
A ��
� set with barely ��

� degree
�

Rod Downey� Geo�rey LaForte� Ste�en Lempp

Abstract

We construct a ��

� degree which fails to be computably enumerable in

any computably enumerable set strictly below ���

� Introduction

The lion�s share of e�ort in classical computability theory over the last �fty
years has been directed toward the study of relative computability� This paper is
concerned with another� more neglected� yet still fundamental� notion of classical
computability theory� namely that of relative enumerability�

Speci�cally� we ask questions concerning the relationship between sets A and
B when A is computably enumerable using B as an oracle� For example� given
a set B� we might ask what properties the class of sets A which are c�e� relative
to B has� Conversely� for �xed A� we might wonder which degrees contain sets
relative to which A can be computably enumerated� In the present paper� our
particular concern is with this latter type of question� We study ��� sets and
degrees� and their relations with the computably enumerable sets from which
these more complex sets can themselves be computably enumerated�
By the Sacks Jump Theorem �	
� given any noncomputable� computably

enumerable C� any ��� set with degree at least as great as �
� has the same

degree as the jump of some B such that C ��T B� Clearly� any such B must
itself be incomplete� Thus we have the weaker fact that any ��� set with degree
at least as great as �� has �B� �degree for some incomplete c�e� B� Of course� any
��� set is itself relatively computably enumerable in K� and so has �

K
� �degree�

The natural question in this context is whether or not any ��� degree requires
K in order to witness that it is ��� in other words� whether or not there exists
a ��� set A such that whenever A has �W� degree for some c�e� set W � W must
be complete� a situation we describe by calling A barely ����
Any c�e� set is computably enumerable relative to �� and� by an unpublished

result of Lachlan� any ��c�e� set is ��CEA� that is� relatively c�e� in some c�e� set
below it� Thus� any ��� degree which requires the full power of K for an enu�
meration must be of at least properly 	�c�e� degree� Since� by Arslanov�LaForte�
Slaman� �

� no properly 	�c�e� degree can contain a set which is c�e� relative to a

�to appear� Journal of Symbolic Logic

c�e� set below it� it is not unreasonable to look among such degrees for ��� ones
that require K to be enumerated� Our result here shows that we can �nd such
barely ��� degrees in this otherwise simple realm�

Theorem
 � There exists a 	�c�e� set A such that for all c�e� sets W � A has
�W� degree if and only if W �T �

��

Thus� in general� a ��� set need not be of �
B
� degree for any incomplete

c�e� set B�
We remark that if we consider sets themselves� rather than the degrees of

sets� it is easy to see that K cannot be �B� for any c�e� B �T ��� In fact� any
set to which K is m�reducible must have this same property� for instance� ����
The Noninversion Theorem of Shore� ��
� gives us another means of exhibiting
such a phenomenon� By this result� there exist two ��� sets U and V such that
U � V �T ���� and U and V cannot both have �B� degree for any B �T ���
Hence U � V cannot be �B� for any such B� It does not seem to follow directly
from this construction that K is computable from the set U �V so constructed�
Of course� these examples and even the ��

� degree we construct leave almost
completely open the more general question of exactly which ��� sets below ���

have this property� as well as the analogous question about degrees� In particu�
lar� we have not constructed such a set incomparable with ��� although it seems
natural to conjecture that there are such sets�

� Theorem and general plan

Theorem �� There exists a 	�c�e� set A such that for all c�e� sets W � A has

�W� degree if and only if W �T ���

For every pair of partial computable functionals � and �� and natural num�
bers e and l� we must satisfy the requirement

R����e�l � ���W
We

l � � A and ��A� �WWe

l � �� K �T We�

We intend to satisfy R����e�l by using an ��sequence of functionals� �n�We��
together with a �backup� functional ���We�� In order make our notation less
cumbersome� we generally refer to these functionals as just �n or �infty in what
follows� avoiding explicit reference toWe when this is clear from the context� ��
will be de�ned on n each time there is an uncorrectable failure of �n to compute
a value of K� We implement this strategy by de�ning a length�of�agreement
function approximating the truth of ��WWe

l � � A and ��A� �WWe

l � Assuming
that the condition holds� and we are currently de�ning some �n� we split R����e�l
into subrequirements

R����e�l�i� � �n�We� i� � K�i� or ���We�n� � K�n��

which are allowed to act at R����e�l�expansionary stages�
Our basic strategy has two parts� an attempt� possibly without success� to

correctly de�ne �n�i�� followed by a de�nition of ���n� which is guaranteed

�

to succeed� By a slight abuse of standard notation� we let �l�We�x��s
 be the
maximum of the uses of all computations �l�We� y��s
 for which y � x and
y �WWe

l �s
� At stage s we assign an attacker a �� A�s
 to our subrequirement� set

the use of �n�i��s
 to be s � �l�We���W
We

l � a���s
� and restrain A below ����a���

When i enters K� we enumerate a into A� forcing a change on ��WWe

l � a��s
 at

some later stage t� If this is caused by an element leavingWWe

l �s
� this involves a

change in We below �n�i�� Otherwise� some new element x is added to W
We

l �t
�
We then set ���n� � �l�x�� the use from We by which x is an element of
WWe

l � Now� by restraining A appropriately� we can force changes at will on

We by forcing x in and out of W
We

l through changes on A�a�� This involves
only at most one further change on A to keep ���We�n� correct up to n� so
A remains ��

� as required� In fact� from the point of view of this requirement
in isolation� A appears to be ��c�e� Avoiding injury to other �higher�priority�
requirements� however� involves restoring the value of A�a� at the stage at which
these requirements acted to set their original use� so there is at least an apparent
potential for in�nitely many changes to be required on a through a cascading
e�ect caused by sequences of restorations� It is the avoidance of this that is the
fundamental obstacle to achieving the proof�

The fact that we need a �����priority arrangement to organize our construc�
tion arises naturally from the purely local problem of in�nite injury to the use
��WWe

l � a� through changes in WWe

l � From the standpoint of the overall re�
quirement R � R����e�l� there are three possible outcomes� Either there are
only �nitely many expansionary stages� or some �n succeeds in computing K�
or �� is total� In the usual ���� manner� in�nite injury to some use can occur
below each of the two in�nitary outcomes and thereby deny the truth of these
higher�level approximations� Before giving the full construction� we describe
the basic module in more detail� and then discuss the intuition for the priority
arrangement�

��� The basic module for R����e�l

Let R � R����e�l� and assume some good approximation l
R�s� � l�s� has been

de�ned with

l�s� � max�
�
x �

�
��WWe

l �x� � A�x�� and

��A� � ��WWe

l �x� �WWe

l � ��WWe

l �x�
�
�s

�
��

We consider the action taken for R�i�� attempting either to keep �n�i� �
K�i� or ��n� � ���n� � K�n�� The following is the basic module for action at
R�expansionary stages� beginning with a stage s�� We need only consider the
case i �� K�s�

�� Choose a � an�i� �� A�s�
�

�� Wait for the next R�expansionary stage s� with l�s�� � a� If i � K�s�
�
we merely set �n�i� � s� and �n�i� �
� If i �� K�s�
� then we re�

	

strain A on max�
�
��A� y��s�
 � y � ��WWe

l � a��s�

�
�� Set �n�i��s�
 �

max�
�
�l�y��s�
 � y �WWe

l � ��a��s�

�
�

�� Wait for an R�expansionary stage s� such that i � K�s�
�

A� If We changes on �n�i� at some stage s � s� before i enters K� then
reset �n�i��s�

 as in ��

B� If i � K�s�
 �and �n�i��s�

�y�� then add an�i� to A�s��

� and restrain

A on max�
�
��A� y��s�
 � y � ��WWe

l � a��s�

�
�� Go to ��

�� At the next R�expansionary stage s�� there are two possibilities�

A� �n�i��s�

x�� Then set �n�i� �
� and reset �n�i� � s�� permanently�

�In the full construction� we also remove an�i� from A�s��

 in order
to avoid in�nite injury to lower priority requirements�

B� �n�i��s�

�y� This can only occur if there is some y � �WWe

l �s�
 �

WWe

l �s�
�� We �x y� to be the greatest such number� Again� we
only take signi�cant action if n �� K�s�
� otherwise� we just set
��n� � s� and ��We�n� �
� If n �� K�s�
� however� we set ��n��s��

 � �l�We� y

���s�
� and restrain A on max�
�
��A� y��s�
 � y �

��WWe

l � a��s�

�
�� as well as maintaining the previous restraint�

�� Wait for an R�expansionary stage s� such that n � K�s�
�

A� If We changes on ��n� at stage s � s� before n enters K� then reset
��n��s�

 as in �B� Maintain restraint on A�

B� If n � K�s�
 �and �n�i��s�

�y�� remove an�i� from A�s� �

� Go to 	�

	� At the next R�expansionary stage� s�� we must have ��A� � ��an�i���s�
 �
��A� � ��an�i���s�
� hence y

� �� WWe

l �s�
� Hence ��n��s�

x�� Then set

��n� �
� and reset ��n� � s�� permanently� �Again� as in �A� in the
full construction we add an�i� back to A�s� �

 to avoid injury to other
requirements�

There are six possible outcomes for this strategy� Four �nitary outcomes at
�� �A� �B� and 	� and two in�nitary ones at �A and �A� Notice that if the
in�nitary outcomes occur in�nitely often� then R is satis�ed by diagonalization�
since some number is counted by ��A� as an element of WWe

l � yet fails to

actually be in WWe

l � We can initialize all lower�priority strategies when the
action under �B above causes a signi�cant shift in our overall strategy� since we
give up �n entirely at this point� This means as well that we will never return
to step � once the conditions of �B are met� Because we are in control of A� we
have the authority to do this� since the number y� will have to be an element
of WWe

l at any stage where ��A� � WWe

l appears correct� Thus this outcome
initializes all strategies with lower priority than R itself which are guessing that
one of the attempts at a non�backup functional will succeed� at which point we
extend the �backup� functional ��� and thereafter begin anew with the new

�

non�backup attempt �n	�� We therefore arrange the three possible outcomes
for the overall strategy with highest priority outcome the totality of �� ��	���
to the right of which is the totality of some �n ��num��� and� �nally� with
lowest priority� the existence of only �nitely many expansionary stages ���n���
Below each of the two in�nitary outcomes� lies a sequence of subrequirements
R�i� each of which sets a restraint for the sake of preserving the computation
tied to its witness� Each of these substrategies has natural outcomes 	 and
�n� depending on whether its restraint is increased in�nitely often or not� It
is worth pointing out here that because we restrain A after action under �B is
taken� we can never get another expansionary stage without the y� referred to
there being an element of WWe

l � so we never have to worry about ��n� being

incorrect� ��n� can only fail to equal K�n� if ��A� ��WWe

l �

��� Intuition for the priority arrangement

Since an overall requirement R � R����e�l which actually de�nes a functional
computing K must eventually impose in�nite restraint to ensure that its func�
tional is de�ned everywhere� we must split it up into subrequirements� Once
one of these subrequirements� say R�i�� acts to de�ne some �Rn �i�� we obviously
cannot rede�ne our functional without an appropriate change inWe� If we actu�
ally attack to correct this value� and fail� our strategy involves switching to the
backup functional �� and giving up �n permanently� Thus if higher�priority
strategies interfere with �n�i�� this causes no real problem for the construction�
On the other hand� no strategy below R can be allowed to interfere in�nitely of�
ten with the functional ��� since the whole point of having �� available is that
it is guaranteed to succeed in computingK� if it is total� Notice that because we
wish to construct a ��

� set A� we cannot merely restore the previous A�state to
protect the strategy whenever R is allowed to act� With in�nitely many values
of �� eventually de�ned� this could result in in�nitely many changes on some
element a �� A� This is even more clear when one considers that� unless we
take some explicit action to ensure that R is always depending on consistent
initial segments of A� it is quite imaginable that the correctness of strategies
tied to di�erent values of �� depend on di�erent A�states� In this case� we
would not even be able to produce a consistent overall strategy for de�ning ���
The considerations show that we really must restrain A for the sake of ���

Consider the interference with �� that could be caused by some other strat�
egy S�j� working for an overall requirement S� If S has higher global priority
than R� then� using linking in the ordinary fashion� we can turn R o� while S�j�
is attacking and� after S�j��s attack� either restore the previous A�state� or ini�
tialize R� This is not a possibility in the case of S of lower global priority than R�
but S�j� of higher local priority than R�i�� This is the situation where S really
must make a potentially permanent change in A which can interfere with the
correctness of even the backup strategy for �R� which is tied to R�i�� In general�
S�j� has an attacker which is smaller than the use on which the R�i��attacker
is depending� When S�j� changes A at stage s �
 this allows the particular
element y� �WWe

l �s
 which is used to de�ne �R��n� to leave W
We

l �s�

�

�

The natural action for S in this case is to �rst ask for an attack on R�i�� so as
to clear the use of �R�� In fact� this happens automatically in this case� since the
R�i��attacker is greater than S�j��attacker� This will ensure that the R strategy
for correcting �R� will always succeed� but it threatens to make it impossible for
�R��i� to converge in the limit� since there may in this case be in�nitely many
such lower�priority requirements which can a�ect the R�i��strategy�

By using the standard convention that uses increase in the argument� after
each successful attack at a K�true stage� the the active functional for the S�
strategy will be completely unde�ned on any number which will later enter K�
We can therefore be assured that all of the S�attackers still de�ned will never
be used� since they will be assigned to substrategies for numbers that are not
in K� Thus� if S waits to de�ne new attackers until after the R�i��strategy is
reset� S can no longer interfere with R�i�� since it will only wish to change A
above the restraint imposed for the sake of R�i�� Notice that S is in this case
a strategy based on the assumption that �R� is a total function� Because there
are only �nitely many requirements S between R and R�i�� this process must
eventually stabilize� resulting in �R��i�

�y�
Coordinating the actions of the sequence S�	 � � � 	 Sm of strategies which can

cause this interference is somewhat involved� Before giving the full details below�
we should mention that it is useful to require the natural condition that if R
has higher priority than S� and i � j� then R�i� has higher priority than S�j��
In this way� the fact that K has stabilized below i ensures that eventually R�i�
will no longer be injured by S�
In order to explain in more detail the intuition for the interaction of various

strategies in our proof� we require the basic notions about the tree method
of Lachlan and Harrington in priority arguments� for which the reader should
see ��
� XIII� The simplest situation in which the complexity of our linking of
strategies reveals itself is the following� suppose
��
�� and
� are all master
strategies with substrategies ��� ��� and ��� respectively� such that

�

�

�
 ��
 ��
 ���

Let requirement R�j ��j �ej �lj be assigned to
j � and R
�j �kj� be assigned to �j

with k� � k� � k�� With so many requirements� the description is naturally
rather involved� To simplify matters� we assume in this example that everything
proceeds without involving a switch by any master strategy to its backup func�
tional� Supposing� then� that each
j is making its njth attempt to de�ne its
non�backup functional� we write aj for a

�j
nj �kj�� the current attacker assigned to

�j � Because it may be helpful for the reader to refer back to this example when
reading the formal construction below� we refer ahead in what follows to the
cases of the formal construction from sections 	�� and 	�	 using square brackets�

Suppose �� wishes to attack in order to correct �
�� �s value for K�k�� at

stage s� To e�ect this� �� links up to
� �section 	�	� case �
� In general�

���A����W
We�

l�
� a����s
� the current value on which
� is depending for the

R���k�� substrategy� will be greater than a��s
� Because of this� the change
on A�a���s
 which the ���strategy demands will injure the strategy for keeping

�

���n��k�� correct� Of course� there are in�nitely many other lower�priority strate�
gies similar to that of �� that may seek to change A and interfere in this way
with
�� thereby causing in�nite injury to the
��strategy from below� a situa�
tion which must clearly be avoided� Because of this� we demand that before
�
attacks with the R���k���attacker� it must �rst clear the strategy for R

���k���
that is� it must ensure that ����k��

x� at any stage when it acts for the sake of
its own requirement� Therefore� before initiating its own attack�
� links up to

�� in order to initiate a preliminary attack with the R

���k���attacker �currently
controlled by ��� �	��� case III�

� However� this attack may in turn interfere
with the still higher�priority R���k���strategy� since a��s
 will in general be less

than ���A����W
We�

l�
� a����s
� Hence�
� itself must in turn link up to
� �	���

case III�

� initiating an attack with the R���k���attacker �	��� case III��
� At the
next subsequent
��expansionary stage� the R

���k���strategy is cleared �	��� case
II�	A
� At this stage�
� requires the restoration of the old value of
��s attacker�
Because
� is the highest�priority node� nothing prevents it from restoring the
value� so it does so �	��� case II�	A��
� Then the R���k���strategy proceeds �	���
case I�

� At the next subsequent
��expansionary stage� the R

���k���strategy
is cleared �	��� case II�	
� Now� however� the R���k���attacker needs to be re�
stored before the attack for the sake of R���k�� can proceed� Because this
action may interfere with the
��strategy�
� must again link up to
� �	��� case
II�	A�

� which attacks �	��� case III�

 with the �new� R���k���attacker �	���
case III��
� At the next
��expansionary stage�
� again requires the restora�
tion of the old value of
��s attacker� and
� does so �	��� case II�	A��
� Then
the R���k���strategy proceeds �	��� case I��
 to restore its old value for the sake
of
�� which then is �nally able to attack �	��� case I�

� At the next subse�
quent
��expansionary stage� s

�� the
��attack is completed �	��� case II�	
� with
����k���s

�

x�� at which point �� can achieve its goal of setting ����k�� � K�k���

However�
��s work is not yet done� since still lower�priority requirements may
be counting on A�a�� � A�a���s
 �� A�a���s

�
� Because of this�
� must initiate
at s��
 what is essentially a repetition of the entire process �	��� case II�	A�

 in
order to restore the original value A�a���s
 without injuring
� and
� �a process
ending at 	��� case II�	A��
�
This procedure appears to threaten the totality of ��� � since the value of

����k�� is increased by the �lower�priority� strategy for
�� Recall� however�
that we demand that �� � �� on the priority tree only if k� � k�� Any �

with a strategy working for R���k� with k � k� will have lower priority and can

be forced� therefore� to wait until some stage t where ���A����W
We�

l�
� a����t

�y
before picking its attacker a�k�� Therefore� only �nitely many strategies are in
the position of the ���strategy needing to initiate a sequence of events like the
just described� Because only these higher�priority strategies will cause ����k��
to increase� and these will only do so when K changes on the number assigned
to them� eventually the strategy for �� �or some other strategy for R

���k��� will
be able to pick some a� permanently� ensuring that �

���k��
�y�

Of course� things happen di�erently if clearance is not achieved at some
stage� and a master strategy must switch to its backup functional� In this case�

�

an entire process like the one outlined above is cut short� and all strategies be�
lieving in the non�backup functional of this master are initialized� The attacker
which failed to receive clearance is then made available to the backup strategy�
It may already be too small at this stage to actually be used to de�ne a value
of the backup functional� For instance� suppose a is a newly available attacker
for the backup functional ��� for some
 � the next value to be de�ned is k� and
� is the substrategy which wishes to set ����k�� Suppose there is some higher�
priority
 � trying to satisfy requirement R� � R������e��l� � with substrategy ��

and ���attacker a� assigned to some R��k�� such that ���A����W
We�

l� � a��� � a�
If �� � �� then the � strategy cannot be allowed to use a to de�ne ����k�� since
this will threaten injury to the higher�priority ���strategy� However� if the at�
tempt by the
 �strategy to build a non�backup functional fails in�nitely often�
this will generate an in�nite stream of available attackers� so that eventually
one which is large enough will appear to enable the ��strategy to de�ne ����k��

� The full construction

��� The priority arrangement

Our notation is standard� as in ��
� XIII� We use a priority tree T which is iso�
morphic to a subtree of ��	� Using standard coding functions for n�tuples� as
well as standard indexing for computable functionals and computably enumer�
able sets� we order the requirements in a priority listing� We assign requirements
recursively along each path in T � achieving this by using two listing functions�
L���	 k� and L���	 k�� which list� for each � � T � the requirements that still
need to be satis�ed at �� The requirement L��� � L���	 �� is assigned to ��
if j�j is even� and L��� � L���	 �� is assigned to �� if j�j is odd� A natural

notational abbreviation is the writing of L�j for the functional
xLj��	 x��
We de�ne L� and L� by recursion on � � T and m � �� after �rst making

some preliminary de�nitions�
A node is a master if it has even length� A node is a worker if it has odd

length� Master nodes have outcomes 	 �L num �L �n� Worker nodes have
outcomes 	 �L �n�
We can now de�ne the functions L� and L�� The intuition is merely that we

assign overall requirements in order� and then interleave the subrequirements in
one at a time� Below a �nite outcome of a master node or an in�nite outcome
of a worker node� all subrequirements of that strategy are removed from the list
L�� Let hi be a coding function for pairs such that hm	 ki � hn	 li and n � m

implies k � l�
Let
 be the empty string�

Empty string� For every m	 k � �� L��
	m� � Rm� and L��
	 hm	 ki� �
Rm�k��

Master node� Suppose � has requirement Rn assigned to it� Then � has three
possible outcomes O�

�

O �	 or num� Let L���
�hOi	m� � L���	m�
�� and L

��hOi
� � L

�
� �

O �
n� Let L���
�hOi	m� � L���	m�
�� Let

S��� �
�
j � j �� n and �i�Rj�i� � ran�L

�
� ��

�
�

Let f� � �
 S��� be the enumeration of S��� in increasing order�
For every m	 k � �� L���

�h�ni	 hm	 ki� � L���	 hf�m�	 ki� �In other
words� we just remove Rn�k� from the range of L� for every k��

Worker node� Suppose � has requirement Rn�j� assigned to it� There are two
possible outcomes O�

O �	� Let �� be the longest proper substring of � with L���� � Rn�

Let L
��h�i
� � L

�
� � and let L

��h�i
� � L

��
�
h
ni

� �

O �
n� For every m � �� Let L
��h
ni
� � L

�
� � and let� for every m � ��

L���
�h�ni	m� � L���	m�
��

For any worker node � with requirement Rn�j� assigned to it� the master of

��
���� is the greatest
 included in � such that L�
� � Rn� We say � must

respect an in�nitary outcome of some master node
�
 � when
�hOi � �

with O �	 or num� and there is no ��
 � with
���� �
� and �
�
� h	i � ��

�In other words� when � assumes that a �� outcome for
� lies on the true path�
and this outcome is not denied by some intermediate node��
As usual� we have an approximation to the true path fs de�ned at each s � ��

For any node � � T � s is a ��stage if �
 fs� If s is an active ��stage� then we
use s�� to denote the last previous ��stage� When � is clear from the context�

we merely write s� for s�� �
Whenever fs �L �� we initialize � at s� If � is a master� this means that

we unde�ne all of ��s parameters and functionals� and start over completely
with a new version of �� For workers� this means essentially nothing� since the
parameters associated to di�erent workers for the same master are the same �see
below�� At stage � we initialize all nodes in T � We then take action as follows
at each stage s �
� breaking the action into substages depending on the order
in which the active nodes can act�

��� Master nodes

Suppose
 has requirement R����e�l assigned to it� We �rst make explicit how

we intend to approximate the truth of the condition ���WWe

l � � A and ��A� �

WWe

l �� We use the hat trick�
For each
 �stage t let

w�t �

�
�w�w �We�t
�We�t

�
	 if We�t
�We�t
�
 �� �� and

t	 otherwise�

!

Let c��l �We�x��t

�y if and only if �l�We�x��t

�y� w�t � Let �
�WWe

l �� �t
 �
�
x �c��l �We�x��t

�y�
In other words� ��WWe

l �� �t
 consists of those elements of WWe

l �t
 with axioms
smaller than w�t � A stage t is said to be a
 �true stage� if t is a
 �stage and
We � w�t �We�t
 � w

�
t � This means that no element w � w�t is ever enumerated

into We at any stage after
 �
Let s be a
 �stage� We de�ne the set S� �s
 of apparent
 �true stages at s to

be the set of
 �stages t � s such that for all t� � s� if t � t� and t� is an active

 �stage� then w�t � w�t� � When a �xed
 is under consideration� we usually write

wt for w
�
t and
�WWe

l for ��WWe

l �� � and we call
 �true stages We�true stages�
At each
 �stage t� we de�ne the
 �length�of�agreement at t� l� �t
� to be the

greatest x such that for every y � x� ���WWe

l � y��t
 � A�y��t
 and for every

z � ���WWe

l � y��t
� �WWe

l �z��t
 � ��A� z��t
� We de�ne the maximum previous

 �length�of�agreement at t by m� �t
 � max
�
l� �s
 � s a
 �stage and s � t

�
� A

 �stage t is
 �expansionary whenever l� �t
 � m� �t
�
We remind the reader of the main features of the hat trick� The signi�cance

of true stages lies in the following fact� If there exist in�nitely many
 �stages
and u is any natural number� then there exists a least
 �true stage t�u� such

that for all t � t�u�� if t is a
 �true stage� then�WWe

l �t
 � u �WWe

l � u� Suppose

there are in�nitely many
 �stages� ��WWe

l � � A� and ��A� � WWe

l � Then� if
A is a ��

� set� every relevant computation eventually appears co�nitely often
in the sequence of
 �true stages� In this case� there will exist in�nitely many

 �expansionary stages� This means our approximation will be good enough for
us to satisfy R����e�l� �To allay any fears that our argument may be circular�
we remark here that the proof that A is ��

�� in fact� 	�c�e�� will be independent
of the existence of in�nitely many
 �expansionary stages��
Recall that when some substrategy of
 is successful� we need to go through a

procedure to restore the state of A before this strategy acted� This is how lower�
priority requirements avoid being injured in�nitely often� This gives rise to two
distinct states
 can be in� depending on whether it is aiming at permission
for an initial attack� or for restoration of an old value� Below� we divide
 �s
action during an attack into two parts� The �rst part begins when some lower
priority nodes links up
 because it wishes
 to make some initial attack� After
the �rst
 �action to change A� the second part of the attack begins� This is to
signal that at the next
 �expansionary stage
 must attempt to change A back
to its former state� rather than following the link back down from
 � because
the node that was waiting for the original
 �attack to succeed� will in general
�i�e�� when it is a lower�priority master� require restoration of this old value� At
this point�
 itself may have to wait a while for permission from higher�priority
masters to restore the value� but eventually it does so� and then� at the next

 �expansionary stage� we consider
 �s attack completed� we can follow the link
down� allowing the lower�priority node to proceed� It may help the reader�s
intuition in understanding what follows for the reader to note explicitly that

�

initial attacks occur under cases I�
 and III�� below� while restoration occurs
under cases I�� and II�	A���
A possible source of confusion is the suppression of any indexing of the suc�

cessive attempts to de�ne K �T We without recourse to the backup functional�
This involves constructing some ��n where n is the current attempt at computing
K below the "num� outcome� This n is �xed in the intervals throughout which
it appears to be succeeding� and is incremented by one every time there is an
uncorrectable failure� at which point it is given up forever� There is no need to
make any mention of this n� in fact� this would do nothing but add notational
complexity to what follows� For this reason� the current ��n appears as �

� below�
We write a�
	 k��s
 for the current kth attacker for
 �s non�backup functional�
and a��
	 k��s
 for the backup functional�s kth attacker� In order to set appro�
priate restraints on A� we also keep track of the stage at which these attackers
become de�ned with their current values� by means of parameters s� �k��s
� and
s���k��s
� respectively�
Recall the description of the general plan for satisfying
 �s requirement in

section �� The backup functional built by the
 �strategy will be total only if the
attempt to build a non�backup functional fails in�nitely often� If this happens�
the in�nite sequence of numbers on which these failures have occurred can be
used as attackers in de�ning values of the backup functional which are guar�
anteed to be correct� As described at the end of section ���� the substrategies
de�ning ��� must choose numbers large enough to avoid injury to higher prior�
ity requirements� and hence only a subsequence of this sequence of numbers can
actually be used� We control the sequence of numbers on which failures have
already occurred at stage s with an availability list A�

�� These are the numbers
which are available to substrategies working to de�ne ��� from which they must
choose large enough numbers as their attackers� This �streaming� of available
numbers is somewhat di�erent from that of Downey ��
� since only substrategies
of this overall strategy have to select from the stream� We let A�

��s
 � � when
s � �� and at any stage s�
 at which either
 is initialized or a new attacker is
selected from A�

��s
� and we gradually add numbers to A
�
� as more and more

failures occur� �See case II�	B below��
There are three di�erent situations in which
 can be allowed to act at stage

s�
 can either be visited by a link from some master node
�

 � or
 can
be visited in the ordinary way� by being the single outcome extension of some
� which acted at s� or� �nally� some link with top
 can be set by some � with

 � for the purpose of initiating a
 �attack� In the �nal case� it may be that
� is itself a master node working for a di�erent requirement which is trying to
clear some
 �substrategy R� �k� in order to get permission to act for one of its
strategies R��l�� In this case we say that the R� �k��substrategy is associated

to the link which is being set at this stage� and we say that the R��l��strategy
is waiting for the R� �k� strategy to be cleared� To facilitate our description of
the action we make a formal de�nition of when some master needs to obtain
clearance from a higher priority master in order to act�

De
nition �� Suppose
 is a master node� k � �� and either s� �k��s

�y� or

s���k��s

�y� Let s�k� denote either of these� and let a�s
 be the attacker associated

to s�k� �i�e�� either a�
	 k��s
 or a��
	 k��s
�� Suppose there is another master
node
� such that either

�
�� hnumi �
 and there is a least k� such that �s�k� � s���k����s
� or

� there is a node
� such that
�� h	i �
 and there is a least k� such that
�s�k� � s����k����s
�

Then we say
 requires clearance from
� before changing A on a�s
�

After making these preliminary remarks� we can �nally give the possibilities
for the action of
 � At stage �� all nodes are initialized by unde�ning all functions
involved in their strategies and setting all sets equal to �� There are three sets
of possibilities at stage s�
� depending on how
 is visited at stage s�
� For
each of these situations� the �rst possibility below that applies is the one that
is followed�

I� Suppose
 is visited by a link from some other master node
�

 �acting at
the immediately preceding substage�� Such a link is originally set under
one of cases II�	A�
 or III�
 below when some
 �strategy wished to change
A but was prevented from doing so because of the injury this would have
caused to some R���k���substrategy which has now been cleared� There�
fore� the
 �strategy has just received permission to act� There are two
subcases for action� depending on which part of the current
 �attack is
under way� �Note that both parts of
��s attack must have been com�
pleted� otherwise
 could not be visited by a link� by Case I�
 applied to

���

Case I�� Suppose
 is in part one of its current attack� and there is a
link with top
 and bottom � in place� If � is not a worker for
 �
then such a link can only be set under case III�
 below� and there
will in this case be an associated R� �k��substrategy� for some k � ��
Otherwise� the link was set under case II�	A�
 below� and � is a worker
for
 with requirement Rn�k�� for some k � �� If
�hnumi � ��
let A�a�
	 k���s �

 �
 �� A�a�
	 k���s� �k��s

� If
�h	i � �� let
A�a�
	 k���s�

 � � �� A�a�
	 k���s���k��s

� Immediately end stage
s�
 and proceed to stage s��� �At the next
 �expansionary stage�

 will act under case II�	 below��

Case I�� Suppose
 is in part two of its current attack� and there is a
link with top
 and bottom � in place� If � is not a worker for
 �
then� as in I�
� there will again be an associated R� �k��substrategy�
for some k � �� �In this case � is a lower priority master that needed
clearance from
 � as in the case of
� in the detailed example of
section ��� above�� Otherwise� � is a worker for
 with requirement
Rn�k�� for some k � �� We say
 has completed both parts of its

current attack� If
�hnumi � �� let A�a�
	 k���s �

 � �� and let

�

a�
	 k��s �

x�� If
�h	i � �� let A�a��
	 k���s �

 �
� and let

a��
	 k��s�

x�� Remove the link� and allow � to act at stage s�
�

II� Suppose
 is visited in the ordinary way at stage s� because
 �
� or

 � ��hOi� for some � which acted at stage s and received outcome O�

Case II��� Suppose s is not
 �expansionary� Let
�h�ni act at stage
s�
�

Case II��� Suppose s is
 �expansionary and there is no link with top

in place� �This means we continue in the belief that for the current
n� ��n � K�� Let
�hnumi act at stage s�
�

Case II��� Suppose s is
 �expansionary� there is a link with top
 and
bottom � in place� and
 is in part one of some current attack� Be�
cause
 is the top of a link� there exists a k such that either � is a
worker for
 with requirement Rn�k�� or � is not a worker for
 and
there is some associated R� �k��substrategy�

There are two possible subcases� depending on whether this part of
the attack has been successful or not�

Case II��A� Suppose
�h	i � �� or
�hnumi � � and �� �k��s

x��

This means the substrategy for R� �k� has been cleared so that
� may proceed without injuring the
 �strategy� however
 must
now restore the state of A which � may have been depending on
when the
 �attack was started� In this case there are two fur�
ther subcases depending on whether
 requires permission before
restoring the previous state of A� Let a�s
 be either a�
	 k��s
 or
a��
	 k��s
� depending on which outcome is included in ��

Case II��A��� Suppose there exists some node
� such that

requires clearance from
� before changing A on a�s
� �Here

is in the position of
� and
� in the example of section �����
Let
� be the longest �i�e�� lowest priority� such node� Set
a link between
 and
�� and declare the R

���k�� strategy
temporarily associated to the link between
 and
�� We
say
 enters part two of its current attack� Allow
� to take
appropriate action �under case III�
 or III�� below� at stage
s �
� �The R� �k� strategy is now waiting for the R���k��
strategy to be cleared��

Case II��A��� Otherwise�
 may immediately restore its pre�
vious value and allow � to proceed� If
�hnumi � �� then
let A�a��s �

 � �� and let a�s �

x�� If
�h	i � �� let

A�a��s �

 �
� and let a�s �

x�� We say
 has completed

both parts of its current attack� Remove the link� and allow
� to act at stage s�
�

Case II��B� Suppose
�hnumi � � and �� �k��s

�y� �This means

the substrategy for R� �k� has failed�� Declare a�
	 k��s
 to be

	

available below
�h	i� and let a�
	 k��s �

x�� We say
 has

completed both parts of its current attack �through failure�� and
let the entire functional �� be unde�ned� Let
�h	i act at stage
s�
� �In this case� � is initialized��

III� Suppose a link is set at stage s with top
 and bottom either some � with
requirement R� �k�� or some � which is not a worker for
 � In the latter
case there is some associated R� �k��substrategy� We write s�k� for either
s� �k� or s���k�� depending on which of

�hnumi and
�h	i are included
in �� This situation arises when we wish to change some value of A for
the sake of the
 �strategy� As in II�	A above� there are two possibilities�
depending on whether this change in A threatens to injure some higher
priority strategy �III�
�� or not �III���� In either case� we say
 enters

part one of its current attack� Let a�s
 be either a�
	 k��s
 or a��
	 k��s
�
depending on which outcome is included in ��

Case III�� Suppose there is a node
� such that tau Suppose there exists
some node
� such that
 requires clearance from
� before changing
A on a�s
� Let
� be the longest �i�e�� lowest priority� such node� Set
a link between
 and
�� and declare the R

���k�� strategy temporarily
associated to the link between
 and
�� Allow
� to take appropriate
action �under cases III�
 or III��� at stage s�
� �The R� �k� strategy
is now waiting for the R���k�� strategy to be cleared��

Case III�� Otherwise�
 may immediately begin its current attack� If

�hnumi � �� then let A�a��s�

 �
 �� A�a��s� �k��s

� If
�h	i �
�� let A�a��s�

 � � �� A�a��s���k��s

� Immediately end stage s�

and proceed to stage s��� �At the next
 �expansionary stage�
 will
act under case II�	��

��� Worker nodes

Worker nodes are those which have the responsibility of de�ning and keeping
correct the individual values of the functionals which compute K� Suppose � is
such a node with subrequirement Rn�k� � R����e�l�k� assigned to it�
Recall from section 	�� that the master of ��
���� is the longest
 included

in � such that L�
� � Rn�
There are two sets of possibilities� depending on whether or not � is a sub�

requirement for building the backup functional �Rn� � The procedures for these
two di�erent kinds of workers are almost identical� di�ering only in one case�
�� below for which we distinguish a prime and a non�prime version� Thus� we
abuse notation slightly and write �� �k� for both �� �k� and ����k� in all cases
except �� and we do the same for a�
	 k�� Although � only has the responsibility
to set up and keep correct a single value of some �Rn � its action is complicated a
little by its need to wait until higher priority workers have succeeded in setting
up their own strategies� At stage s�
� we act according to the �rst case which
applies below� Recall that s� is the last previous ��stage�

�

Case �� Suppose � has previously been visited as the bottom of a link since it
was last initialized� Then ��s strategy has �nished� and we do not wish it
to interfere with any other strategy below� Let ��h�ni act at stage s�
�

Case �� Suppose k � K�s�

 and either

� �� �k��s

x�� or

� �� �k��s

�y� �� �k��s�
� and �� �k��s
 �
�

In this case� ��s strategy has succeeded� in the �rst case� possibly by �

being visited as the bottom of a link� If �� �k��s

x�� then� if �� �k��s�
�y�

let �� �k��s�

�y� �� �k��s�
� otherwise �if �� �k��s�

x��� let �� �k��s�

�y�
s�
� In either case� let �� �k��s�

 �
� If a�
	 k�

x��s
� set a�
	 k��s�

 � ��
If �� �k��s

�y� �� �k��s�
� and �� �k��s
 �
� do nothing� If � was visited as
the bottom of a link at stage s �
� immediately end stage s �
 and go
to stage s� �� Otherwise� let ��h�ni act at stage s�
�

Case �� Suppose there is a master node
� such that either

�
�� hnumi �
���� � must respect this in�nitary outcome of
�� and
there is a k� � k such that a�
�	 k���s

x� or �l�� � a�
�	 k����s
� or

�
�� h	i �
���� � must respect this in�nitary outcome of
�� and
there is a k� � k such that a��
�	 k��

x� or �l�� � a��
�	 k����s
�

In this case� � must wait for a higher priority attack to be prepared� End
stage s�
� and go immediately to stage s� ��

Case �� Suppose a�
	 k��s

x� and
�hnumi � �� Since case 	 does not hold� �

can start the Rn�k��strategy� Let a�
	 k��s�

 be the least number greater
than any yet mentioned in the construction� Immediately end stage s�
�
and go to stage s� ��

Case ��� Suppose a��
	 k��s

x� and
�h	i � �� Since case 	 does not hold�

� can start the Rn�k��strategy� here� however� we must take extra steps
to ensure that the attacker chosen is big enough� since arbitrarily large
numbers are not available to �� Let T ����s
 be the set of all master
nodes with in�nitary outcomes included in � which � must respect� Let
r����s
 �

�
s��k���s�

 � k� � k and � � T ����s

�
� If there is an available

attacker a below
�h	i such that a � r����s
� then choose the least such
a� let a��
	 k��s�

 � a� declare a no longer available� and reset A�

� � ��
Otherwise� do nothing� In either case� immediately end stage s �
� and
go to stage s� ��

Case �� Suppose a�
	 k��s

�y and �l� � a�
	 k���s
� � must then continue to wait

for its strategy to be prepared� Immediately end stage s �
� and go to
stage s� ��

�

Case 	� Suppose a�
	 k��s

�y and �l� � a�
	 k���s
� k �� K�s�

� and �� �k��s

x��
Now � can set the use �� �k�� Let �� �k��s �

 � max�

�
�l�y��s
 � y �

WWe

l � ��x��s

�
�� �� �k��s�

 � �� and s� �k��s�

 � s� Let ��h	i act

at stage s�
�

Case �� Suppose a�
	 k��s

�y� �� �k��s
�y and �� �k��s �

 � K�k��s �

� Let

��h�ni act at stage s�
�

Case �� Suppose a�
	 k��s

�y� �� �k��s
�y� and �� �k��s�

 �� K�k��s�

� In this

case� � initiates an attack� We set a link between � and
 and allow
 to
take appropriate action �under cases III�
 or III�� of section 	��� at stage
s�
�

This completes the construction�

� Veri�cation

We must show that A is 	�c�e� and that every requirement R����e�l is satis�ed�
In what follows� we assume familiarity with �����priority constructions� to avoid
having to prove some tedious technical facts� for example that all requirements
that need to be satis�ed are eventually assigned to some node along the true
path�

Lemma ���� A is 	�c�e�

Proof� Suppose a � � is eventually chosen as an attacker for some substrategy
of the construction� The value A�a��s
 can only change under cases I� II�	 or
III�� of section 	��� If this change occurs under cases I�� or II�	� it results
in the permanent abandonment of a as an attacker in the construction� An
examination of these cases shows that an initial change on A�a��s
 can only
happen below a num outcome of a master node in the �rst part of an attack
and� hence� must occur under cases I�
 or III��� The only way in which an
original change under one of these cases can fail to be followed by restoration
and abandonment of the attacker a is under case II�	B� since it is not hard to
see that the use tied to a �i�e�� some �� �k�� must be unde�ned when
 enters
the second part of its attack� Neither of these situations causes a change in
A�a��s
� and each of them reserves a permanently for use as an attacker for the
sake of a backup strategy� If A�a� changes for a second time� this must again
occur under case I�
 or III�� for the sake of some substrategy below an 	� In
this case� however� the change must be followed by subsequent change under I��
or II�	 when the next link is removed� which is �nal as noted� This means that
at most three changes of value are possible�

We now show� using a sequence of lemmas� that each requirement is satis�ed�
We de�ne the true path to be f � lim infs fs� We �rst show that nodes on the
true path are not linked over in�nitely often�

Lemma ���� If �
 f � then �s�t � s ��
 ft and � acts at t��

�

Proof� Suppose not and choose � of shortest length such that the lemma fails
for �� Let �� be ��s immediate predecessor on f � so that �� acts in�nitely
often� We assume all action takes place after � is right of the approximation
to f for the last time� Given a stage s� let t� � s be a stage at which �� acts
and �
 ft� � If � does not act at stage t�� �

� must already be linked over � at
stage t� �
 and this link must be removed at stage t�� Because �� may be the
top of a chain of links� rather than just a single link to a worker� the bottom of
this link may be a master node acting under 	��� case I��� at stage t�� However�
any chain of links must end in some worker node� hence� the node of greatest
length below �� which acts at stage t� must act under 	��� case I�
� or 	�	� case
�� Links can only be set from below� and no new link to a node extending �� is
set at stage t�� since all these nodes act under either 	��� case I� or 	�	� case �
at stage t�� But then � itself must act at the next stage t such that �
 ft�

If �
 fs and � is not linked over at s� then we call s an active ��stage� We
�rst prove a lemma which will eventually enable us to show that our procedure
succeeds in de�ning total functions� This will also enable us to show that f is
in�nite� The latter is not immediately obvious� since fs fails to be extended when
some worker is waiting under 	�	� case 	 for the appearance of an attacker for
some higher priority master with an in�nitary outcome� and for the associated
length�of�agreement function to increase beyond this number� �fs can also fail
to be extended when it is visited as the bottom of a link in case �� and under
cases �� �� and �� but each of these is a trivial case for the induction� since it can
only happen once for each node after initialization�� We only have to consider
the case where k �� K� since otherwise eventually� for any master
 � any use
�� �k� and attacker a�
	 k� are continually reset to the same number� by 	�	�
case �� and hence must converge� For �� �k� this follows because We is c�e�

Lemma ���� Let

 f with requirement R assigned to
 � Suppose k �� K�

let �
 f be a worker for
 with L��� � R�k�� and suppose there are in�nitely

many active ��stages�

If
�hnumi
 f � then for almost all s� a�
	 k��s

�y�

If
�h	i
 f � then for almost all s� a��
	 k��s

�y�

Proof� Suppose otherwise� and choose � of least length for which this fails� and
as in the statement of the lemma� let
 be ��s master� As pointed out above� �
must be the only node on f which fails to have an outcome on a co�nite sequence
of stages� Let a�s
 � a�
	 k��s
 or a��
	 k��s
� respectively� depending on whether

�hnumi
 f or
�h	i
 f � Let O be the �in�nitary� outcome of
 on f �
Let s� be a stage such that for all s � s�� � � fs� We �rst show that a�s

�y at
in�nitely many s� then that it is de�ned co�nitely often� First� suppose O �	�
By lemma ���� no
�

 can link over
 co�nitely often� Because of this� if the
sequence of numbers available below
�h	i were bounded� then� after the link
to the lowest priority node working for
 with a de�ned attacker below
�h	i
is removed� no further link could be imposed with top
 and bottom extending

�h	i without
�h	i acting� Hence�
 itself could not be the top of a link

�

at co�nitely�many
�h	i stages� There must then be in�nitely many stages at
which
�h	i acts� But at any such stage�
 has acted under case II�	B� and
so a new number has been made available below
�h	i� Also� if
 �
 � and
k� � �� then s�

�

�k�� is only set under 	�	� case � for some ��� at which point
��
�h	i acts� No node extending ���h	i respects
 �� By inductive hypothesis�

all workers ��
 � with masters that
 must respect eventually de�ne their
attackers permanently� This also means that the restraint de�ned in 	�	� case
�� on � is bounded� Hence� a��
	 k��s

�y in�nitely often�
If O � num� then a�
	 k��s
 can always be chosen under 	�	� case �� Again�

by hypothesis� � cannot be kept waiting under case 	 forever� So� no matter
what O is� a�s
 converges in�nitely often�
We may assume that no number less than k enters K at any stage after s��

by choosing s� larger� if necessary� Since k �� K� a�s
 can never be given up as
a result of an attack for the sake of the
 �strategy� At every active ��stage all
masters to the right of the true path are initialized� hence a�s
 can never diverge
for the sake of such a node� This means that it is only a substrategy of some
master node � such that

 �
 � acting under 	�� � case III�
 that can cause
a�s
 to become unde�ned in�nitely often�
Let � be the longest such node included in � and let t� be the stage at which

the R�k� strategy was temporarily associated to a link between
 and �� We
may assume that all the nodes �
 � which cause a�s
 to become unde�ned only
�nitely often do so only at stages before t�� Recall that K � k � K�t�
 � k� Let
R��n� be the requirement whose strategy is waiting for the R�k� strategy to be
cleared� By section 	�	� case 	� n � k� Now� if the R��n� strategy were itself
acting at t� because it had in turn been associated temporarily to some link
between � and some lower�priority master node �� then� � � �� since otherwise
� is not the longest node included in � which a�ects a�s
 at any stage greater
than or equal to t�� But then� for any m � �� s	�m� and s	��m� �if de�ned
at all� are both greater than whichever of s� �k� and s���k� is de�ned for a�t�
�
But then they are a fortiori greater than whichever of s��n� and s���n� causes
the attack with a�t�
 to happen at t�� �In other words� using an obvious but
sloppy notation� s��m� � s� �k� � s	�m��� But this means such a � cannot set
a link to � because of any substrategy� This implies that the strategy for R��n�
is acting on its own behalf� so that n � K�t�
� Without loss of generality� we
can assume n is the least number that causes this kind of activity to occur for
the overall R� strategy� But then� after stage t�� since n � k� we must have all
m � K such that n � m � k elements of K�t�
� Hence no more R

� strategies for
any number less than k can be subsequently started until after a�s

�y at some
s � t�� Thus � can never again a�ect a�s
� This is a contradiction�

As pointed out above� lemma ��	 implies that the true path is in�nite� since
only under 	�	� case 	 can a node fail to have an outcome at many stages�
It follows straightforwardly from the de�nitions in 	�
 that every requirement
R � R����e�l is assigned to some greatest node along every in�nite path in T � In
what follows� we let
 be the unique such node on f � We assume that for every
master
�

 �
��s requirement is satis�ed� and if
� has an in�nitary outcome�

�

then the functional associated to that outcome is totally de�ned and correct�
As discussed in section 	��� the fact that A is ��

� implies that the
 �length�of�
agreement function increases in�nitely often if the
 �condition� ���WWe

l � � A

and ��A� � WWe

l �� is satis�ed� Hence� if
�h�ni
 f � the requirement is
satis�ed� Also� if some � is a worker for
 and ��h	i
 f � then the total
use involved in ��WWe

l � a� � A�a� and ��A� � ��a� � WWe

l � ��a� must
increase without bound on expansionary stages� �Here a is the �nal value for
the ��strategy�s parameter�� Again� since A is ��

�� this cannot happen if the

 �condition is satis�ed� Hence we only have to consider the situation where

has an in�nitary outcome on the true path and every worker for
 on the true
path has a �nitary outcome� In what follows� we assume that this condition is
satis�ed� and that all our discussion takes place after the last stage at which
the approximation to the true path branches back left of
 �
Because every master
�

 is able to de�ne its functional correctly�
 �s

immediate predecessor must have a true outcome in�nitely often� This implies
that there are in�nitely many active
 �stages� To show that our linking pro�
cedure works correctly� however� we need to show that workers for
 along the
true path also receive in�nitely many chances to act�
We next prove the technical fact which implies that higher�priority strategies

either succeed in restoring A to the state which lower priority strategies expect�
or initialize those strategies completely�

Lemma ���� Let ��
 ��� Suppose a link is set at stage s� between �� and ���

Let a be the attacker on which �� wishes to change A�s value at stage s�� and

let s� be the next active �� stage� if such a stage exists� Then either

i� �A � s���s�
 � �A � s���s�
� or

ii� �� has been initialized at some stage t such that s� � t � s�� or

iii� ��� hnumi � ��� �
�
� hnumi has been initialized at some stage t such that

s� � t � s�� and �A � s���s�
 � �A � s���s�
 � fag�

Proof� By induction� Suppose this fails for some shortest ��
 ��� No node
to the left of �� can act again before stage s� �since ii fails�� every node to
the right of �� picks witnesses bigger than s�� and every node between �� and
�� is prevented from acting while the link is in place� So� since the claim
never failed before� whenever �� acts� it can depend on A having the right state
except for the attacker a� otherwise �� is initialized by some even higher�priority
strategy before stage s�� By the failure of i� we must therefore have one of two
possibilities� either �A � s���s�
 � �A � s���s�
 � fag� or �A � s���s�
 � �A �

s���s�
� fag�
Suppose �rst that �A � s���s�
 � �A � s���s�
�fag� In this case� a must have

been added for the sake of some ���strategy at some stage between s� and s��
This can only happen as part of an attempt to correct a value of the current
version of ���s non�backup functional at stage s�� Since �� acted at stage s��
��� hnumi � ��� By section 	��� cases I�� or II�	A��� �� will never allow �� to act
again until A�a��s�
 is restored� unless there is a failure causing a to be made

!

available to the backup functional� �Recall that �� itself is not initialized by the
failure of ii�� But at such a stage ��� h	i acts� initializing �

�
� hnumi� and �� as

well� So iii holds�
Otherwise� suppose �A � s���s�
 � �A � s���s�
 � fag� In this case� a must

have been removed for the sake of some ���strategy at some stage between s�
and s�� This can only happen as part of an attempt to correct a value of ���s
backup functional� Since �� acted at stage s� �

�
� h	i � ��� However� in this

case� �� would never allow �� to act until A�a��s�
 is restored under section
	��� cases I�� or II�	A��� contradicting the failure of i� This establishes the
lemma�

To show that R is satis�ed� we suppose that ��WWe

l � � A and ��A� �

WWe

l � since otherwise there is nothing to prove� Naturally� there are two possi�
bilities� depending on which in�nitary outcome of
 lies on the true path�
If
�hnumi
 f � then we may assume that after stage s�� fs never branches

back through
�h	i� Note that �� is never initialized after stage s�� Recall
that we assume every worker for
 on the true path has a �nitary outcome� Since

�hnumi acts in�nitely often� every link with top
 is eventually removed� Once
a worker � for
 sets a link and this link is removed� either � succeeds and never
acts again� or the node itself� and indeed� everything below the hnumi outcome
of its master� is initialized� under section 	��� case II�	B� This means that every
one of the in�nitely many workers for
 along the true path has an opportunity
to act after s�� and� if it does act� its action succeeds� This shows �

� �k� � K�k�
whenever �� �k�

�y� For each k� however� �� �k� must converge permanently� since
otherwise the kth worker for
 along the true path would have outcome h	i
in�nitely often� This shows R is satis�ed if
�hnumi
 f �
The argument in the case
�h	i
 f is a little more subtle� Eventually�

���k� is de�ned� since otherwise the � to which R�k� is assigned must have an
in�nite outcome on the true path� This follows since� by Lemma ��	� R�k� never
has to pick a new attacker after some point� Let a be the attacker for R�k�� But�
when a is removed by the ��strategy at some stage s�
 because k has enteredK�
A is then in the same state as it was before a ever entered A� by Lemma ���� iii�
At this stage� the x � WWe

l �s
 which the backup strategy for keeping ����k��s

correct is depending on was not yet an element ofWWe

l � Thus� ��A�x��s�

 � ��
For this element to leave� We must change on �l�We�x��s
 � ����n��s
� Hence
at the next
 �expansionary stage� �� �k� � �l�We�x��s
 must diverge� and can
then be reset correctly� This establishes the result�

References

�

 Arslanov� M�� LaForte� G�� and Slaman� T�� Relative enumerability in the

di�erence hierarchy� to appear� J� Symbolic Logic�

��
 R� Downey� The ���� priority method with special attention to density results�
Recursion Theory Week� Proceedings� Oberwohlfach
!�! �K� Ambos�
Spies� et al� � eds�� Springer� Berlin�
!!���

��

�	
 Sacks� G�� Recursive enumerability and the jump operator� Trans� Am�
Math� Soc�
�� �
!�	� ��	��	!�

��
 Shore� R�� A non�inversion theorem for the jump operator� Ann� Pure and
Appl� Logic �� �
!��� ����	�	�

��
 Soare� R�� Recursively enumerable sets and degrees �Springer� Berlin�
!����

�

