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ABSTRACT. We show that the Dushnik-Miller Theorem for countable linear order-
ings (stating that any countable linear ordering has a nontrivial self-embedding)

is equivalent (over recursive comprehension (RCAp)) to arithmetic comprehension
(ACAy).

This paper presents a result in reverse mathematics, a program initiated by H.
Friedman and S. Simpson, trying to determine the weakest possible “set-theoretical”
axiom (system) to prove a given theorem of “ordinary” mathematics by trying to
prove the axiom from the theorem (over a weaker “base system”).

The “set-theoretical” axiom systems we will be concerned with are weak sub-
systems of second-order arithmetic. (We refer to Simpson [Sita] for a detailed
exposition of such systems.) In particular, we will use the axiom system RCAg of
recursive comprehension (with X-induction) as a base system and exhibit a theo-
rem which is equivalent (over the base system RCAp) to the axiom system ACA
of arithmetic comprehension (with X{-induction).
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2 PROOF-THEORETIC STRENGTH OF DUSHNIK-MILLER

The area of “ordinary” mathematics we study in the context of reverse math-
ematics is that of linear orderings. In particular, we will characterize the proof-
theoretic strength of the

Dushnik-Miller Theorem on Countable Linear Orderings [DM40]. Let L
be a countably infinite linear ordering. Then there is a nontrivial self-embedding
of L, i.e., an order-preserving injection of L into itself which s not the identity.

We will thus show the following

Theorem. QOver the base system RCAgy, the Dushnik-Miller Theorem on Countable
Linear Orderings is equivalent to the axiom system ACAy.

Proof. We first prove the easy direction, namely, that ACAq is strong enough to
prove the Dushnik-Miller Theorem on Countable Linear Orderings. Fix a countably
infinite linear ordering £. Call C' C L a convex subset of £ if C' contains any point
z between any points x,y € C.

First assume that L contains a convex subset C' of order type w. Then the map i
which is the identity off C' and moves every element of C' to its immediate successor
is a nontrivial self-embedding of £ and can be defined by a first-order formula (in
the language of arithmetic), thus can be shown to exist by ACAg. The case where
L contains a convex subset of order type w* (i.e., w under the reverse ordering) is
handled similarly.

So assume that £ does not contain any convex subsets of order type w or w*.
Call a convex subset C' of £ discrete if every element of C' (except the least, if any)
has an immediate predecessor in C', and every element of C' (except the greatest,
if any) has an immediate successor in C'. By our assumption, any discrete subset
of £ must be finite. By picking one element from each maximal discrete subset of
L (except the first and last maximal discrete subset, if any), we see that there is
an infinite subset of £ which is densely ordered without endpoints. Since ACAq
actually allows full first-order induction, we can now define the self-embedding as
follows: List the points of £ as {x,}newn. When picking an image i(x,) for x,,
simply ensure that i(x,) has infinitely many points to its left and right and is
infinitely far apart from i(xq), - i(x,—1). Since the choice of i(x,,) can be made in
an arithmetic way, ¢ can be shown to exist by ACAy. This concludes the proof of
the easy direction.

As for the hard direction, we need to show that the second-order part of any
model of “RCAy plus Dushnik-Miller Theorem on Countable Linear Orderings”
is closed under Y9-comprehension. So fix any set A € S (where S is the collec-
tion of subsets included in the given second-order model of “RCAy plus Dushnik-
Miller”). We need to show that its “Turing jump” A’ is also in S. We do so by
defining a countable linear ordering £ computable in A such that any nontrivial
self-embedding i of £ can compute A’.

Fix an A-computable enumeration {AL}se, of A, and let ¢(x) = pus > (A’ |
(x+1) = AL | (x + 1)) be the associated A-computable computation function of
A’. Since A’ <7 A & ¢, it suffices to ensure the following
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Claim 1. Any nontrivial self-embedding © of L can compute the computation func-
tion c.

We define the linear ordering £ of order type (M, <) with universe M in stages
and start by letting Lo be the ordering 0 <, 2 <, 4 <, ... of all even integers
in M. We establish Claim 1 by ensuring the existence of a function e satisfying the
following

Claim 2. There is a strictly increasing function e : M — Ly such that for all
reM,

(1) Vng,ny < c(z) (e(x) <z no <z np — d(e(x),ng) > d(ng,ny)), and
(2) e(r+1)=py € LoVn (n < c(x) = n <, y),

where d(ng,ny) is the (M-finite) distance between ng and ny in L.

We first establish Claim 1 from Claim 2: Fix any nontrivial self-embedding i
of £. By X{-induction, e is monotonic, so the range of e is cofinal in (M, <), and
so there is g € M such that for all © > w¢, we have e(x) < ie(x). Also, by
Y¥-induction and (1) of Claim 2, for all + > xg, we have that one of ie(x) and
i%e(x) is > c(x) (since d(e(x),ie(x)) < d(ie(x),i%e(x))). So from e(x) and i we can
compute c¢(x). Finally, by (2) of Claim 2, we can also compute e(x + 1). Thus i
allows us to compute ¢ as desired, establishing Claim 1 from Claim 2.

The proof of Claim 2 is a finite-injury priority argument (using 3%-induction).
We have to maintain (1) and (2) of Claim 2 at any stage s for all x < s (evaluating
c(x) for these x’s at stage s). Note that the definition of the function e is fixed by
(2) at any stage s (assuming e(0) = 0). The only problem arises if some number
x enters A’ at a stage s > 0, thus making (1) false. In that case, add all currently
unused elements y < s in M — Ly into Lg just to the left of e(x), and add
sufficiently many unused elements y > s in M — Ls_1 into L just to the right of
e(x) to make (1) true. Note that this action will not interfere with keeping (1)
satisfied for any 2/ < x. It is now easy to verify that this construction will produce
the desired linear ordering satisfying Claim 2.

REFERENCES

[DM40] Dushnik, B. and Miller, E. W., Concerning similarity transformations of linearly ordered
sets, Bull. Amer. Math. Soc. 46 (1940), 322-326.

[Ro82] Rosenstein, J. G., Linear Orderings, Academic Press, New York, 1982.

[Sita]  Simpson, S. G., Subsystems of second-order arithmetic, available as preprint (to appear).



