
Contiguity and Distributivity in the

Enumerable Turing Degrees

�

Rodney G. Downey

Department of Mathematics

Victoria University

P. O. Box 600 Wellington

New Zealand

Ste�en Lempp

Department of Mathematics

University of Wisconsin

Madison WI 53706

U. S. A.

May 29, 1998

Abstract

We prove that a (recursively) enumerable degree is contiguous i�

it is locally distributive. This settles a twenty-year old question go-

ing back to Ladner and Sasso. We also prove that strong contiguity

and contiguity coincide, settling a question of the �rst author, and

prove that no m-topped degree is contiguous, settling a question of

the �rst author and Carl Jockusch [11]. Finally, we prove some re-

sults concerning local distributivity and relativized weak truth table

reducibility.

�

This research was carried out while Lempp was visiting Downey with support from

the binational NSF grant INT-9020558. Downey was partially supported by the Marsden

Fund of New Zealand under Contact No VIC509. Lempp was also partially supported by

the National Science Foundation under grant DMS-9100114.

1

1 Introduction

All degrees and sets in this paper will be enumerable unless otherwise stated.

Many of the natural reducibilities occurring in, for instance, e�ective algebra,

are stronger than Turing reducibility. For this and many other reasons, one

is naturally led to the study of strong reducibilities (see Odifreddi [29],[30]).

From the point of view of the Turing degrees, one of the most important of the

strong reducibilities is weak truth table reducibility introduced by Friedberg

and Rogers [20]. Here we recall that A is weak truth table reducible to B

(A �

W

B) i� there are a Turing procedure � and a computable function '

such that for all x, �

A

(x) = A(x) and u(�

B

(x)) � '(x). (Here u(�

B

(x))

denotes the use of the computation �

B

(x), that is, the greatest element used

in the computation.)

Many results in the enumerable wtt degrees have important consequences

in the enumerable Turing degrees often because of the existence of contiguous

degrees. A degree a is called contiguous i� it contains a single enumerable

weak truth table degree. That is, for all enumerable sets A;B 2 a, A �

W

B. Contiguous degrees were �rst de�ned by Ladner [26] and Ladner and

Sasso [27]. They have been used extensively in the study of the enumerable

Turing degrees in papers such as Ladner and Sasso [27], Ambos-Spies [1],

[2], Ambos-Spies and Soare [5], Downey [7], [8], [9], Downey and Jockusch

[11], Downey and Welch [19], and Stob [34]. We give one illustration below.

Additionally they are important in e�ective algebra as can be seen from

Downey and Remmel [13] and Downey and Stob [15]. For instance, Downey

and Remmel proved that if V is a enumerable subspace of V

1

, then the

degrees of computably enumerable bases of V are precisely the weak truth

table degrees below the degree of V .

A principal reason for the importance of contiguity is the fact that the

distributivity of the enumerable weak truth table degrees transfers locally to

the contiguous degrees. That is, if a degree a is contiguous then it satis�es

the formula below in the enumerable degrees.

8a

1

; a

2

;b(a

1

[a

2

= a ^ b � a!

9b

1

;b

2

(b

1

[b

2

= b ^ b

1

� a

1

^ b

2

� a

2

)):

2

For instance, the way that Ambos-Spies and Soare used contiguity to exhibit

in�nitely many one-types in the enumerable degrees was to, for each n, con-

struct n degrees a

1

; :::; a

n

, each of which bounds no minimal pairs and each

pair of which forms a minimal pair (i.e., if i 6= j then a

i

\ a

j

= 0), and such

that all the joins [

j2P (f1;:::;ng)

a

j

are contiguous. The point is that by conti-

guity, the degrees a

1

; :::; a

n

are exactly the maximal complemented degrees

below a

1

[:::[a

n

. (This actually is an elaboration of an earlier argument of

Stob [34].)

Ever since the classic paper by Ladner and Sasso [27] where contiguity

was used to investigate the anticupping property in the enumerable degrees,

it has been an open question whether local distributivity de�nes contiguity.

The main goal of the present paper is to verify the conjecture of Ambos-Spies

(and others) that local distributivity does indeed de�ne contiguity:

Theorem 1.1 A degree a is contiguous i� a satis�es the formula below.

8a

1

; a

2

;b(a

1

[a

2

= a ^ b � a!

9b

1

;b

2

(b

1

[b

2

= b ^ b

1

� a

1

^ b

2

� a

2

)):

As a corollary to the technique employed in the proof of Theorem 1.1,

we are also able to solve a question of the �rst author. In [8], Downey

introduced the notion of a strongly contiguous degree. This is an enumerable

degree in which all the (not necessarily enumerable) sets are of the same weak

truth table degree. Downey raised the question of whether strong contiguity

and contiguity coincided. We observe that the proof of Theorem 1.1 actually

works with \strongly contiguous" in place of \contiguous." As a consequence

we obtain the following

Corollary 1.2 A degree is strongly contiguous i� it is contiguous.

Another corollary is obtained through the work of Ambos-Spies and Fejer

[4], Corollary 2.2. Recall that an enumerable set A is said to have the strong

universal splitting property i� for all enumerable degrees b and c with b[c =

3

deg(A), there exist enumerable disjoint sets B 2 b and C 2 c such that

BtC = A. Ambos Spies and Fejer proved that if local distributivity de�ned

contiguity, then the following was true.

Corollary 1.3 An enumerable degree contains a set with the strong universal

splitting property i� it is contiguous.

Finally, using some unpublished work of Gasarch and Kummer, we are

also able to solve a question of Downey and Jockusch [11]. In [11], Downey

and Jockusch de�ne an enumerable degree a to be m-topped i� there is an

enumerable set A of degree a such that for all enumerable sets B �

T

A, B �

m

A. For instance, 0

0

is m-topped by K. In [11] Downey and Jockusch proved

that there are nonzero incomplete m-topped degrees and in fact Downey and

Shore [14] have proven that an enumerable degree is low

2

i� it is bounded

by an incomplete m-topped degree. Here we solve a question from [11] by

proving

Corollary 1.4 No m-topped degree is contiguous. In fact, no tt-topped de-

gree is contiguous.

Aside from the use of local distributivity, contiguous degrees have been

used in a number of other applications. The basic paper Ladner and Sasso,

[27], provides a nice example of this. First Ladner and Sasso prove that all

nonzero elements of W (the set of enumerable wtt-degrees) have the antic-

upping property: for all a 6= 0, there is a nonzero b � a with b 6= 0 and

such that for all c 6= a; c [b 6= a. Now if we apply this result from W to a

contiguous degree, we get a transfer result: there exist enumerable T -degrees

with the anticupping property. Indeed since each nonzero enumerable degree

has a contiguous nonzero predecessor (Ladner and Sasso [27]), it follows that

degrees with the anticupping property are downward dense in R. In fact,

Downey [9] has shown that similarly using strongly contiguous degrees en-

ables one to get an easy proof of an extension of the Slaman-Steel/Cooper

result that there are enumerable T -degrees a with enumerable predecessors

that cannot be cupped to a in the Turing degrees (the so-called \strong an-

ticupping property.") Notice that our result has the interesting consequence

that

4

� Every contiguous degree has the strong anticupping property.

We will prove these results at the end of Section 4.

We remark that oftenW is used in applications as it can be much easier to

perform constructions in W (relying on the bounded use) and then transfer

the result to R, than to perform the construction directly in R.

The only problem with all the above is that many of the applications

only give local structure theory for low

2

degrees since, for instance, the only

known locally distributive degrees are contiguous and hence low

2

.

The second goal of the present paper is to demonstrate that it is pos-

sible to use contiguity-like transfer principles \higher up" by looking at a

relativized form of wtt-reducibility. In doing so, we follow some unpublished

ideas of the �rst author [17], Theorem 7.1, as well as prove several new re-

sults. We provide proofs of some claims in Downey-Stob [17], together with

answering a key open question from there. In particular, our main results

are to prove that while degrees contiguous over some lesser one (and hence

distributive over some lesser one) are dense in the enumerable degrees, they

are nontrivially so, in the sense that there do exist enumerable degrees that

are nondistributive over all lesser enumerable degrees.

The proof of Theorem 1.1 is a �nite injury argument, although it is nev-

ertheless rather complex and employs many ideas from the tree method. The

proofs of the results on relativized wtt-reducibility use 0

000

arguments. We

use terminology and notation consistently with Soare [33]. It is assumed that

the reader is thoroughly familiar with standard tree arguments. We use the

following conventions. First if we append [s] to a parameter this denote its

value at the end of stage s. We will denote the use of a procedure by the

corresponding lower case Greek letter. (Hence the use of �

A

(x)[s] would be

'(x)[s].) All uses are monotone in argument and stage number, and compu-

tations with use t can only halt after stage t. All computations obey the hat

convention.

5

2 The Requirements and the Intuition for the

proof of Theorem 1.1

In this section we adopt the \Chicago convention." That is, we use letters

at the beginning of the Greek and English alphabet for functionals and sets

constructed by us, and letters from the latter half of the alphabets for objects

constructed by our opponent .

Suppose thatW is an enumerable set and U a set with a Turing functional

� such that �

W

= U . Then we claim that we can build enumerable sets A

0

,

A

1

, and B together with functionals �

0

, �

1

, �, and � so that

�

W

0

= A

0

^ �

W

1

= A

1

^ �

A

0

�A

1

=W ^�

W

= B;

and so as to satisfy all the requirements below.

R

~

	;

~

�

: V

0

= 	

B

0

^ V

1

= 	

B

1

^B = 	

V

0

�V

1

^ �

A

0

0

= V

0

^ �

A

1

1

= V

1

!

(9 wtt �)[�

W

= U]:

That is, we can build a degree-theoretical splitting A

0

, A

1

of W and a set

B �

T

W such that if we cannot beat all possible degree-theoretical splittings

V

0

, V

1

of B then we can witness the fact that U �

W

W (via �). Figure 1

might be useful in visualizing the reductions and sets.

Suppose that we meet all the requirements R

~

	;

~

�

. Suppose that W is not

contiguous. Then we choose any enumerable set W 2 a for which there is

some set U �

T

W yet U 6�

W

W ; we must construct a splitting a

0

[a

1

= a

(with a

i

= deg(A

i

)) and an enumerable degree b = deg(B) � a that cannot

be split by any b

i

= deg(V

i

) with b

i

� a

i

, for i = 0; 1. Therefore, a is not

locally distributive.

We now turn to the basic module and the inductive strategies. We will as-

sume that U 6�

W

W . The strategies work independently and by the standard

�nite injury method (with potential in�nite outcome only if the hypothesis

U 6�

W

W is refuted). Thus if R acts and R

0

has lower priority than R then

we will initialize R

0

. Thus it will su�ce to give the construction for a single

requirement. We shall assume that we are given enumerations of the sets and

6

A

B

A A0 1

0 1V V

0

0

1

1

Γ Γ

ΞΞ

ΨΨ0 1

Φ

∆

U

Ψ

H,

Figure 1: Reductions for the De�nability Theorem

7

functionals su�ciently fast so that at each stage `(s+1) > `(s) where `(s) is

the length of agreement between U and �

W

at stage s. In the nomenclature

of Soare [33], every stage is (�

W

; U)-expansionary. Notice that this means

that at each stage we will update the functionals

~

� and �. If these uses are

increased we automatically lift them to be large. We will automatically keep

�(z) > (z) for all z.

2.1 The basic 0-module

We begin by describing the strategy for a requirement R

~

	;

~

�

trying to achieve

�

W

(0) = U(0). We call this the basic 0-module. It will be modi�ed later to

live with the other modules devoted to R

~

	;

~

�

. The basic 0-module consists of

the following steps.

Step 1. Pick a fresh large number x

0

> '(0) targeted for B. Reset x

0

if

W d('(0) + 1) changes before we get to Step 2 below. (Note that we always

have �(x

0

) > x

0

> '(0).)

Step 2. Wait for the (

~

	;

~

�)-length of agreement L(s) to exceed x

0

. This

parameter is de�ned by

L(s) = maxfx j 8y < x(B

s

(y) = �

W

(y)[s] = 	

V

0

�V

1

(y)[s] ^

V

0

d((y) + 1) = �

A

0

0

d((y) + 1) = 	

B

0

d(

0

(y) + 1) ^

V

1

d((y) + 1) = �

A

1

1

d((y) + 1) = 	

B

1

d(

1

(y) + 1))g:

(Hence, in particular, 	

V

0

�V

1

= 0 = B(x

0

)[s]

~

�- and

~

	-correctly).

Step 3. De�ne �

W

(0) = U(0) with use �(0) = '(0). (Note that since � is

to be a wtt-reduction we cannot change �(0) after we de�ne it.) Restrain

A

1

d((�

1

 (x

0

)[s] + 1). (We will call numbers � �

1

 (x

0

)[s] 0-small. The A

1

-

restraint prevents V

1

d((x

0

) + 1) from changing.)

Step 4. Wait for W d('(0)[s] + 1) to change at some y � '(0)[s] at a stage

t > s. (Now �

W

(0) is unde�ned till the next (

~

	;

~

�)-expansionary stage.)

The construction, while it is waiting for Step 4, will begin the 1-module.

8

Step 5. (Use Lifting) Put (y)[t] into A

0

(because of the A

1

-restraint in

Step 3 which puts 0-small numbers into A

0

and not A

1

) and lift (y) above

'(0)[s] and �

1

 (x

0

)[s]. (This means also that �(x

0

) > �

1

 (x

0

)[s], since

�(x

0

) > (x

0

) > (y), because x

0

> y.) Maintain the A

1

d(�

1

 (x

0

)[s] + 1)-

restraint.

Step 6. (Recovery) Wait for the (

~

	;

~

�)-length of agreement L(v) to exceed

x

0

again at a stage v > t.

Step 7. (Switch sides) Set �

W

(0) = U(0) with the same use. Now restrain

both A

1

d(�

1

 (x

0

)[s] + 1) and A

0

d(�

0

 (x

0

)[v] + 1), giving the A

1

-restraint

higher priority. (These restraints mean that if a number is 0-small we must

put it intoA

0

but if it is 0-medium (i.e., in the interval (�

1

 (x

0

)[s]; �

0

 (x

0

)[v]]

then we must put it into A

1

. We start the 1-module here if it is not already

going.)

Step 8. (Resolution) Wait for W d(�(x

0

)[s] + 1) to change. If U(0) changes

at a stage q > v, then there are two possibilities: If �

W

(0)[q] is unde�ned

because a 0-small number entered W , then we correct �

W

(0) at the next

(

~

	;

~

�)-expansionary stage and stop the 0-module. Otherwise, the number

to enter W below '(0) must be 0-medium. In this case, we put x

0

into

B. (The point here is that either we have permanently diagonalized the

requirement R

~

	;

~

�

at x

0

, or at a stage q

0

> q some 0-small number must enter

W below (�

1

 (x

0

)[s] and hence below �(0). In this latter case we can correct

�

W

(0)[q

0

].)

Step 9. (Correction) If U(0) changes and a 0-small number enters W then

correct �

W

(0).

2.2 Analysis of the basic 0-module

The basic 0-module has the following possible outcomes, all of which are

�nitary:

A) It is permanently stuck at Step 2 or at Step 6, waiting for the (

~

	;

~

�)-

length of agreement to exceed x

0

. The we satisfy the overall requirement

9

R

~

	;

~

�

, and the overall restraint is 0 or �

1

 (x

0

)[s], respectively.

B) The 0-module is permanently stuck at Step 4 or at Step 8, waiting for

�

W

(0) to become unde�ned. Then �

W

(0) = �

W

(0) = U(0), and the overall

restraint is �

1

 (x

0

)[s] or maxf�

1

 (x

0

)[s]; �

0

 (x

0

)[v]g, respectively.

C) The 0-module diagonalizes in Step 8 but gets stuck permanently at

Step 9, waiting for 0 to enter U and a 0-small number to enter W . Then

we have 	

V

0

�V

1

(x

0

) #= 0 6= 1 = B(x

0

), satisfying the overall require-

ment R

~

	;

~

�

. (Note here that (V

0

� V

1

)d((x

0

) + 1) can change only when

Bd(maxf

0

 (x

0

);

1

 (x

0

)g+1) changes and a 0-small number enters A

0

[A

1

in the same interval between consecutive (

~

	;

~

�)-expansionary stages.

The reader should recognize that since the A

1

-restraint has higher priority

than the A

0

-restraint, numbers z entering W with (z) below �

1

 (x

0

)[s]

cause us to change the A

0

-restraint from �

0

 (x

0

)[v] to �

0

 (x

0

)[v

0

] at the next

(

~

	;

~

�)-expansionary stage v

0

. Fortunately each time this nasty event occurs

we get to make �

W

(0) unde�ned also till stage v

0

. Hence we can change

the A

0

-restraint at most �

1

 (x

0

)[s] many times (since we reset uses to be

large). Furthermore, note that if originally (y) entered W in Step 4, then

the later injury of the A

0

-restraint in Step 5 by some (y

0

) entering W as

just described with (y

0

) below �

1

 (x

0

)[s], must have y

0

< y because of the

way we move the -uses. This comment is important in what follows.

2.3 The problems with two numbers

Now suppose that we try to implement the above module for the argument

1 of �. The places where we would begin the 1-module would be anywhere

where the 0-module might get stuck without actually winning the overall re-

quirement (i.e., under outcome B). The natural places are thus while waiting

in Step 4 (namely, waiting forW d('(0)[t]+1) to change) and in Step 8 which

is where we are waiting for 0 to enter U .

Notice that it does not really matter for the 0-module which side we

decide to preserve and thus de�ne 0-small numbers. (That is, �

0

 (x

0

)[s]

would do as well, by interchanging all the 0's and 1's.) Now while we are

10

beginning the 1-module, until we actually de�ne �

W

(1)[s] we will initialize

the 1-module each time a 0-small or 0-medium number enters A

0

[A

1

. What

would then be a good side for the 1-module to choose to preserve? Suppose

that we begin the 1-module in Step 4, and we get to de�ne �

W

(1) before

Step 4 is invoked for 0; then it is clear that we ought to use �

1

 (x

1

)[s] as

1-small, since both 0 and 1 basically wish to achieve the same goals. In fact

this case really causes no problems.

On the other hand, suppose that the 0-module has reached Step 8 before

we get to de�ne �

W

(1)[s] or even begin the 1-module. Now 0 is asking us

to try to preserve both sides if we can, and most particularly, preserve the

A

1

-side. Note that we make no progress on the 0-module if some 0-medium

number enters A

0

�A

1

if that number is bigger than �(x

0

). All that happens

is that the 0-module simply directs us to put it into the A

1

-side to preserve

A

0

d(�

0

 (x

0

)[v] + 1). However, if we were to begin the 1-module on the A

0

-

side attempting to preserve the A

1

-side as we did for the basic 0-module,

then now we could be in real trouble.

Perhaps we have enumerated some numbers into A

0

already, changing

�

0

 (x

1

)[s]. Now the 0-module's direction to put the 0-medium, but unhelpful,

numbers into A

1

would also change �

1

 (x

1

)[s], and now we have the situation

that both sides are wrong with respect to �(1)[s].

This problem can be avoided by beginning the 1-module on the A

1

-side,

and letting �

0

 (x

1

)[s] take the role of �

1

 (x

0

)[s] in the basic 0-module. That

is, based on the assumption that 0 has �nished acting on numbers y

0

< y,

we will begin by preserving A

0

on �

0

 (x

1

)[s]. (Here y is the number of Step

4 for the 0-module, which has caused us to switch.) This allows 1 to live

with 0 provided that no number y

0

< y enters W causing us to enumerate a

number with (y

0

) below �

1

 (x

0

)[s].

Now we get to the �nal problem. All of this is �ne if no number y

0

< y

entersW causing us to enumerate a number with (y

0

) below �

1

 (x

0

)[s]. But

what happens if such a y

0

does enter W ? (y

0

) is 0-small so it must be put

into A

0

, if we are to preserve A

1

d(�

1

 (x

0

)[s] + 1).

Perhaps we have already played a number into A

1

changing �

1

 (x

1

)[t]

11

but now we are also changing A

0

on �

0

 (x

1

)[t]. Again �(1) is in bad shape

with respect to both uses.

2.4 The solution to the �nal problem, and the re�ned

inductive strategies

One key point with the problem outlined above is that after y

0

enters W we

can get to make �(x

0

) equal to �(x

1

) and both large. This means that we can

ensure that henceforth if we can put x

1

into B then equally we could put x

0

into B. This single observation proves to be our salvation, as we now see.

Let us make �(x

0

) = �(x

1

) at stage t. We say that this makes 0 and 1

combined . Now suppose that even after the next (

~

	;

~

�)-expansionary stage

neither 0 nor 1 has entered U . Then we can still win on 1 as follows. Suppose

that 1 enters U , then although there seems to be no way to win with x

1

we

can put x

0

into B since we have made �(x

0

) > '(1)[t]. This means that we

either get a global win on the requirement, or some number y

00

< y

0

must

enter W forcing a number below �

0

 (x

0

)[s] into A

0

. This number would

allow us to correct �

W

(1).

However, there is a aw in all of this reasoning. What happens if even

later 0 enters U? Now we have used up x

0

and we can no longer use it for

resolving �

W

(0).

The main problem with the above is that we began our 1-module based

on a false premise: that no more 0-small numbers would enter W . The key

observation is that once we have passed Step 4 (which caused us to switch

anyway), the only numbers that can cause injury to 1 are those numbers

below y. There are fewer than '(0)[s] (the original value at the stage we

de�ned �(0)) such numbers. In fact this statement is clearly true about 0's

e�ect on all numbers i > 0. 0-small numbers can only injure them in this

way '(0)[s] many times.

The Modi�cation. The modi�cation to the basic module is to pick not

one x

0

but '(0) + 1[s] many x

0

's (we will call them x

0;j

), initializing the set

12

if '(0) changes before we see a (

~

	;

~

�)-expansionary stage with the length of

agreement above all x

0;j

. We ensure that each is chosen to exceed the use of

the predecessor, so that, provided that they enter in reverse order, the entry

of x

0;t

will not a�ect the set up for x

0;t

0

for t

0

< t.

Now suppose that we have any number of i-modules above 0, based

upon the assumption that 0 has passed Step 4, and will no longer cause

A

0

-enumeration. If a number y

0

< y enters W causing A

0

-enumeration, then

we would get to reset �(0) to be the same as all of the �(i) for such i. 0

is now combined with all such i. For such i, 0 now takes over the role of

resolver. If i enters U then we can put the largest unused x

0;j

into B. If this

does not diagonalize the requirement then some number below '(0)[s], the

original value, must enter W: But notice that there are only '(0)[s] many

such numbers and hence by the pigeonhole principle, we don't use up all the

x

0;j

's.

Notice that there is no problem with the inductive strategies for k above 0.

These strategies are begun with the assumption that the (k� 1)-module has

�nished, and at what place the (k � 1)-module �nished (i.e., after Step 4

or before Step 4). This �nishing place tells the k-module which side to

initially preserve. If it is the case that any of the i-modules for i < k are

currently trying to preserve both sides, and a small i-number enters W then

immediately we combine i and k and i takes over the role of resolving k as

well. The only way that i needs to preserve both sides is that it has passed

Step 4 and hence it has enough followers to cover k. If later some number

controlled by some i

0

< i enters W then either the i

0

-module has not passed

Step 4, or there is some i

00

-module with i

0

� i

00

< i which has passed Step 4

and will take over i's job and hence k's job.

Finally notice that we did not need U being enumerable here. Even if it is

only �

0

2

, the fact that we are using '(n) changes to control the construction

and the fact that W is enumerable, means that the construction will still

succeed. This �nal observation gives Corollary 1.2.

13

3 The Construction for Theorem 1.1

In addition to the activity for the R

~

	;

~

�

-requirements described below, we

assume background activity for ensuring the correctness of

~

� and � by

extending their domains at each stage (which is always assumed (�

W

; U)-

expansionary). This includes rede�ning

~

� and � at old arguments (when

previous computations have become destroyed) and always picking a large

new use but keeping previous uses unless speci�cally stated otherwise. This

also includes correcting �

A

0

�A

1

(at any argument x when x enters W while

�

A

0

�A

1

(x) #= 0) by enumerating (y) into A

0

or A

1

, depending on which is

restrained by higher-priority restraint. Finally, we will always assume that

�(y) > (y) for all y 2 !.

Since the action for each R

~

	;

~

�

-requirement is �nitary (unless U �

W

W)

we will only describe the construction for a single requirement and assume

that any action for one requirement respects the restraints of all higher-

priority requirements and initializes all lower-priority requirements. At any

stage, the highest-priority requirement that requires action will act. As usual

in these constructions, we assume that all parameters remain unchanged

unless explicitly rede�ned, and that all these parameters are measured at

the current stage unless speci�ed otherwise.

The action for each requirement R

~

	;

~

�

is carried out by n-modules (for

n 2 !), each working to de�ne the wtt-reduction �

W

at argument n. The

0-module starts �rst; and the n-module may start the (n + 1)-module. (At

each stage, the n-modules (try to) act in increasing order of n if they have

been started already.)

The n-module proceeds as follows:

Step 1. Set k

n

= '(n). If W d('(n) + 1) changes, or the m-module

(for some m < n) acts before the n-module reaches Step 3, or computations

for the length of agreement for previously chosen x

n;j

are destroyed, then

start the n-module over at Step 1. Perform the following substeps for j =

0; :::; k

n

� 1.

14

Substep 0. Pick a fresh number x

n;0

larger than any previously seen.

Substep j + 1. Wait for the (

~

	;

~

�)-length of agreement to exceed x

n;k

j

.

Pick a fresh number x

n;j+1

larger than any previously seen.

Step 2. Wait for the (

~

	;

~

�)-length of agreement to exceed x

n;k

n

at a

stage s

n

, say.

Step 3. Set �

W

(n) = U(n) with use �(n) = '(n)[s

n

]. If n = 0 then set

i(n) = 1; if n > 0 and the (n�1)-module has not yet reached Step 5 then set

i(n) = i(n�1); otherwise set i(n) = 1� i(n�1). (The parameter i(n) marks

the A-side �rst restrained by the n-module.) Set the A

i(n)

-restraint of the

n-module as r

A

i(n)

(n) = �

i(n)

 (x

n;k

n

)[s

n

] and restrain A

i(n)

d(r

A

i(n)

(n)[s

n

] + 1)

by, at any future stage s, directing into A

1�i(n)

all the numbers in the interval

(R(n)[s]; r

A

i(n)

(n)[s

n

]] wanting to enter A

0

[A

1

. (Here R(n) = maxfr

A

i

(m) j

m < n ^ i � 1g.) Start the (n+ 1)-module.

From now on, if A

i(n)

d(r

A

i(n)

(n)[s

n

] + 1) changes (by the restraint of the

m-module for some (least) m < n) then we proceed to Step 10 as soon as

the (

~

	;

~

�)-length of agreement exceeds x

n;k

n

.

Step 4. Wait for some number y

n

� '(n)[s

n

] to enter W at a stage

t

n

> s

n

, say.

Step 5. Put (y

n

) into A

1�i(n)

and lift (y

n

) above �

i(n)

[s

n

].

Step 6. Wait for the (

~

	;

~

�)-length of agreement to exceed x

n;k

n

again.

Step 7. Reset �

W

(n) = U(n), necessarily with the same use �(n)[s

n

].

Step 8. Wait for one of the following:

(a) �

W

(n) becomes unde�ned: Then go back to Step 6.

(b) �

W

(n) #6= U(n) and the (

~

	;

~

�)-length of agreement exceeds x

n;k

n

at

a stage u

n

> t

n

, say: Proceed to Step 9.

Step 9. Put x

n;j

intoB and �(x

n;j

) into A

i(n)

(for the greatest j � k

n

such

15

that currently x

n;j

=2 B, which is possible by Lemma 4.1(iv)). Set the A

1�i(n)

-

restraint of the n-module as r

A

1�i(n)

(n) = �

1�i(n)

 (x

n;k

n

)[u

n

] and restrain

A

1�i(n)

d(r

A

1�i(n)

(n)[u

n

] + 1) by, at any future stage s, directing into A

i(n)

all the numbers in the interval (maxfR(n)[s]; r

A

i(n)

(n)[s

n

]g; r

A

1�i(n)

(n)[u

n

]]

wanting to enter A

0

[A

1

. (This A

1�i(n)

-restraint will later be canceled if

A

1�i(n)

d(r

A

i

(n)

(n) + 1) changes.) Go back to Step 6.

Step 10. Since Ad(�(x

m;0

)+1) has changed we may reset the n-module's

parameters as follows (as will be shown in Lemma 4.1(vi) and Lemma 4.2(v)).

We set

�(x

m;j

) = �(x

n;k

n

) (for j � k

m

);

k

n

= k

m

;

x

n;j

= x

m;j

(for j � k

m

);

i(n) = i(m);

r

A

i

(n) = r

A

i

(m) (for i � 1, if de�ned);

s

n

= s

m

;

t

n

= t

m

(if de�ned);

u

n

= u

m

(if de�ned);

y

n

= y

m

:

The m- and n-modules are now in exactly the same position (by Lemma

4.2(vi)); so the n-module starts o� at exactly the step at which them-module

currently is. Both work in the same way (including the second paragraph of

Step 3), the only di�erence being that the m-module reacts to U(m)-changes

and the n-module to U(n)-changes. (We say the modules are combined.)

4 The Veri�cation

We will show, in a sequence of lemmas, that the construction described above

is possible as stated (i.e., that the parameters can be reset, the functionals

rede�ned, and the numbers enumerated as stated) and that, assuming U 6�

W

16

W , the overall action for each requirement R

~

	;

~

�

is �nite (i.e., eventually stops

and imposes only �nite restraint).

We will establish some facts separately for each n-module, �rst under the

assumption that Step 10 is never carried out, and then in the general case.

Lemma 4.1 (n-Module Lemma I) Fix n 2 !. Assume that

(1) Each m-module (for m < n) acts at most �nitely often, and

(2) The n-module never carries out Step 10.

Then the n-module acts as follows:

(i) There is a stage s

0

after which the n-module will no longer carry out

Step 1; so k

n

and x

n;0

; : : : ; x

n;k

n

will be de�ned permanently.

(ii) If the (

~

	;

~

�)-length of agreement ever exceeds x

n;k

n

after stage s

0

then

Step 3 will never be carried out later and the parameter s

n

will be de�ned

permanently.

(iii) IfW d('(n)[s

n

]+1) never changes after stage s

n

then �

W

(n) = U(n).

(iv) If W d('(n)[s

n

] + 1) changes after stage s

n

then Step 5 will never be

carried out later and the parameters t

n

and y

n

will be de�ned permanently.

(v) If W d('(n)[s

n

] + 1) changes after stage s

n

then the A

i(n)

-restraint

of the n-module applies after stage t

n

only when W dy

n

changes (i.e., each

(y) for y � y

n

is free to choose A

0

or A

1

as far as this A

i(n)

-restraint is

concerned).

(vi) Suppose the n-module enumerates some x

n;j

at a stage u

n

, and the

(

~

	;

~

�)-length of agreement exceeds x

n;k

n

at some stage u

0

> u

n

. Then W dy

n

must have changed between stages u

n

and u

0

(allowing �

W

(n) to be corrected)

and the n-module's A

1�i(n)

-restraint must have been canceled.

Proof. (i) Step 1 is performed only in the beginning, and whenever

17

W d('(n) + 1) changes or the m-module (for some m < n) acts, both of

which is assumed to happen at most �nitely often.

(ii) Clear by the construction.

(iii) Since U(n) = �

W

(n) = �

W

(n)[s

n

] = �

W

(n)[s

n

] = �

W

(n).

(iv) Immediate by the construction.

(v) Since r

A

i(n)

does not change after stage s

n

and (y) is lifted above

r

A

i(n)

at stage s

n

for all y � y

n

.

(vi) We have B(x

n;j

) = 1 6= 0 = 	

V

0

�V

1

(x

n;j

)[u

n

]. Since Step 10 is not

carried out, we must have V

i(n)

d((x

n;j

)[u

0

] + 1) = �

A

i(n)

i(n)

d((x

n;j

)[u

0

] + 1) =

�

A

i(n)

i(n)

d((x

n;j

)[u

n

] + 1) = V

i(n)

d((x

n;j

)[u

n

] + 1). Thus V

1�i(n)

d((x

n;j

) + 1)

must change between stages u

n

and u

0

, as must then A

1�i(n)

d(r

A

1�i(n)

(n)[u

n

]+

1). But A

1�i(n)

cannot change on the interval (r

A

i(n)

(n)[s

n

]; r

A

1�i(n)

(n)[u

n

]]

by the n-module's restraint, so A

1�i(n)

d(r

A

i(n)

(n)[s

n

]+1) must change between

stages u

n

and u

0

. The claim now follows by (v). 2

Lemma 4.2 (n-Module Lemma II) Fix n 2 !.

(i) If the n-module is combined with an m-module (for some m > n) then

i(n) 6= i(m) and W dy

n

(and so also W d('(n) + 1) and W d(�(x

n;0

) + 1))

changes at that stage.

(ii) The n-module is combined with an m-module (for some m 6= n) at

most �nitely often, say never after a (least) stage v

n

.

(iii) The n-module acts at most �nitely often.

(iv) Whenever the n-module wishes to enumerate some x

n;j

(for j � k

n

)

into B, then at least one such x

n;j

has not yet been enumerated.

(v) Lemma 4.1 holds for the n-module even without the assumptions (1)

and (2) (except at the stages when Step 10 is carried out by the n-module).

(vi) After being combined, the n-module and the m-module work with

18

identical parameters, except that the former reacts to U(n)-changes and the

latter to U(m)-changes.

Proof. We proceed by induction on n. Fix n and assume the lemma

holds for all n

0

-modules for n

0

< n.

We �rst observe that part of (v) must hold, namely that Lemma 4.1(v)

and (vi) holds without the assumptions (1) and (2). Note that when Step

10 is carried out by the n-module then the n-module starts behaving exactly

like the m-module (for some m < n) with the m-module's parameters, so by

induction, Lemma 4.1(v) and (vi) also holds then.

Now we are able to prove our lemma for the n-module.

(i) Suppose the n- and m-modules are combined at a stage u

0

. First

assume, for the sake of a contradiction, that i(n) = i(m). Then the n-

module must have an A

1�i(n)

-restraint (i.e., an A

1�i(m)

-restraint) at stage

u

0

stemming from a diagonalization attempt at stage u

n

, say, and so by

Lemma 4.1(vi) for the n-module and the assumption that the (

~

	;

~

�)-length

of agreement exceeds x

m;k

m

at stage u

0

, W dy

n

must have changed between

stages u

n

and u

0

. Thus either Step 10 was carried out by the n-module or its

A

1�i(n)

-restraint at stage u

0

stemming from stage u

n

was canceled.

This establishes i(n) 6= i(m). But then the m-module's A

i(m)

-restraint

is injured since the n-module's A

i(n)

-restraint applies, using Lemma 4.1(v).

The rest now follows by Lemma 4.1(v) and y

n

� '(n)[s

n

] � '(n); x

n;0

.

(ii) By induction on n, we may conclude that the n-module is combined

at most �nitely often with an m-module (for m < n), say never after stage

t

0

. Then after stage t

0

, y

n

is �xed. The claim now follows by (i) since W dy

n

can change at most �nitely often.

(iii) Once the n-module is no longer combined with any m-module, it can

clearly act at most �nitely often.

(iv) We �rst observe that it su�ces to establish (iv) only in the case that

the n-module is never combined with an m-module (for some m > n), since

(iv) follows by induction on n otherwise. In that case, however, by Lemma

19

4.1(vi), some x

n;j

is enumerated into B only after W dy

n

has changed; so the

claim follows by y

n

� '(n)[s

n

] = k

n

.

(v), (vi) This should now be clear by the construction. 2

Lemma 4.3 (R

~

	;

~

�

-Satisfaction Lemma) (i) If an R

~

	;

~

�

-strategy (consist-

ing of all its n-modules) acts in�nitely often (and is injured at most �nitely

often) then it will build a total wtt-reduction �

W

= U .

(ii) Each R

~

	;

~

�

-strategy satis�es its requirement unless a higher-priority

requirement shows U �

W

W .

Proof. (i) Suppose the R

~

	;

~

�

-strategy acts in�nitely often. By Lemma

4.2(iii), each of its n-modules acts at most �nitely often. So the (

~

	;

~

�)-length

of agreement must have in�nite limsup. By Lemma 4.1(vi) (and Lemma

4.2(v)), �

W

must be correct on its domain; and by Step 8(a) of the con-

struction and the fact that the use �(n) is �xed once de�ned, �

W

is also

total.

(ii) If the hypotheses of requirement R

~

	;

~

�

are satis�ed then clearly the

(

~

	;

~

�)-length of agreement has in�nite limsup, and the R

~

	;

~

�

-strategy will act

in�nitely often (unless some higher-priority strategy acts in�nitely often), so

(ii) follows by (i). 2

Lemma 4.4 (Totality Lemma) The functionals �

A

0

�A

1

, �

W

0

, �

W

1

, and�

W

are all total and correctly compute the sets W , A

0

, A

1

, and B, respectively.

Proof. By the construction, all these functionals are correct on their

domains. Since the uses of �

0

and �

1

are never increased once de�ned, �

W

0

and �

W

1

are also total.

Fix y 2 !. Since (y) is increased only when some y

0

� y enters W , the

use (y) will settle down eventually, and �

A

0

�A

1

is seen to be total. Since

the use �(y) is only increased in order to ensure �(y) > (y), the same also

holds for �

W

. 2

20

Lemmas 4.3 and 4.4 now establish Theorem 1.1. 2

5 Some Corollaries

We turn to the proof of Corollary 1.4. We begin with a Lemma of independent

interest.

Lemma 5.1 (Gasarch and Kummer, unpublished) Let �

n

T

denote n-

query Turing reducibility and �

n

tt

n-query tt-reducibility

1

. Suppose that A is

m-topped and enumerable. Then for any (not necessarily enumerable) set B

we have the following.

(i) If B �

n

T

A then B �

n

tt

A.

(ii) If h is computable, then B �

h

T

A implies that B �

tt

A: Here �

h

T

denotes

Turing reducibility where, upon input n we are allowed h(n) queries of the

oracle. (Hence, in particular, if B �

wtt

A then B �

tt

A.)

Proof. We give a proof for completeness. For (i), let B �

n

T

A via �. Say that

�

A

(x) changes its mind at least y times if there exists a sequence s

1

< ::: < s

y

of stages such that

�

A

s

j

s

j

(x) #6= �

A

s

j+1

s

j+1

(x) # :

Notice that for all x,

� �

A

(x) changes its mind at most 2

n

� 1 many times, and

� C = fhx;mi : �

A

(x) changes its mind at least m timesg is enumerable

and C �

T

A.

1

That is, A �

n

tt

B means that there is a procedure � total on all oracles and only allows

n queries on each computation path, and which computes A from B.

21

Now C �

m

A via some computable function f , as A is m-topped. We use C

to show that B �

n

tt

A. On input x, compute the least s such that

�

A

s

s

(x) #= b 2 f0; 1g:

Now use f to compute numbers q

i

= f(hx; ii) such that hx; ii 2 C i�

q

i

2 A. Now use q

1

; :::; q

2

n

�1

and b to generate a �

n

tt

reduction from B to A.

[Use binary search, �rst see if q

2

n�1

2 A. If not then see if q

2

n�2

2 A and if

q

2

n�1

2 A then see if q

2

n�1

+2

n�2

2 A, etc.] The proof of (ii) also follows. 2

Now we can prove Corollary 1.4 that no m-topped degree is contiguous.

Proof of Corollary 1.4. Suppose that a is contiguous. Then it is strongly

contiguous by Corollary 1.2. Suppose that additionally a is m-topped. Let

B be any set with B �

T

A. Then B �

wtt

A by strong contiguity. Hence

B �

tt

A by Lemma 5.1 (ii). Therefore a is a enumerable Turing degree

containing a largest tt-degree. This contradicts Jockusch [22]. 2

Actually, we can improve the above a little. Suppose instead that a is

only tt-topped by A. Then in the proof of Lemma 5.1, for each hx; ii we

could instead compute a tt-condition �

f(hx;ii)

so that

hx; ii 2 C i� A j= �

f(hx;ii)

:

Again we can use B and the amalgam of the truth tables f�

f(hx;ii)

: i =

1; :::; 2

n

�1g to generate a tt-condition showing B �

tt

A: Therefore we obtain

the following corollary as well:

Corollary 5.2 No tt-topped enumerable degree is contiguous.

6 Basics for Relativized Reductions

In this section we shall look at transfer techniques which apply to enumerable

degrees that are not necessarily low

2

. We shall say that A is C-wtt reducible

to B, symbolically A �

C

wtt

B, if there is a procedure � computing A from

22

B with a C-computable use. In some instances this de�nition is trivially

satis�ed: for instance, if A and B are enumerable then evidently if A �

T

B

then A �

;

0

wtt

B. The interest comes from looking at the situation where

C <

T

A �

T

B. The following is taken from Downey and Stob [17] and shows

that distributivity relativizes with enumerable witnesses (rather than only

enumerable in C as standard relativization would give).

Theorem 6.1 (Downey and Stob [17]) Let B, C, A

1

, and A

2

be enu-

merable sets with B �

C

wtt

A

1

�A

2

. Then there exists an enumerable splitting

B

1

tB

2

= B of B with B

i

�

C

wtt

A

i

for i = 1; 2.

Proof. Suppose that �

C

(A

1

� A

2

) = B with use bounded by '

C

. Let `(s)

denote the associated length of agreement. We will assume that we have

enumerations of the relevant sets so fast that `(s+1) > `(s) for all s, at each

stage s, (9y)[y 2 A

1;s+1

� A

2;s+1

� A

1;s

� A

2;s

] and the use function '

C

is

nondecreasing in both argument and stage number. Now, let x be the least

number to occur in A

1;s+1

� A

2;s+1

�A

1;s

�A

2;s

. If x is even, corresponding

to enumeration into A

1

, set B

1;s+1

= B

1;s

[(B

s+1

� B

1;s

) and B

2;s+1

= B

2;s

.

If x is odd, set B

2;s+1

= B

2;s

[(B

s+1

� B

s

) and B

1;s+1

= B

1;s

.

Clearly B

1

tB

2

= B. We claim that B

i

�

C

wtt

A

i

for i = 1; 2. To compute

B

i

(x) �rst compute relative to C the value of '

C

(x) and then a stage s = s(x)

at which it applies. Now �nd the least stage t > s with A

i;t

ds = A

i

ds. Then

x 2 B

i

i� x 2 B

i;t

. 2

Theorem 6.1 allows us to extend the notion of local distributivity to a

much wider setting in R. Again following Downey and Stob [17], we de�ne

an enumerable set A to be C-contiguous if for all enumerable sets B �

T

A,

B �

C

wtt

A: Similarly, we de�ne an enumerable set to be strongly C-contiguous

if for all sets B �

T

A, B �

C

wtt

A. Theorem 6.1 implies the following

Theorem 6.2 (Downey and Stob [17]) Suppose that a is c-contiguous

with c < a. Then a is locally distributive over c. That is,

8a

1

; a

2

;b((a

1

[a

2

= a&c � b � a)!

(9b

1

;b

2

)(b

1

[b

2

= b&b

i

� c [a

i

for i = 1; 2)):

23

Via index sets, we see that if a is c-contiguous then a

00

= c

00

. To �nish

this section, we prove that the notion has importance for the structure of R

\higher up".

Theorem 6.3 (Downey and Stob [17]) There is an enumerable degree

c < 0

0

such that 0

0

is (strongly) c-contiguous.

Proof. In Downey [9], the �rst author constructed a strongly contiguous

degree. In relativized form this result reads:

(9e)(8X)(X <

T

W

X

e

&(8C)(C �

T

W

X

e

! C �

X

wtt

W

X

e

))

Now applying the Jockusch-Shore pseudo-jump theorem (Jockusch and

Shore [23]), there is an enumerable set X withW

X

e

�

T

;

0

. Then ;

0

is strongly

X-contiguous. 2

7 The Nontriviality Theorem

The following result which demonstrates that the relative distributivity is a

very widespread phenomenon in R, the enumerable Turing degrees.

Theorem 7.1 (Downey) Suppose that a < b. Then there exists c with

a < c < b such that c is strongly a-contiguous.

Note that structurally Theorem 7.1 has the following consequence.

Corollary 7.2 Degrees locally distributive over some lesser one are dense in

R.

The reader should note that Theorem 7.1 makes for an interesting com-

parison with the result of Downey-Cholak [6]. There it is shown that if a < b

24

then there is a c with a < c < b and such that one cannot embed the 5 ele-

ment nondistributive modular lattice 1-3-1 into [a; c]. The interpretation is

that if c is su�ciently close to a then [a; c] \looks distributive." Theorem 7.1

and Corollary 7.2 provide further evidence for the intuition that R is much

more distributive locally than it is globally.

For completeness we give a proof of Theorem 7.1 in the appendix, Section

8. (No proof of Theorem 7.1 has appeared in the literature. Theorem 7.1

was announced in Downey and Stob [17].)

In this section we prove that Theorem 7.1 applies nontrivially in the sense

that not all enumerable degrees are contiguous over some lesser one. Indeed

we prove, solving a problem left open in [17], the following theorem.

Theorem 7.3 There is a nonzero enumerable degree that is not locally dis-

tributive over any lesser enumerable degree.

Proof. We build an enumerable set A and auxiliary enumerable sets A

i

=

A

i

(�; U); B = B(�; U); i = 0; 1, and we build procedures �

i

and � (both also

depending upon �; U) as well as procedures �

0

and �

1

dependent upon the

sequence h�; U;	;	

0

;	

1

;�

0

;�

1

; V

0

; V

1

i to satisfy the requirements below.

R

e

= R

�;U

: �

A

= U ! �

A�U

0

= A

0

^ �

A�U

1

= A

1

^ �

A

0

�A

1

�U

= A ^�

A�U

= B

b

R

he;ji

=

b

R

�;U;

~

	;

~

�;

~

V

: [�

A

= U ^ �

A

0

�U

0

= 	

B�U

0

= V

0

^

�

A

= U ^ �

A

1

�U

1

= 	

B�U

1

= V

1

^	

V

0

�V

1

�U

= B]! �

U

0

= A _ �

U

1

= A

P

e

: A 6= feg

Here all sets and procedures not explicitly built by us are built by our

opponent and form the subscripts of

b

R. For simplicity in this section we

use the convention that the corresponding lower case letter to a procedure is

the use, and the use is nondecreasing both in stage number and argument.

25

The reader should note that A must work for all pairs �; U , whereas A

0

; A

1

work only for one �; U . As an aid to the reader, we are again using the

\Chicago convention" that objects denoted by letters near the beginning of

the alphabet are built by us and objects denoted by letters near the end are

built by our opponent . The reader might �nd Figure 2 useful in visualizing

the relevant reductions.

We now discuss the strategies to meet the requirements above in isolation.

For P

e

, we use the canonical Friedberg-Muchnik strategy. That is, we pick

a follower y, wait for it to be realized (meaning that feg(y) = 0), and then

put the follower into A.

For R

�;U

, we will as usual have a node � on the tree measuring the

length of agreement between �

A

and U , and need to enumerate axioms at

� -expansionary stages. Of course, we can only change an output if a number

enters the oracle of the procedure below the use. When there is more than

one choice, we update as requested by

b

R living in nodes below � . This will be

done in accordance with the strategy below. Furthermore, � will enumerate

(y) (when a number y enters A) into A

0

or A

1

depending on which set

is currently restrained with higher priority by

b

R-strategies below � working

with the same U and �.

7.1 Streaming

Before we can explain the basic

b

R strategy, we need to comment on a feature

called streaming which we will use and which was �rst introduced in Downey

[10] and Downey and Mourad [12]. This is a technique of the �rst author that

can considerably simplify the combinatorics and notation of certain types of

constructions.

Streaming is a way of restraining a set when the overall restraint of a

strategy � may tend to in�nity and the strategies below still need to enu-

merate numbers into that set. Instead of restraining an initial segment of

the set, streaming rather \thins out" the set of possible numbers entering

that set so as to tightly control which numbers may enter. The stream of

a strategy � is thus de�ned by induction on the length of the node �: The

26

A

B

U

A A0 1

0 1V V

0

0

0

1

1

1

Γ Γ

ΞΞ

ΨΨ0 1

Φ

∆

Λ Λ

Figure 2: Reductions in the Nontriviality Theorem

27

empty node has all of ! as its stream (i.e., the set of numbers it can enu-

merate). Given a strategy �, a �nitary outcome o, and �'s stream, we de�ne

the stream of �bo to be the part of �'s stream above �'s restraint (so this is

initial-segment restraint). On the other hand, if o is an in�nitary outcome of

�, then typically � will enumerate its stream and select an in�nite subset of

this stream (enumerated in increasing order) as the stream of �bo. Whenever

�bo is initialized, its stream is also canceled, and we start enumerating a new

version of it.

In our construction at hand, we will use streaming as the restraint for the

set A in order to make sure that we can make use of every possible A-change.

We cannot use traditional initial-segment restraint since this restraint may

tend to in�nity if some set U can compute A; but in that case, A still has to

be made noncomputable and deal with all the other sets of the form U .

On the other hand, we can a�ord to use traditional initial-segment re-

straint on the sets A

0

, A

1

, and B since these will be irrelevant once we show

that U computes A.

7.2 The Basic

b

R-Strategy

For a single

b

R, we have a strategy that works in \cycles" (m;n) as described

below. Cycle (0; 0) will start, and each cycle (m;n) may start cycle (m;n+1)

or (m + 1; 0). Node � devoted to

b

R will have outcomes s, g

1

, g

0

, and w in

descending order of priority. w will denote the waiting outcome (in which

case some computation of the opponent's does not recover), g

i

will denote the

gap outcomes (in which case �

U

i

= A), and s will denote the stop outcome

(in which case we will have permanently diagonalized).

The idea is roughly as follows. Each cycle (m;n) picks a fresh witness

x (at which it is trying to diagonalize B against 	

V

0

�V

1

) and then waits for

	

V

0

�V

1

(x) = 0 as well as for computations of V

0

and V

1

from A

0

, A

1

, and B on

its use. Now the cycle tries to lift the use �(x) via A and A

0

while restraining

V

0

� V

1

via A

1

and B. For this, the cycle enumerates one single number y

0

into the stream of �bg

0

, and waits for this number to be enumerated into

A. (While waiting, it starts cycle (m;n + 1).) Once y

0

has entered A, the

28

cycle initializes �bg

0

and its stream, enumerates a single new number y

1

into

the stream of �bg

1

, and again waits for this number to be enumerated into

A. (While waiting, it starts cycle (m + 1; 0).) When y

1

�nally enters, our

cycle (m;n) is ready to permanently diagonalize by enumerating x into B

while using A

1

to record the A-change and restraining V

0

and V

1

via A

0

and

(on what is a now relatively small initial segment of) A

1

. There is one extra

complication in this: When y

0

or y

1

enters A then this allows a U -change

which may destroy 	

V

0

�V

1

(x). So each cycle has to protect against such a

U -change by de�ning parts of reductions �

0

and �

1

from U to A, where the

cycles (m;n) (for each �xed m and all n) collectively try to de�ne (a version

of) �

0

, and the cycles (m;n) (for all m and n) collectively try to de�ne �

1

.

To be more precise, cycle (m;n) proceeds as follows (the next strategy

eligible to act is �bw unless speci�ed otherwise below):

1. Pick a witness x > some number y

0

in �'s stream, both above the

restraint of higher-priority

b

R-strategies working with the same U and � and

above the restraint of the cycles preceding cycle (m;n) in the lexicographical

ordering. (We write this as \cycles < (m;n).)

2. Wait for 	

V

0

�V

1

�U

(x) = 0 and V

i

d((x) + 1) = 	

B�U

i

d((x) + 1) =

�

A

i

�U

i

d((x) + 1) for i = 0; 1.

3. Set �

U

0

d(�(x) + 1) = Ad(�(x) + 1) with the use �(y) (for arguments y

for which cycles < (m;n) have not de�ned �

U

0

) equal to �'s restraint r which

we de�ne to be the maximum of

i

 (x) and �

i

 (x) for i = 0; 1; restrain

A

1

d(r + 1); start cycle (m;n + 1); put y

0

into the stream of �bg

0

; and let

�bg

0

be eligible to act for one stage.

4. Wait for y

0

to enter A.

5. At the next � -expansionary stage (where � � � is the R-strategy

working with the same U and �), check whether Ud(r + 1) has changed. If

so then return to Step 2, else proceed to Step 6.

6. Lift �(x) above r (using the fact that some number � (y

0

) just entered

A

0

) and also above some y

1

> r in �'s stream.

29

7. Wait for �

A

0

�U

d((x) + 1) = V

0

d((x) + 1).

8. Discard �

0

and all cycles � (m; 0) except for (m;n) itself; initialize

�bg

0

; drop the cycle's A

1

-restraint; set �

U

1

d(�(x) + 1) = Ad(�(x) + 1) with

the use �(y) (for arguments y for which cycles < (m;n) have not de�ned �

U

1

)

equal to �'s restraint r which we de�ne to be the maximum of the old r and

and the current

i

 (x) and �

i

 (x) for i = 0; 1 (note that only �

0

 (x) may

have changed here); restrain A

0

d(r + 1); start cycle (m + 1; 0); put y

1

into

the stream of �bg

1

; and let �bg

1

be eligible to act for one stage.

9. Wait for y

1

to enter A.

10. At the next � -expansionary stage (where � � � is the R-strategy

working with the same U and �), check whether Ud(r + 1) has changed. If

so then return to Step 7, else proceed to Step 11.

11. Enumerate x into B (using the fact that y

1

< �(x) just entered A);

stop all cycles of �; and let �bs be eligible to act from now on (since we have

permanently diagonalized).

There are four possible outcomes to this strategy:

w and s: There are only �nitely many stages at which any cycle of � acts:

In that case, the last cycle to act is permanently stuck waiting at Step 2 or 7

or at Step 11. So

b

R is satis�ed, the eventual outcome is w or s, respectively,

and the e�ect on the rest of the construction is �nitary.

g

0

: There is some �xed m

0

such that the cycles (m

0

; n) collectively act

in�nitely often: We will show later that each cycle can only act �nitely

often since each cycle can only be injured by �nitely many numbers from the

streams it enumerates for �bg

0

and �bg

1

. Thus each cycle (m

0

; n) eventually

is stuck waiting at Step 4 and so de�nes �

0

correctly, satisfying R. The

restraint on the sets A

1

and B is in�nite but they are no longer needed

whereas the e�ect on A is that the stream of possible numbers to enter is

thinned out but still in�nite.

g

1

: There is no �xed m

0

such that the cycles (m

0

; n) collectively act

in�nitely often but all cycles collectively act in�nitely often: Then for each

30

m, there is an n

m

such that cycle (m;n

m

) is eventually stuck waiting at

Step 9, and this cycle is the only one of the form (m;n) stuck at Step 9. So

each cycle (m;n

m

) de�nes �

1

correctly, thus satisfying R. The restraint on

the sets A

0

, A

1

, and B is in�nite but they are no longer needed whereas the

e�ect on A is again that the stream of possible numbers to enter is thinned

out but still in�nite.

We now turn to some formal details, although they are more or less

technique.

7.3 The Lists and the Priority Tree

We generate the priority tree PT via lists L

1

(�), L

2

(�), and L

3

(�) as follows.

(Intuitively, these are the sets of indices of requirements of the form P , R,

and

b

R, respectively, yet to be satis�ed by nodes � �.)

Initially, L

i

(�) = ! for i = 1; 2; 3 (where � is the empty node).

Inductively, assume that we are at some node �.

If the length of � is a multiple of 3, then assign R

e

to � where e is

the the smallest member in L

2

(�), and give � the outcomes 1 and f . For

o 2 f1; fg, set

L

1

(�bo) = L

1

(�)

and

L

2

(�bo) = L

2

(�)� feg:

Finally, set

L

3

(�bf) = L

3

(�)� fhe; ji j j 2 !g and L

3

(�b1) = L

3

(�):

If the length of � is congruent to 1 mod 3, then assign P

e

to � where e is

the smallest member in L

1

(�). Give � the outcomes 1 and 0. For o 2 f0; 1g,

i 2 f2; 3g, set

L

1

(�bo) = L

1

(�)� feg and L

i

(�bo) = L

i

(�):

31

Finally, if the length of � is congruent to 2 mod 3, we will assign � to

the �rst available

b

R, where we assume that e < he; ji, via the list L

3

. Thus,

we assign

b

R

e;j

to � where he; ji is the smallest member in L

3

(�). We give �

the outcomes s; g

1

; g

0

; f . Now for o 2 fs; fg and i 2 f1; 2g, we set

L

i

(�bo) = L

i

(�) and L

3

(�bo) = L

3

(�)� fhe; jig:

For o 2 fg

1

; g

2

g and i 2 f1; 2g, set

L

i

(�bo) = L

i

(�) and L

3

(�bf) = L

3

(�)� fhe; ji j j 2 !g:

As is easily seen, each

b

R

he;ji

-strategy � has a unique R

e

-strategy �(�) � �

above.

7.4 The Construction

The construction proceeds in substages t � s. We will work down the appar-

ent true path TP

s

at stage s, making at each substage t a strategy � � TP

s

of length t eligible to act.

We are then left with describing the action of each strategy when it is

eligible to act at substage t of stage s. We distinguish cases depending on

the type of requirement assigned to the strategy:

Case 1: A P

e

-strategy � is eligible to act. Let the streams of �b1 and

�b0 equal the stream of �. Proceed to the �rst subcase that applies.

Subcase 1.1: � has already enumerated a number into A. Then let �b1

be eligible to act next.

Subcase 1.2: � currently does not have a witness y. Then pick an

unused witness y in �'s stream if possible and let �b0 be eligible to act next;

else end the stage.

Subcase 1.3: feg(y) = 0 for �'s current witness y. Then put y into A

and let �b1 be eligible to act next.

32

Subcase 1.4: Otherwise. Let �b0 be eligible to act next.

Case 2: An R

U;�

-strategy � is eligible to act. Again let the streams of

�b1 and �bf equal the stream of � . Denote the length of agreement between

�

A

and U by l(�). If s is not � -expansionary then let �bf be eligible to act

next. Otherwise, extend the de�nitions of �

A�U

0

, �

A�U

1

, �

A

0

�A

1

�U

, and �

A�U

,

setting the use on new arguments to a large number, and lifting the use on

old arguments to a large number when requested by

b

R-strategies below � ;

and let �b1 be eligible to act next. (For technical reasons, we let the use

function � majorize the use function .)

Case 3: An

b

R-strategy � is eligible to act. The strategy works in cycles

(m;n). If � has not been eligible to act (since its most recent initialization)

then let cycle (0; 0) act, else let the least cycle (if any) act that can proceed

past the current wait. For this cycle, we refer to the description of the basic

module in Section 7.2.

At the end of each stage s, we initialize all strategies > TP

s

(the longest

node eligible to act at stage s).

7.5 The Veri�cation.

It is now not di�cult to argue that the construction succeeds similar to

the intuitive veri�cation for the basic

b

R-module above. Let TP denote the

leftmost path visited in�nitely often. We argue by simultaneous induction

the following.

Lemma 7.4 Let � � TP be a strategy.

(i) � is initialized at most �nitely often.

(ii) �'s stream (after �'s last initialization) is an in�nite computable set,

enumerated in increasing order.

(iii) If � is an

b

R-strategy then the restraint on A

0

, A

1

, and B imposed

33

by higher-priority strategies working with the same U and � is constant after

�'s last initialization.

Proof: (i) Routine.

(ii) We proceed by induction on the length of �. The inductive claim is

trivial if � is not of the form �bg

i

.

If i = 1 then � does not stop (after its last initialization) but has in�nitely

many cycles stuck at Step 9, each enumerating one number into �'s stream

in increasing order.

If i = 0 then � does not stop or let �bg

1

act (after �'s last initialization)

but has in�nitely many cycles stuck at Step 4, each enumerating one number

into �'s stream in increasing order.

(iii) By the de�nition of the lists, all

b

R-strategies � � working with the

same U and � must have outcome s or w along �. 2

Lemma 7.5 Each P -strategy � � TP eventually has a permanent witness

y and ensures A(y) 6= feg(y).

Proof: Since �'s stream is in�nite and no strategy below � is eligible to

act until � has a witness, the �rst half of the claim is clear. The rest is now

routine. 2

Lemma 7.6 Let � � TP be an R-strategy. Then there are three possibilities:

(i) �bf � TP and �

A

6= U .

(ii) There is an

b

R-strategy � with � � � � �bg

i

� TP for some i 2 f0; 1g.

(iii) For each j, there is an

b

R

e;j

-strategy � with � � � � �bo � TP for

some o 2 fw; sg.

Proof: Routine by the construction and the de�nition of lists. 2

34

Lemma 7.7 Let � � TP be an

b

R-strategy.

(i) If �bo � TP for some o 2 fs; wg then

b

R is satis�ed.

(ii) If �bg

i

� TP for some i 2 f0; 1g then �

U

i

= A.

Proof: (i) As in the basic module, some cycle of � must be waiting at

Step 2, 7, or 11 permanently, establishing the claim.

(ii) We assume i = 0, the other case being similar (and easier). Then

starting at some stage s

0

, �

0

is no longer discarded, and for some �xed m

0

,

the cycles (m

0

; n) collectively de�ne �

U

0

.

Now for each n, cycle (m

0

; n) can be injured (via U) only �nitely often,

namely only after A-changes via the n + 1 many y's put into �bg

0

's stream

by the cycles (m

0

; n

0

) for n

0

� n. Whenever some such y enters A (via some

lower-priority P -strategy) then the cycle (m

0

; n

0

) which put this y into the

stream will either be able to proceed to Step 6 (contradicting our choice of

s

0

), or see a U -change allowing the correction of �

U

0

(n). Thus �

U

0

= A as

desired. 2

The above lemmas now establish Theorem 7.3. 2

8 Proof of the Density Theorem 7.1

In this section, for completeness, we will sketch a proof of the following

density theorem which we restate below.

Theorem 8.1 (Downey) Suppose that a < b. Then there exists c with

a < c < b such that c is strongly a-contiguous.

We are given enumerable sets A <

T

B and need to construct C = [

s

C

s

to meet the requirements:

P

e

: �

e

(A) 6= C:

35

N

e

: �

e

(A�C) total and �

e

(�

e

(A�C)) = A�C ! �

e

(A�C) �

A

wtt

A�C:

(For this section, it seems more convenient to index reductions via e 2 !:

For the N

e

we work over all enumerations h�

e

;�

e

i consisting of two reduc-

tions.)

We begin by reviewing the construction of Downey [9] of a strongly con-

tiguous degree. That is the construction with A = ;: Let

`(e; s) = maxfx : (8y < x)(�

e;s

(�

e;s

(A

s

� C

s

); y) = (A

s

� C

s

)(y))g

Let m denote the corresponding maximum length of agreement for `. The

fundamental idea is the following. At each stage s, when `(e; s) > m(e; s), for

any number x targeted for C not yet e-con�rmed, with `(e; s) > x we declare

x to be e-con�rmed and cancel all (followers) y with x < y < s (targeted for

C). [At least this is the action with A = ;.] Now for all stages t > s, we

only appoint numbers � t as followers. Hence the only numbers we allow to

ever enter C below s are � x, and, indeed are either x or earlier con�rmed

followers. As usual, followers are appointed \large," that is bigger than any

number seen at any preceding stage of the construction. Furthermore we

promise that if x enters C then we cancel all numbers (followers) � x.

� Note that at stage s, we inductively know that if x

1

and x

2

are fol-

lowers with x

1

< x

2

then x

2

actually exceeds the maximum use of the

�

e;s

(�

e;s

(A

s

� C

s

); x

1

) computation.

Now the idea is that if `(e; s) ! 1 then eventually we only enumer-

ate e-con�rmed followers into C. Also we promise that at e-expansionary

stages (i.e., where `(e; s) > m(e; s)), we cancel all followers not guessing that

`(e; s)!1. We claim that this makes deg(C) strongly contiguous.

First �

e

(A � C) �

wtt

A � C. To see this given x �nd the least stage

s = s(x) such that some follower y(x) > x is e-con�rmed, so that `(e; s) >

m(e; s) > y > x. Now compute the least stage t > s such that (A

t

�

C

t

)ds = (A�C)ds, and that `(e; t) > m(e; t):We claim that �

e

(A�C)(x) =

36

�

e;t

(A

t

�C

t

; x): By induction, for each e-expansionary stage s

1

> s we know

that the only numbers �

e;s

1

(A

s

1

� C

s

1

; x) are followers � s. [To see this,

note that if no number � x enters C after stage s we are done since the use

is unchanged. If some number z � x enters, then the use surely changes,

but when the number z enters it cancels all q � z. Furthermore at the

least e-expansionary stage s

2

after the stage at which z enters we would

cancel all followers appointed after the stage s

3

at which z entered. (They

would have the wrong guess.) In particular at stage s

2

there would be no

numbers w left alive with z � w � s

2

:] Thus since the only numbers �

e;s

1

(A

s

1

� C

s

1

; x) are followers � x, we see that �

e;s

1

(A

s

1

� C

s

1

; x) can only

change if some number � x and hence � s enters C. But then in particular,

as (A � C)ds = (A

t

� C

t

)ds, it follows that �

e

(A � C; x) = �

e

(A

t

� C

t

; x);

and hence �

e

(A� C) �

wtt

A� C.

To see that A � C �

wtt

�

e

(A � C), given x 2 !, �rst go to stage x and

see if x is a follower. If not then x 2 A � C i� x 2 A

x

� C

x

. If x is a

follower, go to the least stage s

0

> x where x 2 C, x is canceled, or x is

e-con�rmed. Assuming the last case, compute the least stage s

1

> s

0

where

�

e;s

1

(A

e;s

1

� C

e;s

1

)ds

1

= �

e

(A � C)ds

1

: Then essentially the same reasoning

as above will show that x 2 C i� x 2 C

s

1

, and hence A�C �

wtt

�

e

(A�C).

One organizes the basic module on a �

2

guessing tree and the construction

goes through without any problems.

Turning now to the general case, we have additional problems since the

set A is not empty, and is probably not computable. For the requirements

P

f

: �

f

(A) 6= C;

we need some sort of Sacks coding strategy (Sacks [31]). We remind the

reader of this strategy. The idea is that we have a collection of followers x =

x(f; i; s) all targeted for C. The notation is that x is the current \marker"

set up to code the atomic fact that \i 2 B." Let

L(f; s) = maxfz : 8y < z(�

f;s

(A

s

; y) = C

s

(y))g:

A marker for i + 1 is only picked at a stage when x(f; i; s) is de�ned and

L(f; s) > x(f; i; s):We agree that if x(f; i; s) is de�ned and L(f; s) � x(f; i; s)

37

due to a change in the current A-computation we cancel x(f; i + 1; s), enu-

merating it into C. (We use the hat convention on all uses.) Note that

this means that if lim supL(f; s) ! 1, yet lim inf L(f; s) � x(f; i; s); then

x(f; i + 1; t) ! 1 as t ! 1: Moreover this happens computably. (Soare's

\Window Lemma.") Finally, while x(f; i + 1; t) is de�ned and we see i oc-

cur in B we promise to put x(f; i; t) into C to try to cause a disagreement.

Note that if lim inf L(f; s) ! 1, since we can A-computably recognize if

a computation �

f;s

(A

s

; x(f; i; s)) is A-correct, it follows that B �

T

A, a

contradiction.

For a node devoted to P

e

, this familiar strategy has for each i, the

outcomes (i;1) for \unbounded use at x(e; i; s)," or (i; f) for \disagreement

at x(e; i; s)." The former means that the relevant node will encode a com-

putable injury set from the x(e; j; s) for j � i. The latter means that the

node is �nitely active. Hence the outcomes for will be an ! sequence. And

we will have b(0;1); b(0; f); :::; b(i;1); b(i; f); ::: on the priority tree.

We turn now to the N

e

. The trouble with the N

e

is that A-injury can

occur. (That is, after we have some sort of apparent computation, a relatively

small number can enter A (which is more or less out of control) destroying

the computation.) The interaction of the A-injury with the N

e

is complex,

but still essentially familiar. As usual with �

2

nodes being A-injured we

get a 0

000

argument. However the injuries are relatively simple. Again we

would have followers x waiting to be e con�rmed by N

e

. However when we

e-con�rm, we cannot just cancel all y > x since con�rmation could be later

A-injured. Repeating the cycle in�nitely often, x could cause the cancelation

of all y > x. Thus in addition to the usual outcomes of the P

j

, we will attach

outcomes for the N

e

of higher priority. That is if we have some x(j; i; s) which

is in�nitely often e-con�rmed and this e-con�rmation is later A-injured, then

correspondingly there will be an outcome (e; i;1). (Or rather (�; i;1) on

the strategy tree.) This outcome corresponds to the fact that lim

s

x(j; i; s)

is the witness that we have an A-divergent computation in the hypothesis of

N

e

and hence at the expense of losing (this version of) P

j

we get a global win

for N

e

.

Now all this gives the following timing problem. Imagine a version of N

e

at a node � on the priority tree. Below � we have nodes � and with

38

associated with P

j

and � with P

k

. Suppose that both and � extend �b1.

(As usual, this means that they are guessing that `(e; s) ! 1.) Suppose

also that � extends b(i;1). Now we will, of course, appoint a follower x to

� during a � and hence b(i;1)-stage. Suppose that we do this and that x is

a coding marker for n. Thus x = x(j; n; s). The point is that we may never

again have a b(i;1)-stage, but we need to build the �

A

wtt

reductions for N

e

at �. Thus in particular, we need to enumerate axioms for x at �-con�rmation

stages. Thus we must �-con�rm at the next �-stage with `(e; s) > x. (Note

here that this is a �-stage and not necessarily a � -stage.) However it might

well be the case that this �-con�rmation is A-incorrect. With a traditional

construction, we note that � is conceivably forever inaccessible since perhaps

there is never again a b(i;1)-stage. (Perhaps �

j;t

(A

s

(x(; i; s))) " for all

stages t > s.)

Our solution is to use the kangaroo methods of Downey-Stob [18], and

\jump" directly from � to � . (A di�erent solution to this dilemma can be

found in Cholak-Downey [6]. This latter solution involves attaching outcomes

for nodes � <

L

� to a node �.) To be precise, suppose that, as above, at

some �-stage we �-con�rm x. But at a later stage, this � con�rmation is

A-injured. The we would create a link (�; �) and jump directly from � to � .

At � we would play the outcome (�; n;1). This draws attention to the fact

that x is witnessing a potential global win (by divergence) of the requirement

N

�

. Notice that if b(�; n;1) is leftmost and in�nitely often visited this way,

then N

e

will be met by the divergence at x. Naturally we will need to restart

all requirements between � and � below the outcome (�; n;1).We can do this

via lists in the usual way. There is one problem that all this causes relating

to � -correctness. Between � and � there are in�nitary nodes such as b(i;1)

which are apparently saying that we should not believe a computation at or

below � until all the relevant numbers they will enumerate clear the relevant

uses. These nodes may or may not actually be visited in�nitely often and

could be totally incorrect advice to � . This clearly a�ects the notion of being

�b(�; n;1)-correct.

Accordingly we will attach to the outcome (�; n;1) suboutcomes corre-

sponding to the �

2

behavior of the nodes between � and � . Thus, in the

scenario above, there will be nodes �b(�; n;1)bO

1

and �b(�; n;1)bO

2

, with

O

1

left of O

2

and saying that b1 puts in�nitely many numbers into C

39

and O

2

saying that it only puts �nitely many numbers into C. Note that,

as with the density theorem of Sacks, A can �gure out enough of the con-

struction to decide if, for instance, a con�rmation is A-correct or not. This

kangaroo methodology is discussed in detail in Downey and Stob [15]. With

this modi�cation, the requirements are organized in the usual ways, and the

argument goes through in a more or less canonical way. (The full details can

be obtained from the �rst author upon request.)

References

[1] K. Ambos-Spies, Contiguous r.e. degrees, in Computation and Proof

Theory (eds. E. B�orger, W. Oberschelp, M. M. Richter, B. Schinzel

and W. Thomas), Springer Lecture Notes in Mathematics No. 1104,

Springer-Verlag, Berlin, 1984, pp. 1-37.

[2] K. Ambos-Spies, Antimitotic recursively enumerable sets, Z. Math.

Logik Grundlagen Math. 31 (1985), 461-467.

[3] K. Ambos-Spies, D. Ding, and P. Fejer, Embedding lattices preserv-

ing 1 below a nonzero recursively enumerable Turing degree, in Logical

Methods, (eds. J. Crossley, et. al.) Birkh�auser, Boston, 1994, pp. 92-129.

[4] K. Ambos-Spies and P. A. Fejer, Degree theoretical splitting properties

of recursively enumerable sets, J. Symbolic Logic 53 (1988), 1110-1137.

[5] K. Ambos-Spies and R. I. Soare, The recursively enumerable degrees

have in�nitely many one-types, Ann. Pure Appl. Logic 44 (1989), 1-23.

[6] P. Cholak and R. G. Downey, Lattice nonembeddings and intervals in

the recursively enumerable degrees, Annals Pure and Applied Logic, 61

(1993), 195-222.

[7] R. G. Downey, Localization of a theorem of Ambos-Spies and the strong

antisplitting property, Archiv math. Logik Grundlag. 26 (1987), 127-

136.

[8] R. G. Downey, �

0

2

degrees and transfer theorems, Illinois J. Math. 31

(1987), 419-427.

40

[9] R. G. Downey, Subsets of hypersimple sets, Paci�c J. Math. 127 (1987),

299-319.

[10] R. G. Downey, A contiguous nonbranching degree, Z. Math. Logik

Grund. Math. 35 (1989), 375-383.

[11] R. G. Downey and C. G. Jockusch, Jr., T-degrees, jump classes and

strong reducibilities, Trans. Amer. Math. Soc. 301 (1987), 103-136.

[12] R. G. Downey and J. Mourad, Superbranching degrees, Proceedings

Oberwolfach 1989, Springer Verlag Lecture Notes in Mathematics, 1990,

pp. 175-186.

[13] R. G. Downey and J. B. Remmel, Classi�cation of degree classes asso-

ciated with r.e. subspaces, Ann. Pure Appl. Logic 42 (1989), 105-125.

[14] R. G. Downey and R. A. Shore, Degree theoretical de�nitions of low

2

recursively enumerable sets, J. Symbolic Logic, to appear.

[15] R. G. Downey and T. A. Slaman, Completely mitotic r.e. degrees, Ann.

Pure Appl. Logic 41 (1989), 119-152.

[16] R. G. Downey and M. Stob, Structural interactions of the recursively

enumerable W- and T-degrees, Ann. Pure Appl. Logic 31 (1986), 205-

236.

[17] R. G. Downey and M. Stob, Splitting theorems in recursion theory, Ann.

Pure Appl. Logic 65 (1993), 1-106.

[18] R. Downey and M. Stob, Minimal pairs in initial segments of the recur-

sively enumerable degrees, to appear Israel J. Math.

[19] R. G. Downey and L. V. Welch, Splitting properties of r.e. sets and

degrees, J. Symbolic Logic 32 (1986), 137-151.

[20] R. Friedberg and H. Rogers, Jr., Reducibilities and completeness for sets

of integers, Z. Math. Logik Grundlagen Math. 5 (1959), 117-125.

[21] M. Ingrassia, P-genericity for Recursively Enumerable Sets, Thesis, Uni-

versity of Illinois at Urbana (1981).

41

[22] C. Jockusch, Relationships between reducibilities, Trans. Amer. Math.

Soc. 162 (1969), 229-237.

[23] C. Jockusch and R. Shore, Pseudo-jump operators I : The R. E. case,

Trans. Amer. Math. Soc. 275 (1983), 599-609.

[24] A. H. Lachlan, Embedding nondistributive lattices in the recursively

enumerable degrees, in Conference in Mathematical Logic, London, 1970

(ed. W. Hodges), Lecture Notes in Mathematics No. 255, Springer-

Verlag, New York, 1972, pp. 149-177.

[25] A. Lachlan, A recursively enumerable degree that will not split over all

lesser ones, Ann. of Math. Logic 9 (1975), 307-365.

[26] R. E. Ladner, A completely mitotic nonrecursive recursively enumerable

degree, Trans. Amer. Math. Soc. 184 (1973), 479-507.

[27] R. E. Ladner and L. P. Sasso, Jr., The weak truth table degrees of

recursively enumerable sets, Ann. Math. Logic 8 (1975), 429-448.

[28] M. Lerman and J. B. Remmel, The universal splitting property, II, J.

Symbolic Logic 49 (1984), 137-150.

[29] P. Odifreddi, Strong reducibilities, Bull. (New Series) Amer. Math. Soc.

4 (1981), 37-86.

[30] P. Odifreddi, Classical recursion theory, North-Holland, Amsterdam,

1990.

[31] G. Sacks, The recursively enumerable degrees are dense, Annals of Math.

(2) 80 (1963), 211-231.

[32] T. Slaman, The density of in�ma in the recursively enumerable degrees,

Annals Pure and Applied Logic, 52 (1991), 155-179.

[33] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag,

New York, 1987.

[34] M. Stob, Wtt-degrees and T-degrees of recursively enumerable sets, J.

Symbolic Logic 48 (1983), 921-930.

42

