Computably Enumerable Algebras, Their Expansions,
and Isomorphisms

Bakhadyr Khoussainov! and Steffen Lempp? and Theodore A. Slaman?®

! Computer Science Department, The University of Auckland, New Zealand
bmk@cs.auckland.ac.nz
2 Mathematics Department, The University of Wisconsin-Madison
lempp@math.wisc.edu
3 Mathematics Department, The University of California-Berkeley
slaman@math.berkeley.edu

Abstract. Computably enumerable algebras are the ones whose positive atomic di-
agrams are computably enumerable. Computable algebras are the ones whose atomic
diagrams are computable. In this paper we investigate computably enumerable al-
gebras and provide several algebraic and computable theoretic distinctions of these
algebras from the class of computable algebras. We give a characterization of com-
putably enumerable but not computable algebras in terms of congruences and ef-
fective conjunctions of IT?-sentences. Our characterization, for example, shows that
computable conjunctions of negative atomic formulas true in a given c.e. algebra can
be preserved in infinitely many of its homomorphic images. We also study questions
on how expansions of algebras by finitely many new functions affect computable iso-
morphism types. In particular, we construct a c.e. algebra with unique computable
isomorphism type but which has no finitely generated c.e. expansion.

1 Preliminaries

Effectiveness issues in algebra and model theory have been investigated intensively in the
last thirty years. One wishes to understand the effective content of model-theoretic and alge-
braic results, and the interplay between notions of computability, algebra, and model theory.
A significant body of work has recently been done in the area, and this is attested by recent
series of Handbooks and surveys in computable mathematics, computability, and algebra
(see, e.g., [1], [7], [8]). In effective algebra and model theory an emphasis has been placed
on the study of computable models and algebras. The study of computable isomorphism
types of structures (especially those structures with unique computable isomorphism type),
the relationship between computability and definability, and constructing models of theories
have been central in the area. In this paper we continue this line of research and extend
our study to a wider class of algebras called computably enumerable algebras. We place the
emphasis on understanding the algebraic and computability-theoretic distinctions between
computable algebras and computably enumerable algebras. Examples of computably enu-
merable algebras arise naturally in algebra and model theory. For example, finitely presented
groups and rings or, in general, finitely presented algebras are computably enumerable, and



so are Lindenbaum algebras of computably axiomatizable theories (e.g., Peano arithmetic).
There has, of course, been some research on computably enumerable algebras, notably on
computably enumerable Boolean algebras, starting with the work of Feiner [3], and on gen-
eral properties of computably enumerable algebras studied by Kasymov [4], [5]. Computably
enumerable algebras are also of interest in theoretical computer science in relation to issues
on specifications of data structures and modeling programs as algebras. The underlying
idea here is that many abstract data types can be identified with the isomorphism types of
computably enumerable finitely generated algebras [2], [9].

Here is a brief outline of the paper. Further in this section, we give the basic definitions of
computable and computably enumerable algebras, expansions, and provide some examples.
In the next section we present a characterization theorem which distinguishes computably
enumerable but not computable algebras from the class of all computable algebras. In partic-
ular, the theorem implies that any negative atomic sentence true in a c.e. but not computable
algebra is preserved at infinitely many homomorphic images of the algebra. In the second
section we define the notions of computable isomorphism and computable dimension. We
explain expansions of c.e. algebras and give a sufficient condition for an algebra to have a
finitely generated expansion. This provides a sufficient condition for an algebra to have an
expansion with unique computable isomorphism type. We also provide a sufficient condition
for a c.e. algebra not to have a finitely generated expansion (by computable functions). In
the last section we study the interactions between finitely generated algebras, computable
isomorphism types, and expansions of algebras. In particular, we construct an example of an
infinite computably enumerable algebra which is locally finite in every expansion but which
possesses exactly one computable isomorphism type.

An algebra is a structure of a finite purely functional language (signature). Thus, any
algebra A is of the form (A4; fo,..., fn), where A is a nonempty set called the domain of the
algebra, and each f; is a function symbol which names a total operation on the domain A.
Often the operation named by f; is also denoted by the same symbol f;. We refer to the
symbols fo,..., f, as the signature of the algebra. Often we call the operations fo,..., fn
basic operations or functions (of the algebra A). Presburger arithmetic (w;0, S, +) is an
algebra, so are groups, rings, lattices and Boolean algebras. Fundamental structures which
arise in computer science such as lists, stacks, queues, trees, and vectors can all be viewed
and studied as algebras. In some of the results of this paper we use unary signatures;
these are signatures all function symbols of which are symbols for unary operations. In the
case in which the signature consists of exactly n unary function symbols, we call algebras of
this signature n-unary algebras.

Let A= (A, fo,-.., fn) be an algebra. For each element a € A introduce a new constant
symbol ¢, that names the element a itself. Thus, we have an expansion of A by constants
c. The atomic diagram of A is the set of all expressions of the type fi(ca,,-.-,Ca,) =
filevrs - yeny)s filCays - -sCa,) = Cb, Ca = cp and their negations which are true in the
algebra A. The positive atomic diagram of A is the set of all expressions of the type
filcays---r¢a,) = fi(cbys- b))y filCays---s€a,) = b, and ¢, = ¢, which are true in
the algebra A. The negative atomic diagram of A is the set of all expressions of the
type fi(Cars---s¢Can) # filChyy - scby), fi(Cays.--)Ca,) # b, and ¢, # cp which are true



in the algebra A. The algebra A = (A4; fo,..., fn) is computable if its atomic diagram
is a computable set. The algebra A = (4; fo,..., fn) is computably enumerable if its
positive atomic diagram is a computably enumerable set. The algebra A = (4; fo,..., fn) is
co-computably enumerable if its negative atomic diagram is a computably enumerable
set. Here are some examples of computably enumerable algebras:

1. All computable algebras.

2. The Lindenbaum algebras of computably enumerable first-order theories, such as Peano
arithmetic.

3. Finitely presented groups, and in fact all finitely presented algebras.

A typical example of a co-computably enumerable algebra is the group generated by a finite
number of computable permutations ¢g1,..., g, on the set of natural numbers. Indeed, if g
and ¢’ are elements of this group then their non-equality is confirmed by the existence of an
n € w at which g(n) # ¢'(n).

A computably enumerable algebra A can be explained as follows. As the positive atomic
diagram of A can be computably enumerated, the set E = {(cs,¢p) | @ = b is true in the
algebra A}, representing the equality relation in A, is computably enumerable. Let f be
a basic n-ary operation on A. From the definition of a computably enumerable algebra,
the operation f can be thought of as a function induced by a computable function, often
also denoted by f, which respects the E-equivalence classes in the following sense: for all
XLy ooy Tny Yly - ooy Yn if (zi,9;) € E, then (f(z1,...,24), f(y1,...,Yn)) € E. Therefore,
a natural way to think about A is that the elements of A are E-equivalence classes, and
the operations of A are induced by computable operations. This reasoning suggests another
equivalent approach to the definition of computably enumerable algebra explained in the
next paragraph.

Let F be an equivalence relation on w. A computable n-ary function f respects F if

for all natural numbers x4, ..., ¢, and y1, ..., Y, so that (z;,y;) € E, for i = 1,...,n, we
have (f(z1,-..,2n), f(Y1,---,9yn)) € E. Let w(F) be the factor set obtained by factorizing
w by E, and let fy,..., f, be computable operations on w which respect the equivalence

relation E. An E-algebra is then the algebra (w(E), Fy, ..., F,), where each F; is naturally
induced by f;. It is now not hard to show that an algebra A is computably enumerable if
and only if A is an F-algebra for some computably enumerable equivalence relation E. In
a similar way, one can show that an algebra A is co-computably enumerable if and only if
A is an F-algebra for some co-computably enumerable equivalence relation F (that, is E is
such that w? \ E is computably enumerable).

The following can easily be checked. An algebra A is computable if and only if it is
both computably enumerable and co-computably enumerable. Moreover, infinite computable
algebras are the ones isomorphic to algebras of type (w, fo,..., fn), where each f; is a
computable function on w. From now on we will concentrate on computably enumerable
algebras.

The isomorphism type of an algebra A is the set of all algebras isomorphic to A. We
are interested in those algebras whose isomorphism types contain c.e. algebras. Informally, if



the isomorphism type of A contains a c.e. algebra then this algebra has an effective realiza-
tion. We formalize this in the following definitions. An algebra is computably presentable
if it is isomorphic to a computable algebra. An algebra is computably enumerably pre-
sentable, which we often call c.e. presentable, if it is isomorphic to a computably enu-
merable algebra. Thus, computable or computably enumerable presentations of A can be
thought as machine-theoretic (or program-theoretic) implementations of the algebra A. Note
that there is a distinction between c.e. algebras and c.e. presentable algebras. C.e. algebras
are given explicitly by Turing machines representing the basic operations and the equality
relation of the algebra, while c.e. presentability refers to the property of the isomorphism
types of algebras.

Let A be a computably enumerable algebra, and let fi, ..., f, be computable functions
(which respect the equality relation on A4). Then the algebra B = (A, f1,..., f,) obtained
by adding the operations fi, ..., f, to A is called an expansion of 4. The signature
o U {(f1,..., fn) is an expansion of the original signature. The algebra A is called the o-
reduct (or simply a reduct) of B. Note that if A4 is computably enumerable and f is a
computable function then it is not always the case in which (A4, f) is again an algebra
because f may not respect the equality relation on A. In this paper, expansions always refer
to expansions of either computably enumerable or c.e. presentable algebras.

There are some notational conventions we need to make. Let A be a computably enumer-
able algebra. As the equality relation on A can be thought of as a computably enumerable
equivalence relation on w, we can refer to elements of 4 as natural numbers keeping in mind
that each number n represents an equivalence class (that is, an element of A). Thus, n can
be regarded as either an element of A, or the equivalence class containing n, or the natural
number n. Which meaning we use will be clear from the content. Sometimes we denote
elements of A by [n], with [n] representing the equivalence class containing the number n.

2 A Characterization Theorem

Let A and B be computably enumerable algebras. A homomorphism h from the algebra A
into the algebra B is called a computable homomorphism if there exists a computable
function f : w — w such that A is induced by f. In other words, for all n € w, we have
h([n]) = [f(n)]. We call f a representation of h. Clearly, if h is a computable homomorphism
then its kernel, that is the set {(n,m) | h([n]) = h([m])}, is computably enumerable. We
say that h is proper if there are distinct [n] and [m] in A whose images under h coincide.
In this case the image h(.A) is called a proper homomorphic image of A.

Our goal is to distinguish the class of computably enumerable but not computable al-
gebras from the class of computable algebras. For this we need several notions. Let A be
a computably enumerable algebra. Expand the language of A by adding constant symbols
¢y, for each n, so that ¢, names the element [n] in A. A fact is a computably enumerable
conjunction &;e,,®;(¢) of sentences, where each ¢;(¢) is of the form VZvy;(Z, ¢) with v;(Z, ¢)
being a negative atomic formula. Call computably enumerable but not computable algebras
properly computably enumerable. For example, any finitely generated computably enu-
merable algebra with undecidable equality problem is properly computably enumerable.



Definition 1. An algebra A preserves the fact &;c.,¢;(C) if A satisfies the fact and there
is a proper homomorphic image of A in which the fact is true.

Here is now our characterization theorem. Informally, the theorem tells us that properly
computably enumerable algebras possess many homomorphisms which are well behaved with
respect to the facts true in A.

Theorem 1. A computably enumerable algebra A is properly computably enumerable if and
only if A preserves all facts true in A.

Proof. Assume that A is a computable algebra. We can make the domain of A to be w.
Thus, in the algebra A, the fact &;»; (i # j) is clearly true. This fact cannot be preserved
in any proper homomorphic image of \A.

For the other direction, we first note the following. Given elements m and n of the algebra,
it is possible to effectively enumerate the minimal congruence relation, denoted by n(m,n),
of the algebra which contains the pair (m,n). Now note that if [m] = [n] then n(m,n) is
the equality relation in A. Denote A(m,n) the factor algebra obtained by factorizing A by
n(m,n). Clearly, A(m,n) is computably enumerable.

Now assume that A is properly computably enumerable and &;¢.,¢;(¢) is a fact true in
A which cannot be preserved. Hence, for any m and n in the algebra, if [m] # [n] then in
the factor algebra A(m,n), the fact &;e,,¢:(¢) cannot be satisfied. Therefore, for given m
and n, there exists an i such that in the factor algebra .A(m,n) the sentence —¢;(¢) is true.
Now the sentence —¢;(¢) is equivalent to an existential sentence quantified over a positive
atomic formula. Note that existential sentences quantified over positive atomic formulas true
in A(m,n) can be computably enumerated. Hence, in the original algebra A, for all m and

n, either [m] = [n] or there exists a an ¢ such that —¢;(¢) is true in A(m,n). This shows that
the equality relation in A is computable, contradicting the assumption that A is a properly
computably enumerable algebra. O

There are several interesting corollaries of the theorem above.

Corollary 1. If A is properly computably enumerable then any two distinct elements m
and n in A can be homomorphically mapped into distinct elements in a proper homomorphic
image of A. O

Indeed, take the fact m # n true in A, and apply the theorem.

Corollary 2. If A is properly computably enumerable then any fact true in A is true in
infinitely many distinct homomorphic images of A. In particular, A cannot have finitely
many congruences.

Proof. Let ¢ be a fact. By theorem above, there is a homomorphism h; of A in which ¢
is true, and distinct elements my and n; in A for which hq(m1) = hi(n1). Now consider the
fact ¢&(m1 # m1), and apply the theorem to this fact. There is a homomorphism hs of A in
which ¢p&(my # nq) is true, and distinct elements ms and ng in A for which ha(mz) = h(ns).
Now consider the fact ¢p&(m1 # nq)&(ms # ng), and apply the theorem to this fact. The
corollary now follows by induction. a



This theorem can now be applied to provide several algebraic conditions for c.e. algebras
to be computable.

Corollary 3. In each of the following cases an infinite computably enumerable algebra A is
computable:

1. There exists a c.e. sequence (;,y;) such that [x;] # [yi]) for alli and for any congruence
relation n there is (x;,y;) for which ([x;], [y;]) € 0.

2. A has finitely many congruences.

3. A is finitely generated and every congruence relation of A has a finite index.

Proof. For Part 1), we see that the fact &;ey[x;] # [y:] is true in A. The assumption
states that this fact cannot be preserved in all proper homomorphic images of A. Hence A
must be a computable algebra by the theorem above. For part 2), let 7, ..., 7 be all non-
trivial congruences of A; for each n; take (x;,y;) such that [x;] # [y;] and ([z;], [y:]). Then
the fact &;<x([z;] # [yi]) is true in A but cannot be preserved in all proper homomorphic
images of A. Thus A is a computable algebra. For Part 3), consider any two elements [m] and
[n] in A and consider the congruence relation 7([m], [n]) defined in the proof of the theorem.
By assumption, [m] # [n] iff the algebra A(m,n) is finite. The set X = {(m,n) | A(m,n)
is finite } is computably enumerable. Hence, the fact &, ) ex ([m] # [n]) is true in A but
cannot be preserved in any homomorphic image of A. a

3 Computable Isomorphisms and Finitely Generated Expansions

Let h be a computable homomorphism from a c.e. algebra A into a c.e. algebra B. Naturally,
a computable homomorphism h is called a computable isomorphism if & is a bijection.
Clearly, the composition of computable isomorphisms is a computable isomorphism. It is not
hard to see that the inverse of a computable isomorphism is also a computable isomorphism.
Indeed, let h : A — B be a computable isomorphism whose representation is f. A represen-
tation g of h=! is defined as follows. For a given n find the first m such that f(m) = n in the
algebra B. Then g(n) = m. Note that the computable functions which are representatives
of isomorphisms need not be bijections on the natural numbers. We say that A and B have
the same computable isomorphism type if there is a computable isomorphism from A
into B. Here is one of the definitions which will be used in this paper:

Definition 2. The computable dimension of A is the number of its computable iso-
morphism types. A computably enumerable algebra A is computably categorical if its
computable dimension is 1.

Thus, the definition informally tells us that all possible implementations of a computably
categorical algebra are equivalent. In other words, if A and B are computably enumerable
presentations of a computably categorical algebra then there must exist a computable iso-
morphism between A and B.

The notion of computable isomorphism and topics related to it have been studied in-
tensively in computable algebra. We note that most of the results related to computable



isomorphisms of computable algebras can be transferred to the class of computably enu-
merable algebras. This can, for example, be done as follows. Let A = (4; fo,..., fn) be
a computable algebra. Consider its extension B = (A U {a,b}; go,...,9n, F,S), where a,b
are new symbols not in A, defined as follows. For each original basic operations f, de-
fine g(Z) = f(z) if Z is in A; otherwise g(Z) = a. Also, set FE(z,y) = a if x = y, and
E(z,y) = b otherwise. Finally, S(z) = z in case & € A; in other cases set S(a) = b, S(b) = a.
Now B preserves many computability-theoretic and algebraic properties of A. Note that
any computably enumerable presentation of the extended algebra is a computable presen-
tation. Therefore there is a one-to-one correspondence between computable presentations of
A and computably enumerable presentations of the expansion B. Hence, most of the results
about computable presentations of A and its computable isomorphism types hold true for
computably enumerable presentations of the extension. For example if A has computable
dimension n in the class of all computable presentations then the computable dimension of B
is n (in the class of all c.e. presentations). We also note that B preserves the automorphism
group of A. In addition, all congruences of A are also congruences of B, and there is only
one congruence relation of B which is not a congruence of A.

A typical example of a computably categorical computably enumerable algebra is pro-
vided in the next proposition.

Proposition 1. Any finitely generated computably enumerable algebra is computably cate-
gorical.

Proof. Let aq, ..., a, be the generators of the algebra. Let kq, ..., k, and mq, ..., m,
be natural numbers representing a, ..., a, in two computably enumerable presentations A
and B, respectively. The mapping k; — m; can be effectively be extended to an isomorphism
due to the fact that aq, ..., a, are generators. a

Clearly, every computable algebra A can be made computably categorical in an expansion
by adding the successor function to the signature of the algebra. The following proposition
provides examples of computably enumerable algebras which can be made computably cat-
egorical by using expansions of the original language.

Proposition 2. Let A be a computably enumerable algebra which satisfies the following
property. There is a sequence {X;}ie,, of disjoint nonempty subsets of w so that:

1. The sets {(x,1) | x € X;} and X = Ug,X; are computable.
2. For all z,y,i €w ifx € X; and [z] = [y] in A then y € X;.

Then A has a finitely generated, hence computably categorical, expansion.

Proof. We define two new unary functions f and g in the following manner. The functions
f and ¢ coincide with the identity function outside of X. On X the functions f and g
are defined as follows. Let x; be the minimal element in X;, where the order is the order
on natural numbers. For all elements n of X;, set f(n) = x;41 and g(n) = . Now it is
not hard to see that f,g respect the equality relation of A. Indeed, if [n] equals [m] in
the algebra A, then we have the following. If n ¢ X then, by the definition of f and g,



f([n]) = [n] = [m] = f([m]) and g([n]) = [n] = [m] = g([m]). If n € X then n € X;
for some i. Therefore, by the definition of f and g, we have f([n]) = [x;41] = f([m]), and
g([n]) = g([m]) = i. Also, note that for every i € w we have gfi([zo]) = [i], where f%(a) = a
for all a. Thus, (A, f, g) is finitely generated. The generator is the minimal element of Xj.
The proposition is proved.

Corollary 4. If a computably enumerable algebra A possesses a homomorphism h whose
kernel is computable then A has a finitely generated expansion.

Indeed, since the kernel of h is a computable set, one can extract a sequence {X;}icw,
where each X; is the equivalence class determined by the kernel of h, which satisfies the
conditions of the proposition. a

We are interested in finding computably categorical expansions of c.e. presentable alge-
bras. One way to do this would be to find finitely generated c.e. presentable expansions. It
turns out, which we show below, that this is not always possible. One then asks whether
or not it is possible to find computably categorical c.e. algebras which do not have finitely
generated expansions. We provide examples of such algebras. We now need some definitions
and a tool for showing that a given c.e. algebra is not finitely generated.

Definition 3. An infinite algebra A is locally finite if every finitely generated subalgebra
of A is finite. We say that a computably enumerable algebra is absolutely locally finite
if all its expansions are locally finite.

Next we define a set of natural numbers related to the complexity of the equality relation
of a given computably enumerable algebra.

Definition 4. The transversal of a computably enumerable algebra A, denoted by tr(A),
is the set {n | Vy(y <n — [y] # [n])}.

It is not hard to see that the equality relation £ = {(m,n) | [m] = [n])} in the computably
enumerable algebra A is Turing equivalent to tr(.A). We say that a set X of natural numbers
is hyperimmune if there does not exist a computable function m such that m(i) > z; for
all i, where zg < 1 < 2 < ... is a listing of the elements of X in strictly increasing order.
In this case, the function m is said to majorize the set X. We also say that a set M is
hypersimple if M is computably enumerable and its complement is hyperimmune. Note
that hypersimple sets exist (e.g. see Soare [10]).

Proposition 3. [6] If the transversal of a c.e. algebra is hyperimmune then the algebra is
absolutely locally finite.

Proof. Let A be any c.e. algebra whose transversal is hyperimmune. Consider any finitely
generated subalgebra of A, and assume that the subalgebra is infinite. Let ng, ..., nx be the
generators of the subalgebra. Define the following sequence: Xg = {ng,...,ng}, Xit1 =
X, U{f(z) |z € X;, f € o}, where Z is an n-tuple of X; and f is an n-ary operation of the
language o of the algebra. Clearly, each X is a finite subset of natural numbers. Now let m;
be the maximal element of X;. Note that for each ¢ there exists an x;11 in X;41 such that



[xi41] # [y] for all y € X; because the subalgebra is infinite. Hence, the function m(i) = m;
is computable and gives a counterexample for ¢r(B) being hyperimmune. Thus, A and all
its expansions are locally finite. Hence A is absolutely locally finite. a

4 An Absolutely Locally Finite and Computably Categorical
Algebra

The goal of this section is to construct a computably enumerable and computably categorical
algebra which does not have finitely generated c.e. presentable expansions. We need the
following definitions and notations.

Let A be a finite algebra. The algebra A collapses into an algebra B if there exists a
finite algebra A’ containing A as a subalgebra such that B is a homomorphic image of A’.
In the case in which A can be collapsed into B but B is not a homomorphic image of A, we
say that A properly collapses into 5. We note that all our homomorphisms are surjective.

Let A be a finite 3-unary algebra of signature f, g1, g2. The f-orbit of an element a € A
is the sequence a, f(a), f?(a),. ... This orbit is called an f-cycle of length n if all elements
a, f(a),..., f" (a) are pairwise distinct and f"(a) = a. An example of an algebra A which
properly collapses into B is the following. We present this example as it is typical of algebras
we use in our main theorem of this section. The algebra is a finite unary algebra of signature
fs g1, g2. Assume that A has m-n elements and the algebra forms an f-cycle of length m -n
such that g;(x) = z, i = 1,2, for each element x of the cycle. Consider a 3-unary algebra B
satisfying the following conditions:

1. B consists of the disjoint union of two f-cycles of lengths n and 1.

2. For each € B in the f-cycle of length n we have ¢1(z) = g2(z) = z.

3. Let b be the element which forms an f-cycle of length 1, that is f(b) = b. Then the
elements g1 (b) and g2(b) belong to the f-cycle of length n, and g;(b) # g2(b).

It is easy to see that A properly collapses into B.

The idea of collapsing can be used in constructing computably enumerable algebras.
Here is a module of a such construction. Assume a finite algebra A can be collapsed into B,
and the languages of both algebras have unary operations only. Let A’ be a finite algebra
containing A as a subalgebra and h be a homomorphism from A’ into B. Assume that the
domains of A" and B are disjoint. Define the new algebra C obtained by taking the unions
of the domains and operations of A’ and B, respectively. Then the transitive closure of the
relation {(z,y) | h(z) = h(y) Vy = h(z) V2 = y} is a congruence relation on C. The factor
algebra obtained is isomorphic to B.

In our result below we construct computably enumerable algebras which will be disjoint
unions of infinitely many finite 3-unary algebras. The following definitions describe these
finite 3-unary algebras.

Let r = rg,71,...,7 be a finite sequence of prime numbers. We define algebras A(r, ),
with ¢ < ng and ng =rg - ... rg, of signature f, g1, g2 as follows.
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1. The domain A(r,7) of the algebra A(r,%) is {xo,...,Zn,—1} U {yo,...,¥i}

2. A(r,i) contains an f-cycle of length ny, so that f(z;) = x;41 and f(2,, 1) = 2o forall i <
ng — 1. The functions g1 and g2 are each the identity function on the set {zg,...,zn, 1}

3. For every t <1i— 1, we have ¢1(y:) = @+ and ga(y:) = z¢+1. Call each y; a top element.
The function f is the identity function on all the top elements.

The number of top elements of the algebra A(r,i) is i + 1 and does not exceed the length
of the f-cycle. In the case when the number of top elements equals ng, we call the algebra
an open algebra and denote it by A(r). Otherwise, we call the algebra a partially open
algebra.

We say that a partially open (or open) algebra omits a prime number p if p is not a
divisor of the length of the f-cycle of the algebra. Otherwise, the algebra realizes p. Here
are some algebraic properties of open algebras.

Lemma 1. Consider two sequences r = T0s 71y, Tk and v’ =7}, ry, ..., 7 of prime num-
) ) ’ 0" 1> LA
b67 S. Then

1. If A(r) realizes p but not p’ and A(r’) realizes p’ but not p, then neither of these algebras
collapses into the other.

2. Assume that ro =1, ..., ; =7} for some i < k,l. Consider q = ro,...,r;. Then the
algebra A(q) is a homomorphic image of A(r) and A(r').

3. If every p realized in A(r) is also realized in A(r') then A(r’) can be homomorphically
mapped onto A(r).

4. No open algebra A(r) can be homomorphically mapped onto a partially open algebra.

Proof. For part 1 note the following. On the one hand, the length of the f-cycle of every
homomorphic image of A(r) is not a multiple of p’. On the other hand, the length of the
f-cycle of A(r') is a multiple of p’. Part 2 of the lemma is immediate. Part 3 follows from
Part 2. Finally, the last part follows from the fact that in the open algebra the length of the
f-cycle coincides with the number of top elements which clearly does not hold for partially
open algebras. O

For the sequence r = r4,71,...,r set r[j] be ro,71,...,7;, where j < k. The following
lemma further describes some of the properties of open and partially open algebras and the
relationship between them.

Lemma 2. The partially open algebras {A(r,i)}icn, have the following properties:

Each A(r,i) is not a homomorphic image of A(r,j) for distinct i and j.

Fach A(r,i) can be extended to the open algebra A(r).

Each A(r,i) can be collapsed into the open algebra A(r[j]).

Neither of the partial algebras A(r[j1],41) and A(r[js],i2) for (j1,41) # (ja2,i2) s a
homomorphic image of the other.

B oo~

Proof. Part 1) follows from the following observation. Say i < j. It is not hard to see that
A(r, j) and A(r, i) cannot be mapped homomorphically onto each other because the number
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of top elements in A(r,7) and in A(r, j) is distinct. Part 2) is easy to see by introducing a
sufficient number of new top elements for A(r, 7). For Part 3) note that A(r[j]) is an open
algebra. Now the rest follows from Part 2), and the second part of the previous lemma.
Finally, for the last part note the following. If j; = j, then we can apply Part 1) of the
lemma. If j; < ja, then it is clear that A(r[j1],41) cannot be homomorphically mapped onto
A(r[jz],i2). Now there is no homomorphism from A(r[j2],42) into A(r[j1],41) because these
two algebras have a distinct number of top elements. O

To give an initial intuition to the reader, we would like to say a few words about the
algebra A constructed in the next theorem. The algebra will be a disjoint union Ay U .A; U
Ao U. .. of algebras such that each A; is either an open algebra or a partially open algebra.
Thus, the A constructed will be a 3-unary algebra. In addition, no A4; will be a homomorphic
image of any other A;. The algebra A will be absolutely locally finite. In order to guarantee
this property of A, the construction ensures that the transversal tr(A) is hyperimmune.
Hyperimmunity is satisfied on those .4;’s which are open algebras. Now we formulate the
theorem.

Theorem 2. There exists an infinite computably categorical, absolutely locally finite, and
computably enumerable algebra.

Proof. Our goal is to construct a computably enumerable algebra A such that tr(A) is
hyperimmune. In addition, we want to make sure that any computably enumerable algebra G
isomorphic to A is computably isomorphic to .A. Due to Proposition 3, these two properties
guarantee that the algebra A will be absolutely locally finite, and thus as desired. We fix
effective enumerations of all partial computable unary functions ¢g, ¢1, ..., and all partial
computably enumerable 3-unary algebras Gg, G1, .... In some of these algebras their unary
operations may not be total functions. We need to construct a computably enumerable
algebra A which satisfies the following requirements:

D,: ¢ does not majorize the transversal tr(A) of A, and
R;:  If G; is isomorphic to A then G; is computably isomorphic to A,

where e, j € w. We list these requirements as Dg, Ry, D1, R1,... and call this sequence the
priority list. Requirements listed earlier have higher priority than those listed later in
this sequence.

An Rj-strategy devoted to satisfying just one requirement R; is the following. Start
constructing the algebra A so that the algebra consists of the disjoint union of f-cycles of
prime length 2, 3, 5, .... Roughly speaking, as long as G; provides f-cycles of length p; for
each prime p;, where the f-cycle of length p; has already been built in A, then effectively
establish an isomorphism from f-cycles in G; into the f-cycles of A of the same length. Thus,
if G; is indeed isomorphic to the A which is being built then G; is computably isomorphic
to A.

A possible strategy, call it a D.-strategy, which satisfies just one requirement D, is easy
to describe. Start constructing the algebra A so that A consists of disjoint f-cycles of length
2,2-3,2-5, ..., where each f-cycle of size 2-p appears just once. Wait until ¢.(e) is defined.
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If ¢.(e) is defined and is greater than the eth element of A then collapse all f-cycles which
contain 0, 1, ..., ¢c(e) into an f-cycle of length 2. Thus, in this case, the resulting algebra
will have one f-cycle of length 2 and infinitely many f-cycles of pairwise distinct lengths for
which 2 is a factor. Otherwise, the algebra will have f-cycles of lengths 2,2-3,2-5,.... In
either case the requirement D, is clearly satisfied.

Problems arise when one tries to satisfy both requirements D. and R; simultaneously.
One possible reason is the following. While the R;-strategy builds an isomorphism, the D.-
strategy, as described above, may collapse several f-cycles in A into an f-cycle X, say, of
length 2. It may well be the case that R; had already built a partial isomorphism into some
f-cycles, and those f-cycles have now collapsed into X. Thus, G, can now easily defeat the
Rj-strategy as follows: G; provides an f-cycle C of length 2- p isomorphic to an f-cycle in A.
Once an isomorphism from C into the f-orbit in A has been established, G; now collapses
C into X’ which is the image of the f-orbit X in .A. This behavior of G, forces the image
of C to be collapsed into X in order to save the established partial isomorphism. Hence,
the algebra A may become a finite one which is clearly not desirable. Now the reader can
imagine the difficulties involved in trying to satisfy all requirements D. and R; for e, j € w.

In order to overcome the difficulties described above we use open and partially open
algebras and their algebraic properties described in Lemma 1 and Lemma 2. During the
construction presented below, we put certain sentences in double brackets [[like this]]. These
are designed to explain the construction and ideas and are not part of the algorithm which
constructs the algebra A. The algebra constructed will be a 3-unary algebra of signature
f,91,92- At stage t, we will have a finite algebra A; which consists of the union of open or
partially open algebras. In addition, our construction will be involved with satisfying require-
ments D, only. In other words, the construction does not deal with satisfying requirements
R; directly. We argue later that all the requirements R; are satisfied due to the algebraic
nature of the example constructed. Now we proceed to our construction.

Stage 0. Let Ag be isomorphic to the disjoint union of the partially open algebras A(rg, 0)
and A(rq, 1), where rg is the sequence 2, and r; is the sequence 2, 3. Thus, A(rg, 0) contains
an f-cycle of length 2 associated with one top element, and .A(rq,1) contains an f-cycle of
length 6 associated with two top elements. Associate the function ¢¢ with A(ry, 1) with the
goal of meeting requirement Dy on this subalgebra. The equality relation Ey in Aj is the
identity relation.

Stage t + 1. At the end of the previous stage we have the algebra A, which is a disjoint
union Ag+ U A1+ U...UA s of subalgebras. The inductive assumptions put on the algebra
A, are the following. Each A;; is isomorphic to either an open algebra or a partially open
algebra. The partial function ¢;, j <t — 1, is associated with the algebra A;4,; with the
goal of meeting requirement D; if D; has not already been met. In addition, there exist
an increasing sequence 7(0,t),7(1,t),...,7(t,t) and its subsequence 7 (i, t),...,r(ixw),t) of
prime numbers which satisfy the following conditions. For j < ¢, let r(j) be obtained by
dropping all 7(ig, t), ..., 7(ix),t) from the sequence 7(0,t),7(1,t),...,7(j—1,t), and putting
r(j,t) at the end.
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1. If j € {do,..., ik } then Aj;; is isomorphic to the open algebra A(r(j)).
2. If j & {io, ..., i)} then Aj; is isomorphic to the partially open algebra A(r(j), 7).

Thus, the algebra A; ; is open if and only if j € {io, ..., i)} [[The idea is that requirements
Dj have currently been met (but later could be injured) for j € {io,... i) }.]] We also
note that if A;, is a partially open algebra then it has exactly j + 1 many top elements.
In addition, the algebra A;; omits all prime numbers 7(is,t) with is < j, and realizes all
prime numbers in the sequence r(j). Finally, A;; can be collapsed into any of the open
algebras obtained by extending partially open algebras As: with s < j, and cannot be
homomorphically mapped into the open algebras A, ; with s’ < j [[This is because the
open algebras A, ; realize some prime numbers omitted by .A; ,.]] Finally, note that all the
algebras Ap+ U A, U...UA;; cannot be mapped onto each other homomorphically due to
Lemma 1 and Lemma 2.

In addition, we have the equality relation E; in the algebra A; telling us which numbers
represent the same elements of A;. Let m(e,t) be the minimal number in Acy; 4, that is
m(e, t) is the minimal number among all numbers representing elements of A1 ;. Let p(e, )
be the position at which m(e, t) appears in the listing of the transversal ¢r(.A;) in the strictly
increasing order. The idea is to meet D, on number m(e,t) in case ¢.(p(e,t)) > m(e,t).

Here is now a description of the stage. Compute ¢§+1(p(j, t)) for all j < ¢, where ¢§-+1(aj)
denotes the (t+1)th approximation of ¢ in computing the value ¢;(x). Let e be the minimal
j with 5 <t — 1 for which d)j“(p(j, t)) > m(j,t) (if such j exists). Act as follows with the
goal of meeting D..

Consider the algebra A, ;. It is a partially open algebra [[this can be assumed by induc-
tion]]. Extend the algebra A, to an open algebra [[to do this, introduce sufficiently many
top elements]]. Collapse all algebras A, ; with s > e into the open algebra thus obtained.
If need be, by enumerating elements of A, by new numbers, make sure that all numbers
in w less than or equal to ¢t (p(e,t)) have been used. [[Thus, all the subsequent elements
enumerated into the algebra will be greater than ¢{™*(p(e,t)), and hence D, is permanently
satisfied as long as no requirement of higher priority injures D..]]

Define the sequence r(0,t+1),...,r(e,t+1),r(e+1,t+1),...,7(t+1,t+ 1) as follows:

1. Set r(0,t 4+ 1) =r(0,t),r(1,t +1) =r(1,t),...,7(e,t + 1) = r(e, t).

2. All r(j,t + 1), where e +1 < j < ¢ + 1, are unused prime numbers greater than all
numbers and the lengths of all f-cycles which have appeared in the construction so far.
[ In particular, these numbers are omitted by all open and partially open algebras which
have appeared in the construction so far. We note that this is an important part of the
construction, guaranteeing that all prime numbers between r(e,t+1) and r(e+1,t+ 1)
will be omitted in all partially open and open subalgebras of A. This property is then
used to show that A is computably categorical.]]

Among o, ..., i), keep all i, with 75 < e, cancel all the others, and set k(t +1) = e.

Construct Az 1 as follows. Let r'(j) be obtained by dropping 7(ig, t+1), ..., 7(ik41), t+
1) from the sequence r(0,t + 1),r(1,t +1),...,r7(j — 1,t + 1), and putting r(j,t + 1) at the
end.
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L. If j € {do,.. ., ip@41)} then Aj;4q is isomorphic to the open algebra A(r'(j)).
2. If j & {do, ..., ik41)} then Aj ;41 is isomorphic to the partially open algebra A(r'(7), 7).

Make sure that A; is embedded into A;1; so that the identity mapping represents the
embedding. [[Note that all the elements of the algebras Acy1y4, ..., A+ have been collapsed
into A, + which has become an open algebra. So all the numbers appearing in Acy1 41, .-,
At 41,441 are now new.|]

If there is no j with j < t for which qbz-“(p(j, t)) > m(j,t) then proceed as follows.
Keep all the parameters and associated objects (e.g. r(j,t), Aj ¢, ix(t)) but increment the
parameter t to t 4+ 1. Consider a new prime number 7 (¢t + 1,¢+ 1) not used and greater than
all numbers and the lengths of all f-cycles which have appeared so far. Construct Ay11 141
to be isomorphic to the partially open algebra A(r'(t+1),t), where r'(t+1) is defined above.
Embed A; into A4 1 so that the identity mapping represents the embedding.

Thus, A;1 is such that A; embeds into A¢4 1, and the identity mapping is the embedding.
Therefore the equality relation E; is a subset of the equality relation F;y; in Asyqi. The
algebra A; 1 has now been constructed. The algebra constructed preserves all the inductive
assumptions. This completes the stage.

Now the algebra A is defined to be the limit of all the algebras A;. More formally, for all
n,m € w, the numbers n and m represent the same element in A if and only if (n, m) € E} for
some t. Moreover, for all n,m,my;, mg € w, we have f(n) =m, g1(n) = my and g2(n) = ma
in the algebra A if and only if the equalities f(n) = m, g1(n) = my and g2(n) = m2 hold
true in some algebra A;. Hence, the algebra A is computably enumerable.

Now our goal is to show that A constructed is indeed a desired algebra.
Lemma 3. The transversal tr(A) is a hyperimmune set.

We need to show that each requirement D, is satisfied. This is shown by induction on e.
Assume that ¢o(p(0,t)) > m(0,t) at some stage to + 1 (if no such stage exists then Dy is
clearly satisfied). Then at stage tp+1, requirement Dy is satisfied. Moreover, the construction
guarantees the following properties:

1. Ay, is open and no new number is being made equal to any of the elements of Ay for
any t' > to + 1. In other words, the construction does not enumerate any new number
into A after stage to + 1.

2. m(0,t) = m(0,¢'+1) and p(0,t") = p(0,t'+1) and ¢o(p(0,t)) < m(0,¢') for all t’ > to+1.

Indeed, after stage to + 1, the algebra Ag 4 is never collapsed further, and thus m(0,t') =
lim;_,, m(0,¢). This implies that the second property holds. Hence Dy is permanently sat-
isfied after stage to + 1. Now, by induction, assume that Dy, ..., D._1 are all permanently
satisfied. Also assume that there exists a stage t._1 such that no numbers are enumerated
into the algebras Ag,. .., Ae—1+, and hence these algebras never change after stage t._;.
Assume that ¢.(p(e,t.)) > m(0,t.) at some stage t. +1 > t._1 (if no such stage exists then
D, is clearly satisfied). Then at stage t. + 1, requirement D, is satisfied. In addition, the
construction guarantees the following properties:
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1. Ae is open and no number is enumerated into A, 4 for any ¢’ > t. + 1.
2. m(e,t') = m(e,t'+1) and p(e,t’) = p(e,t’+1) and ¢.(p(e, t')) < m(e,t’) for all ¢’ > t.+1.

Hence D, is permanently satisfied after stage ¢, + 1. Continuing this reasoning we see that
each D; is satisfied. a

Lemma 4. The algebra A is computably categorical.

Let G be a computably enumerable algebra isomorphic to A. Fix an approximation
go, gl, e gt, ... of G. We need to construct a computable isomorphism h from G into A.
We reason as follows. Take a natural number n. Since G and A are isomorphic there must exist
a stage t+ 1, and a subalgebra A; ¢11 in A1 which is currently isomorphic to a subalgebra
Ci41 in gttt containing n. The subalgebra A; ;41 is unique at this stage and cannot be
homomorphically mapped onto any of the other open or partially open subalgebras of A;1.
Note that Cyy1 may further collapse at a later stage while G is being enumerated. The image
of n under the current isomorphism from C;41 onto A; ;41 represents an element [n'] in A,
and [n'] belongs either to an open or a partially open subalgebra of A. Let us denote this
subalgebra by B (so A; ;11 collapses into B). Consider the subalgebra C of G which contains
all [m] so that m is enumerated into C;11 (hence [n] € C) and all top elements y such that
g1(y) belongs to the f-cycle determined by [n]. The algebra C is also either open or partially
open as G is isomorphic to .A. We claim that 5 and C are isomorphic.

Indeed, if A; 4+1 never collapses into any of the algebras A;, for any ¢ > ¢+ 1 and
j < i, then clearly B is isomorphic to A; 14+1. In this case, by construction and Lemma 1 and
Lemma 2 for all ¢’ > ¢ + 1, we have the following:

1. None of the subalgebras Ag ¢, A1,s/, ..., A; ¢ collapse into each other.

2. None of the subalgebras Ag ¢, A1y, ..., A; v is a homomorphic image of any other al-
gebra in this list.

3. None of A;p with j > i collapses onto any of the algebras in Ao, A1 4/,..., Aic1 .

Hence, the algebra C;y1 cannot be collapsed into any of the algebras A;, with ¢’ > ¢+ 1
and j <14 — 1. Therefore, C;11 is in fact isomorphic to C, and hence to B.

Now assume that s is the last stage at which numbers in A; ;41 are collapsed into the
subalgebra A, s for some j. Thus, B is A, . Note that A; 4 is open for ¢’ > s. Let nq be the
length of the f-cycle of A; ;. The construction guarantees that there will be no f-cycle whose
length is strictly between the n; and the length of the f-cycle of Cy41. Hence, the only way
in which C can be isomorphic to any of the subalgebras of Ay is that C is isomorphic to one
of the algebras Ao s, ..., A;s. By the last parts of Lemma 1 and Lemma 2, the subalgebra
C cannot be isomorphic to partially open algebras. Hence C is an open algebra. In addition,
C cannot be isomorphic to open algebras among Ao, ..., As—1; because, by the first part
of Lemma 1 and the construction, the subalgebra C omits some numbers realized in these
open algebras. Therefore, C is forced to be isomorphic to A, ;. Hence C and B are isomorphic
subalgebras. In fact, we have shown that any isomorphism from C; into A; ;4 induces, in a
natural way, an isomorphism from C onto B.
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Now we construct an isomorphism h from G into A. Assume that for all 0, ..., n—1, the
values h(0), ..., h(n—1) have been defined. Since G and A are isomorphic there must exist a
stage t+ 1, and a subalgebra A; ;4 in A4 which is currently isomorphic to the subalgebra
C: in G containing n. We now want to define the value h(n). If h already maps some numbers
less than n into A; ;11 then compute a j < n such that j = n in G and set h(n) = h(j).
Note that such j must exist. Otherwise, effectively set up an isomorphism from C;;; onto
A; t+1. As we have already noted above, this isomorphism induces an isomorphism from C
into B. Now it is clear that this mapping can be effectively extended to an isomorphism. 0O

Finally, we note that no c.e. presentable expansion of the algebra A is locally finite.
Otherwise, since A is computably categorical, the algebra A would have an expansion which
is not locally finite. This would contradict the fact that ¢r(A) is hyperimmune. This concludes
the proof of our theorem. O

At the end of this section we state the following open question: Does there exist a c.e.
algebra no c.e. presentable expansion of which is computably categorical? The existence of
such an algebra would show that the method of expansions is not powerful enough to control
computable isomorphism types of c.e. algebras.
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