A AY set with barely X degree*

Rod Downey, Geoffrey LaForte, Steffen Lempp

Abstract

We construct a AY degree which fails to be computably enumerable in
any computably enumerable set strictly below ('.

1 Introduction

The lion’s share of effort in classical computability theory over the last fifty
years has been directed toward the study of relative computability. This paper is
concerned with another, more neglected, yet still fundamental, notion of classical
computability theory, namely that of relative enumerability.

Specifically, we ask questions concerning the relationship between sets A and
B when A is computably enumerable using B as an oracle. For example, given
a set B, we might ask what properties the class of sets A which are c.e. relative
to B has. Conversely, for fixed A, we might wonder which degrees contain sets
relative to which A can be computably enumerated. In the present paper, our
particular concern is with this latter type of question. We study X9 sets and
degrees, and their relations with the computably enumerable sets from which
these more complex sets can themselves be computably enumerated.

By the Sacks Jump Theorem [3], given any noncomputable, computably
enumerable C, any X9 set with degree at least as great as 0’ has the same
degree as the jump of some B such that C' £7 B. Clearly, any such B must
itself be incomplete. Thus we have the weaker fact that any 3 set with degree
at least as great as 0’ has X P-degree for some incomplete c.e. B. Of course, any
%9 set is itself relatively computably enumerable in K, and so has X -degree.
The natural question in this context is whether or not any X9 degree requires
K in order to witness that it is ¥o, in other words, whether or not there exists
a X9 set A such that whenever A has X}V degree for some c.e. set W, W must
be complete, a situation we describe by calling A barely 3.

Any c.e. set is computably enumerable relative to (), and, by an unpublished
result of Lachlan, any 2-c.e. set is 2-CEA, that is, relatively c.e. in some c.e. set
below it. Thus, any X9 degree which requires the full power of K for an enu-
meration must be of at least properly 3-c.e. degree. Since, by Arslanov-LaForte-
Slaman, [1], no properly 3-c.e. degree can contain a set which is c.e. relative to a

*to appear, Journal of Symbolic Logic

c.e. set below it, it is not unreasonable to look among such degrees for X3 ones
that require K to be enumerated. Our result here shows that we can find such
barely 9 degrees in this otherwise simple realm:

Theorem 1 : There exists a 3-c.e. set A such that for all c.e. sets W, A has
¥V degree if and only if W =1 ('.

Thus, in general, a X3 set need not be of X¥ degree for any incomplete
c.e. set B.

We remark that if we consider sets themselves, rather than the degrees of
sets, it is easy to see that K cannot be X5 for any c.e. B <7 (. In fact, any
set to which K is m-reducible must have this same property, for instance, ()"'.
The Noninversion Theorem of Shore, [4], gives us another means of exhibiting
such a phenomenon. By this result, there exist two X9 sets U and V such that
UV <7 0", and U and V cannot both have 8 degree for any B < (.
Hence U @ V cannot be X for any such B. It does not seem to follow directly
from this construction that K is computable from the set U @ V so constructed.

Of course, these examples and even the AY degree we construct leave almost
completely open the more general question of exactly which X9 sets below "
have this property, as well as the analogous question about degrees. In particu-
lar, we have not constructed such a set incomparable with (), although it seems
natural to conjecture that there are such sets.

2 Theorem and general plan

Theorem 1. There exists a 3-c.e. set A such that for all c.e. sets W, A has
YV degree if and only if W =1 (.

For every pair of partial computable functionals ® and ¥, and natural num-
bers e and [, we must satisfy the requirement

Rowey : (B(W)") = A and ¥(4) = W)¥*) = K < W..

We intend to satisfy Re w; by using an w-sequence of functionals, I',, (W),
together with a “backup” functional I'sx (We). In order make our notation less
cumbersome, we generally refer to these functionals as just I';, or I';n fty in what
follows, avoiding explicit reference to W, when this is clear from the context. ',
will be defined on n each time there is an uncorrectable failure of I';, to compute
a value of K. We implement this strategy by defining a length-of-agreement
function approximating the truth of ®(W;"*) = A and ¥(4) = W;". Assuming
that the condition holds, and we are currently defining some I';,, we split Re w 1
into subrequirements

Ro,w,ei(?) : Tn(We;i) = K(i) or oo (We;n) = K(n),

which are allowed to act at R v, -expansionary stages.
Our basic strategy has two parts: an attempt, possibly without success, to
correctly define I',(3), followed by a definition of I'w(n) which is guaranteed

to succeed. By a slight abuse of standard notation, we let ¢;(We;z)[s] be the
maximum of the uses of all computations ¢;(We;y)[s] for which y < z and
yE€ I/VIWe [s]. At stage s we assign an attacker a ¢ A[s] to our subrequirement, set
the use of ', ()[s] to be s > ¢y (We; (W;V; a))[s], and restrain A below 1(¢(a)).
When i enters K, we enumerate a into A, forcing a change on ¢(W}<;a)[s] at
some later stage ¢. If this is caused by an element leaving I/VIWe [s], this involves a
change in W, below 7, (i). Otherwise, some new element z is added to W,"*[t].
We then set yoo(n) = ¢i(z), the use from W, by which z is an element of
VVIWE. Now, by restraining A appropriately, we can force changes at will on
W, by forcing « in and out of VVIW" through changes on A(a). This involves
only at most one further change on A to keep I'o, (We;n) correct up to n, so
A remains AY as required. In fact, from the point of view of this requirement
in isolation, A appears to be 2-c.e. Avoiding injury to other (higher-priority)
requirements, however, involves restoring the value of A(a) at the stage at which
these requirements acted to set their original use, so there is at least an apparent
potential for infinitely many changes to be required on a through a cascading
effect caused by sequences of restorations. It is the avoidance of this that is the
fundamental obstacle to achieving the proof.

The fact that we need a 0'’-priority arrangement to organize our construc-
tion arises naturally from the purely local problem of infinite injury to the use
qS(VVlWE;a) through changes in WlWe. From the standpoint of the overall re-
quirement R = R v, there are three possible outcomes. Either there are
only finitely many expansionary stages, or some I',, succeeds in computing K,
or 'y, is total. In the usual 0"/ manner, infinite injury to some use can occur
below each of the two infinitary outcomes and thereby deny the truth of these
higher-level approximations. Before giving the full construction, we describe
the basic module in more detail, and then discuss the intuition for the priority
arrangement.

2.1 The basic module for Rs v

Let R = Rg g, and assume some good approximation [®(s) = [(s) has been
defined with

I(s) = max({ = : (‘I>(VVlWE;w) = A(z), and
U(A) T (W™ 52) = W 1 o(W)"5))[s] })-
We consider the action taken for R(%), attempting either to keep I'),(3) =
K(i) or T'(n) =T'x(n) = K(n). The following is the basic module for action at

R-expansionary stages, beginning with a stage sop. We need only consider the
case i ¢ K|[sg]

1. Choose a = a, (i) & Also].

2. Wait for the next R-expansionary stage s; with I(s1) > a. If i € KJsq],
we merely set v,(i) = s; and T',(i) = 1. If ¢ ¢ KJ[sq], then we re-

strain A on max({¢(4;y)[s1] : y < d(W,V=;a)[s1] 1. Set v, (i)[s1] =
max({ ¢i(y)[s1] : y € W7 | p(a)[s1] }-

3. Wait for an R-expansionary stage sp such that i € K[sz].

A. If W, changes on 7,(i) at some stage s > s; before ¢ enters K, then
reset v, (¢)[s + 1] as in 2.

B. If i € K[ss] (and v,(é)[s2]]), then add a, (i) to A[sz + 1], and restrain
A on max({ Y(A4;y)[s2] : y < d(W,";a)[s2] }). Go to 4.

4. At the next R-expansionary stage sz, there are two possibilities.

A. I'n(i)[s3]T. Then set I'y(i) = 1, and reset 7,(i) = s3, permanently.
[In the full construction, we also remove a,,(7) from A[sz + 1] in order
to avoid infinite injury to lower priority requirements.]

B. I';(i)[s3]|. This can only occur if there is some y € (WVels3] —
W,"¢[s2]). We fix y' to be the greatest such number. Again, we
only take significant action if n ¢ K|[s3]; otherwise, we just set
v(n) = s3 and I'(We;n) = 1. If n € K|s3], however, we set y(n)[ss +
1] = ¢i(We;y/')[ss], and restrain A on max({¥(4;y)[ss] : y <
d(W,V<; a)[s3] }), as well as maintaining the previous restraint.

5. Wait for an R-expansionary stage s4 such that n € K[s4].

A. If W, changes on y(n) at stage s > s3 before n enters K, then reset
v(n)[s + 1] as in 4B. Maintain restraint on A.

B. If n € K[s4] (and v, (i)[s4]]), remove a,(i) from A[ss + 1]. Go to 6.

6. At the next R-expansionary stage, s5, we must have U(A) | ¢(a,(i))[ss] =
U(A) | ¢(an(i))[s2], hence y' ¢ W,V[s5]. Hence v(n)[s5]T. Then set
I'(n) = 1, and reset y(n) = s5, permanently. [Again, as in 4A, in the
full construction we add a,(7) back to A[ss + 1] to avoid injury to other
requirements.]

There are six possible outcomes for this strategy. Four finitary outcomes at
2, 4A, 4B, and 6, and two infinitary ones at 3A and 5A. Notice that if the
infinitary outcomes occur infinitely often, then R is satisfied by diagonalization,
since some number is counted by ¥(A) as an element of WlWe, yet fails to
actually be in VVIWE. We can initialize all lower-priority strategies when the
action under 4B above causes a significant shift in our overall strategy, since we
give up I',, entirely at this point. This means as well that we will never return
to step 3 once the conditions of 4B are met. Because we are in control of A, we
have the authority to do this, since the number y’ will have to be an element
of VVIW“" at any stage where ¥(A4) = VVIW" appears correct. Thus this outcome
initializes all strategies with lower priority than R itself which are guessing that
one of the attempts at a non-backup functional will succeed; at which point we
extend the “backup” functional I'y,, and thereafter begin anew with the new

non-backup attempt I',, ;1. We therefore arrange the three possible outcomes
for the overall strategy with highest priority outcome the totality of 'y, (“c0”),
to the right of which is the totality of some I, (“num”), and, finally, with
lowest priority, the existence of only finitely many expansionary stages (“fin”).
Below each of the two infinitary outcomes, lies a sequence of subrequirements
R(?) each of which sets a restraint for the sake of preserving the computation
tied to its witness. Each of these substrategies has natural outcomes co and
fin, depending on whether its restraint is increased infinitely often or not. It
is worth pointing out here that because we restrain A after action under 4B is
taken, we can never get another expansionary stage without the y’ referred to
there being an element of W;", so we never have to worry about I'(n) being
incorrect: T'(n) can only fail to equal K (n) if U(A4) £ W,"~.

2.2 Intuition for the priority arrangement

Since an overall requirement R = Rg v .,; which actually defines a functional
computing K must eventually impose infinite restraint to ensure that its func-
tional is defined everywhere, we must split it up into subrequirements. Once
one of these subrequirements, say R(i), acts to define some T'% (i), we obviously
cannot redefine our functional without an appropriate change in W,. If we actu-
ally attack to correct this value, and fail, our strategy involves switching to the
backup functional I'o, and giving up I';, permanently. Thus if higher-priority
strategies interfere with I',,(¢), this causes no real problem for the construction.
On the other hand, no strategy below R can be allowed to interfere infinitely of-
ten with the functional I, since the whole point of having I, available is that
it is guaranteed to succeed in computing K, if it is total. Notice that because we
wish to construct a A9 set A, we cannot merely restore the previous A-state to
protect the strategy whenever R is allowed to act. With infinitely many values
of ' eventually defined, this could result in infinitely many changes on some
element a ¢ A. This is even more clear when one considers that, unless we
take some explicit action to ensure that R is always depending on consistent
initial segments of A, it is quite imaginable that the correctness of strategies
tied to different values of I'o, depend on different A-states. In this case, we
would not even be able to produce a consistent overall strategy for defining I' .
The considerations show that we really must restrain A for the sake of I'.
Consider the interference with I', that could be caused by some other strat-
egy S(j) working for an overall requirement S. If S has higher global priority
than R, then, using linking in the ordinary fashion, we can turn R off while S(j)
is attacking and, after S(j)’s attack, either restore the previous A-state, or ini-
tialize R. This is not a possibility in the case of S of lower global priority than R,
but S(j) of higher local priority than R(¢). This is the situation where S really
must make a potentially permanent change in A which can interfere with the
correctness of even the backup strategy for '} which is tied to R(7). In general,
S(j) has an attacker which is smaller than the use on which the R(7)-attacker
is depending. When S(j) changes A at stage s + 1 this allows the particular
element y' € W,V*[s] which is used to define 7} (n) to leave W} [s + 1].

The natural action for S in this case is to first ask for an attack on R(%), so as
to clear the use of I'® . In fact, this happens automatically in this case, since the
R(i)-attacker is greater than S(j)-attacker. This will ensure that the R strategy
for correcting TR will always succeed, but it threatens to make it impossible for
T'R (i) to converge in the limit, since there may in this case be infinitely many
such lower-priority requirements which can affect the R(i)-strategy.

By using the standard convention that uses increase in the argument, after
each successful attack at a K-true stage, the the active functional for the S-
strategy will be completely undefined on any number which will later enter K.
We can therefore be assured that all of the S-attackers still defined will never
be used, since they will be assigned to substrategies for numbers that are not
in K. Thus, if S waits to define new attackers until after the R(7)-strategy is
reset, S can no longer interfere with R(z), since it will only wish to change A
above the restraint imposed for the sake of R(7). Notice that S is in this case
a strategy based on the assumption that 'Y is a total function. Because there
are only finitely many requirements S between R and R(7), this process must
eventually stabilize, resulting in I'} () | .

Coordinating the actions of the sequence Sy, ... ,S,, of strategies which can
cause this interference is somewhat involved. Before giving the full details below,
we should mention that it is useful to require the natural condition that if R
has higher priority than S, and ¢ < j, then R(¢) has higher priority than S(j).
In this way, the fact that K has stabilized below ¢ ensures that eventually R(%)
will no longer be injured by S.

In order to explain in more detail the intuition for the interaction of various
strategies in our proof, we require the basic notions about the tree method
of Lachlan and Harrington in priority arguments, for which the reader should
see [5], XIII. The simplest situation in which the complexity of our linking of
strategies reveals itself is the following: suppose 7y, 71, and 72 are all master
strategies with substrategies o, 01, and o2, respectively, such that

T0 C 11 C 7179 Cog C oy Cop.

Let requirement Rs,; v, ,e;1, be assigned to 7;, and R" (k;) be assigned to o;
with ks < k1 < ko. With so many requirements, the description is naturally
rather involved. To simplify matters, we assume in this example that everything
proceeds without involving a switch by any master strategy to its backup func-
tional. Supposing, then, that each 7; is making its n;th attempt to define its
non-backup functional, we write a; for a:fj (k;), the current attacker assigned to
o;. Because it may be helpful for the reader to refer back to this example when
reading the formal construction below, we refer ahead in what follows to the
cases of the formal construction from sections 3.2 and 3.3 using square brackets.

Suppose o2 wishes to attack in order to correct I'™2’s value for K(k2) at
stage s. To effect this, op links up to T [section 3.3, case 8]. In general,
1/11(A;¢1(VVl‘:V51;a1))[s], the current value on which 7, is depending for the
R™ (k) substrategy, will be greater than as[s]. Because of this, the change
on A(az)[s] which the oa-strategy demands will injure the strategy for keeping

I'7: (k1) correct. Of course, there are infinitely many other lower-priority strate-
gies similar to that of o that may seek to change A and interfere in this way
with 71, thereby causing infinite injury to the 7;-strategy from below, a situa-
tion which must clearly be avoided. Because of this, we demand that before 7
attacks with the R™ (kg)-attacker, it must first clear the strategy for R™ (k;),
that is, it must ensure that 7™ (k)] at any stage when it acts for the sake of
its own requirement. Therefore, before initiating its own attack, 75 links up to
71, in order to initiate a preliminary attack with the R™ (k;)-attacker (currently
controlled by o) [3.2, case III.1]. However, this attack may in turn interfere
with the still higher-priority R™ (ko)-strategy, since a1[s] will in general be less
than o (4; ¢o (VVIZVCO;aO))[s]. Hence, 7 itself must in turn link up to 7y [3.2,
case III.1], initiating an attack with the R™ (ko)-attacker [3.2, case IIL.2]. At the
next subsequent Tp-expansionary stage, the R (kg)-strategy is cleared [3.2, case
I1.3A]. At this stage, 71 requires the restoration of the old value of 7’s attacker.
Because 7y is the highest-priority node, nothing prevents it from restoring the
value, so it does so [3.2, case I1.3A.2]. Then the R™ (k;)-strategy proceeds [3.2,
case I.1]. At the next subsequent 7i-expansionary stage, the R™ (k;)-strategy
is cleared [3.2, case II.3]. Now, however, the R™ (k;)-attacker needs to be re-
stored before the attack for the sake of R™(ks) can proceed. Because this
action may interfere with the 7y-strategy, 71 must again link up to 7y [3.2, case
I1.3A.1], which attacks [3.2, case IIL.1] with the (new) R™(ko)-attacker [3.2,
case II1.2]. At the next 7p-expansionary stage, 71 again requires the restora-
tion of the old value of 7y’s attacker, and 7y does so [3.2, case I1.3A.2]. Then
the R™ (k;)-strategy proceeds [3.2, case 1.2] to restore its old value for the sake
of 72, which then is finally able to attack [3.2, case I.1]. At the next subse-
quent To-expansionary stage, s', the m-attack is completed [3.2, case I1.3], with
77 (k2)[s'] T, at which point o3 can achieve its goal of setting I'™ (k) = K (k2).
However, 72’s work is not yet done, since still lower-priority requirements may
be counting on A(as) = A(asz)[s] # A(az)[s']. Because of this, 72 must initiate
at s’ +1 what is essentially a repetition of the entire process [3.2, case I.3A.1] in
order to restore the original value A(ay)[s] without injuring 7; and 7y [a process
ending at 3.2, case I1.3A.2].

This procedure appears to threaten the totality of I'*, since the value of
~v™(ky) is increased by the (lower-priority) strategy for 7. Recall, however,
that we demand that o3 < o7 on the priority tree only if ko < k;. Any o
with a strategy working for R™ (k) with k > k; will have lower priority and can

be forced, therefore, to wait until some stage ¢ where 1, (4; @1 (I/I/'Zvel;al))[t]l
before picking its attacker a(k). Therefore, only finitely many strategies are in
the position of the oy-strategy needing to initiate a sequence of events like the
just described. Because only these higher-priority strategies will cause v™ (k1)
to increase, and these will only do so when K changes on the number assigned
to them, eventually the strategy for o; (or some other strategy for R™ (k1)) will
be able to pick some a; permanently, ensuring that y™ (kl)l

Of course, things happen differently if clearance is not achieved at some
stage, and a master strategy must switch to its backup functional. In this case,

an entire process like the one outlined above is cut short, and all strategies be-
lieving in the non-backup functional of this master are initialized. The attacker
which failed to receive clearance is then made available to the backup strategy.
It may already be too small at this stage to actually be used to define a value
of the backup functional. For instance, suppose a is a newly available attacker
for the backup functional I'T for some 7, the next value to be defined is k, and
o is the substrategy which wishes to set I', (k). Suppose there is some higher-
priority 7' trying to satisfy requirement R’ = R/ g/ ¢/ 1/, with substrategy o’
and o'-attacker a’ assigned to some R’(k’) such that 1'(4; ¢'(Wll,}ve';a’)) > a.
If o' < o, then the o strategy cannot be allowed to use a to define I'_ (k), since
this will threaten injury to the higher-priority o'-strategy. However, if the at-
tempt by the 7-strategy to build a non-backup functional fails infinitely often,
this will generate an infinite stream of available attackers, so that eventually
one which is large enough will appear to enable the o-strategy to define I'7_ (k).

3 The full construction

3.1 The priority arrangement

Our notation is standard, as in [5], XIII. We use a priority tree T' which is iso-
morphic to a subtree of <*3. Using standard coding functions for n-tuples, as
well as standard indexing for computable functionals and computably enumer-
able sets, we order the requirements in a priority listing. We assign requirements
recursively along each path in T, achieving this by using two listing functions,
Li(B,k) and Ly(B, k), which list, for each 8 € T, the requirements that still
need to be satisfied at 3. The requirement L(3) = Ly(8,0) is assigned to £,
if |B| is even; and L(B) = L2(8,0) is assigned to 3, if |3] is odd. A natural
notational abbreviation is the writing of Lf for the functional Az L;(8,).

We define Ly and L. by recursion on 8 € T and m € w, after first making
some preliminary definitions.

A node is a master if it has even length. A node is a worker if it has odd
length. Master nodes have outcomes oo <y num <y, fin. Worker nodes have
outcomes oo <, fin.

We can now define the functions L; and Ly. The intuition is merely that we
assign overall requirements in order, and then interleave the subrequirements in
one at a time. Below a finite outcome of a master node or an infinite outcome
of a worker node, all subrequirements of that strategy are removed from the list
Ls. Let () be a coding function for pairs such that (m,k) < (n,l) and n < m
implies k < [.

Let)\ be the empty string.

Empty string. For every m,k € w, Li(A\,m) = R,,, and Ly(), (m,k)) =
R,.(k).

Master node. Suppose 3 has requirement R,, assigned to it. Then 3 has three
possible outcomes O.

O = o0 or num. Let L;(8(0),m) = L1 (B,m + 1), and L§A<O> =I5
O =fin. Let L(87(0),m) = L1(8,m + 1). Let

S(B) ={j : j #n and Ji(R;(3) € ran(L5)) }.

Let fg : w — S(B) be the enumeration of S(3) in increasing order.
For every m,k € w, L2(87 (fin), (m, k)) = L2(B8, (f(m), k). (In other
words, we just remove R, (k) from the range of Ly for every k.)

Worker node. Suppose [has requirement R,,(j) assigned to it. There are two
possible outcomes O.

O = co. Let By be the longest proper substring of 8 with L(Gy) = R,,.
Let I) =L, and let Lj ™ = 5o ™.

(fin)

O = fin. For every m € w, Let L’fﬁ = Lf, and let, for every m € w,

Ly (B8~ (fin),m) = La2(B,m + 1).

For any worker node 3 with requirement R,,(j) assigned to it, the master of
B, 7(B), is the greatest T included in § such that L(7) = R,,. We say 8 must
respect an infinitary outcome of some master node 79 C 3 when 7(0) C
with O = 0o or num, and there is no oy C 8 with 7(09) = 7 and 0§ (o0) C 3.
(In other words, when 3 assumes that a II3 outcome for 79 lies on the true path,
and this outcome is not denied by some intermediate node.)

As usual, we have an approzimation to the true path fs defined at each s > 0.
For any node 8 € T, s is a B-stage if B C fs. If s is an active (-stage, then we
use 55 to denote the last previous 3-stage. When f3 is clear from the context,
we merely write s~ for s,.

Whenever f, <p G, we initialize 8 at s. If B is a master, this means that
we undefine all of 3’s parameters and functionals, and start over completely
with a new version of 3. For workers, this means essentially nothing, since the
parameters associated to different workers for the same master are the same (see
below). At stage 0 we initialize all nodes in T'. We then take action as follows
at each stage s + 1, breaking the action into substages depending on the order
in which the active nodes can act.

3.2 Master nodes

Suppose T has requirement Re w . ; assigned to it. We first make explicit how
we intend to approximate the truth of the condition (®(W}<) = A and ¥(A) =
WWe). We use the hat trick.

For each 7-stage t let

wh — pw(w € W[t] — We[t™], if W,[t] — W.[t™]| # 0, and
£ t, otherwise.

Let &7 (W,;2)[¢]] if and only if ¢y(Wo; 2)[t] | < wi. Let (W)"*)7[f] ={e :
o (Wesz)[H]| }

In other words, (W,V<)7[t] consists of those elements of W;V<[t] with axioms
smaller than w]. A stage ¢ is said to be a 7-true stage, if ¢t is a 7-stage and
W, [w] = We[t] | wi. This means that no element w < w] is ever enumerated
into W, at any stage after 7.

Let s be a 7-stage. We define the set S7[s] of apparent T-true stages at s to
be the set of 7-stages t < s such that for all ¢/ < s, if t < ¢ and ¢’ is an active
T-stage, then w] < wt, When a fixed 7 is under consideration, we usually write

w; for wi and WWE for (WW)7, and we call 7-true stages W,-true stages.
At each T-stage t, we define the 7-length-of-agreement at t, [7[t], to be the

greatest = such that for every y < z, ®(W,"*;y)[t] = A(y)[t] and for every

z < oWV 9)[t], WV (2)[t] = ¥(4;2)[t]. We define the mazimum previous
7-length-of-agreement at ¢t by m”[t] = max{[7[s] : s a r-stageand s < t}. A
T-stage ¢ is T-ezpansionary whenever I7[t] > m"[t].

We remind the reader of the main features of the hat trick. The significance
of true stages lies in the following fact: If there exist infinitely many 7-stages
and v is any natural number, then there exists a least 7-true stage t(u) such

that for all £ > t(u), if t is a 7-true stage, then W, ¢[t] [u = VVlWe [u. Suppose
there are infinitely many 7-stages, ®(W,") = A, and ¥(A) = W,"°. Then, if
A is a AY set, every relevant computation eventually appears cofinitely often
in the sequence of 7-true stages. In this case, there will exist infinitely many
T-expansionary stages. This means our approximation will be good enough for
us to satisfy Re,w ;. (To allay any fears that our argument may be circular,
we remark here that the proof that A is AJ, in fact, 3-c.e., will be independent
of the existence of infinitely many 7-expansionary stages.)

Recall that when some substrategy of 7 is successful, we need to go through a
procedure to restore the state of A before this strategy acted. This is how lower-
priority requirements avoid being injured infinitely often. This gives rise to two
distinct states 7 can be in, depending on whether it is aiming at permission
for an initial attack, or for restoration of an old value. Below, we divide 7’s
action during an attack into two parts. The first part begins when some lower
priority nodes links up 7 because it wishes 7 to make some initial attack. After
the first 7-action to change A, the second part of the attack begins. This is to
signal that at the next 7-expansionary stage 7 must attempt to change A back
to its former state, rather than following the link back down from 7, because
the node that was waiting for the original T-attack to succeed, will in general
(i.e., when it is a lower-priority master) require restoration of this old value. At
this point, 7 itself may have to wait a while for permission from higher-priority
masters to restore the value, but eventually it does so, and then, at the next
T-expansionary stage, we consider 7’s attack completed, we can follow the link
down, allowing the lower-priority node to proceed. It may help the reader’s
intuition in understanding what follows for the reader to note explicitly that

10

initial attacks occur under cases I.1 and III.2 below, while restoration occurs
under cases 1.2 and I1.3A.2.

A possible source of confusion is the suppression of any indexing of the suc-
cessive attempts to define K <p W, without recourse to the backup functional.
This involves constructing some I'], where n is the current attempt at computing
K below the ‘num’ outcome. This n is fixed in the intervals throughout which
it appears to be succeeding, and is incremented by one every time there is an
uncorrectable failure, at which point it is given up forever. There is no need to
make any mention of this n: in fact, this would do nothing but add notational
complexity to what follows. For this reason, the current I'], appears as I'” below.
We write a(7, k)[s] for the current kth attacker for 7’s non-backup functional,
and an (7, k)[s] for the backup functional’s kth attacker. In order to set appro-
priate restraints on A, we also keep track of the stage at which these attackers
become defined with their current values, by means of parameters s”(k)[s], and
sT_(k)[s], respectively.

Recall the description of the general plan for satisfying 7’s requirement in
section 2. The backup functional built by the 7-strategy will be total only if the
attempt to build a non-backup functional fails infinitely often. If this happens,
the infinite sequence of numbers on which these failures have occurred can be
used as attackers in defining values of the backup functional which are guar-
anteed to be correct. As described at the end of section 2.2, the substrategies
defining 7 must choose numbers large enough to avoid injury to higher prior-
ity requirements, and hence only a subsequence of this sequence of numbers can
actually be used. We control the sequence of numbers on which failures have
already occurred at stage s with an availability list A7 . These are the numbers
which are available to substrategies working to define I',_ from which they must
choose large enough numbers as their attackers. This “streaming” of available
numbers is somewhat different from that of Downey [2], since only substrategies
of this overall strategy have to select from the stream. We let A7 [s] = § when
s = 0, and at any stage s+ 1 at which either 7 is initialized or a new attacker is
selected from A7_[s]; and we gradually add numbers to A7 as more and more
failures occur. (See case I1.3B below.)

There are three different situations in which 7 can be allowed to act at stage
s. T can either be visited by a link from some master node 79 C 7; or T can
be visited in the ordinary way, by being the single outcome extension of some
w which acted at s; or, finally, some link with top 7 can be set by some p with
T C p for the purpose of initiating a T-attack. In the final case, it may be that
p is itself a master node working for a different requirement which is trying to
clear some 7-substrategy R7(k) in order to get permission to act for one of its
strategies R?(l). In this case we say that the R7(k)-substrategy is associated
to the link which is being set at this stage, and we say that the R”(l)-strategy
is waiting for the R7 (k) strategy to be cleared. To facilitate our description of
the action we make a formal definition of when some master needs to obtain
clearance from a higher priority master in order to act.

Definition 1. Suppose 7 is a master node, £ € w, and either s"(k)[s]l, or

11

sT.(k)[s] | . Let s(k) denote either of these, and let a[s] be the attacker associated
to s(k) (i.e., either a(7, k)[s] or ax (T, k)[s]). Suppose there is another master

node 7y such that either
e 75" (num) C 7 and there is a least ko such that (s(k) < s™(ko))[s], or

e there is a node 7 such that 75" (0co) C 7 and there is a least ko such that
(s(k) < 532 (Ko))ls]-

Then we say T requires clearance from 1y before changing A on a[s].

After making these preliminary remarks, we can finally give the possibilities
for the action of 7. At stage 0, all nodes are initialized by undefining all functions
involved in their strategies and setting all sets equal to (). There are three sets
of possibilities at stage s + 1, depending on how 7 is visited at stage s + 1. For
each of these situations, the first possibility below that applies is the one that
is followed.

I. Suppose T is visited by a link from some other master node 7y C 7 (acting at
the immediately preceding substage). Such a link is originally set under
one of cases I.3A.1 or III.1 below when some 7-strategy wished to change
A but was prevented from doing so because of the injury this would have
caused to some R™ (kp)-substrategy which has now been cleared. There-
fore, the T-strategy has just received permission to act. There are two
subcases for action, depending on which part of the current T-attack is
under way. (Note that both parts of 73’s attack must have been com-
pleted, otherwise 7 could not be visited by a link, by Case I.1 applied to

7'0.)

Case I.1 Suppose 7 is in part one of its current attack, and there is a
link with top 7 and bottom p in place. If p is not a worker for 7,
then such a link can only be set under case III.1 below, and there
will in this case be an associated R” (k)-substrategy, for some k € w.
Otherwise, the link was set under case I1.3A.1 below, and p is a worker
for 7 with requirement R, (k), for some k € w. If 77 (num) C p,
let A(a(r,k))[s+1] =1 # A(a(r,k))[s"(k)[s]]- If 77 (c0) C p, let
A(a(r,k))[s + 1] = 0 # A(a(r, k))[s%,(k)[s]]. Immediately end stage

s+ 1 and proceed to stage s+ 2. (At the next T-expansionary stage,
7 will act under case 11.3 below.)

Case 1.2 Suppose 7 is in part two of its current attack, and there is a
link with top 7 and bottom p in place. If p is not a worker for 7,
then, as in 1.1, there will again be an associated R"(k)-substrategy,
for some k € w. (In this case p is a lower priority master that needed
clearance from 7, as in the case of 7; in the detailed example of
section 2.2 above.) Otherwise, p is a worker for 7 with requirement
R, (k), for some k € w. We say T has completed both parts of its
current attack. If 77 (num) C p, let A(a(r,k))[s + 1] = 0, and let

12

a(t,k)[s + 1]]. If 77(c0) C p, let A(aos(7,k))[s + 1] = 1, and let
oo (T, k)[s + 1] T. Remove the link, and allow p to act at stage s + 1.

I1. Suppose 7 is visited in the ordinary way at stage s, because 7 = A, or
7= p"(0), for some p which acted at stage s and received outcome O.

Case II.1. Suppose s is not 7-expansionary. Let 77 (fin) act at stage
s+ 1.

Case I1.2. Suppose s is T-expansionary and there is no link with top 7
in place. (This means we continue in the belief that for the current
n, I'7 = K.) Let 77 (num) act at stage s+ 1.

Case I1.3. Suppose s is T-expansionary, there is a link with top 7 and
bottom p in place, and 7 is in part one of some current attack. Be-
cause 7 is the top of a link, there exists a k such that either p is a
worker for 7 with requirement R,,(k); or p is not a worker for 7 and
there is some associated R7(k)-substrategy.

There are two possible subcases, depending on whether this part of
the attack has been successful or not.

Case IL.3A. Suppose 77 (o0) C p, or 77 (num) C p and 77 (k)[s]T.
This means the substrategy for R” (k) has been cleared so that
p may proceed without injuring the 7-strategy; however 7 must
now restore the state of A which p may have been depending on
when the 7T-attack was started. In this case there are two fur-
ther subcases depending on whether 7 requires permission before
restoring the previous state of A. Let a[s] be either a(7, k)[s] or
a0o (T, k)[s], depending on which outcome is included in p.

Case I1.3A.1. Suppose there exists some node 7y such that 7
requires clearance from 7 before changing A on a[s]. (Here 7
is in the position of 7 and 7; in the example of section 2.2.)
Let 79 be the longest (i.e., lowest priority) such node. Set
a link between 7 and 79, and declare the R™(kg) strategy
temporarily associated to the link between 7 and 5. We
say T enters part two of its current attack. Allow Ty to take
appropriate action (under case III.1 or II1.2 below) at stage
s+ 1. (The R7(k) strategy is now waiting for the R™ (ko)
strategy to be cleared.)

Case II.3A.2. Otherwise, 7 may immediately restore its pre-
vious value and allow p to proceed. If 77 (num) C p, then
let A(a)[s + 1] = 0, and let a[s + 1]]. If 77 (o0) C p, let
A(a)[s + 1] = 1, and let a[s + 1]]. We say 7 has completed
both parts of its current attack. Remove the link, and allow
p to act at stage s + 1.

Case IL.3B. Suppose 7~ (num) C p and 77 (k)[s]|. (This means
the substrategy for R7(k) has failed.) Declare a(7,k)[s] to be

13

available below 77 (00), and let a(7,k)[s + 1]]T. We say 7 has
completed both parts of its current attack (through failure), and
let the entire functional I'" be undefined. Let 77 (0o} act at stage
s+ 1. (In this case, p is initialized.)

ITI. Suppose a link is set at stage s with top 7 and bottom either some p with
requirement R7(k), or some p which is not a worker for 7. In the latter
case there is some associated R”(k)-substrategy. We write s(k) for either
sT(k) or sZ_(k), depending on which of 77 (num) and 77 (co0) are included
in p. This situation arises when we wish to change some value of A for
the sake of the 7-strategy. As in II.3A above, there are two possibilities,
depending on whether this change in A threatens to injure some higher
priority strategy (IIL.1), or not (IIL.2). In either case, we say T enters
part one of its current attack. Let als] be either a(r, k)[s] or as (T, k)[s],
depending on which outcome is included in p.

Case ITI.1 Suppose there is a node 7y such that tau Suppose there exists
some node 7y such that 7 requires clearance from 7y before changing
A on als]. Let 79 be the longest (i.e., lowest priority) such node. Set
a link between 7 and 79, and declare the R™ (ko) strategy temporarily
associated to the link between 7 and 7y. Allow 79 to take appropriate
action (under cases III.1 or II1.2) at stage s+ 1. (The R7(k) strategy
is now waiting for the R™ (kg) strategy to be cleared.)

Case III.2 Otherwise, 7 may immediately begin its current attack. If
77 (num) C p, then let A(a)[s+1] =1 # A(a)[s"(k)[s]]. If 77 (c0) C
p, let A(a)[s+1] = 0 # A(a)[s%(k)[s]]. Immediately end stage s + 1
and proceed to stage s+ 2. (At the next T-expansionary stage, 7 will
act under case I1.3.)

3.3 Worker nodes

Worker nodes are those which have the responsibility of defining and keeping
correct the individual values of the functionals which compute K. Suppose o is
such a node with subrequirement R,, (k) = R, v (k) assigned to it.

Recall from section 3.2 that the master of o, 7(c), is the longest 7 included
in o such that L(7) = R,,.

There are two sets of possibilities, depending on whether or not ¢ is a sub-
requirement for building the backup functional I'R». The procedures for these
two different kinds of workers are almost identical, differing only in one case,
4, below for which we distinguish a prime and a non-prime version. Thus, we
abuse notation slightly and write 47 (k) for both v7(k) and 77, (k) in all cases
except 4, and we do the same for a(7, k). Although o only has the responsibility
to set up and keep correct a single value of some I'®~ its action is complicated a
little by its need to wait until higher priority workers have succeeded in setting
up their own strategies. At stage s+ 1, we act according to the first case which
applies below. Recall that s~ is the last previous o-stage.

14

Case 1. Suppose o has previously been visited as the bottom of a link since it
was last initialized. Then o’s strategy has finished, and we do not wish it
to interfere with any other strategy below. Let o™ (fin) act at stage s+ 1.

Case 2. Suppose k € K[s + 1] and either

o 7 (k)[s], or
o v (k)[s]| =" (k)[s], and T (k)[s] = L.

In this case, o’s strategy has succeeded, in the first case, possibly by o
being visited as the bottom of a link. If y7(k)[s]], then, if y"(k)[s~]],
let v7 (k)[s+1] | = 7" (k)[s~]; otherwise (if y"(k)[s"]]), let 7 (k)[s +1] |=
s+1. In either case, let I (k)[s+1] = 1. If a(r, k)| [s], set a(r, k)[s+1] = 0.
If y7(k)[s] | = v"(k)[s "], and I'"(k)[s] = 1, do nothing. If o was visited as
the bottom of a link at stage s + 1, immediately end stage s + 1 and go
to stage s + 2. Otherwise, let o7 (fin) act at stage s + 1.

Case 3. Suppose there is a master node 7y such that either

e 75 (num) C 7(0), o must respect this infinitary outcome of 7y, and
there is a ko < k such that a(7o,ko)[s]| or (I™ < a(7o, ko))][s]; or

o 75 (00) C 7(0), o must respect this infinitary outcome of 7y, and
there is a ko < k such that ac (70, ko) T or (I™ < acs (70, ko))|s].

In this case, o must wait for a higher priority attack to be prepared. End
stage s + 1, and go immediately to stage s + 2.

Case 4. Suppose a(7,k)[s]] and 77 (num) C o. Since case 3 does not hold, o
can start the R,,(k)-strategy. Let a(7, k)[s+1] be the least number greater
than any yet mentioned in the construction. Immediately end stage s+ 1,
and go to stage s + 2.

Case 4. Suppose a(7,k)[s]] and 77 (c0) C 0. Since case 3 does not hold,
o can start the R, (k)-strategy; here, however, we must take extra steps
to ensure that the attacker chosen is big enough, since arbitrarily large
numbers are not available to o. Let T(o)[s] be the set of all master
nodes with infinitary outcomes included in o which o must respect. Let
r(o)[s] ={ s (ko)[s+1] : ko < k and p € T(0)[s] }. If there is an available
attacker a below 77 (co) such that a > r(o)[s], then choose the least such
a, let as (7, k)[s+ 1] = a, declare a no longer available, and reset A7 = ().
Otherwise, do nothing. In either case, immediately end stage s + 1, and
go to stage s + 2.

Case 5. Suppose a(,k)[s] | and (I” < a(7,k))[s]. o must then continue to wait
for its strategy to be prepared. Immediately end stage s + 1, and go to
stage s + 2.

15

Case 6. Suppose a(7,k)[s] | and (I” > a(7,k))[s], k & K[s + 1], and 77 (k)[s]T.
Now o can set the use 7"(1{:). Let 77 (k)[s + 1] = max({ ¢1(y)[s] : y €
W 1 ¢(z)][s] }), I7(k)[s +1] = 0, and s7(k)[s + 1] = s. Let 0™ (oo} act
at stage s + 1.

Case 7. Suppose a(r,k)[s]|, 7" (k)[s]| and I'"(k)[s + 1] = K(k)[s + 1]. Let
o~ (fin) act at stage s+ 1.

Case 8. Suppose a(r,k)[s] |, 7" (k)[s] |, and I (k)[s + 1] # K (k)[s + 1]. In this
case, o initiates an attack We set a link between o and 7 and allow 7 to
take appropriate action (under cases III.1 or IIL.2 of section 3.2) at stage
s+ 1.

This completes the construction.

4 Verification

We must show that A is 3-c.e. and that every requirement R v e, is satisfied.
In what follows, we assume familiarity with 0"/-priority constructions, to avoid
having to prove some tedious technical facts, for example that all requirements
that need to be satisfied are eventually assigned to some node along the true
path.

Lemma 4.1. A is 3-c.e.

Proof. Suppose a € w is eventually chosen as an attacker for some substrategy
of the construction. The value A(a)[s] can only change under cases I, I1.3 or
II1.2 of section 3.2. If this change occurs under cases 1.2 or IL.3, it results
in the permanent abandonment of @ as an attacker in the construction. An
examination of these cases shows that an initial change on A(a)[s] can only
happen below a num outcome of a master node in the first part of an attack
and, hence, must occur under cases I.1 or III.2. The only way in which an
original change under one of these cases can fail to be followed by restoration
and abandonment of the attacker a is under case I1.3B, since it is not hard to
see that the use tied to a (i.e., some 77 (k)) must be undefined when 7 enters
the second part of its attack. Neither of these situations causes a change in
A(a)[s], and each of them reserves a permanently for use as an attacker for the
sake of a backup strategy. If A(a) changes for a second time, this must again
occur under case I.1 or III.2 for the sake of some substrategy below an co. In
this case, however, the change must be followed by subsequent change under 1.2
or I1.3 when the next link is removed, which is final as noted. This means that
at most three changes of value are possible. O

We now show, using a sequence of lemmas, that each requirement is satisfied.
We define the true path to be f = liminf, f;. We first show that nodes on the
true path are not linked over infinitely often.

Lemma 4.2. If p C f, then Vs3t > s(p C f; and p acts at ?).

16

Proof. Suppose not and choose p of shortest length such that the lemma fails
for p. Let p~ be p’s immediate predecessor on f, so that p~ acts infinitely
often. We assume all action takes place after p is right of the approximation
to f for the last time. Given a stage s, let tyg > s be a stage at which p~ acts
and p C f,. If p does not act at stage to, p~ must already be linked over p at
stage typ — 1 and this link must be removed at stage ty;. Because p~ may be the
top of a chain of links, rather than just a single link to a worker, the bottom of
this link may be a master node acting under 3.2, case 1.2, at stage to. However,
any chain of links must end in some worker node; hence, the node of greatest
length below p~ which acts at stage tp must act under 3.2, case 1.1, or 3.3, case
2. Links can only be set from below, and no new link to a node extending p~ is
set at stage g, since all these nodes act under either 3.2, case I, or 3.3, case 2
at stage to. But then p itself must act at the next stage ¢ such that p C f;. O

If p C fs and p is not linked over at s, then we call s an active p-stage. We
first prove a lemma which will eventually enable us to show that our procedure
succeeds in defining total functions. This will also enable us to show that f is
infinite. The latter is not immediately obvious, since f; fails to be extended when
some worker is waiting under 3.3, case 3 for the appearance of an attacker for
some higher priority master with an infinitary outcome, and for the associated
length-of-agreement function to increase beyond this number. (fs can also fail
to be extended when it is visited as the bottom of a link in case 2, and under
cases 4, 5, and 8, but each of these is a trivial case for the induction, since it can
only happen once for each node after initialization.) We only have to consider
the case where k ¢ K, since otherwise eventually, for any master 7, any use
7" (k) and attacker a(7,k) are continually reset to the same number, by 3.3,
case 2, and hence must converge. For 47 (k) this follows because W, is c.e.

Lemma 4.3. Let 7 C f with requirement R assigned to . Suppose k ¢ K,
let o C f be a worker for T with L(c) = R(k), and suppose there are infinitely
many active o-stages.

If ™ (num) C f, then for almost all s, a(r,k)[s] | .
If 77 (00) C f, then for almost all s, aco(T,k)[s]] .

Proof. Suppose otherwise, and choose o of least length for which this fails, and
as in the statement of the lemma, let 7 be o’s master. As pointed out above, o
must be the only node on f which fails to have an outcome on a cofinite sequence
of stages. Let a[s] = a(, k)[s] or ac (T, k)[s], respectively, depending on whether
77 (num) C f or 77 {oo0) C f. Let O be the (infinitary) outcome of 7 on f.
Let so be a stage such that for all s > sg, o < f,. We first show that a[s]l at
infinitely many s, then that it is defined cofinitely often. First, suppose O = cc.
By lemma 4.2, no 79 C 7 can link over 7 cofinitely often. Because of this, if the
sequence of numbers available below 77 (o0) were bounded, then, after the link
to the lowest priority node working for 7 with a defined attacker below 77 (oco)
is removed, no further link could be imposed with top 7 and bottom extending
77 (00) without 77 (oc0) acting. Hence, 7 itself could not be the top of a link

17

at cofinitely-many 77 (0co) stages. There must then be infinitely many stages at
which 77 (00) acts. But at any such stage, 7 has acted under case I1.3B, and
so a new number has been made available below 77 (00). Also, if 7/ C o and
k' € w, then sT’(k’) is only set under 3.3, case 7 for some ¢’, at which point
o' (0o) acts. No node extending o'~ (0o) respects 7’. By inductive hypothesis,
all workers ¢/ C o with masters that 7 must respect eventually define their
attackers permanently. This also means that the restraint defined in 3.3, case
4" on o is bounded. Hence, ac (7, k)[s]| infinitely often.

If O = num, then a(7, k)[s] can always be chosen under 3.3, case 4. Again,
by hypothesis, o cannot be kept waiting under case 3 forever. So, no matter
what O is, a[s] converges infinitely often.

We may assume that no number less than k enters K at any stage after s,
by choosing sq larger, if necessary. Since k ¢ K, a[s] can never be given up as
a result of an attack for the sake of the 7-strategy. At every active o-stage all
masters to the right of the true path are initialized, hence a[s] can never diverge
for the sake of such a node. This means that it is only a substrategy of some
master node p such that 7 C p C ¢ acting under 3.2 , case III.1 that can cause
a[s] to become undefined infinitely often.

Let p be the longest such node included in o and let ¢; be the stage at which
the R(k) strategy was temporarily associated to a link between 7 and p. We
may assume that all the nodes p C o which cause a[s] to become undefined only
finitely often do so only at stages before t;. Recall that K [k = K[to] | k. Let
RP(n) be the requirement whose strategy is waiting for the R(k) strategy to be
cleared. By section 3.3, case 3, n < k. Now, if the R(n) strategy were itself
acting at t9 because it had in turn been associated temporarily to some link
between p and some lower-priority master node u, then, u > o, since otherwise
p is not the longest node included in o which affects a[s] at any stage greater
than or equal to tg. But then, for any m € w, s#(m) and st (m) (if defined
at all) are both greater than whichever of s (k) and s7_(k) is defined for a[ty).
But then they are a fortiori greater than whichever of s”(n) and s (n) causes
the attack with a[tp] to happen at to. (In other words, using an obvious but
sloppy notation, s?(m) < s"(k) < s*(m).) But this means such a p cannot set
a link to p because of any substrategy. This implies that the strategy for R”(n)
is acting on its own behalf, so that n € K[ty]. Without loss of generality, we
can assume 7 is the least number that causes this kind of activity to occur for
the overall R strategy. But then, after stage tq, since n < k, we must have all
m € K such that n < m < k elements of K[ty]. Hence no more R” strategies for
any number less than k can be subsequently started until after als] l at some
s > to. Thus p can never again affect a[s]. This is a contradiction.

As pointed out above, lemma 4.3 implies that the true path is infinite, since
only under 3.3, case 3 can a node fail to have an outcome at many stages.
It follows straightforwardly from the definitions in 3.1 that every requirement
R = Rg,p ¢, is assigned to some greatest node along every infinite path in 7'. In
what follows, we let 7 be the unique such node on f. We assume that for every
master 79 C T, Tg’s requirement is satisfied, and if 7y has an infinitary outcome,

18

then the functional associated to that outcome is totally defined and correct.

As discussed in section 3.2, the fact that A is A9 implies that the 7-length-of-
agreement function increases infinitely often if the 7-condition, (®(W,"*) = A
and U(A) = W,"e), is satisfied. Hence, if 77 (fin) C f, the requirement is
satisfied. Also, if some o is a worker for 7 and o™ (o0) C f, then the total
use involved in ®(W,"*;a) = A(a) and ¥(4) | ¢(a) = W,"* | $(a) must
increase without bound on expansionary stages. (Here a is the final value for
the o-strategy’s parameter.) Again, since A is A9, this cannot happen if the
7-condition is satisfied. Hence we only have to consider the situation where 7
has an infinitary outcome on the true path and every worker for 7 on the true
path has a finitary outcome. In what follows, we assume that this condition is
satisfied, and that all our discussion takes place after the last stage at which
the approximation to the true path branches back left of 7.

Because every master 79 C 7 is able to define its functional correctly, 7’s
immediate predecessor must have a true outcome infinitely often. This implies
that there are infinitely many active 7-stages. To show that our linking pro-
cedure works correctly, however, we need to show that workers for 7 along the
true path also receive infinitely many chances to act.

We next prove the technical fact which implies that higher-priority strategies
either succeed in restoring A to the state which lower priority strategies expect,
or initialize those strategies completely.

Lemma 4.4. Let py C p1. Suppose a link is set at stage sy between py and p;.
Let a be the attacker on which py wishes to change A’s value at stage sg, and
let s1 be the next active p; stage, if such a stage exists. Then either

i. (A1 s0)[s1] = (A | s0)[s0], or
it. po has been initialized at some stage t such that sy <t < s1, or

iti. py (num) C p1, py (num) has been initialized at some stage t such that
so <t < s1, and (A [so)[s1] = (A] s0)[s0] U {a}.

Proof. By induction. Suppose this fails for some shortest pg C p1. No node
to the left of py can act again before stage s; (since i fails), every node to
the right of py picks witnesses bigger than sy, and every node between py and
p1 is prevented from acting while the link is in place. So, since the claim
never failed before, whenever pg acts, it can depend on A having the right state
except for the attacker a; otherwise py is initialized by some even higher-priority
strategy before stage s;. By the failure of i, we must therefore have one of two
possibilities: either (A [so)[s1] = (A [so)[so] U {a}, or (A | so)[s1] = (A |
so)[so] — {a}.

Suppose first that (A | s9)[s1] = (A | s0)[so]U{a}. In this case, a must have
been added for the sake of some py-strategy at some stage between sy and s;.
This can only happen as part of an attempt to correct a value of the current
version of pg’s non-backup functional at stage so. Since p; acted at stage sg,
Py (num) C p;. By section 3.2, cases 1.2 or I1.3A.2, py will never allow p; to act
again until A(a)[so] is restored, unless there is a failure causing a to be made

19

available to the backup functional. (Recall that pg itself is not initialized by the
failure of ii.) But at such a stage py (00) acts, initializing pg” (num), and p; as
well. So i holds.

Otherwise, suppose (A [so)[s1] = (4 T so)[so] — {a}. In this case, a must
have been removed for the sake of some py-strategy at some stage between sg
and s;. This can only happen as part of an attempt to correct a value of py’s
backup functional. Since p; acted at stage s, pg (00) C p;. However, in this
case, pp would never allow p; to act until A(a)[so] is restored under section
3.2, cases 1.2 or I1.3A.2, contradicting the failure of i. This establishes the
lemma. 4

To show that R is satisfied, we suppose that ®(W/V<) = A and ¥(A4) =
VVlWe, since otherwise there is nothing to prove. Naturally, there are two possi-
bilities, depending on which infinitary outcome of 7 lies on the true path.

If 77 (num) C f, then we may assume that after stage sp, fs never branches
back through 77 (co). Note that I'" is never initialized after stage so. Recall
that we assume every worker for 7 on the true path has a finitary outcome. Since
77 (num) acts infinitely often, every link with top 7 is eventually removed. Once
a worker o for 7 sets a link and this link is removed, either o succeeds and never
acts again, or the node itself, and indeed, everything below the (num) outcome
of its master, is initialized, under section 3.2, case I1.3B. This means that every
one of the infinitely many workers for 7 along the true path has an opportunity
to act after sg, and, if it does act, its action succeeds. This shows I'" (k) = K (k)
whenever I'" (k) | . For each k, however, I'" (k) must converge permanently, since
otherwise the kth worker for 7 along the true path would have outcome (oo)
infinitely often. This shows R is satisfied if 77 (num) C f.

The argument in the case 77 (co) C f is a little more subtle. Eventually,
Yoo (k) is defined, since otherwise the o to which R(k) is assigned must have an
infinite outcome on the true path. This follows since, by Lemma 4.3, R(k) never
has to pick a new attacker after some point. Let a be the attacker for R(k). But,
when a is removed by the o-strategy at some stage s+1 because k has entered K,
A is then in the same state as it was before a ever entered A, by Lemma 4.4, 7.
At this stage, the z € W, *[s] which the backup strategy for keeping v7 (k)[s]
correct is depending on was not yet an element of W;"V*. Thus, ¥(4;z)[s+1] = 0.
For this element to leave, W, must change on ¢;(We;z)[s] = vZ (n)[s]. Hence
at the next T-expansionary stage, ¥7 (k) = ¢;(We; x)[s] must diverge, and can
then be reset correctly. This establishes the result.

References

[1] Arslanov, M., LaForte, G., and Slaman, T., Relative enumerability in the
difference hierarchy, to appear, J. Symbolic Logic.

[2] R.Downey, The 0" priority method with special attention to density results,
Recursion Theory Week: Proceedings, Oberwohlfach 1989 (K. Ambos-
Spies, et al. , eds., Springer, Berlin, 1990).

20

[3] Sacks, G., Recursive enumerability and the jump operator, Trans. Am.
Math. Soc. 108 (1963) 223-239.

[4] Shore, R., A non-inversion theorem for the jump operator, Ann. Pure and
Appl. Logic 40 (1988) 277-303.

[5] Soare, R., Recursively enumerable sets and degrees (Springer, Berlin, 1987).

21

