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Abstract

We show that every finite lattice is embeddable into the X9 enumer-
ation degrees via a lattice-theoretic embedding which preserves 0 and 1.

1 Introduction

Informally, a set A is enumeration reducible to a set B if there is some effective
procedure for enumerating A, given any enumeration of B. This informal notion
of reducibility can be formalized using the notion of enumeration operator. Let
{W,}iew be the standard listing of the computably enumerable (c.e.) sets. With
every c.e. set W;, one can associate a mapping ®; : P(w) — P(w) (where P(w)
is the power set of the set of natural numbers w) by letting, for every B,

®F = {z: (3u)[(x,u) € W; & D, C B]}

(where (-, -) is the usual pairing function, providing a computable one-one bi-
jection of w? onto w; and D, is the finite set with canonical index u, i.e. D,
denotes the finite set D for which u = )" ., 2%; see e.g. [S0a87]. In the follow-
ing, finite sets will be often identified with their canonical indices). A mapping
¢ : P(w) — P(w) is called an enumeration operator (or simply an e-operator)
if & = &, for some 1.

Given sets of numbers A and B, we say that A is enumeration reducible (or
simply e-reducible) to B if A = ®P for some e-operator ®. This reducibility is
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easily seen to be a partial preordering relation, which will be denoted by the
symbol <,.

The degree structure induced by <. is the structure of the enumeration
degrees (simply e-degrees), denoted by ©.. The e-degree of a set X will be
denoted by deg,(X). D, is in fact an upper semilattice with least element 0.,
with 0, = deg,(W) where W is any c.e. set. It is known (Gutteridge, see also
[Co082]) that ©, does not have minimal elements (although the structure is
not dense, see [Coo87]; Calhoun and Slaman, [CS96)), have shown that there
exist II3 e-degrees a < b such that b is a minimal cover of a). An important
substructure of D, is given by the X9 e-degrees, i.e. the e-degrees of the X9 sets.
Let & denote the structure of the e-degrees of the X9 sets. Cooper ([Coo84])
shows that & = ©,(<, 0.) where 0, = deg,(K), K being the complement of the
halting set (for a definition of the jump operation on the e-degrees, see [Coo84|
and [MC85]). Cooper ([Coo84]) shows that & is dense.

An interesting feature of the e-degrees is that they provide a wider context
for the Turing degrees. Indeed, let ®; denote the structure of the Turing
degrees. Omne can define an embedding ¢ : ®7 — ®, which is 0-, U- and
jump-preserving (simply define ¢(deg,(A)) = deg,(ca) where deg,(A) and cy
denote the Turing degree and the characteristic function of A, respectively). It
is interesting to notice that the c.e. Turing degrees (whose structure we denote
by fR) are isomorphic, under ¢, to the ITY e-degrees, as one can prove (see for
instance [Coo84]) that for every e-degree a,

a € range(r [ R) & a € I1).

Say that an e-degree a is low if ' < 0). Cooper and McEvoy (see [MC85])
give the following useful characterization of the low e-degrees.

Theorem 1.1 ([MCB85]) Given an e-degree a, the following are equivalent:
1. a is low;
2. for every set B, deg,(B) <a= B e AY;

3. there ewists a set A € a, together with a X9 approvimation {A*}.c, to
A (i.e. a uniformly computable sequence of computable sets such that
A= {z: (3t)(Vs > t)[x € A*]}) such that, for every e,x, lim, @ (z)
er1sts.

The main sources for notation and terminology are [Odi89], [Rog67], [Soa87].
If A is an expression and s is a stage then (as in [Soa87], p. 315), the symbol
Als| denotes the evaluation of the expression A at stage s. If {W}¢, is a com-
putable approximation to W; via finite sets (in the sense of [Soa87], p. 18), then
we get a corresponding computable approximation {®f}sc, to the e-operator



®,. If ¥ is an e-operator with computable approximation {W}sc,, and {X*} e,
is a 39 approximation to a set X, then {¥*[s]|},c, denotes the ¥ approxima-
tion to the set ¥ described in Proposition 5 of [MCS85]: first, for every finite
set D C X* define t(D, s) to be the least ¢ < s for which D C X*, for every
w such that ¢t < u < s; then, if x € U,*", let D(x,s) be the least finite set D
such that (x, D) € U, and D C X? and t(D,s) < t(D', s) for every other finite
set D' with the same property (let D(z,s) be undefined if z ¢ ¥,*"). Finally
define by induction ¥*[0] = () and

+1

U s+1)={r eV, " :D(x,s+1)=D(x,s)}.

(Notice that if there are axioms (z, F*) € WU, such that, for cofinitely many s,
F3 C X* but, for no s, F* C X, one could have x € U, for cofinitely many
s, but x ¢ U~: The definition of {¥*[s]},c, avoids this problem. Notice also
that the sequence {W*[s]}.e, is uniform in the given sequences {V¥,},c, and

{X}sew)

1.1 The embeddability question

One of the most important open problems concerning the c.e. Turing degrees
is the so-called Embeddability Question, i.e. the question of which finite lattices
can be embedded into PR. We briefly review the existing literature concerning
this question. In the following, by an embedding of a lattice £ into an upper
semilattice L we shall mean a 1-1 mapping f from £ into 4, preserving V and A
(hence for every a,b € £, h(a) Ah(b) must exist in 4, and h(aAb) = h(a) Ah(D)).

Thomason ([Tho71]) proved that every finite distributive lattice is embed-
dable into SR. Lachlan (unpublished) and Lerman (unpublished) showed that
the countable atomless Boolean algebra is embeddable into fR via a 0-preserving
embedding (see for instance [Soa87] for a proof of this theorem). This implies
that every countable distributive lattice can be embedded into R, preserving 0.
On the other hand, Ambos-Spies ([AS80]) proved that the countable atomless
Boolean algebra is embeddable into R via a 1-preserving embedding. Thus ev-
ery countable distributive lattice is so embeddable into fR. Lachlan ([Lac72])
showed also that the two five-element nondistributive lattices My and N5 are
embeddable into R (hence R is not a distributive upper semilattice).

As to negative results, Lachlan and Soare ([LS80]) proved that the lattice
Sg cannot be embedded into R. It was conjectured for some years (Downey’s
conjecture) that the only obstacle to embeddability should be the existence of a
critical triple a, b, ¢ in the lattice (i.e. a triple of pairwise incomparable elements
a,b,csuch that aUc=aUb and bNc < a), together with a pair p, ¢ such that
b<pngqg<bUc. However, Lempp and Lerman (see [LLI7]) showed that there
exists a finite lattice (called Lgy in [LLI7]) without critical triples that is not
embeddable into fR.



As to 0, 1-preserving embeddings, the question as to which finite distributive
lattices can be embedded into R has been settled. Ambos-Spies, Lempp and
Lerman ([ASLL94|) showed that a finite distributive lattice can be embedded
into R preserving 0,1 if and only if the lattice contains a join-irreducible non-
cappable element. This theorem supersedes several known nonembeddability
results, including the famous Lachlan Nondiamond Theorem ([Lac66]), stating
that the diamond (i.e. the four-element Boolean algebra) cannot be embedded
into R preserving 0, 1.

What is the situation for &7 Cooper (see [AL99]) asks for a characterization
of the lattices which are embeddable in &. Useful information is provided by
the following observation due to Cooper and McEvoy:

Theorem 1.2 ([MC85]) Ifa,b are IIY e-degrees and a is low then
(Ve)[e <a,b= (FecIlf)c <e<a,b].

Thus, it £ is a lattice and h : £ — PR is a lattice theoretic embedding
such that range(h) contains only low Turing degrees then the composition
toh: £ — G is a lattice theoretic embedding as well.

Since every lattice which is known to be embeddable into SR is known to
embed in fact into the low Turing degrees, one concludes that every lattice which
is known to be embeddable into R is also embeddable into &. For instance, it
follows by the above mentioned results for SR that every countable distributive
lattice is embeddable into &, and M5 and N5 are embeddable into &. On the
other hand, Nies and Sorbi ([NS99]) showed that Sg can be embedded into &,
thus in fact the class of finite lattices that are embeddable into & properly
extends that of the finite lattices that are known to be embeddable into fR.

If one is interested in 0, 1-preserving embeddings, the starting point is the
following result, proved by Ahmad, see [Ahm91]:

Theorem 1.3 The diamond can be embedded into & preserving 0, 1.

1.2 The theorem

We extend Ahmad’s result to show that indeed every finite lattice is embeddable
into &, preserving 0, 1. As far as finite lattices are concerned, this answers the
above mentioned question raised by Cooper.

Theorem 1.4 Every finite lattice is embeddable into the ¥3 enumeration de-
grees via an embedding which preserves 0 and 1. Moreover, the range of the
embedding contains only low e-degrees, except for the image of 1.

The following sections are devoted to the proof of this theorem.



2 The proof

Let £ = (L, V, A, 0,1, <) be a finite lattice and let J be the set of join-irreducible
elements of £. Define

I={JC T (Mijjel&i<j=ie}
For every a € L, let J, ={j € J : j < a}: thus J, € J. Notice the following
Lemma 2.1 For everya € L, a=\/J,.

Proof: Clearly \/ J, < a. To show the converse, it is clear that in a finite lattice
every element is the join of some set of join-irreducible elements. Thus, let
J C J be such that a =\/ J; then J C J,, and therefore a <'\/ J,. O

Lemma 2.2 For every a,b,c € L, if a ANb = c then
JoN Ty = J..

Proof: If anb = c then clearly J. C .J, and .J. C .J,. On the other hand, suppose
that j € J,NJy. Then j < a,b, so 7 < c and thus j € J.. U

In the construction below, for every j € J we define a X9 set B; (with By = )
and B; C w/(= {x : (Qy)[x = (j,y)]} if j > 0) through X approximations
{B;f : s € w} where Bj is defined at step s of the construction. For every a € L,
we let A, = @, Bj (we think of J as a subset of w; thus if X C 7 then
it is convenient to identify @,y Bi = U;cx By; accordingly, if {F": i€ X}
where X C J is a family of sets and where F* C w"' for every ¢ € X, then we
let @,y F' = Uex ). Given X C 7, we also let Ay = @, B;. If F is any
set of numbers then we let FV = F Nw/.

We observe that each A, and each Ay are ¥ sets, with ¥ approximations
determined by the XY approximations to the sets B; with j € J. Let also
K ={r:2 ¢ K°&ua < s} where {K* : s € w} is some nondecreasing
computable sequence of finite sets whose union is K.

2.1 The requirements

For all a,b,c € L, all j € J and all X € J, and for all pairs of e-operators ®, ¥,
fix the requirements

Mapeow: aANb=c=[Pd =Tl = @A = Ag‘,i,c,@,‘y]
Qjas j & a= Bj# &%
Losa: a < 1= lim, &, () exists
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where I'; x and A, ¢ are e-operators to be constructed.
If 1 is join-reducible in £ then we also have for each z € w the requirement

R.: K(z) =1(z)
where [ is an e-operator to be constructed. (Of course, I' must be constructed

uniformly in z, but for technical reasons, we spread its construction over the
entire tree of strategies.)

2.1.1 The embedding

Define k: L — G,
~f deg.(A4,) ifa#1
wle) = { 0, otherwise

We now show that if all the requirements are satisfied then « is a lattice-theoretic
embedding, preserving 0 and 1.

(1) If a < b then J, C Jy, and thus A, <, Ay;

(2) assume that a A b = ¢; then A, <, A, and A, <, A, by (1); on the other
hand, if Z7 <, A, and Z <, A, then there exist e-operators ®, ¥ such that
Z = &4« = U therefore by satisfaction of the requirement M, o v
we have that Z <, A., thus getting

deg,(Aq) N deg,(Ap) = deg.(Ac)
as desired;
(3) assume that a V b = ¢; then A, <, A. and A, <, A, by (1); on the other
hand, for every j € 7,
jed. = j<aVvh
= j<\VLv\ir=\VX
where X = J, U Jy, and X € J; hence A; <, Ax by satisfaction of the

requirement J; x. In conclusion, A, <, Ax =, A, © A,. Notice that this
is true also if ¢ = 1; indeed, if ¢ is join-irreducible then a =1 or b = 1.

Items (2) and (3) above show that x is a lattice theoretic homomorphism. We
now proceed with showing that x is 1 — 1 and preserves 0 and 1:

(4) assume that a € b; then by Lemma 2.1, there exists some j € .J, such that
J £ b; hence B; £, Ay by satisfaction of the requirements Qj; ¢; it follows
that A, €. Ayp;

(5) we have x(0) = deg,(Ag) = deg, (By) = deg,(0) = 0., thus x preserves 0;

(6) if 1 is join-irreducible then trivially (1) = 0’; otherwise,  is 1-preserving
by satisfaction of the requirements R,.



2.2 Strategies in isolation

We briefly explain our plan for satisfying the requirements.

Remark 2.3 In the following, we will make the following assumptions when
considering a requirement:

1. when dealing with a requirement 7; x, we will always assume that j ¢ X
(otherwise satisfaction of the requirement is automatic by our definition
of Ax>,

2. when dealing with a requirement Q; , ¢, we will always assume that j € a;

3. when dealing with an L-requirement £, , o, we will always assume that
a <1;

4. finally, when dealing with an M-requirement M, . ¢ v, we will assume
that c = aAband a|b (if @ < bor b < a then the requirement is automat-
ically satisfied by our definition of A, and Ay).

2.2.1 The J-requirements

Consider a requirement J; x. If we need to enumerate a number x into B; then,
as we also need o € T/, we select numbers y! € w' (with yJ = ), we add an
axiom (z, @, x{y.}) into I'; x, and for every i € X, we enumerate y’, into B;.
On the other hand, if i € X and i <\/Y with i ¢ Y and Y € J, then we add
also the axiom (y%, @,y {yL}) into I';y, and enumerate each y¥ into By for
every k € Y, as we must get 3’ € Ff v; we must proceed in this way, until all
the relevant e-operators I'; y are updated. We call this procedure the functional
updating procedure.
We are therefore led to the following definition.

Definition 2.4 Given any j € J, let 37 be the least set 3 of pairs (7,Y) with
i€ J,Y €3,i¢Y such that:

e (j,Y) € g for every Y such that j ¢ Y and j <\/Y;

e if (1,Y) € f then (i,Y') € B for every pair (i/,Y’) such that i/ € Y,
7 ¢y andi <\Y'.

Let also 3(j) = {i:i=jor (Fk,Y)[(k,Y) € pl&ieY]}.

The set 37 tells us which e-operators T';y must be updated, following the
enumeration of a number in B;. The set §(j) tells us which sets B; are involved
in this updating procedure via enumeration of some number in B;.



Since a number x may be enumerated into and extracted from some B;
finitely often, the operation of appointing new numbers v’ with ¢ € J may be
repeated several times. For each ¢ we thus end up appointing finitely many
numbers y..

The construction will ensure that, whenever we need to extract « from B;
at some given stage, we are able to select some set Z C J such that extrac-
tion of sufficiently many numbers y’ from B; for each i € Z not only gives
I'; x-rectification at z, i.e. v ¢ Fﬁj‘(, but automatically provides all needed rec-
tifications of all e-operators which are involved in this chain of extractions.

2.2.2 The M-requirements

Consider the requirement M, .sw. The strategy here basically consists in
defining an e-operator A, . ¢,¢ such that if Z = PAe = U4 then Z = Af‘g‘cﬁb“y;
stage by stage, if x € ®%1e N ¥ via, say, axioms (z, Dicy, GY € @ and
(7, Dyey, H'Y) € ¥ where G* C B; for every i € J, and H* C B; for every
i € Jy then we define a suitable axiom (, ;.. G'UH" € Aupesu-

The extraction activity of both lower-priority R.- and lower-priority Q-
requirements may interfere with this strategy in that, at some given stage, it may
entail some & being extracted from Z without entailing x being extracted from
Af,'é,c,@,w' If for instance z is extracted from ®4« then, since = € A:?,Z,c,@,qn there
is no a priori obstacle to restraining € U4, following, if needed, reinsertion of
x € U/ via enumeration or re-enumeration of suitable sets F in B; for every
1 € Jp. We rely therefore on the possibility of restraining some such number x
in either ®4« or in ¥4, at the same time keeping such a number = out of the
other set, thus getting x € @4« — U4 or 7 € YA — PAa,

More details on this action instigated by the extraction activity of lower-
priority R.- or other lower-priority Q-requirements will be given in 2.3.2.

On the other hand, the lowness of A, and A, will ensure that lim, ®4« (x)[s]
and lim, W4 (2)[s] exist. We therefore distinguish two possible outcomes of our
strategy: Either we are able to force a permanent disagreement x € @4« — U
or x € ¥ — 4« for some x; or each such attempt fails, giving Z = Afj},c,@,\ﬂ
if Z =@ = U,

2.2.3 The Q-requirements
Consider Q;, . The strategy for satisfying the requirement is the following:

1. choose a witness c; enumerate ¢ € B; and apply the procedure of func-
tional updating (thus selecting suitable numbers y’ with v/ = ¢);

2. await ¢ € ®Aa;



3. restrain ¢ € ®%« via restraining some finite sets £ C B; for i € Jy;

4. extract y’ from B; for every i such that i ¢ J,.

We observe that the extractions in 4. not only provide ¢ ¢ Bj;, since j £ a,
but also ensure automatic rectifications of all relevant e-operators, as can be
seen easily from the following lemma:

Lemma 2.5 For every (i,Y) € 37, if i £ a then there exists y € Y such that
y £ a.

Proof: This is certainly true of all pairs (7,Y) € 47. Suppose now that this fails
for a pair (7,Y) € 87 with i £ a; then y < a for every y € Y, thus /Y < a,
and so 7 < a, contradiction.

2.2.4 The L-requirements

Consider the requirement L£,, ¢ with a < 1. The strategy for this simply
consists in waiting for finite sets F/ with j € J, such that x € ®, and
restraining such a finite set F* in A,.

2.2.5 The R,-requirements

If z € K then we select j-traces y/ and we enumerate the axiom (z, @, ,{y/})
into ' together with enumerating ¢/ into B; so as to get z € ['"7. For every
pair i € J and X € J such that i ¢ X and ¢ < \/ X, add also the axiom
<y§:7 @jex{yg}> nto Fi,X'

If and when z leaves K, we extract all the numbers y/ from the respective
sets B;.

2.3 Combining the strategies

We examine here some of the main problems that arise from combining the
strategies.

2.3.1 R, injuring other strategies

Suppose that z leaves K and we still need to extract z from 'Y at s (i.e. we
activate the R ,-strategy. We recall that the R ,-strategy can be activated only
at even stages). For any given j, it is, of course, possible that some y/ might have
been extracted and inserted (for instance, due to the effects of the instigation
actions explained later, or due to strategies for lowness) several times in and
out of Bj, entailing corresponding procedures of functional updating. Let Y7(z)
be the set of elements which are selected during this process and enumerated



at some time in B;. It is clear that the extraction of yJ might not be enough
for rectifying all the relevant e-operators I'; x. This rectification process would
be, however, achieved if we could extract all of Y7(z) from Bj, for every j.

These extractions might, however, interfere with the restraining activity of
some higher-priority requirements. More precisely, let P be a higher priority
requirement on behalf of which we want to restrain a finite set, say F'* C A,,
and there are elements j € J, such that Y7(2)NF7 # (): We say in this case that
R injures P. Then we choose the highest-priority requirement which is injured
in this way; for every j € J — J,, we define £/ = Y7 (z) (for the current value of
Y7(z) at the current stage), we extract E’ from Bj, and we start the procedure
of functional updating on behalf of those numbers which are restrained in A, by
P but might have lost some of their traces due to the above extraction activity.
We notice that, following this updating procedure, some new traces might be
appointed, and consequently some Y7 (z) might become larger without, however,
modifying our previous choice of E7.

This action satisfies R, (since we will see that we can always assume that
J — J, #0). Moreover, it will be shown that at the same time it guarantees
automatic rectification of all the operators involved in the required chain of
extractions. The reason for this is roughly the following. Suppose that j <\/ X
and y is extracted from By, since y € Y7(z) and Y/ (z)(= E’) is extracted from
B;. If we do not achieve I'; x —rectification relatively to y (i.e. y is not extracted
from F;g(), then this is because the restraining activity required by the strategy
for meeting P (i.e. the highest-priority requirement which is injured by R),
prevents us from extracting some Y*(z), with ¢ € X. But this can not be the
case. Indeed, assume that P prevents I'; x—correction. If P = L, ., with
a < 1, then we have that X C J, and j € a, but also j < a since j < \/ X, thus
getting a contradiction. On the other hand, if P = M, ;¢ ¢ and P requires,
say, restraining in A,, then we have that j € J, — J. and X C J,; but then
j < ¢, again a contradiction. Finally, if P = Q;y.¢, with i ¢ Y, then X C Y,
but then i ¢ X, contrary to the assumption that P prevents us from rectifying
[ (y).

Finally, we observe that each P may be injured only finitely many times by
the requirements R, since, as we shall see, the restraining activity of P only
refers to some finite set, which therefore can contain only finitely many traces
relative to finitely many numbers z.

2.3.2 Instigation

We now briefly look at another aspect of the interaction between an M-
requirement with R, or between an M-requirement and a Q- requirement of
lower priority. Let us consider M = Mg, .4 v, and let P be either R, or a
OQ-requirement.
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There are no a priori problems, of course, if the strategy for M has a finitary
outcome corresponding to some x such that ®4e(x) #£ U4t (z). In this case R,
interacts with M just via the injury process described in the previous section.

What happens if P assumes that &4« = ¥4? Suppose that P wants to
extract E7 from B; for some j € J. It might be that this extraction causes x
to leave ®4« N U4 for some x but not  leaving Af‘z‘cﬁb“y. We say in this case
that P instigates the M-strategy. If, for instance, o leaves ®“« then we have
the opportunity, possibly at the expense of re-enumerating (with a consequent
functional updating process) numbers in A, of restraining x € ®4, without
interfering with the effects of the extractions from A, which give x ¢ ®4«;
similarly, if o leaves ¥4 then we have the opportunity of restraining x € ®4s.
(If x leaves ®“« U U then we simply choose which side we want to restrain.)

The effects of this instigation process remain valid until x re-enters @4« W4,

2.4 The tree of outcomes

Let T = 2<% be the tree of outcomes. We assume throughout a requirement
assignment function R, effectively assigning to each node o of the tree, a require-
ment R(o) such that along any path of T', each requirement is assigned exactly
once, where R(0) is either an R ,-, or a Q-requirement, or an M-requirement,
or an L-requirement. Finally we assume also that if ¢ C 7 then R(o) has higher
priority than R(7).

Notation and terminology relative to strings are standard and can be found
e.g. in [Soa87]. For clarity, we use < and < for the nonstrict and strict lexico-
graphical ordering on a tree 1" C 2<%, respectively; and o <, 7 to denote o < 7
but o 7.

Let {€2},er, jew be a computable partition of the odd numbers into infinite
computable sets, and let {n/};.c, be a computable partition of the even num-
bers such that &, 7/ C w’ for every j,0,z. Finally, if 0 € T and |o| > 0 then
let o” =0 [ (lo| =1).

2.5 Description of the construction along the true path

We explain in this section the meaning of the main auxiliary functions appear-
ing in the construction, and we give a little more insight into the way in which
the different strategies are combined along the true path f, with a brief de-
scription of some of their outcomes. The following refers to some stage s of
the construction; consequently, the various auxiliary functions are understood
to be evaluated at stage s; also we assume that by stage s, the higher-priority
requirements have, so to speak, already settled down.

The strategies, directly or via instigation, may enumerate and restrain, or
extract elements from, B; with j € J. If o is the outcome at stage s of the
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strategy R(o) located at o then, for every j € J, we use the symbol F7 (o0 0)
to denote the value of some finite set which R(c) wants to restrain in Bj;, and
we use the symbol E’(070) to denote the value of some finite set which R(c)
wants to extract from B;.

The R,-nodes. For each z, there is an R,-node devoted to coding z in '4x.

If z€ K then 071 C f and F/(071) = {y/}. If 2 ¢ K then we look (at
even stages) for an opportunity to extract the set Y7(z) from B; for j € J.
There might be possible conflicts (through the injury mechanism, described in
2.3.1) with F7(7), with 7 C o (i.e. Y7(2) N FY(7) # () for some j, as we also
want to restrain at 7 some finite sets F7(7) for, say, j € J, for some a. We
choose the least such 7; we define E'(7) = Y'(2), and we extract E'(7) from B;
for each 1 € J — J,; we apply the procedure of functional updating in relation
to those numbers y € Y7(z) N F7(7) for which new traces are needed because
of this extraction; we put z into A(7). (Thus, A(7) records the set of numbers
z ¢ K which 7 takes the responsibility of keeping out of ['Ax. Since FY(7) is
eventually finite, it follows that A(7) is eventually finite as well.) On the other
hand, if no conflict arises with any 7 C o then we have 0”0 C f and we let
Ei(670) = Y7(z). In this case, we let A\(670) = {z}. Notice that if z ¢ K then
there is exactly one node 7 along f such that z € A(7).

The instigation process. Let 770 C o, and assume that R(7) = Mg cow-
Then, according to 2.3.2, o instigates R(7) if we have, for some x, X and j € X,

@ EY leaves @ B; = x leaves ®* N U,
jeX jeX

(where B7 = U -, B/ (p)—U,c, F7(p)) but  does not leave Afe. If 7 is the least
node for which R(7) is instigated by o at the current stage then we accordingly
define x(771), E7(771), F’(771) where the sets E’(771) are designed to keep
2(771) out of @4« (¥4 respectively), whereas the sets F/(771) are designed
to keep x(71) in U (d4e respectively).

Following this instigation process we close step s and we move to next stage
(thus, at each stage, we have at most one instigation).

We now consider the effects of the instigation for R(7) at the next 7-true
stage. If f is the true path then, since 771 ¢ f, none of these instigations has
a permanent effect. We must argue in this case that

PAe = Ao = pAe = AAe,

To this end, assume that &4« = U4 and, for instance, v ¢ &4« but x € Ae.
To show that this is not possible, we use the fact that we eventually make A,
low. Indeed, if p C f is such that 770 C p and R(p) = L, ;¢ then, when acting
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at p, we look for an opportunity of restraining # € ®4« via some finite sets
FI(p™0) for j € J, such that F7(p~0) N EJ = . If this is not possible then we
can argue that some o’ with 770 C ¢’ C p can permanently instigate R(7). But
771 ¢ f and this implies that eventually x € ®4«, contradiction.

The restraints are eventually permanent. We will need to show that
Fi(g) C Bj for every 0 C f and j € J. After defining F’(o) (for a given
j), if we extract some x € F7(o) from B; at some later stage then this can
happen only because o instigates some R(7) with 770 C 0. Indeed, o might
instigate R(7) in order to create a diagonalization at some y, i.e. y € ®4e — Y
or y € U — d4a and require reinsertion of elements of E'(c) into some B;,
which are i-traces for some z ¢ K so that, at some subsequent even stage,
the requirement R, facing the impossibility of extracting all of E*(¢) from B;,
might have no chance of achieving ['-rectification for z other than extracting
elements that are in F7 (o).

Notice that, because of these reinsertions and consequent functional updat-
ing procedures, we might have to provide new larger definitions of the sets Y*(z),
and consequently, new definitions of E*(c) and F7(c), at subsequent o -true
stages.

We shall show that this can happen only finitely many times. Indeed, there
are only finitely many axioms (y, G) € A, such that G contains elements from
the sets E'(0). First of all, notice that we define axioms (y,G) € A, only at
770-true stages. At these stages, we may assume that the elements of E(o),
which have been reinserted in B; in order to create a diagonalization and win
R(7), will be extracted again (on behalf of R(0), since the diagonalization has
failed), so that no new axiom enumerated in A, will use these numbers. If
this is so, then by our lowness strategy, we can argue as before that ¢ cannot
instigate infinitely many times on behalf of the same number y and therefore
o can instigate only finitely many times. How do we achieve that A, -axioms
defined when working below 770 avoid elements from E?(c)? This task is taken
care of by the auxiliary function p'(7): When we define and extract E*(o) from
B;, we put the elements of E‘(c) into the sets u(p), for every p C o (thus
including £*(7)) and we demand that possible future A ,-axioms avoid elements
from u'(p). Of course, when the outcome at 7 is 1, then we extract from u'(p),
for every p C 7, all the numbers that we fix in B;: The reason for this is that
if p0 C 7 and p is also an M-node, then, at 7~ 1-true stages s at which we
reinsert elements from E(o) into B;, A ,-axioms must be allowed to use these
elements.

13



2.6 The construction

We assume, of course, that 1 is join-reducible in £. (Otherwise, we can simply
add an element x to £ incomparable to all elements y € L — {0,1}.) For every
o€ T and j € J, at step s we use the following notation: We let

Fi(s) = J F'(p,s)

Ej(s) = {J E(p,s) — Fi(s)

po

(Fi(s) is defined as the union over the strings 7 C o, rather than over all
the strings 7 < o, because the R ,-strategies must be given the possibility to
freely injure the fixing activity undertaken by actions to the left of the true
path; on the other hand, notice that, apart from the R,-strategies, no strategy
located to the right of the true path interferes, in the limit, with any fixing
activity performed while acting on behalf of strategies located on the true path.
Contrary to this, the extracting activity must be protected against the fixing
activity performed by strategies, e.g. on behalf of lowness requirements, located
at nodes to the right of the true path.)
We borrow the following definition from [Coo87]:

Definition 2.6 If ¥ is an enumeration operator (with finite approximations
{U®: s €w}) and x € w then let

1€(V,x) = {E: E finite and v ¢ ¥ F}
1 e(V,x,5) = {E: E finite and v ¢ ¥* [s]}

The next definition describes an action which will be repeatedly performed
in the construction.

Definition 2.7 (Functional updating) Let § be a family of finite sets. As-
sume that, for every F' € §, there exists j € J such that F C w’. Define
functional updating at § at s to be the following action. For every F' € § with,
say, F' C w’, and every y € F proceed as follows:

e if y is odd and y = y/(7,t) for some Q-node 7 and some least ¢ < s then
for every i € 3(j) define F'(y, s) = {y'(7,1)};

e if yis even and y € Y/(z,s — 1) for some z, then for every i € J choose
a new y' € n’ (called a j-trace for z). For every i, enumerate y' into
Y(z,s) and, for every i € 3(j), define F'(y,s) = {y'}. Add the axiom
(v, @z"ey{yilb into I’y for every pair (1,Y) € p.
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(When this action, which merely consists in defining some sets and possibly
some axioms, is performed on behalf of some strategy R(c), at some stage s,
and o is the outcome at o at s, then we will let F*(y,s) C F'(0" o, s), for every
i€pBl), Feg yel)

We now formally define the notion of instigation of an M-strategy, already
mentioned in the intuitive description of the construction.

Definition 2.8 (Instigation) Let o and 7 be nodes such that 7 is an M-node
(with, say, R(7) = Mgpcow) and 70 C 0. We say that o instigates R(T) at x
at s if € A¥[s| and one of the following holds:

1. E%(s) €T e(®,x,s) and ES(s) €1 (A, 2, 5); or
2. E’(s) €t e(¥,z,s) and E<(s) ¢1 (A, x,s).

If (1) holds then we say that o instigates R(7) at x at s via a; otherwise we
say that o instigates R(7) at x at s via b.

Definition 2.9 (Instigation action at z) If o instigates R(7) = Mupco.w
at x at s via a (a similar definition will apply if o instigates R(7) via b, in-
terchanging a with b) then (by Remark 2.10) choose the least (with respect to
their canonical indices) finite sets F* such that for every i € J,, F'NE’_(s) =0
and x € U*'[s]; define

x(t71,s) ==

for every i € Jp, define ' _
F'(t71,s)=F"

and for every i € J, let ' _
E'(771,s) = E.(s).

We say that 771 needs functional updating at any stage t > s prior to the least
stage s’ > s such that 7 C dy. We also say that 771 is a-related (respectively,
b-related if o instigates R(7) via b) at any stage ¢t > s prior to the least stage
s' > s at which we declare that 771 is b-related (a-related, in the other case).
Finally, for every z € A(o,s) we extract z from A(p,s + 1) for every p. (The
reason for this is that the instigation action may enumerate new elements into
Y7 (z,t), for some j, at a later stage through the process of functional updating
so that z may require activation again of the R ,-strategy if we take again action
at o at some later stage.)

Remark 2.10 Since at each step, the construction instigates at most once,
then, in the situation illustrated by Definition 2.9, we have that no p with
T C p C o instigates R(7), thus E’_(s) ¢1 (U, x,s) or E¢_(s) €1 e(A,,x,s),
and so we can find finite sets F' as in the definition.
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We now proceed with the construction. Together with the auxiliary func-
tions described in 2.5, we will define at stage s a string d,, called the true path
at stage s. Given any string o, we say that s is a o-true stage if o C 9.

Stage 0) Let g = ). For every 0 € T', j € J, and = € w, let
F(0,0) = E’(0,0) = G’(0,2,0) = H’(0,2,0) = 1/ (0,0) = A0, 0) = 0.
Let also 2(0,0) = ¢(0,0) = y/(0,0) =7 for every o and j.

Stage s + 1) Unless explicitly redefined by the construction, each auxiliary
function retains the same value as at step s. We distinguish two cases, according
to whether s + 1 is odd or even.

Case 1: s+ 1 odd: Suppose that we have already defined ¢ = o, [ n. If
n = s+ 1 then close stage s + 1 (see 2.6.7) and go to stage s + 2. Otherwise, in
order to define ot = 6,41 [ n + 1, we distinguish the following cases.

2.6.1 o is an M-node
Assume R(0) = Mgy p.0.w. We distinguish the following two cases.
1. Suppose first that for every j,
Fi(o71,s)NEL(s+1)=FE(6"1,s+ 1) N F(s) =0,
x(071, s) is defined, and
(i) 071 is a-related and
di(s+1) et e(®,x,s+1)

or

(ii) 071 is b-related and
Eb (s+1)ete(W,z,s+1).

Then define o™ = o"1.

Functional updating. If o needs functional updating at s+1 then (assume
for definiteness that ot is a-related) let § = {F/(c", s) : j € J,} and apply
the procedure of functional updating at § at s + 1.

Define for every 7 € J,
F'(ot,s+1)=F'(o",s)U U{Fi(y,s—l- 1):ye F,F g}

(Thus, at s+ 1, o™ ceases to need functional updating.) Finally, for every
7 Coandi € J, extract all elements of F'(oT, s+ 1) from p'(7,s+ 1).
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2. Otherwise, let 07 = 070, and choose the least y € ®%«[s] N ¥4 [s] such
that y ¢ AZe[s]. For every j € J, U J,, choose the least (according to
their canonical indices) finite sets G = G’(0,y,s+ 1) (for j € J,) and
HJ = H(0,y,s+ 1) (for j € J;) such that

(y, P ) e,

Jj€Ja

(y, P ) ey,

JEJ
G'UH? C (BjUFl(s+1))— El(s+1),
and _ _ _
(GPUH)YN @ (o,s+1) =0.
Then enumerate the axiom (y, @,., (G U H)) into Ay

Whatever case has happened to hold (i.e. whether yielding outcome 1 or 0),
now close the ot-action (see 2.6.6. Notice that this does not mean that we
move directly to stage s + 2! Here and in the following cases, if no action has
been taken at o, i.e. item 2. of 2.6.6 does not hold, then we move on to define
534—1 r n—+ 2)

2.6.2 o0 is a O-node

Assume R(0) = Qjq0. We distinguish the following two cases.

1. If ¢ = ¢(0, 5) is defined and therefore the corresponding (o, s) are defined
then:

(a) If ¢ ¢ ®4e[s] then define ot = o~ 1 and for every i € B(j), let
Fi(o* s +1) ={y'(0,5)}.

(b) If ¢ € ®4[s] then let o+ = 070; choose the least finite sets F* (for
i € J,) such that F*NEY (s+1) =0, F* C A,[s], c € &' [s]; and let
Fi(o*,s+1) = F* for each such i; finally, for every i such that i £ a,
let E'(oc*,s+1) = {y'(0,5)}, and put E'(c*, s+ 1) into p'(p,s + 1)
for every p C 0.

2. Otherwise, for every i € J, choose new numbers y* = y*(o,s + 1) € &
and define c(o,s +1) = /.

Functional updating via Q at 0. Add the axiom (y', @, ,-{y"}) into I’}
for every pair (i,Y) € (7; finally, let F'(c™, s+ 1) = {y*(0,s)} for every
i € B())-
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If o instigates some R(7) at some x at s + 1 then consider the least such 7
and the least such x, and perform the corresponding instigation action relative
to 7 and x, as in Definition 2.9.

Close the of-action (see 2.6.6).

2.6.3 o is an L-node
Assume R(0) = L4 4.0
1. If there exist finite sets F¥ C w’ such that for every j € J,
FINEl(s+1) =10,
and x € ®I, then choose the least such finite sets and let o™ = 070.

o If F/ C B for all j € J, then define F7(c70,s+ 1) = F7.

e Otherwise, define § = {F" : i € J,} and apply the procedure of
functional updating at § at s + 1.

Define for every j € J,
Fil(070,s+1) = FIU| J{F/(y,s+1):y € F,F € §}.
2. Otherwise, let o™ = o 1.

Close the oT-action (see 2.6.6).

2.6.4 o is an R.-node

1. If z € K’ then let ot = 071.

Functional updating via R, at o. If no axiom (z,G) € I has been defined
so far then for every j € J, choose y/ € 1/ to be some new number; let
Yi(z,s+1) = {yl} for every j € J.

Add the axiom (z, @, {y!}) into I**', and for every pair (i, X) such
that ¢ ¢ X and i < \/ X, add the axiom (y!, P, {y’}) into T7L.
Finally, let F7 (071, +1) = {y!}.

2. Otherwise, let o7 = ¢70.

Close the oT-action (see 2.6.6).
We remind the reader that functional correction for R, following extraction
of z from K, only takes place at even stages.

Case 2: s+ 1 even: At even stages we rectify the various e-operators I'; x
which need be rectified following extraction of numbers from K. If o0 C 9, is a
z-th node then we write o = o,.
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2.6.5 Activating the R, strategy

Consider the least z < s with 2 ¢ K, if any, such that o, C d,, and z ¢ (7, 5)
forall7 Co, 0oro,”1CH,.

If no such z exists then go to stage s + 2.

Otherwise, proceed as follows. We first give a definition.

Definition 2.11 (Injury) Given a node o such that o C o,, we say that R,
injures R(o~) through =z at s + 1 if, for some j € 7,

Y7 (2,8) N FI(s) # (.
Find the least o, if any, such that R(o~) is injured this way.
(i) If there is such a o, then there are four cases:

e If o is an M-node, R(0) = Mypcow, 0 =0 1, and o is a-related,
then let X = J,.

o If 0 is an M-node, R(0) = Mypcow, 0 =0~ 1, and o is b-related,
then let X = J,.

o If v is a Q-node and R(0) = Q¢ then let X = J, (notice that this
entails 0 = 0~70).

e If 0 is an L-node and R(0) = L, then let X = J, (again, this
entails 0 = 07 70).

Let § = {F/(0,s):j € X} and apply the procedure of functional updat-
ing at § at s + 1.

Define for every i € 7,
F'(o,s+1) = F(o,s) U {F'(y,s+1):y € F,F € §}.
Finally, for every j € J — X, let
El(o,s+1) = Y(z,s);

put z into A(o, s + 1); and for every p # o such that p is not an R,-node
or o C p, extract z from A(p, s + 1).

(ii) If there isno such o, and z ¢ A(0,70,s) or 0,1 C 4, then (write 0 = 0,70):
for every j € J, let 4 4
(0,5 + 1) = YI(2, 5);

put z into A(o, s + 1); and for every p # o such that p is not an R,-node
or o C p, extract z from A(p, s+ 1).

Put E’(o,s+ 1) into @/ (p, s + 1) for every p C o.
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A-closure. Finally, put z into A(p~0, s+ 1) for every p such that o <, p and p
is an R,-node, and define E’(p"0,s+1) = E7(0,s+1). We say in this case that
2z € AM(p~0,t) because of o at any stage t > s prior to the least stage s’ > s, if any,
such that A(p~0,s') = 0. (We will show that extraction of the sets (o, s + 1)
from Bj is enough for the rectification of I' and of all relevant e-operators I'; x,
if these sets are restrained out of the B;’s. Thus, we place z into A(p~ 0, s+1) so
that when we move to the right of o in the tree of outcomes at some later stage
t, z does not require activating the R ,-strategy as long as z € A(p 0,t). Thus,
eventually, z requires only finitely many activations of the R ,-strategy. Notice
that z may require again activation of the R ,-strategy only if some R(7) with
770 C o is instigated at some later stage ¢ so that this implies A\(p~0,¢) = () as
required by Definition 2.9.)

If o instigates some R(7) at some x at s + 1 then consider the least such 7
and the least such x, and perform the corresponding instigation action relative
to 7 and x as in Definition 2.9.

Finally, define 65,1 = o, close the o-action and close stage s + 1.

2.6.6 Closing a o-action

We distinguish the following two possibilities:

1. if, for some i, F'(o,s + 1) # F'(o,s), or E'(o,s + 1) # E'(o,s), or
pi(o, s+ 1) # pi(o,s), or Ao, s + 1) # Ao, s), or o instigates some R(T)
at some x at s+ 1, or we apply the procedure of functional updating;
then reset all nodes 7 with o < 7, by making, for each such 7, (7, s+ 1),
y'(1,s+1), ¢(7, s+1) undefined, and setting all of F'(7,s+1), E(,s+1),
(7,5 +1), and A5t equal to (. Let also A(7, s+ 1) = () for every 7 such
that 0 < 7 and 7 is not an R,-node, for any z. Close stage s + 1 (see
2.6.7) and go to stage s + 2;

2. otherwise, move on to define d,41 [ (n+2) ifn+1<s+1.

2.6.7 Closing stage s+ 1

For every 7 € 7, let

B =(Bju | Fllos+1)— | Flos+1).

0C0s4+1 0C0s+1

Let also I'**! consist of I'* plus all the axioms added to I' at stage s + 1, and
for every i, X withi € J, X € J,7¢ X and i < \/ X, let '/ consist of I'
plus all the axioms added to I'; x at stage s + 1.
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2.7 The verification
We begin with the following definition. For every z, let

Vi) =Yz 9)

recall that, for every s, Y(z,s) C V(2,5 + 1).

Definition 2.12 For every n, let f,, = liminf, ds [ n. (Here the liminf is taken
with respect to the ordering < of the strings. We show below that in fact this
liminf exists.)

Lemma 2.13 For every n:

1. fn is defined, and for almost all f,-true stages s, we have |05 > | fnl;
2. fn instigates only finitely many times;
3. for every j € J, Fi(f,) = limg FI(f,,s) exists and FI(f,) is finite, and
FI(f,) C By;
4. for every j € J, EV(f,) = lim, E'(f,,s) exists and is finite;
5. c(fy) = limg c(fr, s) and x(f,) = limg x(f,, s) ewist;
6. M f,,) = lim, M(f,, s) emists and is finite;
7. for every z € A f,), and for every i, Y(z) is finite.
Proof: The proof is by induction on n.

Step 0: Clearly, fo = 0; for every j € J and s, F7(0,s) = E/(0,s) = \(0,s) = 0;
for every s > 0, [0s] > 0; ¢((, s) is undefined, since ) is not a Q-node; (), s) is
always undefined; finally, () never instigates.

Step n + 1: Assume that f, exists, and f, satisfies 1. through 7., and assume
by induction that for every 7 < f, and for every j € J, F/(7) = lim, F'(7, s),
Ei(1) = limg EY(7,5), A(T) = limg A(7, s) exist and are finite, and F7(7) C B
for every 7 C f,.
For every o < f,, and every j, also set
Fl=|]JF(7)
7Co
and _ _ _
Bl =|JE(r)-FL
70

Thus, let t,, be the least stage such that
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i) for every 7 C f,, and every s > t,, if 7 C d, then |05 > |7;
ii) for every s > t,, and every 7 <y f,, T £ 0y;

(

(

(iii) no 7 C f,, instigates after ¢,;

(iv) for every s > t,, every 7 2 f,, and every j € J, Fi(t) = Fi(1,s),
E)(1) = E’(1,5), and A(7) = A(7, s).

Using these assumptions, we show below that f,,; exists and that we can
find a stage t,,1 satisfying the above conditions (i) through (iv) for f,4;.

If, for some j € J, the values of limg F7(f,,1,s) and limg E?(f,11, ) are not
explicitly indicated in the proof below then it will immediately follow from the
construction that limg F7(fn41,8) = 0 and limg E?(fr41,8) = 0.

By assumption (i), relative to t,, it is clear that f,,; exists. Let uy > t, be
the least f,,1-true stage such that for every u > g, if 7 < f,1 then 7 & 6,.

As to the rest of the verification, we first need the following sublemmas.

Sublemma 1 If A(f,+1) ezists and is finite then there exists an f,1-true stage
@ such that for all s > 4, f,11 does not instigate at s.

Proof: Let uy > ug be a stage such that, for every u > uy, A(fr41) = A(fnt1, ©).
It follows by construction that E*(fn41,8) C E'(fui1,s + 1), for every s > uy
and 2. We might indeed have C because of some instigation action initiated by
fus1, which may make Y?(z,t) larger at some later ¢ for some z € A(f,11), and
thus require E*(f,41,5) C E*(fus1, 5+ 1) at some f,,, -true stage s > t.

Let po D p1 D -+- D pi be the list of all M-nodes p such that p~0 C f,41.

We show by induction on r < k that f,,; instigates R(p,) only finitely many
times.

Thus, let R(p,) = Mg, b, c.0..0,, and assume by induction on r that v, > uy
be a stage such that for no s > v, and no p € {p,, : m < n} does f,,; instigate
R(p). If v' > v, is the least stage at which f,, 11 C d,s, then for every s > v’ and
1 € J, we have that

Ez(fn-i-l? S) C :U’l(prv S);
therefore the elements of E'(f,41,s) will not be used for defining A, axioms
at s. Moreover, we always reset when we move past p, 1. Thus there are
only finitely many numbers x such that, at some stage s, we add an axiom
(x, Bieg, (G"U HY)) into A, with (G*U H') N E*(fn41,5) # 0 for some s > v,.
Let = be any such number. If f,,; instigates R(p,) at = at any v > ¢’ then
since p,” 0 C f,y1 there must be a stage v > v’ such that f,,1 C d,» and
this instigation is no longer valid at v”, and thus at any u > v”, since for
every u > 0", E(fui1,u) 1 €(©,,x,u) (if the instigation was via a,) or
Eb (fpy1,u) €1 €(, z,u) (if the instigation was via b,.).
We can therefore conclude that a stage @ with the desired features exists.
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Sublemma 2 If \(f,41) exists and is finite, and z € A(fn+1), then for every
7, Y7(2) is finite.

Proof: If s is such that s > @ and z € A(f,41,t) for every z € A(fn41) and
t > s, then z € A\(p 0,t) for all such z and ¢, and every R,-node p such that
fnt1 <L p, and thus no z € A(f,41) does activate the R ,-strategy any more
after stage s.

It follows that after stage s, we do not enumerate any element in any of
the sets Y7(z). Indeed, such an enumeration could only be the consequence of
applications of the procedure of functional updating, following some instigating
action initiated by f11.

Sublemma 3 If A(f,11) exists and is finite, and u is as in Sublemma 1, then
for every s >, t > s, and every j € J, F/(fut1,5) C B

Proof: Let 7 € J be given. We distinguish the following cases.

fn s an M-node. 1f f, 1 = f,”0 then the claim is trivially true by construction.
Thus assume that f,.1 = f,” 1. Since @ is a stage after which f,; does not
instigate any more (indeed, such an instigation would be the only possibility
which would demand to extract from B; some element of F/(f,11,s), for s > @),
we conclude that F7(f,1,s) C Bg, for every t > s > 4.

fn s a @-node. The proof is similar to that for M-nodes.
fn s an L-node. The proof is similar to that for M-nodes.

fn is an R,-node. Trivial since for every j € J, FV(f,11) = 0 if foi1 = f,70;
or for every j € J, F/(for1) =Y (2) = {y} C Bj if fuy1 = fi L.

We now continue the proof of Lemma 2.13, showing that f,; satisfies 1.
through 7. of the lemma. We analyze several cases according to the requirement

R(fn+1) assigned to f,41.
Case 1: f, is an M-node: Assume R(f,) = Mopcow.

If for1 = fu 0 then for every s and 4, F(fny1,8) = E(fny1,s) = 0 and
x(fny1, ) is undefined. In this case \(f,11,s) = 0.

Assume now that f,y1 = f,~ 1, and suppose for definiteness that R(f,11)
is a-related. Then there exists a least stage v > wug such that at v we in-
stigate R(f,) at some z, and we define © = z(f,41,v), F* = F(fu1,v) and
E' = E(fn41,v) for some finite sets F* and E*; moreover v = (f,,1,s) for
every s > 0.

Therefore,

AMfur)) ={z ¢ K:2¢ [JAD&@ie Y ()N F #10])

7Cfn
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and this set is finite since we always choose new elements for the various sets
Y(z). Thus, elements that are put into Y*(z, s) at stages s > ¢ are not in F".

It follows by Sublemma 2 that Y*(z) is finite for every z € A(f,.1); there-
fore F*(fni1,s) and E'(fn41,s) reach a limit, and these limits are finite. By
Sublemma 3, F'(f,+1) C B;.

Let ¢t > 4 be the least stage at which all the limits relative to the auxiliary
functions pertaining to f,; are reached. Consequently, at no f,,i-true stage
s >t do we close stage s. Then ¢ is the required stage ¢,, ;.

Case 2: f, is an Q-node: Assume R(f,) = Qjq0. If s > ¢, is the least odd
stage s such that f,, C 0, then for every ¢t > s and for every i € 5(j),

Y (fart) = Y (far5) = ¥'(f2)
and, consequently
(furt) = c(fn,8) = c(fn)
since c(fr,t) = ¥/ (fn, ).
If fui1 = fa"1 then for every i € (j), for every u > s,

Fi(fn+1> = Fi(fn+17u) = {yz(fn)}
Ei(fn+1> = Ei(fnJrlvu) = 0.

If f,.1 = f,70 then there exists a least stage u > t, such that for every
i € J we select finite sets F* such that ¢ € ®. We can argue as we have done
for the outcome f,,"1 for M-nodes to conclude that A(f,11) exists and is finite,
and that F*(fn41,s) and E'(f,11,s) reach a limit and these limits are finite.
Again, F'(f,;1) C B;.

Notice that y*(f,) € E*(fns1) for every i £ a.

From this we can infer the existence of the desired stage t,,1, and at no
fni1-true stage s > t,.1 do we close stage s.

Case 3: f, is an L-node: Assume R(f,) = L4, and a < 1.
If foi1 = fn 1 then for every j € 7,

Fj(fn-i-l) = Ej(fn-i-l) = Q)a

and the claim is trivial.

If for1 = f, 0 then there exists a least stage u > t, such that for every
i € J, we select finite sets F' such that x € ®™. Again, we can argue as
we have done for M-nodes to conclude that A\(f,41) exists and is finite. This,
together with Sublemma 3, which tells us that we eventually stop functional
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updating, implies that F'(f,,1,s) and E*(f,1, s) reach a limit, and these limits
are finite. Again, F*(f,+1) C B;.
From this we can infer the existence of the desired stage t,1.

Case 4: f, is an ‘R,-node.

If 2 € K then foyy = o1 and for every j € J, Fi(fuy1) = {3/} and
E?(fny1) = 0. Thus the claim is trivial.

Otherwise, f,+1 = 0~ 0. Either A(f,41) = 0, and again the claim is trivial;
o Alfuit) = {4},

In the latter case, if at some last f, i-true even stage s + 1 we have
2 € Mfat1,8+1) —=U,cp, AT, s) (ie. we activate the R ,-strategy through (i7))
and for every t > s+ 1, 2 € A(fu41,1t) then for every j € 7,

B (fa1) =Y (2)

and this set is finite by Sublemma 2.

There is a third possibility, i.e. by A-closure, z is eventually in A(f,41) be-
cause of some 7 < f,41. If the corresponding action of A-closure has taken
place at some last stage ¢, then we have defined E’(f,,1,t) = E’(r,t), and,
for every s > t, we have E’(f,1,8) = E’(fu;1,t). From this, the claim easily
follows.

Definition 2.14 Let f =J, f». The infinite path f is called the true path.
Lemma 2.15 For every a,x,®, the requirement L, , ¢ s satisfied.

Proof: Let f, C f be such that R(f,) = L4, and assume that there exist
infinitely many stages s such that z € ®4«[s]. By Lemma 2.13, if at some stage
s > t,, we have that x € ®4«[s] then there exists a finite set F' such that for
every j € J, FINE/(f,) =0 and x € ®". Therefore, we are eventually able
to select at some f,-true stage such a finite set F' so that F/(f,”0) 2 F’ and
Fi(f,”0) C B; by Lemma 2.13. Thus x € ¢,

Lemma 2.16 For every a,b,c, ®, ¥, the requirement My .o w 15 satisfied.

Proof: Let f,, be such that R(f,) = Mupcow.

If for1 = fn 1 then it is immediate to see that z(f,41) = limgz(fry1,s)
exists. If, for instance, f,;; is eventually a-related and thus F7(f,41) C By for
all j € J, by Lemma 2.13, then z(f,,,) € ¥4 — &4 since

P E;,., €t e(@uv(furn):

1€Jq

Otherwise, if f,,; is eventually b-related, a similar argument shows that
.T(fn_|_1) < @Aa — \IJAI’.
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It follows that M, . e, is satisfied.

Assume now that f,,1 = f,,7 0. Let

A= U Aj

§>ln

where %, is as in the proof of Lemma 2.13. Let xy be such that for every x > x,
Lo oo and Ly, ¢ have lower priority than M, . s w. We claim that

P = UM = (Vo > 20) [ (2) = A ()],

Thus, assume that Z = &4 = ¥4 We first show that if + € Z then
x € A4, To this end, it is enough to observe that if 2 € Z then there exists a
stage t such that for every s > t, v € ®4«[s]NW4t[s]. Then for every j € J,UJ,

lim G?(fp, 2, 8) = G(fn, ) and lim H’(f,,x,s) = H(f,, x)

exist (the fact that, by Lemma 2.15, A, and A, are of low e-degrees guarantees
that our choice of G’(f,,r,s) and H’(f,,z,s) as the least such finite subsets
stabilizes in the limit), and G?(f,,x, s) U H’(f,,x,s) C B;, giving

DG (f) UH (f ) € A,

FISNE

hence x € A,

Assume now that o > 2y and z € A — 7, e.g. v ¢ ®4e. Let 0 C f be a
node such that R(o) = L, ¢, Since x ¢ &1« by construction the extraction
activity performed on behalf of the requirements R(7) with f,, C 7 C o (directly,
or by activating R, via injury of R(7)), interferes with the strategy for fixing
x € &%« on behalf of R(0). Then there is a least 7 that instigates R(f,) at x.
Hence 7 will eventually instigate R(f,) at some such z, and the construction
would make f, 1 = f, 1, contradiction.

Lemma 2.17 For every j,a,®, the requirement Q;, o 15 satisfied.
Proof: We need to show that if j £ a then B; # ®%«. Let f, be such that
R(fn) = Qjue. By Lemma 2.13, ¢ = lim, ¢(f,, s) and lim y*(f,, s) exist.
If ¢ ¢ &4 then f,11 = f, 1 and ¢ € FI(f,41) C By; hence ¢ € B; — ®e.
If ¢ € &% then f,1 = f, 0 and E’(f,11) = {c}, hence ¢ € = — B;.

Lemma 2.18 For each z, the requirement R, 1s satisfied.
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Proof: We need to show that K = I'17.

(C) Let z € K; then there exists a stage t such that for every s > ¢, z € K
then at some even stage s, we enumerate an axiom (z,;.,{y!}) into I**',
and the construction ensures that for every j, y/ € Bj. Hence z € r4s,

(D) Assume that z ¢ K, and let f, be such that R(f,) = R.; hence
fot1 = fn 0. Let 0 C f,41 be the unique string such that z € A(o) (recall
that f,70 C f and if z ¢ A(7) for any 7 C f,, then the construction places
z € A(f,70)). Then there exists some J C J, J # (), such that yJ € E’(o), for
all j € J where 3 is the original j-trace for x. Thus o ¢ T'47.

Lemma 2.19 For every j and X, the requirement J; x is satisfied.

Proof: For every j and X such that j ¢ X and j <\/ X, we need to show that

B; = F . It is clear that whenever we enumerate an element y in some B;

then the procedure of functional updating will (at least temporarily) enumerate
AX

yin I

Nofice that if y € B; is a Q-witness then, in fact, at some stage s we add
an axiom (y, @, x{y'}) into T'; x, and y € B; if and only if for every i € X,
y' € B; (see the first bullet of Definition 2.7), thus y € Fﬁ;‘(. On the other hand,
if y ¢ B; then by 1(b) of 2.6.2 and by Lemma 2.5, y ¢ Fﬁ;‘(.

If y has been enumerated into B; on behalf of R, at some even stage then
there is some z such that y € Y7(z). It is immediate to check that if z € K
then y € B;NT7%

Thus, assume that z ¢ K. Let f, C f be the R,-node along the true
path, and consider the unique 7 C f,70 such that z € A\(7). Suppose first that
y € B;— FAX If our extraction activity, activated at some last stage s by R,
does not guarantee that y ¢ BJ, then y is involved in a procedure of functlonal
updating which yields y € F] %, contradiction.

T —

Finally, assume that y € B;. Let us consider the following possibilities:

1. 7 = f,,70; at some last 7-true even stage s +1, z € A(7,5 + 1) — (7, 5);
and for every t > s,z € M7,t). In this case, Y'(z) C E'(0) for every i,
hence y ¢ F] X

2. 7 C f,70: We must distinguish the following three cases:

o If R(77) = L4z with a < 1, then X C J, and j £ a. On the other
hand, we have that j < a since j < \/ X, contradiction.

o If R(77) = Mupcow and, say, 7 is permanently b-related then
j€J,—J.and X C J, but then 5 < ¢, contradiction.

o If R(77) = Qiye, with i ¢ Y, then X C Y, but then i ¢ X.
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In any of these cases, we see that there exists i € X such that E*() # ()
By Lemma 2.13, let ¢ be the last stage such that E’(r,t + 1) # E/(1,t
Then y € Y7(z,t). If (y, Py x G*) € T x then GF C Y*(z,t) C EX(r

)
).

Hence y ¢ Fﬁ;‘(, contradiction.

3. There is a last stage s at which we define z € A(f,,”0,s) by A-closure,
because of some p <; f,, and for every t > s, z € A(f,,”0,¢). Then for
every t > s and for every i, E*(f,11,t) = E'(p,s), and E'(p,s) N B; = 0,
and we can argue as in the preceding case to conclude that y ¢ Ffjf(,
contradiction.
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