
UNIVERSAL COMPUTABLY ENUMERABLE EQUIVALENCE

RELATIONS

URI ANDREWS, STEFFEN LEMPP, JOSEPH S. MILLER, KENG MENG NG,
LUCA SAN MAURO, AND ANDREA SORBI

Abstract. We study computably enumerable equivalence relations (ceers),
under the reducibility R ≤ S if there exists a computable function f such that
x R y if and only if f(x) S f(y), for every x, y. We show that the degrees
of ceers under the equivalence relation generated by ≤ form a bounded poset
that is neither a lower semilattice, nor an upper semilattice, and its first order
theory is undecidable. We then study the universal ceers. We show that 1) the
uniformly effectively inseparable ceers are universal, but there are effectively
inseparable ceers that are not universal; 2) a ceer R is universal if and only
if R′ ≤ R, where R′ denotes the halting jump operator introduced by Gao
and Gerdes (answering an open question of Gao and Gerdes); and 3) both the
index set of the universal ceers and the index set of the uniformly effectively
inseparable ceers are Σ0

3-complete (the former answering an open question of
Gao and Gerdes).

1. Introduction

Given equivalence relations R and S over the set ω of the natural numbers,
define R reducible to S (notation: R ≤ S) if there exists a computable function f
such that x R y ⇔ f(x) S f(y), for all x, y. This reducibility can be viewed
as a natural computable version of Borel reducibility (in which the reduction
function is Borel), widely studied in descriptive set theory to measure the relative
complexity of Borel equivalence relations on Polish spaces, see for instance the
textbooks [1, 19].

The reducibility ≤ was introduced by Ershov (see Ershov’s monograph [13],
translated into German in [10, 11, 12]), while dealing with the monomorphisms
of a certain category. Following Ershov, one can introduce the category of equiv-
alence relations on ω, in which a morphism from R to S is a function µ : ω/R −→
ω/S between the corresponding quotient sets, such that there is a computable
function f with µ([x]/R) = [f(x)]/S , or in other words, x R y ⇒ f(x) S f(y).

2010 Mathematics Subject Classification. 03D25.
Key words and phrases. Computably enumerable equivalence relations, effectively inseparable

sets.
Lempp’s research was partially supported by an AMS-Simons Foundation Collaboration

Grant 209087. Miller’s research was partially supported by NSF grant DMS-1001847. Sorbi’s
research was partially carried out while he was visiting the Department of Mathematics of the
University of Wisconsin-Madison in March 2011. The second and last author would like to thank
the Isaac Newton Institute for Mathematical Sciences of Cambridge, England, for its hospitality
during the final phase this paper was completed.

1

2 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

(In fact, Ershov’s primary interest is in the category of numberings, of funda-
mental interest in the foundations of computability theory, computable algebra,
and computable model theory. One can view the category of equivalence rela-
tions as a full subcategory of the category of numberings, such that every object
in the category of numberings is isomorphic to an object in the subcategory of
equivalence relations.) It is then easy to see that R ≤ S if and only if, in the
terminology of category theory, there is a monomorphism from R to S, i.e., R
is a subobject of S. In recent years, there has been a sudden burst of interest
in the reducibility ≤, either to compare it and contrast it with Borel reducibility
(see for instance [8, 18, 15]), or to study the complexity of various equivalence
relations, such as the isomorphism relation, on classes of computable structures
(see for instance [14, 16, 17]).

We study computably enumerable equivalence relations (for short, ceers) under
≤. Ceers appear frequently in mathematics (for instance as equality of words in
finitely presented semigroups or groups), in computable model theory (see e.g.,
[6], where ceers are called Σ0

1 equivalence structures), and in the theory of num-
berings, where the ceers are exactly the equivalence relations corresponding to the
so called positive numberings (in fact, in the Russian literature, ceers are often
called positive equivalence relations, as in [9]). Applications of the reducibility
≤ to ceers have also been motivated by proof theoretic interests in the relation
of provable equivalence in formal systems (see for instance [4, 3, 25, 33]), and in
universal ceers, i.e., ceers which are complete under ≤ with respect to the class of
all ceers. An important result along these lines was the discovery that the class
of universal ceers contain distinct computable isomorphism types, one of which
is constituted by the precomplete ceers, proven by Lachlan [22].

We prove some useful facts about universal ceers and the poset of degrees of
ceers under the reducibility ≤. In particular, in Section 2 we show that the poset
of degrees of ceers under ≤ is neither an upper semilattice nor a lower semilattice
(Corollary 2.5), and has undecidable first order theory (Theorem 2.4). We then
turn to the study of universal ceers, and in Section 3 we show (Corollary 3.16)
that every u.e.i. ceer is universal, where a u.e.i. ceer is a nontrivial ceer (i.e., with
more than one equivalence class) providing a partition of ω into sets that are
uniformly effectively inseparable; this extends all known universality results for
ceers, and is a natural extension to ceers of classical results stating universality of
creative sets, and pairs of effectively inseparable sets. We prove that uniformity
is essential to conclude universality, since in Theorem 3.19 we give an example
of a ceer that is not universal, but yields a partition into effectively inseparable
sets; our proof of universality of u.e.i. ceers succeeds by showing the identity of
the class of u.e.i. ceers with certain classes of ceers, obtained by refining classes
already known in the literature. In Section 4 we study the halting jump operation
on ceers introduced by Gao and Gerdes [20]: Answering an open question raised
in [20], we show (Theorem 4.3) that a ceer is universal if and only if it is bi-
reducible with its halting jump. In the final Section 5, we study some index sets
of classes of universal ceers, and answering an open question raised again by Gao
and Gerdes [20], we show (Theorem 5.1) that the index set of universal ceers is
Σ0
3-complete.

UNIVERSAL CEERS 3

1.1. Background. Our terminology and notations about computability theory
are standard, and can be found for instance in the textbooks [29, 32]. A clear
and thorough introduction to ceers is provided by [20], which is currently the
most complete attempt to give a systematic study of ceers under ≤. For later
reference, we show how ceers can be computably numbered, and approximated.
We say that a numbering ν of the ceers (i.e., a function ν from ω onto the ceers)
is computable if {〈e, x, y〉 : x ν(e) y} is a c.e. set. One natural way to number all
ceers is via the following construction. For every set of numbers X, let X∗ denote
the equivalence relation on ω generated by X, where of course we view X as a
subset of ω2, via the Cantor pairing function. It is easy to see that there exists a
computable function γ such that, Wγ(e) = W ∗e , for every e, and if We is already
an equivalence relation on ω, then Wγ(e) = We. Then the numbering of all ceers,
ν(e) = Wγ(e), is computable. Moreover, it is easy to see that ν is universal,
or principal, i.e., for every computable numbering ρ of all ceers, there exists a
computable function f such that ρ = ν ◦ f . (For different universal computable
numberings of all ceers, see e.g., [9, 20].) Throughout the rest of the paper, we
denote Re = ν(e).

We say that a sequence {Rs : s ∈ ω} of equivalence relations on ω is a com-
putable approximation to a ceer R, if

(1) the set {〈x, y, s〉 : x Rs y} is computable;
(2) R0 = Id;
(3) for all s, Rs ⊆ Rs+1; the equivalence classes of Rs are finite; there exists at

most one pair [x]Rs , [y]Rs of equivalence classes, such that [x]Rs∩[y]Rs = ∅,
but [x]Rs+1 = [y]Rs+1 (we say in this case that the equivalence relation
R-collapses x and y at stage s+ 1);

(4) R =
⋃
tR

t.

Lemma 1.1. There exists a sequence {Rse : e, s ∈ ω} of equivalence relations
such that {〈e, x, y, s〉 : x Rse y} is computable, and the sequence {Rse : s ∈ ω} is
a computable approximation to Re. Therefore an equivalence relation R is a
ceer if and only if R can be computably approximated. Moreover if R is a ceer
and R \ {〈x, x〉 : x ∈ ω} is infinite, then one can find an approximating sequence
{Rs : s ∈ ω} to R satisfying that for every s, the relation Rs+1 is obtained from Rs

by the R-collapse of exactly one pair of equivalence classes of Rs.

Proof. Straightforward. �

2. Universal ceers and the poset of degrees of ceers

The following definition plays a crucial role in this paper:

Definition 2.1. A ceer R is universal if S ≤ R, for every ceer S.

Clearly, universal ceers do exist: For instance, the ceer R where 〈i, x〉 R 〈j, y〉
if i = j and x Ri y, is clearly universal. The first natural example of a universal
ceer was given by Ershov [9, Proposition 8.2]. Subsequently, several classes of
universal ceers appeared in the literature, see e.g. [4, 25, 22]; we will propose
later, Corollary 3.16, yet a new and wider class of universal ceers.

4 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

Define now R ≡ S if R ≤ S and S ≤ R. Denote by deg(R) the ≡-equivalence
class, or degree, of R, and define

deg(R) ≤ deg(S)⇔ R ≤ S.
Let P = 〈ceers/≡,≤〉 denote the poset of degrees of ceers. For every n ≥ 1, let
Idn denote the ceer

x Idn y ⇔ [x ≡ y mod n]

(Id1 is also called the trivial ceer); moreover, let Id be the identity equivalence
relation. The following information about P is readily available:

(1) P is a bounded poset: The least element is given by deg(Id1); the greatest
element is given by the degree of universal ceers;

(2) P has a linearly ordered initial segment of order type ω + 1,

deg(Id1) < deg(Id2) < · · · < deg(Idn) < · · · < deg(Id),

with the mapping n 7→ deg(Idn+1) providing the order-theoretic isomor-
phism of ω with Iω = {deg(Idn) : n ≥ 1}.

(3) Every ceer with n equivalence classes lies in deg(Idn), whereas deg(Id)
consists of all decidable ceers with infinitely many equivalence classes.

(4) Every R ∈ P \ Iω is an upper bound of Iω, i.e.,

(∀S) [S ∈ Iω ⇒ S ≤ R] .

However, deg(Id) is not a lower bound of P \ Iω, as follows from Lemma 2.3
below, for which we first give a preliminary definition:

Definition 2.2. Given a set A, define RA by

x RA y ⇔ [x, y ∈ A or x = y] .

Lemma 2.3. If A is simple, then Id � RA.

Proof. If Id ≤ RA via a computable function f , then f is 1-1, so there is at most
one number a such that f(a) ∈ A. Then either f [ω\{a}] ⊆ Ac, or f [ω] ⊆ Ac if no
such a exists. In either case, Ac contains an infinite c.e. set, a contradiction. �

The main result of this section is

Theorem 2.4. The first-order theory of P, in fact its Π0
3-fragment, is undecid-

able.

Proof. Let 01 denote the 1-degree of any computable, infinite and coinfinite set,
and let 0′1 denote the 1-degree of K. We first claim that [deg(Id),deg(RK)] '
[01,0

′
1], where ' denotes order isomorphism between the two intervals of degrees:

Notice that Id ≡ RA for every computable, infinite and coinfinite set A.
The claim follows from the following two observations. First of all, if A,B are

c.e. sets with B infinite, then

A ≤1 B ⇔ RA ≤ RB.
(This result has been independently noticed by several authors (San Mauro [24];
Coskey, Hamkins, and Miller [8]; moreover, the left-to-right implication appears
in [20]).

UNIVERSAL CEERS 5

Next, we notice that if Id ≤ R ≤ RA then there exists a c.e. set B such that
R ≡ RB. To see this, if Id ≤ R ≤ RA, and R ≤ RA via a computable f , then
the range of f is an infinite c.e. set, and thus computably isomorphic to ω; let
g : range(f) −→ ω be a computable bijection. Finally take B = g[A ∩ range(f)].
Then RB ≤ R via h where

h(x) = µy. [g(f(y)) = x].

On the other hand, R ≤ RB via the computable function g ◦ f .
Finally, the undecidability of the first order theory follows from Lachlan’s re-

sult [21] that the topped finite initial segments of [01,0
′
1] are exactly the finite

distributive lattices (see also [28, p. 584]); thus the same is true of the interval
[deg(Id),deg(RK)] of P. Hence the first-order theory of the finite distributive
lattices is Σ1-elementarily definable with parameters (see [27] for the terminol-
ogy) in P. On the other hand, the Π0

3-theory of the finite distributive lattices is
hereditarily undecidable ([27, Theorem 4.8]). Hence by the Nies Transfer Lemma,
[27], the Π0

3-theory of P is undecidable. �

Corollary 2.5. P is neither an upper semilattice nor a lower semilattice.

Proof. The claim follows from the isomorphism [deg(Id), deg(RK)] ' [01,0
′
1] and

the fact that the poset of c.e. 1-degrees, [01,0
′
1], is neither an upper semilattice

nor a lower semilattice, [34]. �

Additional information about P is provided by the following proposition. For
more on P, see also [20].

Proposition 2.6. P is upwards dense and its greatest element is join-irreducible.

Proof. Upwards density will be a corollary to Theorem 4.3. As to the other
claim, suppose that R and S are ceers such that their degrees join to the greatest
element. Consider the ceer R⊕ S, defined by

x R⊕ S y ⇔

{
u R v if x = 2u and y = 2v,

u S v if x = 2u+ 1 and y = 2v + 1.

Being above both R and S we have that R ⊕ S is universal. Let now E be a
universal ceer such that there is no decidable set X 6= ∅, ω which is E-closed
(i.e., satisfying that x ∈ X and y E x imply y ∈ X: see again Ershov [9,
Proposition 8.2] for an example of such a ceer, or, more generally, this property
holds of all the universal ceers given by Corollary 3.16 below), and let f be a
computable function reducing E ≤ R ⊕ S. If E � R and E � S then the set
X = {x : f(x) even} is a nontrivial decidable set that is E-closed. �

3. Universal ceers and partitions of the natural numbers into
effectively inseparable sets

Effective inseparability played an important role in the early investigations on
universal ceers, see e.g. [4, 25]. We recall:

6 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

Definition 3.1. Two disjoint c.e. sets A and B are effectively inseparable if there
is a computable function p (called a productive function) such that, for all pairs
u, v,

[A ⊆Wu and B ⊆Wv and Wu ∩Wv = ∅]⇒ p(u, v) /∈Wu ∪Wv.

(We notice that the usual definition of an e.i. pair requires the existence of
a productive function which is just partial computable, and defined on all pairs
u, v such that A ⊆ Wu, B ⊆ Wv, and Wu ∩Wv = ∅; this is, however, equivalent
to requiring a total productive function: See e.g., [32, p. 44].)

Since every ceer yields a partition of ω into c.e. sets, the previous definition
suggests the following definition (where we recall that a ceer R is nontrivial if
R 6= Id1):

Definition 3.2. A nontrivial ceer R is

• effectively inseparable (or e.i. for short) if it yields a partition of ω into
sets that are pairwise effectively inseparable;
• uniformly effectively inseparable (or u.e.i. for short) if it is e.i. and there

is a uniform productive function, i.e., a computable function p(a, b, u, v)
such that if [a]R ∩ [b]R = ∅ then p(a, b, ,) is a productive function for
the pair

(
[a]R, [b]R

)
.

Ceers yielding partitions into effectively inseparable sets had been previously
studied for instance in [2, 4, 33]. The main result of this section shows that
every u.e.i. ceer is universal; on the other hand, there exist e.i. ceers that are
not universal. The proof that u.e.i. ceers are universal proceeds by showing that
the u.e.i. ceers coincide with two classes of ceers, introduced in the next two
definitions, that refine known classes in the literature.

Recall that an equivalence relation R is uniformly finitely precomplete (or u.f.p.
for short) if there exists a total computable function f(e,D, x) such that for every
finite set D and every e, x,

ϕe(x)↓∈ [D]R ⇒ ϕe(x) R f(e,D, x).

This definition is due to Montagna [25], who showed that every u.f.p. ceer is
universal. (A proof of this claim also follows from Theorem 3.7 below.) Two im-
portant subclasses of u.f.p. ceers (and thus universal ceers) are provided by the
precomplete ceers and the extension complete ceers. Precomplete equivalence re-
lations had been introduced much earlier by Malcev [23]. An equivalence relation
R is precomplete if there exists a total computable function f(e, x) such that, for
all e, x,

ϕe(x)↓⇒ ϕe(x) R f(e, x).

Finally, extension complete (or, simply, e-complete) equivalence relations were
introduced by Montagna [25] and by Lachlan [22]: The name is due to Lach-
lan [22], whereas Montagna called them uniformly finitely m-complete. Following
a characterization given by Bernardi and Montagna [3], a ceer R is e-complete if
R is u.f.p. and R has a total diagonal function, i.e., a computable function d such
that d(x) ��R x, for all x. The precomplete ceers and the e-complete ceers form
two distinct isomorphism types (Lachlan [22] proved that all precomplete ceers

UNIVERSAL CEERS 7

are isomorphic; Montagna [25] proved that all e-complete ceers are isomorphic:
see also [22]), where we say that two equivalence relations R and S are isomor-
phic if there is a computable permutation f of ω such that f reduces R to S. It
is, however, worth noting that there are u.f.p ceers that are neither precomplete
nor e-complete, Shavrukov [30]. Examples of precomplete, u.f.p., and e-complete
ceers coming from the relation of provable equivalence in formal systems can be
found in [33, 4, 25, 3].

Definition 3.3. We say that a nontrivial ceer R is weakly u.f.p. if there exists a
total computable function f(e,D, x) such that for every finite set D, where i��R j
for every i, j ∈ D, and every e, x,

ϕe(x)↓∈ [D]R ⇒ ϕe(x) R f(e,D, x).

Note that the definition differs from that of a u.f.p. ceer in that f need only
satisfy the condition when i��R j for every i, j ∈ D. Clearly we have

Corollary 3.4. Every u.f.p. ceer is weakly u.f.p.

Proof. Immediate. �

The following definition is a strengthening of the definition of a uniformly
m-complete ceer given by Bernardi and Sorbi [4]. Namely, a nontrivial ceer R
is uniformly m-complete (abbreviated as u.m.c.) if for every ceer S and every
assignment a0 7→ b0, a1 7→ b1 (also denoted by (a0, a1) 7→ (b0, b1)) of numbers
such that a0 �S a1 and b0 ��R b1, there exists a computable function extending the
assignment and reducing S to R.

Definition 3.5. We say that a nontrivial ceer R is strongly u.m.c. if for ev-
ery ceer S, every assignment (a0, a1) 7→ (b0, b1) can be extended uniformly (in
a0, a1, b0, b1) to a total computable function f reducing S to R, provided that
a0 �S a1 and b0 ��R b1. (Note that the uniformity extends also to the cases a0 S a1
or b0 R b1; however, then no claim is made as to f reducing S to R.)

We call a nontrivial ceer weakly n-u.f.p. if Definition 3.3 for weakly u.f.p. holds,
but we replace “finite set D” with “finite set D where |D| ≤ n”.

Lemma 3.6. Each weakly 2-u.f.p. ceer is weakly u.f.p.

Proof. Let fi be a computable function witnessing that R is weakly i-u.f.p., for
2 ≤ i ≤ n. We describe how to effectively get a function fn+1 witnessing that R
is weakly n+ 1-u.f.p. Let e,D be given, with |D| = i. If i > n+ 1 or i ≤ 1 then
fn+1(e,D, x) outputs 0 for every x; if 2 ≤ i ≤ n then fn+1(e,D, x) = fi(e,D, x)
for every x. We assume nowD = {d0, . . . , dn}. By the Double Recursion Theorem
(see, e.g., [29, Theorem X(a)]) assume that we build ϕa and ϕb for some a, b. Let
Ex = {fn(a,D \ {dn}, x), dn}, and fn+1(e,D, x) = f2(b, Ex, x).

We now specify, for an x, how to compute ϕa(x) and ϕb(x). We initially start
with both values undefined. We see which event happens first: If we find that
ϕe(x) ↓R dn, we define ϕb(x) = dn. If we find that ϕe(x) ↓R di for some i < n,
we define ϕb(x) = fn(a,D \ {dn}, x) and ϕa(x) = ϕe(x). Finally, if we discover
that fn(a,D \ {dn}, x) R dn, then we define ϕa(x) = d0.

8 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

Clearly fn+1 is a total computable function, whose index can be found effec-
tively in the indices for f2, . . . , fn, using the fact that the fixed points in the
Double Recursion Theorem can be found effectively from the parameters.

Now we verify that fn+1 witnesses that R is weakly n + 1-u.f.p. Fix e,D, x
such that D = {d0, . . . , dn} where di ��R dj for every pair i 6= j, and ϕe(x) ↓R di
for some i ≤ n. First we claim that fn(a,D \ {dn}, x) ��R dn. Suppose otherwise:
Then by construction we would set ϕa(x) = d0 unless it has previously been
defined (to be ϕe(x) R di, for some i < n). In either case we have ϕa(x) R di
for some i < n, which implies that dn R fn(a,D \ {dn}, x) R di, a contradiction.
We have thus that Ex consists of two elements that are not R-equivalent. Since
ϕb(x) is defined only when ϕe(x) converges, it is straightforward to see that
fn+1(e,D, x) R ϕe(x). �

Theorem 3.7. The following properties are equivalent for ceers:

(i) u.e.i.
(ii) weakly u.f.p.
(iii) strongly u.m.c.

We prove Theorem 3.7 via Lemmas 3.8, 3.10, and 3.11.

Lemma 3.8. Each u.e.i. ceer is weakly u.f.p.

Proof. Assume that R is u.e.i. via the uniform productive function p(a, b, u, v) as
in Definition 3.2. We argue that R is weakly 2-u.f.p. Given any a 6= b, and e,
we uniformly build a function f(x) = f(e, {a, b}, x) witnessing that R is 2-u.f.p.
Note that if a = b then we can let f be the constant function with output a.
Again by the Double Recursion Theorem with parameters we build Wax ,Wbx for
computable sequences of indices {ax}x∈ω, {bx}x∈ω, where the sequence is known
to us during the construction.

Let f(x) = p(ax, bx), where for simplicity we denote p(a, b, ,) by p(,).
Clearly f is a total computable function. Fix x, and let

Wax =

{
[a]R, if ϕe(x) ��R b

[a]R ∪ {p(ax, bx)}, if ϕe(x) R b,

Wbx =

{
[b]R, if ϕe(x) ��R a

[b]R ∪ {p(ax, bx)}, if ϕe(x) R a.

Now assume that a ��R b, and fix e, x such that ϕe(x) ↓∈ [a]R ∪ [b]R. Without
loss of generality suppose ϕe(x) R a. If f(x) ��R a then Wax ∩ Wbx = ∅ and
p(ax, bx) ∈Wax ∪Wbx , which contradicts p being a productive function. �

In the proof of Lemma 3.10 below we will use a computable sequence of fixed
points. Since a computable sequence of indices can be viewed as the range of a
computable function f , a formal justification to our argument is provided by the
Case Functional Recursion Theorem:

Lemma 3.9 (Case Functional Recursion Theorem, Case [5]). Given a partial
computable functional F , there is a total computable function f such that, for

UNIVERSAL CEERS 9

every e, x,

F (f, e, x) = ϕf(e)(x).

Lemma 3.10. Each weakly u.f.p. ceer is strongly u.m.c.

Proof. Assume that R is a weakly u.f.p. ceer, as witnessed by the computable
function f . In order to show that R is strongly u.m.c., we show in fact that for
every ceer S, every assignment (0, 1, . . . ,m) 7→ (a0, a1, . . . , am) with m > 0, can
be extended, uniformly in a0, a1, . . . , am, to a total computable function inducing
a reduction from S to R, provided that i �S j and ai ��R aj whenever i 6= j, with
i, j ≤ m. (Uniformity extends also to the cases in which there are pairs i 6= j with
i S j, or ai R aj .) Notice that it is no loss of generality considering an assignment
(0, 1, . . . ,m) 7→ (a0, a1, . . . , am), instead of (a′0, a

′
1, . . . , a

′
m) 7→ (a0, a1, . . . , am):

Indeed, given S and (a′0, a
′
1, . . . , a

′
m) 7→ (a0, a1, . . . , am), one can consider the

ceer S′ and the new assignment (0, 1, . . . ,m) 7→ (a0, a1, . . . , am), where we have
picked a computable permutation f of ω with f(i) = a′i, for all i ≤ m, and we
have defined x S′ y if and only if f(x) S f(y). Clearly, we can extend the new
assignment to a reduction of S′ to R if and only if we can extend the original
assignment to a reduction of S to R. The definition of a strongly u.m.c. ceer is
thus just the case m = 1.

Our goal (under the assumption that the i’s are pairwise not S-equivalent, and
the ai’s are not R-equivalent, for i ≤ m) is to extend this assignment to a total
computable function yielding a reduction, by specifying a computable sequence
of points (am+1, am+2, . . .) where for every pair i, j such that one of i or j is
larger than m, we can force ai to R-collapse to aj , i.e., to become ai R aj . By the
Recursion Theorem (or, more precisely, the Case Functional Recursion Theorem),
we assume that we control ϕei for a computable sequence {ei}i∈ω of indices.

We will define computable arrays {xki , yn}i,k,n∈ω with the purpose that we can
choose to cause R-collapses of pairs of y’s, from {yn}n∈ω, independently. We
first informally describe the uses of the elements xki and yn. For each k, we will
build the element xk0 to be R-collapsible to any element of {a0, . . . , am}. (This
can be achieved by defining xk0 = f(e1, {a0, . . . , am}, k): When we need to R-
collapse xk0 to aj we set the previously undefined ϕe1(k) to be ϕe1(k) = aj , and

use properties of f to conclude that xk0 R aj , as long as aj is not R-equivalent

to any other ai.) These xk0’s will be used to R-collapse any other xki or yk into
{a0, . . . , am}, by previously R-collapsing it to xk0. The role of xki will be to allow
yk to R-collapse with yi. To be more precise, for k > 0, yk will be built to
be R-collapsible with any element in Yk = {xk1, . . . , xkk−1} ∪ {x2k0 } through its

definition as yk = f(e2k, Yk, 0), and xki ∈ Yk will be built to be R-collapsible to

any element in {yi, x2i+1
0 } through its definition as xki = f(e2i+1, {yi, x2i+1

0 }, k).
If for instance k > m and we want to R-collapse yk to yi since we see that i and
k S-collapse (we may assume that i < k), then we distinguish the two possible
cases: If i ≤ m, then define ϕe2k(0) ↓= x2k0 and then ϕe1(k) ↓= ai; if m < i < k,
then define ϕe2k(0) ↓= xki and ϕe2i+1(k) ↓= yi. We must of course make sure
that these are the only R-collapses that we allow in this way for the y’s, and
more generally between the elements of our arrays {xki , yn}i,k,n∈ω: This can be

10 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

achieved by arguing that if this were not the case then we would be eventually
able to apply a special procedure, called Action ♦, consisting in laying down
suitable additional R-collapses, that would lead to the conclusion that there is a
pair of distinct i, j ≤ m such that ai R aj . Thus, if there is no such pair we in
fact do not take Action ♦, excluding the possibility of unwanted R-collapses.

Formally, define the computable arrays {xki }i,k∈ω and {yn}n∈ω as follows:

Let xk0 = f(e1, {a0, . . . , am}, k). Given {xki }i<n+1,k∈ω, define

yn+1 = f(e2n+2, Yn+1, 0),

where Yn+1 = {xn+1
i | 0 < i < n+ 1} ∪ {x2n+2

0 }, and, for k ∈ ω,

xkn+1 = f(e2n+3, {yn+1, x
2n+3
0 }, k).

We assume (see Lemma 1.1) that during each stage of the construction, ex-
actly one pair of distinct S-equivalence classes collapses, and we always assume
that [i]S represents an S-equivalence class with smallest member i. During the
construction, to identify yn with c means to define ϕe2n(0)↓= c, and similarly to
identify xkn with c means to define ϕe2n+1(k)↓= c.

Definition of {aj}j>m. We let aj = yj for j > m. The aj ’s will be the markers

that code S in R, the other numbers xji , yi are simply representatives of auxiliary
classes which will assist in R-collapsing the aj ’s.
Construction of ϕei . During the construction, if we ever discover that ai R aj ,
for some i < j ≤ m, then we can ignore the rest of the construction below, and
continue the construction trivially for the sake of uniformity, since the working
assumption that ai ��R aj , for all i < j ≤ m, is violated. At stage s of the
construction, let [i]S and [j]S be the pair of collapsing S-classes. If i, j ≤ m, we
can ignore the rest of the construction below and continue trivially for the sake
of uniformity, otherwise there are two cases.

Case 1 : i ≤ m < j. We identify yj with x2j0 (clearly yj cannot have been

previously identified) and wait for either yj R x2j0 or two elements of Yj to R-

collapse. If the latter happens first, then take Action ♦, otherwise we identify x2j0
with ai, and wait for x2j0 R ai.

Case 2 : m < i < j. Identify yj with xji , and wait for yj R xji or two elements
of Yj to R-collapse. Again, if the latter happens first, take Action ♦, otherwise

we identify xji with yi. Wait for either xji R yi or yi R x2i+1
0 . If the latter happens

first, take Action ♦, otherwise we achieve yj R yi.

Action ♦: We arrived here because we found yi R x2i+1
0 or two elements

of Yj have R-collapsed (and no element of Yj has previously been identified). We
describe two procedures Pk and Qk which will call each other recursively until
we force an R-collapse in a0, . . . , am.

Procedure Pk: This is called when yk R x2k+1
0 . Perform the following steps.

(Step i) Check if yk has been previously identified. If so, then by construction
yk R ak′ for some least k′ < k. If k′ ≤ m then go to Step (ii). Otherwise,

yk′ has not been previously identified, and we identify yk′ with x2k
′

0 . Wait

UNIVERSAL CEERS 11

for either yk′ R x2k
′

0 or two elements of Yk′ to R-collapse. In the latter case
we call Qk′ (noting that no element in Yk′ has been previously identified

since yk′ has not), otherwise we identify x2k
′

0 with a0 and wait for x2k
′

0 R
a0. Lastly, if yk has not been previously identified, we identify yk with x2k0
and proceed as above, where we either call Qk or we get x2k0 R a0. In
either case, now continue with Step (ii).

(Step ii) If this step is reached then we have yk R ak′ for some k′ ≤ m. Clearly

x2k+1
0 has not previously been identified. We now identify x2k+1

0 with ak′′
for any k′′ 6= k′, k′′ ≤ m. We then obtain ak′ R ak′′ , and continue the
construction trivially for the sake of uniformity.

Procedure Qk: This is called when two (least) elements in Yk R-collapse (and no
element of Yk has been previously identified). There are two cases.

(Case i) The two elements are x2k0 and xki , 0 < i < k. Identify xki with x2i+1
0 and

wait for xki R x2i+1
0 or yi R x2i+1

0 . In the latter case call Pi, otherwise

we now identify x2i+1
0 (not previously identified) with a1 and wait for the

R-collapse. Now identify x2k0 with a0 and wait for the R-collapse. We
succeed in forcing a0 R a1, and continue the construction trivially for the
sake of uniformity.

(Case ii) The two elements are xki and xkj , 0 < i < j < k. Follow Case i to force

that either xki R a0 and xkj R a1 or one of Pi or Pj is called.

This ends the description of the procedures Pk and Qk. Suppose we arrive at
this action because we found yi R x2i+1

0 . We call Pi. On the other hand, if we
arrive because two elements of Yj have R-collapsed then we call Qj . Clearly only
finitely many different procedures can be called, and we end up provoking an
R-collapse within a0, . . . , am.

Enforcing non-collapse. At the end of stage s, check if there exist two elements
of {an, xkn}n,k∈ω which have R-collapsed but have not yet been identified.

(Case i) The two elements are ai and aj for i < j ≤ m. Continue the construction
trivially for the sake of uniformity.

(Case ii) The two elements are ai and aj for i ≤ m < j. Identify yj with x2j0 and

wait for the desired R-collapse, where we will identify x2j0 with ai′ for any
i′ 6= i, i′ ≤ m. If we instead find that two elements of Yj have R-collapsed,
we take Action ♦.

(Case iii) The two elements are ai and xkj for i ≤ m. If j > 0 we identify xkj with

x2j+1
0 and wait for the R-collapse. We then identify x2j+1

0 with ai′ for any

i′ ≤ m with i′ 6= i. If we instead find that yj R x2j+1
0 , we take Action ♦.

The case j = 0 is trivial, by immediately identifying xk0 with ai′ .
(Otherwise) For each of the remaining cases, we can follow Case ii or Case iii to force

an R-collapse in a0, . . . , am.

Verification. We list some easy facts about the construction.

12 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

• If any element of Yj is identified then the same action must identify yj ,
or provoke an R-collapse among a0, . . . , am, and thus the construction is
continued trivially for the sake of uniformity.
• If yj is identified during the construction then we will either provoke an
R-collapse among a0, . . . , am, or force yj R ai for some i < j where i S j.

• If x2k+1
0 is ever identified during the construction then the same action

will provoke an R-collapse among a0, . . . , am.

• Therefore, any call to identify yj or xji during the construction must be
successful.

Now we assume that a0, . . . , am are in distinct R-equivalence classes. Then the
construction is never continued trivially, and we never take Action ♦. At the
end of every stage s, we have that i S j if and only if ai R aj . The left to right
direction is ensured by Case 1 and Case 2 of the construction, while the right to
left is ensured by the “enforcing non-collapse” action. �

Lemma 3.11. Every strongly u.m.c. ceer is u.e.i.

Proof. Let R be a strongly u.m.c. ceer. Let U, V be a fixed pair of e.i. sets, and
define S to be the ceer

x S y ⇔
[
x = y or x, y ∈ U or x, y ∈ V

]
.

Fix u ∈ U , v ∈ V , and given a, b, consider the assignment (u, v) 7→ (a, b). Using
the fact that R is strongly u.m.c., uniformly extend it to a computable function
fa,b. If [a]R∩[b]R = ∅, then fa,b uniformly m-reduces the e.i. pair (U, V) to the pair
([a]R, [b]R), showing that the latter is e.i. (for this property of e.i. pairs, see, e.g.,
[29]). The fact that R is u.e.i. follows from the uniformity in this argument. �

The following is a natural companion to Lemma 3.6.

Corollary 3.12. A nontrivial ceer R is strongly u.m.c. if for every ceer S and
every assignment (a′0, a

′
1, . . . , a

′
m) 7→ (a0, a1, . . . , am), the assignment can be ex-

tended uniformly to a total computable function giving a reduction from S to
R, provided the a′i are pairwise not S-equivalent and the ai are pairwise not R-
equivalent, for every i ≤ m.

Proof. By Theorem 3.7 and the proof of Lemma 3.10. �

We note that in the above corollary and in the definition of a strongly u.m.c.
ceer, the condition m > 0 is necessary as removing this condition implies that R
has a total diagonal function g (see the definition of an e-complete ceer, given
earlier) defined in the following way: Given a, consider the ceer Id2 having only
two equivalence classes [0]Id2 , [1]Id2 , and extend the assignment 0 7→ a to a
total computable function f inducing a reduction from Id2 to R; finally take
g(a) = f(1). On the other hand, the property of having a total diagonal function
is not necessarily possessed by all u.e.i. ceers, since this property characterizes the
e-complete ceers within the class of all u.f.p. as we have already recalled before
Definition 3.3.

Proposition 3.13. Each strongly u.m.c. ceer is u.m.c., but there are u.m.c. ceers
that are not strongly u.m.c.

UNIVERSAL CEERS 13

Proof. It is clear that every strongly u.m.c. ceer is u.m.c. , so by Theorem 3.7 it
is enough to argue that some u.m.c. R is not u.e.i. The proof proceeds by a finite
injury argument, which builds a ceer R satisfying the following requirements:
for every ceer Re and assignment (a′0, a

′
1) 7→ (a0, a1) (where we suppose that

in requirement Re, the assignment is also coded by e), and partial computable
function ϕe:

Re : if a′0 ��Re a
′
1 and a0 ��Re a1, then there is a total extension reducing Re to R,

Qe :R is not u.e.i. via the function ϕe.

The priority ordering is R0 < Q0 < R1 < · · · . We use the fact that no effectivity
is required in satisfying Re by allowing the requirements to be injured. That is,
we can change our mind about the extension, for each Re, finitely many times.
As in the proof of Lemma 3.10, without loss of generality we assume that a′i = i
for i ≤ 1. We denote the pair (a0, a1) (for requirement Re) by ~ae. R will be
nontrivial since R does not have any uniform productive function.

We denote by Xe,s the (modified) ith column of ω, i.e., the set of elements
Xe,s(j) with Xe,s(j) = 〈i, j〉 where i = 〈e, s+ 1,~ae〉, if j > 1, and Xe,s(j) = aj if
j ≤ 1. (Note that thus the modified columns are not necessarily pairwise disjoint,
but any possible overlap between columns are at the first two elements.) This
set will be used by Re to code Re: To code Re into Xe,t at some stage s of the
construction means to R-collapse Xe,t(i) and Xe,t(j) if i Re j unless i, j ≤ 1.
We write Xe instead of Xe,t when the context is clear, and sometimes call it the

Re-column. For a tuple ~b we say that ~b R x if there exists some entry bi in ~b such
that bi R x.

Construction of R. At each stage s, perform the following two steps.

Step 1 : Pick the least e such that Qe requires attention. This means either the
pair of Qe-followers y0e , y

1
e is not yet picked, or else ϕe(y

0
e , y

1
e , z

0
e , z

1
e)↓6∈Wz0e

∪Wz1e
.

Here, Wzie
denotes the final R-equivalence class of yie, of which we suppose to know

an index by the Recursion Theorem. For convenience, when ϕe(y
0
e , y

1
e , z

0
e , z

1
e) ↓

we denote

ϕe(y
0
e , y

1
e , z

0
e , z

1
e) = fe.

Clearly some e < s must be found. If the Qe-followers are not defined, we pick
a distinct fresh pair y0e , y

1
e from X0,−1 (in particular, larger than any element of

~ai for a higher-priority Ri-requirement, or follower yji for a higher-priority Qi-
requirement). If the second case holds we R-collapse fe and y0e . In either case we
initialize all lower-priority requirements, i.e., for a Qj-requirement we reset the
followers, and for an Rj-requirement we are now ready to code Rj into Xj,t for
a fresh number t: To prevent Rj from interfering with the other higher priority
requirements, we can pick t such that 〈j, t + 1, 2〉 > any element in ~ak, for all
k < j.

Step 2 : For each j < s we code Rj into Xj .
If there exists a least j < s such that the action at Step 1 or 2 collapses the two

classes in ~aj , we make Rj inactive and initialize all lower-priority requirements.

14 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

We now verify that the requirements are satisfied. Clearly each requirement is
initialized finitely often. The key lemma below says that during the construction,
each class targeted for a Q- or R-requirement does not contain elements which
are “bad” for the requirement.

Lemma 3.14. Let s be a stage of the construction. The following items hold at
s:

(i) If ~ai��R Xi(ni) for some ni, then for every x R Xi(ni), we have x ≥ Xi(2).
(ii) If fi��R ynii then for every x R ynii , we have x ≥ ynii .
(iii) Suppose Xi(ni) R Xj(nj) for some i, j, ni, nj. Then

i 6= j ⇒ ~ai~aj R Xi(ni).

(iv) Suppose Xi(ni) R y
nj
j for some i, j, ni, nj. Then

fj ��R Xi(ni)⇒ ~ai R Xi(ni) and j < i.

(v) Suppose ynii R y
nj
j and ynii 6= y

nj
j for some i ≤ j, ni, nj. Then i 6= j and

we have

fj R y
nj
j .

We explain what each of the items (i) through (v) mean. (i) says that for
each class [Xi(ni)]R, with Xi(ni) in the Ri-column, if it contains an element x
not initially in the class, then x must necessarily belong to a column of lower
priority, unless Ri itself has already acted to collapse Xi(ni) to ~ai. (ii) expresses
a similar fact for a Qi-requirement. It says that if the Qi-follower ynii is related
to a number x which is new, then this number must belong to a column of lower
priority, unless Qi has already acted to collapse fi with ynii .

The items (iii)-(v) give specific details about the kind of elements which may
be allowed to be collapsed to a given column. (iii) says that if some Xi(ni), in the
Ri-column, is collapsed with some Xj(nj) in the Rj-column, where i 6= j, then it
must be that either Ri or Rj has previously acted to collapse Xi(ni) with ~ai, or
Xi(nj) with ~aj . Hence (iii) says that it is impossible for two R-columns working
for different requirements to be collapsed unless one of the two R-requirements
has already performed coding into the column. (iv) investigates when elements of
an Ri-column can collapse with elements in a column containing a Qj-follower. It
says that the only way this can happen is if either the Qj-requirement has acted

to collapse y
nj
j with fj (and hence will never act again in the future), or if Ri

has already collapsed Xi(ni) with ~ai. Lastly (v) asserts that the only way for a
Qi-follower to be collapsed with a Qj-follower for i 6= j, is when the lower-priority
one of the two acts to cause the collapse.

This lemma then enables us to later verify that theR-requirements are met. To
see this, consider twoR-columns which the R-requirements want to keep distinct.
To argue that these two columns are never unintentionally collapsed during the
construction, note that parts (iii)-(v) of the lemma say that the foreign elements
introduced into these columns during the construction must be targeted for other
requirements, say R′ or Q′, that have already acted for these columns. Hence
neither R′ nor Q′ will ever again do anything directly with these columns.

UNIVERSAL CEERS 15

Proof of Lemma 3.14. At each stage s of the construction we take finitely many
actions. We proceed by induction on this sequence of actions. At stage s = 0
before any action is taken, every equivalence class starts off as a singleton, so
(i)-(v) are clearly true. Suppose (i)-(v) holds at a certain point at stage s. We
consider the next action and argue that (i)-(v) still holds after this action. We
consider the different cases.

Suppose we are collapsing fi and y0i in Step 1 (henceforth, while analyzing
Step 1, this will be known as the “action”). Since fi��R y0i holds before this action,
this means (by induction hypothesis on (iv)) that for every j, nj , if Xj(nj) R y0i
then ~aj R y0i , and i < j. Let us now verify that each of (i)-(v) holds after this
next action.

(iii) Fix Xj(nj) R Xk(nk) where j 6= k. If this was true before the action then
we apply the induction hypothesis. Let us assume otherwise that Xj(nj)

and Xk(nk) are collapsed by the action. Hence we must have (without
loss of generality) that both Xj(nj) R y0i and Xk(nk) R fi hold before
the action. By induction hypothesis (iv) on Xj(nj) R y0i , we conclude
that ~aj R Xj(nj). Hence (iii) holds after the action.

(iv) In a similar way we verify that (iv) holds after this action. Suppose that
Xj(nj) R ynkk . We assume that these two elements are collapsed by the

action, hence we either have Xj(nj) R fi and ynkk R y0i , or the symmetric

case Xj(nj) R y0i and ynkk R fi holds. Observe that k ≤ i because
otherwise the action will cause Qk to be initialized.

In the first case we may assume that ynkk 6= y0i because otherwise k = i
and we are immediately done. Hence we can apply the induction hypoth-
esis (v) on ynkk R y0i to conclude that fi R y0i before the action, but this
is impossible. Let us assume now that the latter symmetric case holds,
i.e., Xj(nj) R y0i and ynkk R fi. We apply the induction hypothesis (iv)

on Xj(nj) R y0i to conclude that ~aj R Xj(nj) and j > i. We already
remarked above that k ≤ i must be true. Hence k < j and (iv) is verified.

(v) Suppose that y
nj
j R ynkk and these two numbers are different. Without loss

of generality assume that y
nj
j R fi and ynkk R y0i . Since this action causes

all lower-priority requirements to be initialized, we must have j, k ≤ i.
Clearly j 6= i because otherwise the construction would not have collapsed
fi and y0i . If k = i then we are immediately done for (v). Hence we assume
that k < i, and applying the inductive hypothesis regarding ynkk R y0i , we
get that fi R y0i before the action, a contradiction.

(i) We fix j, nj such that ~aj ��R Xj(nj). If Xj(nj) is related to neither fi nor
y0i before the action, then once again we have that (i) holds by applying
the induction hypothesis. Xj(nj) R y0i before the action is not possible
by the induction hypothesis (iv). Hence it must be that Xj(nj) R fi
before the action. If Rj is of lower priority than Qi then Rj is initialized
after this action and so (i) is trivially true (since each fresh equivalence
class is a singleton). Otherwise, Rj is of higher priority, which means
that Xj(2) ≤ y0i , so by induction hypothesis (i)-(ii), we obtain (i).

(ii) We proceed similarly as in (i).

16 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

We now consider the next action in Step 2. Fix i < s and consider the action
of coding Ri into Xi (henceforth “action” refers to this). There are two cases.

Case 1 : We have that Xi(n) and Xi(n′) are collapsed, where ~ai��R Xi(n) and
~ai��R Xi(n′) (before the action). We run through each case.

(iii) Consider Xj(nj) R Xi(n) and Xk(nk) R Xi(n′), where j 6= k. Hence i
is not equal to one of j or k. Apply the induction hypothesis (iii) on the
appropriate pair.

(iv) Apply induction hypothesis (iv).
(v) Consider y

nj
j R Xi(n) and ynkk R Xi(n′). By induction hypothesis (iv),

we have fj R y
nj
j and fk R ynkk , and clearly j 6= k.

(i) Consider j, nj such that ~aj ��R Xj(nj), and Xj(nj) R Xi(n). The case
j 6= i is impossible by induction hypothesis (iii). So assume j = i. By
induction hypothesis, both classes [Xi(n)]R and [Xi(n′)]R contain only
numbers no smaller than Xi(2), so we are again done.

(ii) Trivially true.

Case 2 : We have ~ai R Xi(n) and ~ai ��R Xi(n′). Again we consider each case
separately.

(iii) A straightforward application of the induction hypothesis (iii).
(iv) Consider y

nj
j R Xk(nk). If y

nj
j R Xi(n′) then fj R Xi(n′) by induction

hypothesis (iv), which means (iv) must be true. Hence we may assume
that y

nj
j R Xi(n), and that fj ��R y

nj
j . By the induction hypothesis (iv)

on y
nj
j R Xi(n), we must have j < i. We have Xk(nk) R Xi(n′). If k = i

then we are done, so assume k 6= i. Hence by induction hypothesis (iii),
we have ~ak R Xi(n′). If k < i then by construction Xi(2) > each element
in ~ak, contradicting the induction hypothesis (i). Hence we must have
k > i > j, so we have (iv).

(v) Fix y
nj
j R Xi(n) and ynkk R Xi(n′) and y

nj
j 6= ynkk . We have, by the

induction hypothesis (iv), fk R Xi(n′). If fj R Xi(n) then j 6= k and (v)
holds. So suppose that fj ��R Xi(n). By the induction hypothesis (i)-(ii),
we get that Qj < Ri < Qk. To wit, by induction hypothesis on (i) and the
fact that ~ai ��R Xi(n′) and ynkk R Xi(n′), we conclude that ynkk ≥ Xi(2).
ThereforeQk is of lower priority thanRi because otherwise,Ri would pick
Xi(2) to be larger than ynkk . To conclude that Qj is of higher priority
than Ri, we apply the induction hypothesis (ii) to conclude that some
element in ~ai is ≥ ynjj , whereas, if Qj were of lower priority, then it would

pick y
nj
j larger than Xi(2). Hence we have (v).

(i) FixXj(nj) where ~aj ��R Xj(nj). If j = i then the claim is trivial, so assume
j 6= i. By induction hypothesis (iii), we conclude that Xj(nj) ��R Xi(n′),
and hence Xj(nj) R Xi(n). By the induction hypothesis (i) applied to
Xj(nj), we have j < i. Now by the induction hypothesis (i), this time
applied to Xi(n′), and the fact that Xi(2) > Xj(2), we obtain (i).

(ii) Fix y
nj
j R Xi(n) where fj ��R y

nj
j (again by induction hypothesis (iv),

y
nj
j R Xi(n′) is impossible). Then by the induction hypothesis (ii), Qj is

UNIVERSAL CEERS 17

of higher priority than Ri, which means that Xi(2) > y
nj
j . Thus by the

induction hypothesis (i) applied to Xi(n′), we have (ii). �

We now argue that each Qe is met. Fix a stage after which Qe is never
initialized, and let y0e , y

1
e be the final Qe followers. By Lemma 3.14(v), y0e ��R y1e .

Thus if ϕe(y
0
e , y

1
e , z

0
e , z

1
e) ↓ fe then y0ey

1
e R fe, hence ϕe cannot be the function

witnessing that the ceer is u.e.i.
Now consider Re and a stage after which it is never initialized. Let Xe be the

final version of the modified eth column. We claim that for i or j ≥ 2, i Re j if
and only if Xe(i) R Xe(j). The left to right implication is explicitly ensured by
the construction. Suppose that Xe(i) is collapsed with Xe(j) at some stage s in
the construction, by some action which is not the coding of Re. There are again
two cases.

Case 1 : The collapse is due to coding of Rk for k 6= e. We may assume that
Xk(l) R Xe(i) and Xk(l′) R Xe(j). We do not worry about the case when ~ae R
Xe(i) and ~ae R Xe(j), since we would makeRe inactive after this action. Assume
that ~ae ��R Xe(i) and ~ae ��R Xe(j). By Lemma 3.14(iii) we have ~ak R Xk(l) and
~ak R Xk(l′), but by construction we would not have collapsed Xk(l) and Xk(l′).
Now assume that ~ae��R Xe(i) and ~ae R Xe(j). By Lemma 3.14(i) and (iii) we get
that e < k. Now since ~ak ��R Xk(l′) by Lemma 3.14(i) and (iii) again we get that
k < e, a contradiction.

Case 2 : The collapse is due to action in Step 1. Assume we collapsed y0k R
Xe(i) with fk R Xe(j). Since fk ��R y0k before this action, by Lemma 3.14(iv) we
have ~ae R Xe(i) and k < e, hence Re will get initialized, a contradiction. �

Question 3.15. Do the u.f.p. ceers coincide with the weakly u.f.p. ceers?

Corollary 3.16 below subsumes all universality results known in the literature,
and is a natural companion of classical results, including: Every creative set is
m-complete (Myhill [26]); every pair of effectively inseparable sets is m-complete
(Smullyan [31]); all creative sequences are m-complete (Cleave [7]).

Corollary 3.16. Every u.e.i. ceer is universal.

Proof. Immediate by Theorem 3.7, as every strongly u.m.c. (or even u.m.c.) ceer
is clearly universal: If R is a u.m.c. ceer, and S is any ceer with two distinct
equivalence classes, then start off with an assignment (a′0, a

′
1) 7→ (a0, a1) with

a
′
0 �S a

′
1 and a0 ��R a1, and extend it to a full reduction. �

Corollary 3.17. A ceer R is universal if and only if there exists a u.e.i. ceer S
with S ≤ R.

Proof. If R is universal and S is u.e.i., then trivially S ≤ R. Conversely, if S is
u.e.i. and S ≤ R, then R is universal, since so is S, by Corollary 3.16. �

Remark 3.18. Of course, if R is a universal ceer, then for every ceer S, we have
that R ⊕ S is also universal. So there are universal ceers that are not u.e.i., in
fact not even e.i.

The following theorem shows that uniformity is essential in proving that u.e.i.
ceers are universal:

18 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

Theorem 3.19. There exists an e.i. ceer that is not universal.

Proof. To show the result, we build computable approximations as in Lemma 1.1,
to ceers R and S, such that R is e.i., and S 6≤ R. At any stage, a number is new
if it is bigger than any number so far used in the construction.

The construction of R and S will satisfy the following requirements, for all
numbers a, b, k:

Pa,b : [a]R ∩ [b]R = ∅ ⇒ fa,b is a productive function for the pair ([a]R, [b]R),

Nk : ϕk does not witness S ≤ R,
where fa,b is a total computable function we build. In fact, Pa,b should be written
as P{a,b} with a < b (thus Pa,b = Pb,a: Of course fb,a can be easily obtained from
fa,b), and one should think of the P -requirements as linearly ordered according
to the canonical index of {a, b}. In order to achieve that ϕk does not reduce S to
R, strategy Nk will use four witnesses a0(k), a1(k), b0(k), b1(k).

At any stage we say that we initialize Pa,b if, at this stage, we set fa,b = ∅; and
we initialize Nk if we set the witnesses a0(k), a1(k), b0(k), b1(k) to be undefined.

We must also make sure that R is not trivial.

Strategy for Pa,b. We say that Pa,b becomes inactive at stage s + 1 (and stays
inactive ever after) if either a is not the least element of [a]Rs+1 or b is not the
least element of [b]Rs+1 . If Pa,b first becomes inactive at s+ 1, then it initializes
all strategies of lower priority.

If Pa,b is not inactive at stage s+1, then we extend the definition of fa,b to the
next (by code) pair (u, v) and correct the already defined values of fa,b as follows:

(1) Define fa,b(u, v) = m, where m is new;
(2) If fa,b(u

′, v′) = m′ has been already defined at previous stages, then
(a) R-collapse m′ and b, if m′ ∈Wu′ at the current stage;
(b) R-collapse m′ and a, if m′ ∈Wv′ at the current stage.

Outcomes of strategy Pa,b. Notice that in (2a) we make [b]R *Wv′ if Wu′ ∩Wv′ =
∅; similarly, under the same assumptions, we make [a]R * Wu′ in (2b). Thus if
[a]R ⊆ Wu, [b]R ⊆ Wv, and Wu ∩Wv = ∅ then fa,b(u, v) /∈ Wu ∪Wv. So if Pa,b
requires attention infinitely often, eventually without being initialized, then fa,b
is a total productive function for the pair ([a]R, [b]R).

Strategy for Nk. The strategy aims at making S not reducible to R via ϕk:

(1) Appoint numbers a0, a1, b0, b1, which are new (hence, for every x, y ∈
{a0, a1, b0, b1} such that x 6= y, we have x �S y, at the current stage).

(2) Wait for ϕk(a0)↓ and ϕk(b0)↓:
(a) If already ϕk(a0) R ϕk(b0), then do nothing.
(b) Otherwise, S-collapse a0 and b0, and initialize lower-priority strate-

gies; and
(c) if later ϕk(a0) R ϕk(b0) (notice that, by the initialization undertaken

in the previous item, this can happen only due to the action of higher-
priority strategies), then repeat the previous steps with a1, b1 in place
of a0, b0 respectively; more specifically, go to stage (2) with a1, b1 in
place of a0, b0 respectively.

UNIVERSAL CEERS 19

(3) After completing (2c) for a1, b1, if already

ϕk(a0) R ϕk(b0) R ϕk(a1) R ϕk(b1),

then do nothing.
(4) Otherwise, S-collapse a0, b0, a1, b1, and initialize lower-priority require-

ments.

We say that Nk requires attention at stage s+1, if Nk is ready to act according
to (1), or (2b) for a0, b0, or (2b) for a1, b1, or (4).

Outcomes of strategy Nk. The strategy has the following outcomes:

(1) If the strategy stops at (2) before reaching (2a), either for the pair a0, b0
or for the pair a1, b1, then ϕk is not total, and therefore Nk is satisfied.

(2) If (2a) holds for the pair a0, b0 then a0 �S b0 and ϕk(a0) R ϕk(b0); similarly,
if (2a) holds for the pair a1, b1 then a1 �S b1 and ϕk(a1) R ϕk(b1).

(3) If we wait forever at (2c) for the pair a0, b0 then a0 S b0 and ϕk(a0) ��R
ϕk(b0); similarly, if we wait forever at (2c) for the pair a1, b1 then a1 S b1
and ϕk(a1) ��R ϕk(b1).

(4) Otherwise, at some point, the strategy yields

ai S bi and ϕk(ai) R ϕk(bi),

for both i = 0, 1. When this happens,
(a) if already ϕk(b0) R ϕk(a1), then we keep b0 �S a1;
(b) if ϕk(b0) ��R ϕk(a1), then our action in (4) makes b0 S a1, and, by

initialization, keeps ϕk(b0) ��R ϕk(a1).

The outcomes considered so far are all winning outcomes for Nk. We must exclude
the possibility that we end up with

ϕk(a0) R ϕk(b0) R ϕk(a1) R ϕk(b1)

and we have already S-collapsed a0, b0, a1, b1. Notice that when we defined a0 S
b0 we had ϕk(a0) ��R ϕk(b0) by (2a). The R-collapse of ϕk(a0) and ϕk(b0) to,
say, a number a (which is the least in its equivalence class) must be the effect
of later actions of higher-priority strategies, one of which is of the form Pa,b:
After convergence of ϕk(a0) and ϕk(b0), the lower-priority P -requirements are
initialized, and thus they cannot move ϕk(a0) or ϕk(b0) to new equivalence classes,
since they can only move their markers m, but these by initialization are chosen
to be different from all elements in the equivalence classes of ϕk(a0) and ϕk(b0).
Similarly, when we defined a1 S b1, we had ϕk(a1) ��R ϕk(b1). The R-collapse of
ϕk(a1) and ϕk(b1) to, say, c (which is the least in its equivalence class) must be
the effect of later actions of higher-priority strategies, one being of the form Pc,d.
When we S-collapsed a0, b0, a1, b1, we had ϕk(b0) ��R ϕk(a1), hence a��R c. When
later we R-collapse a and c, either a or c stops being the least representative in its
equivalence class, and so either Pa,b or Pc,d becomes inactive, and it initializes Nk.
We will argue, however, that eventually Nk is not initialized anymore, so there is
a final choice of the witnesses which allows for Nk only winning outcomes.

20 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

Construction. The construction at stage s proceeds in substages t ≤ s. At stage 0,
all strategies are initialized. At a substage t ≤ s of a stage s > 0, if t = s then
we end the stage. If t < s, then we attack the requirement Q with priority rank
t. If Q is a P -requirement, say Q = Pa,b, that was not inactive at the previous
stage, but is now inactive, then we end the stage; otherwise, if Q is not inactive,
then we act as described above (in the section “Strategy for Pa,b”). If Q is an
N -requirement, say Q = Nk, that requires attention then we act as described
above (in the section “Strategy for Nk”), and we end the stage. In all other cases
for t < s, after completing substage t we move on to substage t+ 1.

After completing stage s, with t, say, the last substage before completing the
stage, then we initialize all requirements having lower priority than Qt.

Let S =
⋃
s S

s, R =
⋃
sR

s.

Verification. The verification is based on the following

Lemma 3.20. Each requirement Q initializes lower-priority strategies only finite-
ly often, and if Q = Nk, for some k, then Q requires attention finitely often.

Proof. This follows by a simple inductive argument. Suppose that the claim is
true of every requirement Q′, with Q′ < Q. If Q = Nk, after all Q′, with Q′ < Nk,
stop initializing, we have that Nk cannot be further initialized and requires atten-
tion only finitely often, since all outcomes are finitary, and thus it also initializes
only finitely often. Similarly, if Q = Pa,b: After its last initialization, Pa,b may
initialize lower-priority strategies at most once, upon becoming inactive. �

Lemma 3.21. Let a, b be such that Pa,b is the highest priority P -requirement.
Then [a]R ∩ [b]R = ∅. Thus R is nontrivial.

Proof. If a P -requirement Pc,d appoints fc,d(u, v) = m, then we may assume
m 6= a, b, and only Pc,d can enumerate m at some point in either [a]R or [b]R, but
not in both. �

Lemma 3.22. Each requirement is satisfied, or eventually inactive.

Proof. Let Pa,b be given, with a < b, and Pa,b not eventually inactive. By Lemma
3.20, there is a least stage after which Pa,b is not initialized any more. Then after
this stage, we construct fa,b witnessing that ([a]R, [b]R) is an e.i. pair.

Let us now consider the case of an N -requirement Nk, and let s0 be a stage after
which Nk is never again initialized, so no higher-priority N -requirement requires
attention after s0, nor does any higher-priority P -requirement become inactive
after s0. After its last initialization, Nk appoints four permanent witnesses a0(k),
b0(k), a1(k), b1(k). For simplicity, for i = 0, 1, write ai = ai(k) and bi = bi(k).
We may suppose that for every i = 0, 1, ϕk(ai) and ϕk(bi) converge, otherwise Nk

is trivially satisfied. Moreover we may suppose that action taken by Nk makes
a0 S b0 and a1 S b1; otherwise, again Nk is satisfied. We must exclude the
possibility that the numbers ϕk(a0), ϕk(b0), ϕk(a1), ϕk(b1) all R-collapse, and the
numbers a0, b0, a1, b1 all S-collapse. But, as explained in the informal description
of the outcomes of Nk, this possibility would require some P < Nk to become
inactive at some stage after s0, thus providing one more initialization of Nk,
which is impossible by the choice of s0. �

UNIVERSAL CEERS 21

This completes the proof. �

4. Characterizing universal ceers through a jump operator

The following definition is due to Gao and Gerdes [20]; the defined operation
is called the halting jump operation.

Definition 4.1. Given a ceer R, define

x R ′ y ⇔ [x = y or ϕx(x)↓R ϕy(y)↓] .

Lemma 4.2 (Gao and Gerdes [20]). The following properties hold:

• R ≤ R ′;
• R ≤ S ⇔ R ′ ≤ S ′;
• If R is not universal then R ′ is not universal.

One can thus introduce a well-defined operation on P, by

(deg(R)) ′ = deg(R ′).

Notice that (Id1)
′ = RK , that is the equivalence relation having the halting

set K as its unique nontrivial equivalence class, and (Id) ′ is the ceer yielding the
partition

{Ki : i ∈ ω} ∪ {{x} : x /∈ K},
where Ki = {x : ϕx(x)↓= i}.

The following theorem answers Problem 10.2 of [20].

Theorem 4.3. For every ceer E, if E ′ ≤ E then E is universal.

Proof. Assume that h is a computable function that reduces E ′ to E. Let R be
a ceer, with computable approximations {Rs : s ∈ ω}; similarly, we will work
with computable approximations {Es : s ∈ ω} to E, as in Lemma 1.1. We aim
to show that R ≤ E.

We first outline the idea of the proof through a particular example. We use
an infinite computable sequence of indices e0, e1, . . ., which we control by the
Recursion Theorem. Eventually we define g(i) = h(ei), and show

i R j ⇔ ei E
′ ej(⇔ h(ei) E h(ej))

i.e., g reduces R to E. Our choice of these indices will make us able to E ′-
collapse any pair of them as needed. Suppose for instance that we want to make
e0 E

′ e1 because we see at some point that 0 R 1. The basic module for this is
the following:

(1) Keep ϕe0(e0) and ϕe1(e1) undefined until we see 0 R 1.
(2) Define ϕe0(e0) = ϕe1(e1) = h(e′) for another suitably chosen fixed point e′

(while keeping ϕe′(e
′)↑).

Suppose that even later we want to E ′-collapse e1 and e2:

(1) Keep ϕe′(e
′) and ϕe2(e2) undefined, until 1 R 2.

(2) Define ϕe2(e2) = h(e′′) and ϕe′(e
′) = ϕe′′(e

′′) = h(e′′′) (while keeping
ϕe′′′(e

′′′)↑), where e′′ and e′′′ are further suitably chosen fixed points.

22 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

Notice that

ϕe′(e
′)↓= ϕe′′(e

′′)↓ ⇒ e′ E ′ e′′

⇒ h(e′) E h(e′′)

⇒ e1 E
′ e2.

Care must be taken (by carefully controlling convergence of the various com-
putations ϕe(e)), to collapse only what we need to collapse. In particular, if we
see that E is threatening to E-collapse values, say, h(ei) and h(ej), without hav-
ing i R j, then we threaten in our turn to stop the construction leaving certain
computations divergent (exploiting the fact that if u 6= v and ϕu(u) and ϕv(v) do
not converge, then u��E ′ v, and thus h(u) ��E h(v)), therefore forcing E to remove
its threat if it wants to avoid a contradiction.

If D is a finite set, and n is a number, then 〈D,n〉 denotes the code 〈u, n〉
where u is the canonical index of D. A pair α = 〈D,n〉 will be called a node:
We sometimes denote the components of a node α by Dα and nα. Our formal
implementation of the above idea uses the Case Functional Recursion Theorem
as a tool to find infinitely many synchronized fixed points. Thus, we assume that
we are working with a computable sequence of indices {eα : α node}, which we
control by the Case Functional Recursion Theorem.

It might be instructive to see how the two-step example above is formally
implemented.

(1) Keep ϕe〈{0},0〉(e〈{0},0〉) and ϕe〈{1},0〉(e〈{1},0〉) undefined, until we see 0 R 1.

(2) Define

ϕe〈{0},0〉(e〈{0},0〉) = ϕe〈{1},0〉(e〈{1},0〉) = h(e〈{0,1},1〉),

still keeping ϕe〈{0,1},1〉((e〈{0,1},1〉) undefined (notice that {0} and {1}merge

into {0, 1}) so that, in the two-step example above, we take e0 = e〈{0},0〉,
e1 = e〈{1},0〉, and e′ = e〈{0,1},1〉.

Suppose that even later we want to E ′-collapse e1 and e2 = e〈{2},0〉:

(1) Keep ϕe〈{0,1},1〉(e〈{0,1},1〉) and ϕe〈{2},0〉(e〈{2},0〉) undefined, until 1 R 2.

(2) Define ϕe〈{2},0〉(e〈{2},0〉) = h(e〈{2},1〉), and set

ϕe〈{2},1〉(e〈{2},1〉) = ϕe〈{0,1},1〉(e〈{0,1},1〉) = h(e{0,1,2},2〉).

Thus, taking e′′ = e〈{2},1〉, and e′′′ = e〈{0,1,2},2〉 we have that ϕe2(e2) =
h(e′′) and ϕe′(e

′) = ϕe′′(e
′′) = h(e′′′) (still keeping ϕe′′′(e

′′′) ↑). (Notice,
since we want to merge {2} and {0, 1} into {0, 1, 2}, and since the node
α = 〈{0, 1}, 1〉 has level 1, i.e., nα = 1, we first transform 〈{2}, 0〉 into a
node 〈{2}, 1〉 with level 1: This transformation procedure will be called
the synchronization procedure in the formal construction given below).

We see that the desired numbers ei are taken to be ei = e〈{i},0〉.
We say that a node β is a parent of a node α, if

• nα = nβ + 1; and
• ϕeβ (eβ) ↓= h(eα).

UNIVERSAL CEERS 23

The construction will make sure that every node has at most two parents.
A node α has only one parent β if α is the result of a definition due to the
synchronization procedure, described below, i.e., α = 〈Dβ, nβ +1〉 and ϕeβ (eβ) =
h(eα).

Given a node α, let Tα be the finite tree, defined as the smallest set of nodes
such that:

• α ∈ Tα;
• if β ∈ Tα and γ is a parent of β, then γ ∈ Tα.

Finiteness of Tα follows from the fact that if γ is a parent of β, then nγ < nβ.
We say that a node α is realized, if nα = 0 or Tα 6= {α}.

The above notions (a node β is a parent of a node α; the tree Tα; and α is
realized) can be approximated at each stage s in the obvious way, by approxi-
mating at stage s the relevant computations ϕe(e). In fact, if α is realized at s,
then Tα,s = Tα, as can be easily seen from the construction. The guiding idea is
that if α is realized at s, and ϕeα(eα) is still undefined, then Dα is a block of Rs;
if at some later stage t > s, R collapses Dα with another block Dβ, relative to a
similarly realized β, with ϕeβ (eβ) still undefined, and n = nα = nβ, then we will
define

ϕeα(eα) = ϕeβ (eβ) = h(e〈Dα∪Dβ ,n+1〉).

(We say that these convergent computations code R into E.)

Lemma 4.4. Let α be a realized node, with nα = n. For every i ≤ n, for every
β, γ ∈ Tα, if nβ = nγ = i then h(eβ) E h(eγ).

Proof. We may assume n > 0, otherwise the claim is trivial. We will prove the
claim by reverse induction. Assume i = n: The only node β ∈ Tα with nβ = n is
α. Thus the claim trivially holds for i = n.

Suppose that the claim is true of i, with 0 < i, and let us show it for i− 1: For
every node γ with nγ = i− 1, there is a node β with nβ = i such that ϕeγ (eγ) =
h(eβ). But by the inductive assumption, all the nodes β with nβ = i are such
that the corresponding values h(eβ) are all E-equivalent, hence if γ, δ are nodes
such that nγ = nδ = i− 1, we have that eγ E

′ eδ and thus h(eγ) E h(eδ). �

Lemma 4.5. If α and β are distinct realized nodes, with nα = nβ = n such that
ϕeα(eα) and ϕeβ (eβ) are undefined, then, for every γ ∈ Tα, and δ ∈ Tβ such that

nγ = nδ, we have that eγ ��E
′ eδ.

Proof. By hypothesis we have ϕeα(eα) ↑ and ϕeβ (eβ) ↑. So the claim is true of

i = n since eα ��E ′ eβ. Suppose now that the claim is true of 0 < i ≤ n, and
let γ ∈ Tα and δ ∈ Tβ be such that nγ = nδ = i − 1. Then there are γ′ ∈ Tα
and δ′ ∈ Tβ such that nγ′ = nδ′ = i, and ϕeγ (eγ) = h(eγ′), and ϕeδ(eδ) = h(eδ′).

By induction, eγ′ ��E ′ eδ′ , so h(eγ′) ��E h(eδ′), and thus we may conclude that

eγ ��E
′ eδ. �

24 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

The synchronization procedure for two nodes α, β at stage s+ 1:

(1) If nα = nβ then do nothing.
(2) If nα < nβ, then for every i with nα ≤ i < nβ − 1, define (at stage s+ 1),

ϕe〈Dα,i〉(e〈Dα,i〉) = h(e〈Dα,i+1〉).

The purpose of the synchronization procedure can be described as follows: Sup-
pose that we have two nodes α and β and we want to R-collapse Dα and Dβ, by
defining ϕeα(eα) ↓= ϕeβ (eβ) ↓. But, following the construction which is detailed
later, this can be done only if nα = nβ: If nα < nβ, we keep transforming α
into nodes γ, with Dγ = Dα, but with bigger and bigger nγ , until we catch up
with nβ.

Construction. We are now ready to describe the construction, which basically
consists of two main actions:

(1) Waiting for R to catch up with E, when we see at any stage that for some
a, b, we have that h(e〈{a},0〉) E h(e〈{b},0〉), but a��R b: Then, by the End
of Stage procedure, we (momentarily) stop the construction, and wait for
a R b. We eventually stop waiting, as checked in the verification.

(2) Coding of R into E via Lemma 4.4, through suitable convergent computa-
tions that code R into E (as defined in the remark preceding Lemma 4.4);
coding is performed while we are not currently waiting as in the previous
item.

Without loss of generality, by Lemma 1.1, we assume that the chosen com-
putable approximation of R at each new stage R-collapses exactly one pair of
equivalence classes.

Stage 0. Start off with ϕeα(eα) undefined for every node α.

Stage s+ 1. If we are waiting (as defined in the procedure “End of Stage”) at
s+1 for some pair of nodes α, β, then do nothing and go to next stage. Otherwise,
let s− be the last stage, if any, at the end of which we started to wait for some
pair of nodes: If there is no such stage, then let s− = s. For the sake of coding
R into E, we now consider all possible R-collapses performed by R on pairs of
equivalence classes in the time interval between s− + 1 and s + 1: Proceed by
substages t = 1, . . . , s+ 1− s−: At substage t, if α and β are nodes such that R
collapses Dα and Dβ at s− + t, then synchronize α and β to two new nodes
α′, β′, so after synchronization, we may assume (by replacing α, β with α′, β′,
respectively) n = nα = nβ, and define

ϕeα(eα) = h(e〈G,n+1〉)

ϕeβ (eβ) = h(e〈G,n+1〉)

where G = Dα ∪ Dβ. Notice that G is a new block in the approximation to R
at stage s− + t. After completing substage s + 1 − s− go to the End of Stage
procedure.

UNIVERSAL CEERS 25

End of Stage. Suppose there are a, b such that h(e〈{a},0〉) E
s+1 h(e〈{b},0〉), but

a���Rs+1 b. Pick the least such pair of numbers, and pick nodes α, β, realized at s,
such that a ∈ Dα, b ∈ Dβ, and ϕeα(eα) and ϕeβ (eβ) are still undefined at stage
s + 1. (These nodes exist and are unique by Lemma 4.6.) Synchronize α and β
at stage s + 1 to get nodes α′, β′ of the same level. At any future stage we say
that we are waiting for α, β, until the first stage at which R collapses Dα and
Dβ, when we say that we are not waiting for α, β. Go to next stage.

If there is no pair of numbers as above, then go to next stage.

Verification. For every n, let

g(n) = h(e〈{n},0〉).

We notice:

Lemma 4.6. For every a and s, there exists exactly one node α, realized at s,
such that a ∈ Dα, which is a block of the equivalence relation Rs, and ϕeα(eα) is
undefined at stage s.

Proof. For s = 0, the desired unique node α is α = 〈{a}, 0〉. The full claim follows
by an easy induction on s. �

Lemma 4.7. If α is realized at s, then for every i ≤ nα, Tα contains also nodes
β with nβ = i, and contains all nodes 〈{a}, 0〉, for all a ∈ Dα.

Proof. By the synchronization procedure. The claim that Tα contains all nodes
〈{a}, 0〉, for all a ∈ Dα, follows by induction on nα. �

Finally, we claim that, for every a, b,

a R b⇔ g(a) E g(b).

Assume first that there exist a stage s0 and a pair of realized α, β which makes
us wait at all stages s ≥ s0. The reason for this was that we saw at a previous
stage that

h(e〈{a},0〉) E h(e〈{b},0〉),

for some a ∈ Dα, b ∈ Dβ, but a��R b, and Dα and Dβ never collapse to the same
R-equivalence class at any stage s ≥ s0. By construction, for these α and β we
have ϕeα(eα)↑ and ϕeβ (eβ)↑. So by Lemmas 4.5 and 4.7 we would conclude

h(e〈{a},0〉) ��E h(e〈{b},0〉),

a contradiction. So, there is no permanent wait, and thus there is no pair a, b
such that g(a) E g(b), but a��R b.

Let us now show the left-to-right implication. Assume that a R b, and let
s + 1 be the least stage at which some pair of equivalence classes containing a
and b R-collapse. Then there is a unique pair of realized α, β with a ∈ Dα and
b ∈ Dβ such that ϕeα(eα) and ϕeα(eα) are still undefined at s. Since there is no
permanent wait in the construction, there will be a later stage at which we process
α, β, and thus we define ϕeα(eα) = ϕeβ (eβ) = h(eγ), for some γ (or, rather,
ϕeα′ = ϕeβ′ = h(eγ), where α′ and β′ are the results of synchronizing α and β).

Then by Lemma 4.4 applied to γ and to the tree Tγ , and Lemma 4.7, we have

26 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

for all c, d in Dγ = Dα ∪Dβ, thus including a and b, that h(e〈{c},0〉) E h(e〈{d},0〉),
hence g(a) E g(b) . �

5. Index sets

In this section, we classify some index sets of collections of ceers which have
been considered in the paper.

We use below that for every Σ0
3-set S there exists a c.e. class {X〈i,j〉 : i, j ∈ ω}

(meaning that the set {〈x, y〉 : x ∈ Xy} is c.e.) such that

i ∈ S ⇒ (∃j)[X〈i,j〉 = ω],

i /∈ S ⇒ (∀j)[X〈i,j〉 finite],

see [32, Corollary IV.3.7].
The following answers Problem 10.1 of [20]:

Theorem 5.1. The index set {x : Rx is universal} is Σ0
3-complete.

Proof. Let Iuniv = {x : Rx is universal}. An easy calculation, using the fact that
a ceer R is universal if and only if E ≤ R, for a fixed universal ceer E, shows
that Iuniv ∈ Σ0

3, namely,

x ∈ Iuniv ⇔ (∃e)[ϕe is total and ϕe reduces E to Rx].

Next, we show that for every S ∈ Σ0
3, we have S ≤m Iuniv. Given S, fix a universal

ceer E and a c.e. class {X〈i,j〉 : i, j ∈ ω} as above; uniformly in i, build a ceer R,

such that, denoting by R[j] the ceer

x R[j] y ⇔ 〈j, x〉 R 〈j, y〉,

we have that

i ∈ S ⇒ (∃j)[R[j] = E],

i /∈ S ⇒ R yields a partition into finite sets.

This is enough to prove the claim, since a universal ceer has always (infinitely
many) infinite equivalence classes; indeed, if E, T are ceers such that E ≤ T via
a computable function f , and [x]E is an undecidable equivalence class, then so is
[h(x)]T , as [x]E = f−1[[h(x)]T].

Construction. Let {Es}s∈ω be a computable approximation to E as a c.e. set,
with each Es finite, and consider a computable approximation {X〈i,j〉,s}s∈ω to
{X〈i,j〉}i,j∈ω via finite sets: We say that s+ 1 is 〈i, j〉-expansionary if

X〈i,j〉,s+1 −X〈i,j〉,s 6= ∅.

Stage by stage we define, uniformly in i, a finite set Rs so that, eventually,
R =

⋃
sR

s is our desired ceer.

Stage 0. Let R0 = ∅.

UNIVERSAL CEERS 27

Stage s + 1. Let j be the least number ≤ s, if any, such that s + 1 is 〈i, j〉-
expansionary. Then carry out the following, with the understanding that if there
is no such j, then only item (1) applies:

(1) For every k 6= j, k ≤ s, and x ≤ s , let 〈〈k, x〉, 〈k, x〉〉 ∈ Rs+1.
(2) Let 〈〈j, x〉, 〈j, y〉〉 ∈ Rs+1 for every 〈x, y〉 ∈ Es.

It is straightforward to verify that if i /∈ S then every j has only finitely many
〈i, j〉-expansionary stages, so the equivalence classes of R are finite, hence R is
not universal. Otherwise, for the least j such that there are infinitely many 〈i, j〉-
expansionary stages, we have that R[j] = E, hence E ≤ R, i.e., R is universal. �

Theorem 5.2. The set {x : Rx is u.e.i.} is Σ0
3-complete.

Proof. Let Iu.e.i. = {x : Rx is u.e.i.}. A simple calculation shows that Iu.e.i. ∈ Σ0
3.

We now show that for every S ∈ Σ0
3, we have S ≤m Iu.e.i.. Given S, fix a c.e.

class {X〈i,j〉 : i, j ∈ ω} as above; uniformly in i, build a (non-trivial) ceer R, such
that

i ∈ S ⇒ R is u.e.i.,

i /∈ S ⇒ R is not u.e.i.

Fixing i, for every j we have the two requirements:

Pj : ϕj is not a uniform total productive function for R,

Qj : (∃∞ 〈i, j〉-expansionary stages)⇒
fj is a uniform total productive function for R,

where fj is a partial computable function (which is total if there exist infinitely
many 〈i, j〉-expansionary stages) we build. We will guarantee also that R is not
trivial, as by definition a u.e.i. ceer must be nontrivial.

We give the requirements the following priority ordering:

P0 < Q0 < · · · < Pn < Qn < · · ·

Strategy for Pj . The strategy works with two parameters a = aj , b = bj , and with
indices u, v (given by the Recursion Theorem) of [a]R and [b]R, respectively:

(1) Pick two new parameters a = aj , b = bj ;
(2) wait for ϕj(a, b, u, v) to converge;
(3) if ϕj(a, b, u, v) converges to m, say, then add m to [a]R, unless already in

[a]R ∪ [b]R

The outcomes for the strategy are clear: If we wait forever for ϕj(a, b, u, v) to
converge, then ϕj is not total and thus cannot be a uniform total productive
function for R. Otherwise, [a]R ∩ [b]R = ∅, but ϕj(a, b, u, v) ∈ [a]R ∪ [b]R ⊆
Wu ∪Wv. Hence ϕj(a, b, ,) does not witness effective inseparability of the pair
[a]R and [b]R.

28 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

Strategy for Qj . Suppose at a stage s, we have defined fj on a finite set of quadru-
ples, and s+ 1 is 〈i, j〉-expansionary. Then

(1) we extend fj to the least quadruple (by code) not yet in the domain
of fj . Suppose that this quadruple is (a, b, u, v): Define fj(a, b, u, v) = m
where m is new (meaning that m is a number that has never appeared so
far in the construction);

(2) for every already defined value fj(a
′, b′, u′, v′) = m′,

(a) if at the current stage, m′ ∈Wu′ then R-collapse m′ and b′;
(b) if at the current stage, m′ ∈Wv′ then R-collapse m′ and a′.

If we have infinitely many stages that are 〈i, j〉-expansionary, then fj is a total
computable function. Given a, b such that [a]R ∩ [b]R = ∅ and [a]R ⊆ Wu,
[b]R ⊆ Wv, we have that fj(a, b, u, v) /∈ Wu ∪ Wv, otherwise the construction
makes Wu ∩Wv 6= ∅.

Construction. We say that Pj requires attention at stage s + 1 if either aj,s, bj,s
are undefined, or a = aj,s and b = bj,s are defined, and ϕj,s(a, b, u, v) is defined
and equal to m, say, but m /∈ Wu,s ∪Wv,s; we initialize Pj at s by letting aj,s
and bj,s be undefined. We say that Qj requires attention at stage s+ 1 if s+ 1 is
〈i, j〉-expansionary; we initialize Qj at s by letting fj,s = ∅.

We define R by computable approximations, as in Lemma 1.1.
Stage 0. Let R0 = Id; fj,0 = ∅; and let aj,0 and bj,0 be undefined for all j;

Stage s+1. Let N be the least requirement with index ≤ s that requires attention
at stage s + 1 (clearly there is always such a requirement), and pick the least
such N :

If N = Pj : Perform in order the following items:

(1) If aj,s and bj,s are undefined, then choose aj,s+1 and bj,s+1 to be new
numbers.

(2) Otherwise, suppose a = aj,s and b = bj,s: Proceed as explained in (3) in
the strategy for Pj .

If N = Qj : Proceed as explained in the strategy for Qj . After acting on N ,
end the stage, initialize all lower-priority requirements, and go to the next stage.

Finally, let R =
⋃
sR

s.

Verification. The verification is based on the following lemmas.

Lemma 5.3. If N eventually stops being initialized, then N is satisfied. Moreover
R is not trivial.

Proof. The claim is by induction on the priority rank of N . Suppose that the
claim is true of every N ′ < N . If N = Pj then clearly aj = lims aj,s and
bj = lims bj,s exist, and [aj]R ∩ [bj]R = ∅, and if ϕj(a, b, u, v) is defined and equal
to m (where u, v are indices of the R-equivalence classes of a and b, respectively),
then m ∈ Wu ∪Wv, thus ϕj(aj , bj , ,) does not witness effective inseparability
of [aj]R and [bj]R. If N = Qj then Qj , after its last initialization, is eventually
able to build its own function fj , which is total if there are infinitely many 〈i, j〉-
expansionary stages. The proof shows also that [a0]R ∩ [b0]R = ∅, thus R is not
trivial. �

UNIVERSAL CEERS 29

Lemma 5.4. If i ∈ S then R is u.e.i.; otherwise R is not u.e.i.

Proof. If i ∈ S and j is the least number for which there exist infinitely many
〈i, j〉-expansionary stages, then fj (the function built by Qj after its last initial-
ization) is the desired uniform productive function.

If there is no 〈i, j〉 with infinitely many expansionary stages, then all strategies
in the construction are finitary, so every requirement is eventually not initialized,
and by Lemma 5.3 above, every Pj is satisfied. �

This completes the proof of the theorem. �

We conclude with the following question, for which Theorem 3.19 seems to
suggest an affirmative answer:

Question 5.5. Is {x : Rx is e.i.} a Π0
4-complete set?

References

[1] H. Becker and A. S. Kechris. The Descriptive Set Theory of Polish Group Actions, volume
232 of London Mathematical Society Lecture Notes Series. Cambridge University Press,
1996.

[2] C. Bernardi. On the relation provable equivalence and on partitions in effectively inseparable
sets. Studia Logica, 40:29–37, 1981.

[3] C. Bernardi and F. Montagna. Equivalence relations induced by extensional formulae: Clas-
sifications by means of a new fixed point property. Fund. Math., 124:221–232, 1984.

[4] C. Bernardi and A. Sorbi. Classifying positive equivalence relations. J. Symbolic Logic,
48(3):529–538, 1983.

[5] J. Case. Periodicity in generations of automata. Math. Syst. Th., 8:15’96–32, 1974.
[6] D. Cenzer, V. S. Harizanov, and J. B. Remmel. Σ0

1 and Π0
1 equivalence structures. Ann.

Pure Appl. Logic, 162(7):490–503, 2011.
[7] J. P. Cleave. Creative functions. Z. Math. Logik Grundlag. Math., 7:205–212, 1961.
[8] S. Coskey, J. D. Hamkins, and R. Miller. The hierarchy of equivalence relations on the

natural numbers under computable reducibility. Computability, 1:15–38, 2012.
[9] Yu. L. Ershov. Positive equivalences. Algebra and Logic, 10(6):378–394, 1973.

[10] Yu. L. Ershov. Theorie der Numerierungen I. Z. Math. Logik Grundlag. Math., 19:289–388,
1973.

[11] Yu. L. Ershov. Theorie der Numerierungen II. Z. Math. Logik Grundlag. Math., 19:473–584,
1975.

[12] Yu. L. Ershov. Theorie der Numerierungen III. Z. Math. Logik Grundlag. Math., 23:289–
371, 1977.

[13] Yu. L. Ershov. Theory of Numberings. Nauka, Moscow, 1977.
[14] E. Fokina and S. D. Friedman. Equivalence relations on computable structures. In CiE 2009,

volume 5635 of Lecture Notes in Computer Science, pages 198–207, Berlin, Heidelberg, 2009.
Springer–Verlag.

[15] E. Fokina and S. D. Friedman. On Σ1
1 equivalence relations over the natural numbers. MLQ

Math. Log. Q., 58(1–2):113–124, 2012.
[16] E. Fokina, S. D. Friedman, V. Harizanov, J. F. Knight, C. McCoy, and A. Montalban.

Isomorphism relations on computable structures. J. Symbolic Logic, 77(1):122–132, 2012.
[17] E. Fokina, S. D. Friedman, and A. Nies. Equivalence relations that are Σ0

3-complete for
computable reducibility. To appear.

[18] E. Fokina, S. D. Friedman, and A. Törnquist. The effective theory of Borel equivalence
relations. Ann. Pure Appl. Logic, 161:837–850, 2010.

[19] S. Gao. Invariant descriptive set theory. Pure and Applied Mathematics (Boca Raton).
CRC Press, Boca Raton, FL, 2009.

30 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

[20] S. Gao and P. Gerdes. Computably enumerable equivalence relations. Studia Logica, 67:27–
59, 2001.

[21] A. H. Lachlan. Initial segments of one-one degrees. Pac. J. Math., 29:351–366, 1969.
[22] A. H. Lachlan. A note on positive equivalence relations. Z. Math. Logik Grundlag. Math.,

33:43–46, 1987.
[23] A. I. Mal’tsev. Towards a theory of computable families of objects. Algebra i Logika, 3(4):5–

31, 1963.
[24] L. San Mauro. Forma e complessità. uno studio dei gradi delle relazioni di equivalenza

ricorsivamente enumerabili. Master’s thesis, University of Siena, July 2011. In Italian.
[25] F. Montagna. Relative precomplete numerations and arithmetic. J. Philosphical Logic,

11:419–430, 1982.
[26] J. Myhill. Creative sets. Z. Math. Logik Grundlag. Math., 1:97–108, 1955.
[27] A. Nies. Undecidable fragments of elementary theories. Algebra Universalis, 35:8–33, 1996.
[28] P. Odifreddi. Classical Recursion Theory (Volume II), volume 143 of Studies in Logic and

the Foundations of Mathematics. North-Holland, Amsterdam, 1999.
[29] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill,

New York, 1967.
[30] V. Yu. Shavrukov. Remarks on uniformly finitely positive equivalences. Math. Log. Quart.,

42:67–82, 1996.
[31] R. Smullyan. Theory of Formal Systems. Princeton University Press, Princeton, New Jersey,

1961. Annals of Mathematical Studies Vol 47.
[32] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic,

Omega Series. Springer-Verlag, Heidelberg, 1987.
[33] A. Visser. Numerations, λ-calculus & arithmetic. In J. P. Seldin and J. R. Hindley, editors,

To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
259–284. Academic Press, London, 1980.

[34] P. R. Young. Notes on the structure of recursively enumerable sets. Not. Amer. Math. Soc.,
10:586, 1963.

(Andrews, Lempp, Miller) Department of Mathematics, University of Wisconsin,
Madison, WI 53706-1388, USA

E-mail address: andrews@math.wisc.edu

URL: http://www.math.wisc.edu/~andrews/

E-mail address: lempp@math.wisc.edu

URL: http://www.math.wisc.edu/~lempp/

E-mail address: jmiller@math.wisc.edu

URL: http://www.math.wisc.edu/~jmiller/

(Ng) Division of Mathematical Sciences, School of Physical & Mathematical
Sciences, College of Science, Nanyang Technological University, SINGAPORE

E-mail address: kmng@ntu.edu.sg

URL: http://www.ntu.edu.sg/home/kmng/

(San Mauro) Scuola Normale Superiore, Perfezionamento in Discipline Filoso-
fiche, I-56126 Pisa, ITALY

E-mail address: luca.sanmauro@sns.it

URL: http://sns-it.academia.edu/LucaSanMauro

(Sorbi) Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Uni-
versitá degli Studi di Siena, Via Roma, 56, I-53100 Siena, ITALY

E-mail address: sorbi@unisi.it

URL: http://www.mat.unisi.it/personalpages/sorbi/public_html/

mailto:andrews@math.wisc.edu
http://www.math.wisc.edu/~andrews/
mailto:lempp@math.wisc.edu
http://www.math.wisc.edu/~lempp/
mailto:jmiller@math.wisc.edu
http://www.math.wisc.edu/~jmiller/
kmng@ntu.edu.sg
http://www.ntu.edu.sg/home/kmng/
luca.sanmauro@sns.it
http://sns-it.academia.edu/LucaSanMauro
mailto: sorbi@unisi.it
http://www.mat.unisi.it/personalpages/sorbi/public_html/

	1. Introduction
	1.1. Background

	2. Universal ceers and the poset of degrees of ceers
	3. Universal ceers and partitions of the natural numbers into effectively inseparable sets
	4. Characterizing universal ceers through a jump operator
	5. Index sets
	References

