru
tion. Together with the auxiliary fun
-

tions des
ribed in 2.5, we will de�ne at stage s a string Æ

s

, 
alled the true path

at stage s. Given any string �, we say that s is a �-true stage if � � Æ

s

.

Stage 0) Let Æ

0

= ;. For every � 2 T , j 2 J , and x 2 !, let

F

j

(�; 0) = E

j

(�; 0) = G

j

(�; x; 0) = H

j

(�; x; 0) = �

j

(�; 0) = �(�; 0) = ;:

Let also x(�; 0) = 
(�; 0) = y

j

(�; 0) =" for every � and j.

Stage s + 1) Unless expli
itly rede�ned by the 
onstru
tion, ea
h auxiliary

fun
tion retains the same value as at step s. We distinguish two 
ases, a

ording

to whether s+ 1 is odd or even.

Case 1: s+ 1 odd: Suppose that we have already de�ned � = Æ

s

� n. If

n = s+ 1 then 
lose stage s+1 (see 2.6.7) and go to stage s+2. Otherwise, in

order to de�ne �

+

= Æ

s+1

� n+ 1, we distinguish the following 
ases.

2.6.1 � is an M-node

Assume R(�) =M

a;b;
;�;	

. We distinguish the following two 
ases.

1. Suppose �rst that for every j,

F

j

(�b1; s) \ E

j

�

(s+ 1) = E

j

(�b1; s+ 1) \ F

j

�

(s) = ;;

x(�b1; s) is de�ned, and

(i) �b1 is a-related and

E

a

�

+

(s+ 1) 2" �(�; x; s+ 1)

or

(ii) �b1 is b-related and

E

b

�

+

(s+ 1) 2" �(	; x; s+ 1):

Then de�ne �

+

= �b1.

Fun
tional updating. If �

+

needs fun
tional updating at s+1 then (assume

for de�niteness that �

+

is a-related) let F = fF

j

(�

+

; s) : j 2 J

b

g and apply

the pro
edure of fun
tional updating at F at s+ 1.

De�ne for every i 2 J ,

F

i

(�

+

; s+ 1) = F

i

(�

+

; s) [

[

fF

i

(y; s+ 1) : y 2 F; F 2 Fg:

(Thus, at s+1, �

+


eases to need fun
tional updating.) Finally, for every

� � � and i 2 J , extra
t all elements of F

i

(�

+

; s+ 1) from �

i

(�; s+ 1).
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2. Otherwise, let �

+

= �b0, and 
hoose the least y 2 �

A

a

[s℄ \ 	

A

b

[s℄ su
h

that y =2 �

A




�

[s℄. For every j 2 J

a

[ J

b

, 
hoose the least (a

ording to

their 
anoni
al indi
es) �nite sets G

j

= G

j

(�; y; s + 1) (for j 2 J

a

) and

H

j

= H

j

(�; y; s+ 1) (for j 2 J

b

) su
h that

hy;

M

j2J

a

G

j

i 2 �

s

;

hy;

M

j2J

b

H

j

i 2 	

s

;

G

j

[H

j

� (B

s

j

[ F

j

�

(s+ 1))� E

j

�

(s+ 1);

and

(G

j

[H

j

) \ �

j

(�; s + 1) = ;:

Then enumerate the axiom hy;

L

j2J




(G

j

[H

j

)i into �

s+1

�

:

Whatever 
ase has happened to hold (i.e. whether yielding out
ome 1 or 0),

now 
lose the �

+

-a
tion (see 2.6.6. Noti
e that this does not mean that we

move dire
tly to stage s + 2! Here and in the following 
ases, if no a
tion has

been taken at �, i.e. item 2. of 2.6.6 does not hold, then we move on to de�ne

Æ

s+1

� n+ 2.)

2.6.2 � is a Q-node

Assume R(�) = Q

j;a;�

. We distinguish the following two 
ases.

1. If 
 = 
(�; s) is de�ned and therefore the 
orresponding y

i

(�; s) are de�ned

then:

(a) If 
 =2 �

A

a

[s℄ then de�ne �

+

= �b1 and for every i 2 �(j), let

F

i

(�

+

; s+ 1) = fy

i

(�; s)g.

(b) If 
 2 �

A

a

[s℄ then let �

+

= �b0; 
hoose the least �nite sets F

i

(for

i 2 J

a

) su
h that F

i

\E

i

�

(s+1) = ;, F

a

� A

a

[s℄, 
 2 �

F

a

[s℄; and let

F

i

(�

+

; s+1) = F

i

for ea
h su
h i; �nally, for every i su
h that i 6� a,

let E

i

(�

+

; s+ 1) = fy

i

(�; s)g, and put E

i

(�

+

; s+ 1) into �

i

(�; s+ 1)

for every � � �.

2. Otherwise, for every i 2 J , 
hoose new numbers y

i

= y

i

(�; s + 1) 2 �

i

�

and de�ne 
(�; s+ 1) = y

j

.

Fun
tional updating via Q at �. Add the axiom hy

i

;

L

i

0

2Y

fy

i

0

gi into �

s+1

i;Y

for every pair (i; Y ) 2 �

j

; �nally, let F

i

(�

+

; s + 1) = fy

i

(�; s)g for every

i 2 �(j).
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If �

+

instigates some R(�) at some x at s + 1 then 
onsider the least su
h �

and the least su
h x, and perform the 
orresponding instigation a
tion relative

to � and x, as in De�nition 2.9.

Close the �

+

-a
tion (see 2.6.6).

2.6.3 � is an L-node

Assume R(�) = L

a;x;�

.

1. If there exist �nite sets F

j

� !

j

su
h that for every j 2 J ,

F

j

\ E

j

�

(s+ 1) = ;;

and x 2 �

F

a

s

, then 
hoose the least su
h �nite sets and let �

+

= �b0.

� If F

j

� B

s

j

for all j 2 J

a

then de�ne F

j

(�b0; s+ 1) = F

j

.

� Otherwise, de�ne F = fF

i

: i 2 J

a

g and apply the pro
edure of

fun
tional updating at F at s+ 1.

De�ne for every j 2 J ,

F

j

(�b0; s+ 1) = F

j

[

[

fF

j

(y; s+ 1) : y 2 F; F 2 Fg:

2. Otherwise, let �

+

= �b1.

Close the �

+

-a
tion (see 2.6.6).

2.6.4 � is an R

z

-node

1. If z 2 K

s

then let �

+

= �b1.

Fun
tional updating via R

z

at �. If no axiom hz; Gi 2 � has been de�ned

so far then for every j 2 J , 
hoose y

j

z

2 �

j

z

to be some new number; let

Y

j

(z; s + 1) = fy

j

z

g for every j 2 J .

Add the axiom hz;

L

j2J

fy

j

z

gi into �

s+1

, and for every pair (i; X) su
h

that i =2 X and i �

W

X, add the axiom hy

i

z

;

L

i

0

2X

fy

i

0

z

gi into �

s+1

i;X

.

Finally, let F

j

(�b1; s+ 1) = fy

j

z

g.

2. Otherwise, let �

+

= �b0.

Close the �

+

-a
tion (see 2.6.6).

We remind the reader that fun
tional 
orre
tion for R

z

, following extra
tion

of z from K, only takes pla
e at even stages.

Case 2: s+ 1 even: At even stages we re
tify the various e-operators �

i;X

whi
h need be re
ti�ed following extra
tion of numbers from K. If � � Æ

s

is a

z-th node then we write � = �

z

.
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2.6.5 A
tivating the R

z

strategy

Consider the least z � s with z =2 K

s

, if any, su
h that �

z

� Æ

s

, and z =2 �(�; s)

for all � � �

z

b0 or �

z

b1 � Æ

s

.

If no su
h z exists then go to stage s+ 2.

Otherwise, pro
eed as follows. We �rst give a de�nition.

De�nition 2.11 (Injury) Given a node � su
h that � � �

z

, we say that R

z

injures R(�

�

) through z at s+ 1 if, for some j 2 J ,

Y

j

(z; s) \ F

j

�

(s) 6= ;:

Find the least �, if any, su
h that R(�

�

) is injured this way.

(i) If there is su
h a �, then there are four 
ases:

� If � is an M-node, R(�) =M

a;b;
;�;	

, � = �

�

b1, and � is a-related,

then let X = J

b

.

� If � is an M-node, R(�) =M

a;b;
;�;	

, � = �

�

b1, and � is b-related,

then let X = J

a

.

� If � is a Q-node and R(�) = Q

j;a;�

then let X = J

a

(noti
e that this

entails � = �

�

b0).

� If � is an L-node and R(�) = L

a;x;�

then let X = J

a

(again, this

entails � = �

�

b0).

Let F = fF

j

(�; s) : j 2 Xg and apply the pro
edure of fun
tional updat-

ing at F at s+ 1.

De�ne for every i 2 J ,

F

i

(�; s + 1) = F (�; s) [

[

fF

i

(y; s+ 1) : y 2 F; F 2 Fg:

Finally, for every j 2 J �X, let

E

j

(�; s+ 1) = Y

j

(z; s);

put z into �(�; s+ 1); and for every � 6= � su
h that � is not an R

z

-node

or � � �, extra
t z from �(�; s+ 1).

(ii) If there is no su
h �, and z =2 �(�

z

b0; s) or �

z

b1 � Æ

s

, then (write � = �

z

b0):

for every j 2 J , let

E

j

(�; s+ 1) = Y

j

(z; s);

put z into �(�; s+ 1); and for every � 6= � su
h that � is not an R

z

-node

or � � �, extra
t z from �(�; s+ 1).

Put E

j

(�; s + 1) into �

j

(�; s+ 1) for every � � �.
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�-
losure. Finally, put z into �(�b0; s+1) for every � su
h that � �

L

� and �

is an R

z

-node, and de�ne E

j

(�b0; s+1) = E

j

(�; s+1). We say in this 
ase that

z 2 �(�b0; t) be
ause of � at any stage t > s prior to the least stage s

0

> s, if any,

su
h that �(�b0; s

0

) = ;. (We will show that extra
tion of the sets E

j

(�; s+ 1)

from B

j

is enough for the re
ti�
ation of � and of all relevant e-operators �

j;X

,

if these sets are restrained out of the B

j

's. Thus, we pla
e z into �(�b0; s+1) so

that when we move to the right of � in the tree of out
omes at some later stage

t, z does not require a
tivating the R

z

-strategy as long as z 2 �(�b0; t). Thus,

eventually, z requires only �nitely many a
tivations of the R

z

-strategy. Noti
e

that z may require again a
tivation of the R

z

-strategy only if some R(�) with

�b0 � � is instigated at some later stage t so that this implies �(�b0; t) = ; as

required by De�nition 2.9.)

If � instigates some R(�) at some x at s + 1 then 
onsider the least su
h �

and the least su
h x, and perform the 
orresponding instigation a
tion relative

to � and x as in De�nition 2.9.

Finally, de�ne Æ

s+1

= �, 
lose the �-a
tion and 
lose stage s+ 1.

2.6.6 Closing a �-a
tion

We distinguish the following two possibilities:

1. if, for some i, F

i

(�; s + 1) 6= F

i

(�; s), or E

i

(�; s + 1) 6= E

i

(�; s), or

�

i

(�; s+ 1) 6= �

i

(�; s), or �(�; s + 1) 6= �(�; s), or � instigates some R(�)

at some x at s + 1, or we apply the pro
edure of fun
tional updating;

then reset all nodes � with � � � , by making, for ea
h su
h � , x(�; s+1),

y

i

(�; s+1), 
(�; s+1) unde�ned, and setting all of F

i

(�; s+1), E

i

(�; s+1),

�

j

(�; s+1), and �

s+1

�

equal to ;. Let also �(�; s+1) = ; for every � su
h

that � � � and � is not an R

z

-node, for any z. Close stage s + 1 (see

2.6.7) and go to stage s + 2;

2. otherwise, move on to de�ne Æ

s+1

� (n + 2) if n + 1 < s+ 1.

2.6.7 Closing stage s+ 1

For every j 2 J , let

B

s+1

j

= (B

s

j

[

[

��Æ

s+1

F

j

(�; s+ 1))�

[

��Æ

s+1

E

j

(�; s+ 1):

Let also �

s+1


onsist of �

s

plus all the axioms added to � at stage s + 1, and

for every i; X with i 2 J , X 2 J, i =2 X and i �

W

X, let �

s+1

i;X


onsist of �

s

i;X

plus all the axioms added to �

i;X

at stage s+ 1.
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2.7 The veri�
ation

We begin with the following de�nition. For every z, let

Y

i

(z) =

[

s

Y

i

(z; s);

re
all that, for every s, Y

i

(z; s) � Y

i

(z; s + 1).

De�nition 2.12 For every n, let f

n

= lim inf

s

Æ

s

� n. (Here the lim inf is taken

with respe
t to the ordering � of the strings. We show below that in fa
t this

lim inf exists.)

Lemma 2.13 For every n:

1. f

n

is de�ned, and for almost all f

n

-true stages s, we have jÆ

s

j > jf

n

j;

2. f

n

instigates only �nitely many times;

3. for every j 2 J , F

j

(f

n

) = lim

s

F

j

(f

n

; s) exists and F

j

(f

n

) is �nite, and

F

j

(f

n

) � B

j

;

4. for every j 2 J , E

j

(f

n

) = lim

s

E

j

(f

n

; s) exists and is �nite;

5. 
(f

n

) = lim

s


(f

n

; s) and x(f

n

) = lim

s

x(f

n

; s) exist;

6. �(f

n

) = lim

s

�(f

n

; s) exists and is �nite;

7. for every z 2 �(f

n

), and for every i, Y

i

(z) is �nite.

Proof: The proof is by indu
tion on n.

Step 0: Clearly, f

0

= ;; for every j 2 J and s, F

j

(;; s) = E

j

(;; s) = �(;; s) = ;;

for every s > 0, jÆ

s

j > 0; 
(;; s) is unde�ned, sin
e ; is not a Q-node; x(;; s) is

always unde�ned; �nally, ; never instigates.

Step n + 1: Assume that f

n

exists, and f

n

satis�es 1. through 7., and assume

by indu
tion that for every � � f

n

and for every j 2 J , F

j

(�) = lim

s

F

j

(�; s),

E

j

(�) = lim

s

E

j

(�; s), �(�) = lim

s

�(�; s) exist and are �nite, and F

j

(�) � B

j

for every � � f

n

.

For every � � f

n

and every j, also set

F

j

�

=

[

���

F

j

(�)

and

E

j

�

=

[

���

E

j

(�)� F

j

�

:

Thus, let t

n

be the least stage su
h that
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(i) for every � � f

n

and every s � t

n

, if � � Æ

s

then jÆ

s

j > j� j;

(ii) for every s � t

n

and every � �

L

f

n

, � 6� Æ

s

;

(iii) no � � f

n

instigates after t

n

;

(iv) for every s � t

n

, every � � f

n

, and every j 2 J , F

j

(�) = F

j

(�; s),

E

j

(�) = E

j

(�; s), and �(�) = �(�; s).

Using these assumptions, we show below that f

n+1

exists and that we 
an

�nd a stage t

n+1

satisfying the above 
onditions (i) through (iv) for f

n+1

.

If, for some j 2 J , the values of lim

s

F

j

(f

n+1

; s) and lim

s

E

j

(f

n+1

; s) are not

expli
itly indi
ated in the proof below then it will immediately follow from the


onstru
tion that lim

s

F

j

(f

n+1

; s) = ; and lim

s

E

j

(f

n+1

; s) = ;.

By assumption (i), relative to t

n

, it is 
lear that f

n+1

exists. Let u

0

� t

n

be

the least f

n+1

-true stage su
h that for every u � u

0

, if � �

L

f

n+1

then � 6� Æ

u

.

As to the rest of the veri�
ation, we �rst need the following sublemmas.

Sublemma 1 If �(f

n+1

) exists and is �nite then there exists an f

n+1

-true stage

û su
h that for all s � û, f

n+1

does not instigate at s.

Proof: Let u

1

� u

0

be a stage su
h that, for every u � u

1

, �(f

n+1

) = �(f

n+1

; u).

It follows by 
onstru
tion that E

i

(f

n+1

; s) � E

i

(f

n+1

; s + 1), for every s � u

1

and i. We might indeed have � be
ause of some instigation a
tion initiated by

f

n+1

, whi
h may make Y

i

(z; t) larger at some later t for some z 2 �(f

n+1

), and

thus require E

i

(f

n+1

; s) � E

i

(f

n+1

; s+ 1) at some f

n+1

-true stage s > t.

Let �

0

� �

1

� � � � � �

k

be the list of all M-nodes � su
h that �b0 � f

n+1

.

We show by indu
tion on r � k that f

n+1

instigates R(�

r

) only �nitely many

times.

Thus, let R(�

r

) =M

a

r

;b

r

;


r

;�

r

;


r

, and assume by indu
tion on r that v

r

� u

1

be a stage su
h that for no s � v

r

and no � 2 f�

m

: m < ng does f

n+1

instigate

R(�). If v

0

� v

r

is the least stage at whi
h f

n+1

� Æ

v

0

, then for every s � v

0

and

i 2 J , we have that

E

i

(f

n+1

; s) � �

i

(�

r

; s);

therefore the elements of E

i

(f

n+1

; s) will not be used for de�ning �

�

r

axioms

at s. Moreover, we always reset when we move past �

r

b1. Thus there are

only �nitely many numbers x su
h that, at some stage s, we add an axiom

hx;�

i2J




r

(G

i

[H

i

)i into �

�

r

with (G

i

[H

i

) \ E

i

(f

n+1

; s) 6= ; for some s � v

r

.

Let x be any su
h number. If f

n+1

instigates R(�

r

) at x at any v � v

0

then

sin
e �

r

b0 � f

n+1

there must be a stage v

00

� v

0

su
h that f

n+1

� Æ

v

00

and

this instigation is no longer valid at v

00

, and thus at any u � v

00

, sin
e for

every u � v

00

, E

a

r

(f

n+1

; u) =2" �(�

r

; x; u) (if the instigation was via a

r

) or

E

b

r

(f

n+1

; u) =2" �(


r

; x; u) (if the instigation was via b

r

).

We 
an therefore 
on
lude that a stage û with the desired features exists.
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Sublemma 2 If �(f

n+1

) exists and is �nite, and z 2 �(f

n+1

), then for every

j, Y

j

(z) is �nite.

Proof: If s is su
h that s � û and z 2 �(f

n+1

; t) for every z 2 �(f

n+1

) and

t � s, then z 2 �(�b0; t) for all su
h z and t, and every R

z

-node � su
h that

f

n+1

�

L

�, and thus no z 2 �(f

n+1

) does a
tivate the R

z

-strategy any more

after stage s.

It follows that after stage s, we do not enumerate any element in any of

the sets Y

j

(z). Indeed, su
h an enumeration 
ould only be the 
onsequen
e of

appli
ations of the pro
edure of fun
tional updating, following some instigating

a
tion initiated by f

n+1

.

Sublemma 3 If �(f

n+1

) exists and is �nite, and û is as in Sublemma 1, then

for every s � û, t � s, and every j 2 J , F

j

(f

n+1

; s) � B

t

j

.

Proof: Let j 2 J be given. We distinguish the following 
ases.

f

n

is anM-node. If f

n+1

= f

n

b0 then the 
laim is trivially true by 
onstru
tion.

Thus assume that f

n+1

= f

n

b1. Sin
e û is a stage after whi
h f

n+1

does not

instigate any more (indeed, su
h an instigation would be the only possibility

whi
h would demand to extra
t from B

j

some element of F

j

(f

n+1

; s), for s � û),

we 
on
lude that F

j

(f

n+1

; s) � B

t

j

, for every t � s � û.

f

n

is a Q-node. The proof is similar to that for M-nodes.

f

n

is an L-node. The proof is similar to that for M-nodes.

f

n

is an R

z

-node. Trivial sin
e for every j 2 J , F

j

(f

n+1

) = ; if f

n+1

= f

n

b0;

or for every j 2 J , F

j

(f

n+1

) = Y

j

(x) = fy

j

x

g � B

j

if f

n+1

= f

n

b1.

We now 
ontinue the proof of Lemma 2.13, showing that f

n+1

satis�es 1.

through 7. of the lemma. We analyze several 
ases a

ording to the requirement

R(f

n+1

) assigned to f

n+1

.

Case 1: f

n

is an M-node: Assume R(f

n

) =M

a;b;
;�;	

.

If f

n+1

= f

n

b0 then for every s and i, F

i

(f

n+1

; s) = E

i

(f

n+1

; s) = ; and

x(f

n+1

; s) is unde�ned. In this 
ase �(f

n+1

; s) = ;.

Assume now that f

n+1

= f

n

b1, and suppose for de�niteness that R(f

n+1

)

is a-related. Then there exists a least stage v � u

0

su
h that at v we in-

stigate R(f

n

) at some x, and we de�ne x = x(f

n+1

; v), F

i

= F (f

n+1

; v) and

E

i

= E(f

n+1

; v) for some �nite sets F

i

and E

i

; moreover x = x(f

n+1

; s) for

every s � v.

Therefore,

�(f

n+1

) = fz =2 K : z =2

[

��f

n

�(�)& (9i 2 J )[Y

i

(z) \ F

i

6= ;℄g
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and this set is �nite sin
e we always 
hoose new elements for the various sets

Y

i

(z). Thus, elements that are put into Y

i

(z; s) at stages s > t are not in F

i

.

It follows by Sublemma 2 that Y

i

(z) is �nite for every z 2 �(f

n+1

); there-

fore F

i

(f

n+1

; s) and E

i

(f

n+1

; s) rea
h a limit, and these limits are �nite. By

Sublemma 3, F

i

(f

n+1

) � B

i

.

Let t � û be the least stage at whi
h all the limits relative to the auxiliary

fun
tions pertaining to f

n+1

are rea
hed. Consequently, at no f

n+1

-true stage

s > t do we 
lose stage s. Then t is the required stage t

n+1

.

Case 2: f

n

is an Q-node: Assume R(f

n

) = Q

j;a;�

. If s � t

n

is the least odd

stage s su
h that f

n

� Æ

s

then for every t � s and for every i 2 �(j),

y

i

(f

n

; t) = y

i

(f

n

; s) = y

i

(f

n

)

and, 
onsequently


(f

n

; t) = 
(f

n

; s) = 
(f

n

)

sin
e 
(f

n

; t) = y

j

(f

n

; t).

If f

n+1

= f

n

b1 then for every i 2 �(j), for every u � s,

F

i

(f

n+1

) = F

i

(f

n+1

; u) = fy

i

(f

n

)g

E

i

(f

n+1

) = E

i

(f

n+1

; u) = ;:

If f

n+1

= f

n

b0 then there exists a least stage u � t

n

su
h that for every

i 2 J we sele
t �nite sets F

i

su
h that 
 2 �

F

a

. We 
an argue as we have done

for the out
ome f

n

b1 forM-nodes to 
on
lude that �(f

n+1

) exists and is �nite,

and that F

i

(f

n+1

; s) and E

i

(f

n+1

; s) rea
h a limit and these limits are �nite.

Again, F

i

(f

n+1

) � B

i

.

Noti
e that y

i

(f

n

) 2 E

i

(f

n+1

) for every i 6� a.

From this we 
an infer the existen
e of the desired stage t

n+1

, and at no

f

n+1

-true stage s � t

n+1

do we 
lose stage s.

Case 3: f

n

is an L-node: Assume R(f

n

) = L

a;x;�

, and a < 1.

If f

n+1

= f

n

b1 then for every j 2 J ,

F

j

(f

n+1

) = E

j

(f

n+1

) = ;;

and the 
laim is trivial.

If f

n+1

= f

n

b0 then there exists a least stage u � t

n

su
h that for every

i 2 J , we sele
t �nite sets F

i

su
h that x 2 �

F

a

. Again, we 
an argue as

we have done for M-nodes to 
on
lude that �(f

n+1

) exists and is �nite. This,

together with Sublemma 3, whi
h tells us that we eventually stop fun
tional
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updating, implies that F

i

(f

n+1

; s) and E

i

(f

n+1

; s) rea
h a limit, and these limits

are �nite. Again, F

i

(f

n+1

) � B

i

.

From this we 
an infer the existen
e of the desired stage t

n+1

.

Case 4: f

n

is an R

z

-node.

If z 2 K

s

then f

n+1

= �b1 and for every j 2 J , F

j

(f

n+1

) = fy

j

z

g and

E

j

(f

n+1

) = ;. Thus the 
laim is trivial.

Otherwise, f

n+1

= �b0. Either �(f

n+1

) = ;, and again the 
laim is trivial;

or �(f

n+1

) = fzg.

In the latter 
ase, if at some last f

n+1

-true even stage s + 1 we have

z 2 �(f

n+1

; s+1)�

S

��f

n

�(�; s) (i.e. we a
tivate the R

z

-strategy through (ii))

and for every t � s+ 1, z 2 �(f

n+1

; t) then for every j 2 J ,

E

j

(f

n+1

) = Y

j

(z)

and this set is �nite by Sublemma 2.

There is a third possibility, i.e. by �-
losure, z is eventually in �(f

n+1

) be-


ause of some � �

L

f

n+1

. If the 
orresponding a
tion of �-
losure has taken

pla
e at some last stage t, then we have de�ned E

j

(f

n+1

; t) = E

j

(�; t), and,

for every s � t, we have E

j

(f

n+1

; s) = E

j

(f

n+1

; t). From this, the 
laim easily

follows.

De�nition 2.14 Let f =

S

n

f

n

. The in�nite path f is 
alled the true path.

Lemma 2.15 For every a; x;�, the requirement L

a;x;�

is satis�ed.

Proof: Let f

n

� f be su
h that R(f

n

) = L

a;x;�

, and assume that there exist

in�nitely many stages s su
h that x 2 �

A

a

[s℄. By Lemma 2.13, if at some stage

s � t

n

, we have that x 2 �

A

a

[s℄ then there exists a �nite set F su
h that for

every j 2 J , F

j

\ E

j

(f

n

) = ; and x 2 �

F

a

. Therefore, we are eventually able

to sele
t at some f

n

-true stage su
h a �nite set F so that F

j

(f

n

b0) � F

j

and

F

j

(f

n

b0) � B

j

by Lemma 2.13. Thus x 2 �

A

a

.

Lemma 2.16 For every a; b; 
;�;	, the requirement M

a;b;
;�;	

is satis�ed.

Proof: Let f

n

be su
h that R(f

n

) =M

a;b;
;�;	

.

If f

n+1

= f

n

b1 then it is immediate to see that x(f

n+1

) = lim

s

x(f

n+1

; s)

exists. If, for instan
e, f

n+1

is eventually a-related and thus F

j

(f

n+1

) � B

j

for

all j 2 J

b

by Lemma 2.13, then x(f

n+1

) 2 	

A

b

� �

A

a

sin
e

M

i2J

a

E

a

f

n+1

2" �(�

a

; x(f

n+1

)):

Otherwise, if f

n+1

is eventually b-related, a similar argument shows that

x(f

n+1

) 2 �

A

a

� 	

A

b

.
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It follows that M

a;b;
;�;	

is satis�ed.

Assume now that f

n+1

= f

n

b0. Let

� =

[

s�t

n

�

f

n

;s

where t

n

is as in the proof of Lemma 2.13. Let x

0

be su
h that for every x � x

0

,

L

a;x;�

and L

b;x;	

have lower priority than M

a;b;
;�;	

. We 
laim that

�

A

a

= 	

A

b

) (8x � x

0

)[�

A

a

(x) = �

A




(x)℄:

Thus, assume that Z = �

A

a

= 	

A

b

. We �rst show that if x 2 Z then

x 2 �

A




. To this end, it is enough to observe that if x 2 Z then there exists a

stage t su
h that for every s � t, x 2 �

A

a

[s℄\	

A

b

[s℄. Then for every j 2 J

a

[J

b

,

lim

s

G

j

(f

n

; x; s) = G(f

n

; x) and lim

s

H

j

(f

n

; x; s) = H(f

n

; x)

exist (the fa
t that, by Lemma 2.15, A

a

and A

b

are of low e-degrees guarantees

that our 
hoi
e of G

j

(f

n

; x; s) and H

j

(f

n

; x; s) as the least su
h �nite subsets

stabilizes in the limit), and G

j

(f

n

; x; s) [H

j

(f

n

; x; s) � B

j

, giving

M

j2J




(G

j

(f

n

; x) [H

j

(f

n

; x)) � A




;

hen
e x 2 �

A




.

Assume now that x � x

0

and x 2 �

A




� Z, e.g. x =2 �

A

a

. Let � � f be a

node su
h that R(�) = L

a;�;x

. Sin
e x =2 �

A

a

, by 
onstru
tion the extra
tion

a
tivity performed on behalf of the requirements R(�) with f

n

� � � � (dire
tly,

or by a
tivating R

z

, via injury of R(�)), interferes with the strategy for �xing

x 2 �

A

a

on behalf of R(�). Then there is a least � that instigates R(f

n

) at x.

Hen
e � will eventually instigate R(f

n

) at some su
h x, and the 
onstru
tion

would make f

n+1

= f

n

b1, 
ontradi
tion.

Lemma 2.17 For every j; a;�, the requirement Q

j;a;�

is satis�ed.

Proof: We need to show that if j 6� a then B

j

6= �

A

a

. Let f

n

be su
h that

R(f

n

) = Q

j;a;�

. By Lemma 2.13, 
 = lim

s


(f

n

; s) and lim y

i

(f

n

; s) exist.

If 
 =2 �

A

a

then f

n+1

= f

n

b1 and 
 2 F

j

(f

n+1

) � B

j

; hen
e 
 2 B

j

� �

A

a

.

If 
 2 �

A

a

then f

n+1

= f

n

b0 and E

j

(f

n+1

) = f
g, hen
e 
 2 �

A

a

�B

j

.

Lemma 2.18 For ea
h z, the requirement R

z

is satis�ed.
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Proof: We need to show that K = �

A

J

.

(�) Let z 2 K; then there exists a stage t su
h that for every s � t, z 2 K

s

;

then at some even stage s, we enumerate an axiom hz;

L

j2J

fy

j

z

gi into �

s+1

,

and the 
onstru
tion ensures that for every j, y

j

z

2 B

s

j

. Hen
e z 2 �

A

J

.

(�) Assume that z =2 K, and let f

n

be su
h that R(f

n

) = R

z

; hen
e

f

n+1

= f

n

b0. Let � � f

n+1

be the unique string su
h that z 2 �(�) (re
all

that f

n

b0 � f and if z =2 �(�) for any � � f

n

, then the 
onstru
tion pla
es

z 2 �(f

n

b0)). Then there exists some J � J, J 6= ;, su
h that y

j

x

2 E

j

(�), for

all j 2 J where y

j

x

is the original j-tra
e for x. Thus x =2 �

A

J

.

Lemma 2.19 For every j and X, the requirement J

j;X

is satis�ed.

Proof: For every j and X su
h that j =2 X and j �

W

X, we need to show that

B

j

= �

A

X

j;X

. It is 
lear that whenever we enumerate an element y in some B

j

then the pro
edure of fun
tional updating will (at least temporarily) enumerate

y in �

A

X

j;X

.

Noti
e that if y 2 B

j

is a Q-witness then, in fa
t, at some stage s we add

an axiom hy;

L

i2X

fy

i

gi into �

j;X

, and y 2 B

j

if and only if for every i 2 X,

y

i

2 B

i

(see the �rst bullet of De�nition 2.7), thus y 2 �

A

X

j;X

. On the other hand,

if y =2 B

j

then by 1(b) of 2.6.2 and by Lemma 2.5, y =2 �

A

X

j;X

.

If y has been enumerated into B

j

on behalf of R

z

at some even stage then

there is some z su
h that y 2 Y

j

(z). It is immediate to 
he
k that if z 2 K

then y 2 B

j

\ �

A

X

j;X

.

Thus, assume that z =2 K. Let f

n

� f be the R

z

-node along the true

path, and 
onsider the unique � � f

n

b0 su
h that z 2 �(�). Suppose �rst that

y 2 B

j

� �

A

X

j;X

. If our extra
tion a
tivity, a
tivated at some last stage s by R

z

,

does not guarantee that y =2 B

j

, then y is involved in a pro
edure of fun
tional

updating whi
h yields y 2 �

A

X

j;X

, 
ontradi
tion.

Finally, assume that y 2 �

A

X

j;X

�B

j

. Let us 
onsider the following possibilities:

1. � = f

n

b0; at some last � -true even stage s + 1, z 2 �(�; s + 1) � �(�; s);

and for every t � s, z 2 �(�; t). In this 
ase, Y

i

(z) � E

i

(�) for every i,

hen
e y =2 �

A

X

j;X

;

2. � � f

n

b0: We must distinguish the following three 
ases:

� If R(�

�

) = L

a;x;�

with a < 1, then X � J

a

and j 6� a. On the other

hand, we have that j � a sin
e j �

W

X, 
ontradi
tion.

� If R(�

�

) = M

a;b;
;�;	

and, say, � is permanently b-related then

j 2 J

a

� J




and X � J

b

but then j � 
, 
ontradi
tion.

� If R(�

�

) = Q

i;Y;�

, with i =2 Y , then X � Y , but then i =2 X.
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In any of these 
ases, we see that there exists i 2 X su
h that E

i

(�) 6= ;.

By Lemma 2.13, let t be the last stage su
h that E

j

(�; t + 1) 6= E

j

(�; t).

Then y 2 Y

j

(z; t). If hy;

L

k2X

G

k

i 2 �

j;X

then G

k

� Y

k

(z; t) � E

k

(�).

Hen
e y =2 �

A

X

j;X

, 
ontradi
tion.

3. There is a last stage s at whi
h we de�ne z 2 �(f

n

b0; s) by �-
losure,

be
ause of some � �

L

f

n

, and for every t � s, z 2 �(f

n

b0; t). Then for

every t � s and for every i, E

i

(f

n+1

; t) = E

i

(�; s), and E

i

(�; s) \ B

i

= ;,

and we 
an argue as in the pre
eding 
ase to 
on
lude that y =2 �

A

X

j;X

,


ontradi
tion.
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