
INFIMA IN THE RECURSIVELY ENUMERABLE

WEAK TRUTH TABLE DEGREES

Rich Blaylock, Rod Downey, and Steffen Lempp

x0. Introduction and Notation. Weak truth table reducibility (w-reducibility) was

�rst introduced by Friedberg and Rogers [FR59]. Intuitively, we say that a set A is

w-reducible to a set B (written A �

w

B) if there is a Turing reduction from A to B

and a recursive function f such that, for any x, the value f(x) bounds the greatest

number whose membership or nonmembership in B is used to determine A(x).

Since w-reducibility is a stronger reducibility than Turing reducibility, each Turing

degree can be partitioned into the w-degrees of its sets. Ladner and Sasso [LS75]

showed that there exists a nonzero contiguous degree, i.e., an r.e. Turing degree which

contains a single r.e. w-degree. The existence of such contiguous degrees, as well as the

strongly contiguous degrees introduced by Downey [Do87], has been used to establish

numerous existence results (cf. [LS75], [St83], [Am84a]) in the r.e. Turing degrees

by establishing the corresponding results in the r.e. w-degrees.

Our results here deal with in�ma in the r.e. w-degrees, thus continuing the inves-

tigations of Cohen [Co75], Ambos-Spies [Am85], and Fischer [Fi86]. Cohen's result

that every incomplete r.e. w-degree is w-branching and Fischer's result that some ini-

tial segments of the r.e. w-degrees are lattices indicate that in�ma are more common

in the r.e. w-degrees than in the r.e. Turing degrees. We reinforce this notion.

After giving an elegant �nite injury construction of a pair of r.e. Turing degrees with

no in�mum [Jo81], Jockusch asked whether every nonrecursive incomplete r.e. Turing

degree was half of a pair without in�mum. Ambos-Spies [Am84b] and Harrington

independently answered this question a�rmatively by introducing strongly noncappable

r.e. degrees. An r.e. Turing degree a is strongly noncappable if no r.e. bj

T

a has

an in�mum with a. Ambos-Spies and Harrington showed that there is a strongly

noncappable degree incomparable with any given nonrecursive incomplete r.e. degree.

In Theorem 1, we show that every nontrivial r.e. w-degree caps nontrivially, so that

the only r.e. w-degrees analogous to strongly noncappable Turing degrees are trivial.

This result gives yet another contrast between the r.e. w-degrees and the r.e. Turing

degrees.

In Theorem 2, however, we show that no nontrivial r.e. w-degree caps with all r.e. w-

degrees. Thus in the r.e. w-degrees, like the r.e. Turing degrees, every degree is half

of a pair without in�mum.

We remark that if two r.e. w-degrees do have an in�mum, then the in�mum is itself

r.e. (cf. [So87, Exercise IX.3.5]).

Downey wishes to acknowledge the support of the Marsden Fund for Basic Science. Lempp wishes

to acknowledge support by the National Science Foundation. Both also wish to asknowledge support

by a U.S./New Zealand binational grant.

Typeset by A

M

S-T

E

X

1

2 RICH BLAYLOCK, ROD DOWNEY, AND STEFFEN LEMPP

Our notation is for the most part standard, as in Soare [So87].

Let ! denote the set of natural numbers including zero. By number we mean an

element of ! and by set we mean a subset of !. We use 2

!

to denote the set of in�nite

sequences of 0's and 1's, and 2

<!

for the set of �nite sequences of 0's and 1's. For any

set S and number j, we denote the set of elements of S which are strictly less than j

by S � j.

Fix a recursive bijection from !

n

to ! which is increasing in each argument, and let

hx

1

; x

2

; : : : ; x

n

i denote the image of the n-tuple (x

1

; x

2

; : : : ; x

n

) under this bijection.

For a �xed j, !

[j]

denotes the set of all pairs of the form hx; ji.

Let T

e

denote the e

th

oracle Turing machine in some e�ective listing of all oracle

Turing machines, and let feg

A

denote the partial function computed by T

e

with oracle

A. We write feg

A

s

(x) = y if x; y; e < s, machine T

e

computes feg

A

(x) = y in less

than s steps, and the largest number used in the computation is less than s. The use

function use(A; e; x; s) is the least number greater than all those used in the compu-

tation feg

A

s

(x), if this computation is convergent, and 0 otherwise. The use function

use(A; e; x) is use(A; e; x; s) if feg

A

s

is de�ned for some s, and is unde�ned otherwise.

We use upper case greek letters (�, 	, etc.) to denote w-reductions and their lower

case counterparts (�, , etc.) to denote the corresponding use functionals.

x1. Nontrivial capping in the r.e. w-degrees. Here we show that every nontrivial

r.e. w-degree caps nontrivially.

Theorem 1. For any nonrecursive, w-incomplete r.e. w-degree c, there is an r.e. w-

degree aj

w

c such that the in�mum a \ c exists.

Proof. Let C be a set of the given w-degree c with recursive enumeration fC

s

g. We

will construct sets A and B such that Aj

w

C and the w-degree of B is the in�mum of

those of A and C.

To make Aj

w

C, we will satisfy for each w-reduction � the requirements

P

�

: A 6= �

C

and

N

�

: C 6= �

A

:

To make the w-degree of B the in�mum of those of A and C, we will satisfy for

each w-reduction � the requirement

Q

�

: �

A

= �

C

= D �! D �

w

B;

as well as the global requirements B �

w

A and B �

w

C.

We will achieve both of these last reductions by permitting, i.e., we will only enu-

merate a number x into B at a stage when numbers lesser or equal to x enter both

A and C. In fact we will enforce this on the A side by enumerating x itself into A

whenever we enumerate it into B.

To aid in satisfying the remaining requirements, we will use a priority tree, with each

node on the tree devoted to a single requirement. The nodes devoted to requirements of

the form Q

�

, called in�mum nodes will be regarded as having two possible outcomes,

according as to whether the hypothesis of the requirement is true or not. Nodes

INFIMA IN THE RECURSIVELY ENUMERABLE WEAK TRUTH TABLE DEGREES 3

devoted to requirements of the form P

�

or N

�

, called coding nodes and preservation

nodes, respectively, will be regarded as having only a single outcome. Thus our priority

tree T is a subtree of a binary tree.

To be more precise, choose any priority ordering of all the requirements, and de�ne

the tree by recursion on the length of its nodes. Assuming that T has been de�ned

for nodes of length less than j�j, let � be devoted to the least requirement not yet

associated with any node � � �. If this requirement is of the form Q

�

, then � has two

successors, �b0 and �b1. Otherwise, � has a single successor �b0.

As usual, [T] denotes the set ff 2 2

!

: (8n)[f � n 2 T]g of all in�nite paths through

T . We order nodes on the priority tree as follows: for �; � 2 T ,

(i) � is to the left of � (� <

L

�) if

(9� 2 T)[�b0 � � & �b1 � �];

(ii) � � � if � <

L

� or � � � ;

(iii) � < � if � � � and � 6= � .

Fix an e�ective coding of the elements of T and denote the code number of a node

� 2 T under this coding by #� .

To meet a requirement like P

�

, we will code K into A at stages when the length of

agreement between A and �

C

grows. The particular coding is not crucial, as long as

we are able to code all of (or even co�nitely much of) K into A if this length continues

to grow. Then, if A were equal to �

C

, we would have C �

w

A �

w

K, a contradiction.

Of course this strategy for a node � devoted to P

�

may need to respect \restraints"

of various higher priority nodes devoted to N - or Q-type requirements. This will be

accomplished by \resetting" �, which simply means starting the coding process over

using markers greater than the current stage number (which will be larger than any

such restraints). Requirement P

�

will eventually be satis�ed since the node on the

true path devoted to it will be reset only �nitely often.

The strategy for a requirement of the form N

�

is the Sacks preservation strategy.

When the agreement between C and �

A

grows to a new maximum m, we will try to

prevent numbers less than the combined use maxf�(x) : x < mg from entering A.

This will be done by resetting all lower priority coding and in�mum nodes. If � is

the node on the true path devoted to N

�

, then higher priority coding nodes will be

�nitary, so the only danger to � comes from higher priority in�mum nodes. We will

arrange so that, after an �-expansionary stage, such an in�mum node will enumerate

a number into A only if a smaller number has already entered A. Thus the in�mum

node will not be allowed to cause the �rst \injury" to �.

Finally, the basic strategy for a requirement of the form Q

�

is to try to maintain

computations common to �

A

and �

C

. At any given stage of the construction, a node

� devoted to Q

�

will have a certain length of agreement between �

A

and �

C

. At

stages when this length grows, we will arrange for � to have a \trace" z for every pair

hx; yi such that x is below the length of agreement and y is below the use �(x). Node

� cannot reset all lower priority nodes when its length of agreement grows, since this

may happen in�nitely often. Thus � must occasionally allow lower priority nodes to

enumerate into A and destroy a computation �

A

(x). If a number such as y later enters

C before the next �-expansionary stage, then we will enumerate the trace z into B to

\inform" B that both sides of the computation have been lost. As mentioned earlier,

4 RICH BLAYLOCK, ROD DOWNEY, AND STEFFEN LEMPP

in this case we will also simultaneously enumerate z into A to keep the reduction

B �

w

A.

At each stage s of the construction, we will construct a string f

s

2 T of length s

which will be our current approximation to the true path, i.e., the path f 2 [T] for

which f � m = lim inf

s

f

s

� m for all m, in the sense that for � = f � m we have

(a) (9

<1

s)[f

s

<

L

�] and

(b) (9

1

s)[� � f

s

].

Given a node � 2 T , a stage s is called a � -stage if � � f

s

. The set of all � -stages

is denoted by S

�

.

At various substages of the construction we will be enumerating elements into A.

At each stage s, we will need to de�ne a length of agreement l(�; s) for each � � f

s

appropriate for the requirement to which � is devoted. The value of l(�; s) will depend

on the elements enumerated into A up to the point at which we de�ne l(�; s). Thus

for convenience, at any point during the construction, we let A

+

denote the set of

elements enumerated into A up to that point.

In the following construction, to reset a coding node simply means to mark it as

having been reset, while to reset an in�mum node additionally means to cancel all of

the uncancelled traces associated with it.

Construction of A and B.

Stage s = 0.

Let A

0

= B

0

= ;, and let f

0

be the empty string.

Stage s+ 1.

Trace enumeration.

First consider each number y 2 C

s+1

� C

s

. (Depending on the convention chosen,

there might be at most one such number y.) Each such y may have several traces

associated with it for the sake of di�erent nodes devoted to in�mum requirements.

Suppose z = h#�; x; y; wi is a trace assigned to hx; yi for the sake of some node �

devoted to an in�mum requirement Q

�

.

Let t be the greatest �-expansionary stage less than s + 1 (there must be such a

stage since the stage at which z was assigned as a trace is �-expansionary). Check

whether any number less than �(x) has entered A since the beginning of substage j�j of

stage t (i.e., since the exact substage at which the largest length of agreement between

�

A

and �

C

was established). The idea is that unless such a change has occurred in

A, there is no need to notify the in�mum since A has held its side of the computation

on x. If such a change in A has indeed occurred, then enumerate the trace z into both

A and B, and reset all coding or in�mum nodes � � �b1.

Constructing f

s+1

.

Now we construct the current approximation f

s+1

to the true path, taking appro-

priate action at each node visited along the way. Perform the following substage in

increasing order of t for each t with 0 � t � s.

Substage t. Let � = f

s+1

� t, and consider the three possibilities for the type of

requirement to which � is devoted.

Case 1.

If � is devoted to an in�mum requirement Q

�

, then let

l(�; s+ 1) = maxfx : (8y < x)[�

C

s+1

s+1

(y) #= �

A

+

s+1

(y)]g;

INFIMA IN THE RECURSIVELY ENUMERABLE WEAK TRUTH TABLE DEGREES 5

and let

m(�; s+ 1) = maxfl(�; r) : r < s+ 1 and r 2 S

�

g:

Call s+ 1 �-expansionary if l(�; s+ 1) > m(�; s+ 1).

Put f

s+1

(t) = 0 if s+ 1 is �-expansionary, and f

s+1

(t) = 1 otherwise.

If s+1 is �-expansionary then for each pair hx; yi with x < l(�; s+1) and y < �(x)

which does not already have an uncancelled �-trace, �nd the least number w such that

z = h#�; x; y; wi > s+ 1 and assign z as an �-trace for hx; yi.

Finally if s+1 is �-expansionary then reset every coding or in�mum node � � �b1.

Case 2.

If � is devoted to a coding requirement P

�

, we automatically have f

s+1

(t) = 0.

Let

l(�; s+ 1) = maxfx : (8y < x)[�

C

s+1

s+1

(y) = A

+

(y)]g:

Let r be the greatest stage less than s+1 at which � was reset, and enumerate into

A all elements of the set fh#�; r; ki : k 2 K

s+1

g which do not exceed l(�; s+1). If the

set of numbers so enumerated is nonempty, then reset every coding or in�mum node

� > �.

Case 3.

Finally, if � is devoted to a preservation requirement N

�

, we automatically have

f

s+1

(t) = 0. Let

l(�; s+ 1) = maxfx : (8y < x)[�

A

+

s+1

= C

s+1

(y)]g

and

m(�; s+ 1) = maxfl(�; r) : r < s+ 1 and r 2 S

�

g:

If l(�; s+ 1) > m(�; s+ 1), call s+ 1 �-expansionary.

If s+ 1 is �-expansionary then reset every coding or in�mum node � > �.

This completes the construction.

As remarked earlier, both reductions B �

w

A and B �

w

C should be clear. The

existence of the true path f should also be clear. So it only remains to show that

each node on the true path satis�es the requirement to which it is assigned. This is

accomplished by an inductive lemma.

Lemma. For each w-reduction �,

(i) P

�

is satis�ed, and the node on the true path devoted to P

�

causes �nitely

many elements to enter A and resets other nodes �nitely often,

(ii) N

�

is satis�ed and the node on the true path devoted to N

�

resets other nodes

�nitely often, and

(iii) Q

�

is satis�ed.

Proof. (i) Let � denote the node on the true path devoted to P

�

. Note that by the

inductive hypothesis, � is reset �nitely often by preservation nodes and other coding

nodes. Since in�mum nodes above � are either �nitary or do not reset �, � is in fact

reset only �nitely often. Let r be the largest stage at which � is reset. Assume for a

contradiction that A = �

C

. Then l(�; s) �!1, so eventually all numbers of the form

h#�; r; ki with k 2 K enter A. In fact we have k 2 K if and only if h#�; r; ki 2 A, so

K �

1

A �

w

C, a contradiction.

6 RICH BLAYLOCK, ROD DOWNEY, AND STEFFEN LEMPP

Since P

�

is satis�ed, q = maxfl(�; s) : s 2 !g is �nite, and � never enumerates any

number larger than q into A.

Since � resets nodes only at stages when it enumerates into A, this can happen only

�nitely often as well.

(ii) Let � denote the node on the true path devoted to N

�

. Suppose that �

A

= C.

Then l(�; s) �! 1. We will show for a contradiction that C is recursive. Choose a

stage s large enough so that after stage s, no node to the left of �, no �nitary in�mum

node above �, and (by inductive hypothesis) no coding node above � enumerates any

numbers into A. To compute C(x) for some x, let s

x

be the least �-expansionary

stage greater than s with l(�; s

x

) > x. Then we claim that A � �(x) = A

s

x

� �(x),

so C(x) = �

A

(x) = �

A

s

x

s

x

(x). For suppose that some number less than �(x) enters A

after stage s

x

. Let z be the smallest number to do so. By choice of s

x

, z could only

enter A for the sake of an in�mum node � � � for which there are in�nitely many

�-expansionary stages. In particular this means that s

x

is itself �-expansionary. But

then z could only enter A after s

x

if a smaller number enters �rst, contradicting the

choice of z.

Since N

�

is satis�ed, there are only �nitely many �-expansionary stages, so � resets

other nodes �nitely often.

(iii) Let
 denote the node on the true path devoted to Q

�

. As in part (i), it should

be clear that
 is reset only �nitely often. Let r be the greatest stage at which

is reset, and assume that the hypothesis of Q

�

holds, namely that �

A

= �

C

= D.

To compute D(x) from B, let s

x

be the least
-expansionary stage greater than r

for which l(
; s

x

) > x, B

s

x

� �(x) = B � �(x), and B

s

x

(z) = B(z) for every
-trace

associated with x.

Let p denote the common value of �

C

s

x

s

x

(x) and �

A

+

s

x

(x) at the end of the
-

expansionary substage. We claim that for every stage t � s

x

, either �

A

t

t

(x) = p

or �

C

t

t

(x) = p, so D(x) = p. For since B has settled down below �(x), only coding

nodes could cause an injury to the computation from A, and in particular only coding

nodes � �
, since all other coding nodes have either stopped acting or have been reset

by
. But if such a node (or nodes) enumerates numbers less than �(x) into A, then

C must remain unchanged below �(x) until at least the next
-expansionary substage.

Otherwise, a
-trace for x would enter B, contrary to the choice of s

x

. Thus, between

-expansionary substages, either A � �(x) or C � �(x) is preserved, as desired.

This completes the proof of the lemma, and hence of the theorem. � �

x2. Noncapping.

In contrast to Theorem 1, we now show that every r.e. w-degree is half of a pair

without in�mum.

Theorem 2. For any nonrecursive, w-incomplete r.e. w-degree c, there is an r.e. w-

degree a such that the in�mum a \ c fails to exist.

Proof. Let C be an r.e. set of the given degree c with recursive enumeration fC

s

g

s2!

.

The proof will be nonuniform in the sense that we will construct two r.e. sets A and

^

A, only one of whose w-degrees is guaranteed to have the desired property.

Our requirements are therefore based on pairs of sets. In addition to constructing

the main sets A and

^

A, we will construct for each quadruple (V;

^

V ;	;

^

), where V

INFIMA IN THE RECURSIVELY ENUMERABLE WEAK TRUTH TABLE DEGREES 7

and

^

V are r.e. sets and 	 and

^

	 are w-reductions, a corresponding pair B and

^

B. The

idea is that if 	

A

= 	

C

= V and

^

	

^

A

=

^

	

C

=

^

V , then either B will be w-reducible to

both A and C but not V (so that deg

w

(V) 6= deg

w

(A) \ deg

w

(C)), or

^

B will have the

corresponding relationship with

^

A, C, and

^

V .

If we can do this for each such quadruple then we are done. For if the w-degree

of V is actually the in�mum of those of A and C (for example), then we will have

guaranteed that no

^

V could have a w-degree which is the in�mum of those of C and

^

A.

Requirements. There are three types of requirements we will satisfy in order to

achieve the desired results. First, for each pair V and

^

V , and each pair of w-reductions

	 and

^

	, we have a requirement

P

V;

^

V ;	;

^

	

: 	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V �! B �

w

A & B �

w

C:

To facilitate the notation, we will suppress the subscripts and call this a P -type re-

quirement.

For each P -type requirement, and each w-reduction �, we have a Q-type subre-

quirement

Q : 	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V & �

V

= B �!

^

B �

w

^

A &

^

B �

w

C:

Finally for each Q-requirement and each w-reduction

^

� we have an R-type subre-

quirement

R : 	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V & �

V

= B �!

^

�

^

V

6=

^

B:

Strategy. Consider how we might try to satisfy a single triple of P -, Q-, and R-

type requirements. We need take no action at all until we see a certain amount of

agreement between 	

A

and 	

C

and between

^

	

^

A

and

^

	

C

. As this agreement grows,

we must ensure that the conclusion of the P -requirement holds, which we will do by

constructing a functional � which will give the desired reductions B = �

A

= �

C

.

Similarly, we need only take action on behalf of the Q-requirement if we begin to see

additional agreement between �

V

and B, in which case we will extend the de�nition

of another functional

^

� which will satisfy

^

B =

^

�

^

A

=

^

�

C

.

Since Q and R have the same hypotheses, we must also take action to satisfy R.

To this end, we begin execution of the following algorithm.

1) First, we pick a number x̂ for possible enumeration into both

^

B and

^

A.

2) Wait until

^

�

^

V

(x̂) #= 0 and

^

	

^

A

�

^

�(x̂) =

^

	

C

�

^

�(x̂) = V �

^

�(x̂). (If this

never happens, then R is satis�ed.) When this occurs, restrain numbers less than

maxf

^

 (y) : y �

^

�(x̂)g from entering

^

A, so that

^

A indirectly maintains the 0 com-

putation from

^

V .

3) Wait for C to change below x̂. While waiting, repeat steps 1 and 2. If we keep

passing step 2, then eventually some such C change must occur, since C is nonre-

cursive.

4) Wait for

^

	

C

to recompute

^

V �

^

�(x̂).

At this point, we have C permission to enumerate x̂ into

^

B, and C is maintaining

the 0 computation from

^

V . So we would like to enumerate x̂ into both

^

B and

^

A,

8 RICH BLAYLOCK, ROD DOWNEY, AND STEFFEN LEMPP

rede�ne

^

�(x̂), and wait for

^

A to reestablish its control over

^

V . The problem is that

C might change before this happens. So we hold o� on enumerating, and instead

start working on the unhatted side to set up a situation where a C change would be

bene�cial.

5) For each n starting with n = 0, perform the following subroutine.

a) Pick a number x

n

for possible enumeration into both B and A.

b) Wait until �

V

(x

n

) #= 0 and 	

A

� �(x

n

) = 	

C

� �(x

n

) = V � �(x

n

). (If this

never happens then the hypothesis of Q is falsi�ed.) When this occurs, restrain

numbers less than m = maxf (y) : y � �(x

n

)g from entering A, so that A

indirectly maintains the 0 computation from V .

c) Wait for n to enter K. The idea here is that since C is w-incomplete, if there

are in�nitely many x

n

, then for in�nitely many of them, n will enter K after C

has already settled down below x

n

(else we could compute K from C). Thus

by waiting for n to enter K before committing ourselves to using x

n

as a �-

witness, we are using the w-incompleteness of C as a pseudo-restraint on C.

While waiting, repeat 5a and 5b for the next value of n.

d) Put x

n

into A.

e) Wait for 	

A

to recompute V � �(x). If C changes below m before this happens,

then abandon x

n

and start over at 5a with the next value of n. Since C is

w-incomplete, we will eventually get a recomputation before any such C change.

Now the unhatted side is just waiting for a C permission, so we return to the hatted

side as previously planned.

6) Put x̂ into both

^

A and

^

B, and

7) Wait for

^

	

^

A

to recompute

^

V �

^

�(x̂). If C changes below x

n

before this happens, then

we can enumerate x

n

into B to falsify the hypothesis of requirement Q. Otherwise

we have at least satis�ed requirement R.

The Priority Tree. In order to satisfy all of the requirements simultaneously, we

use a priority tree, with each node devoted to a single requirement. Nodes devoted to

P -, Q-, and R-type requirements are called �, �, and
 nodes, respectively. Each �

node has its own functional �, and each � node has its own functional

^

� as described

in the general strategy above. We regard both � and � nodes as having two possible

outcomes, depending on whether or not the hypotheses of their requirements appear

in�nitely often to be satis�ed. However,
 nodes will have a single outcome (success).

Thus our tree is a subtree of the binary tree 2

<!

.

More precisely, we can de�ne the tree T recursively as follows. Fix a priority ordering

of the set of all P -, Q-, and R-type requirements such that any subrequirement Q

comes after its associated P -type requirement and any subrequirement R comes after

its associated Q-type requirement.

For any node � 2 T , let S be the highest priority requirement such that

1) S is not yet assigned to any node � � �;

2) if S is a Q-type requirement, then �b0 � � where � is devoted to S's associated

P -type requirement.

3) if S is a R-type requirement, then �b0 � � where � is devoted to S's associated

Q-type requirement.

Then � will be devoted to S, and will have two successors �b0 and �b1 unless S

is an R-type requirement, in which case it has the single successor �b1.

INFIMA IN THE RECURSIVELY ENUMERABLE WEAK TRUTH TABLE DEGREES 9

At each stage s of the construction, we will construct a string f

s

2 T of length at

most s, which will be our current approximation to the true path, i.e., the path f 2 [T]

for which f � m = lim inf

s

f

s

� m for all m, in the sense that for � = f � m we have

(a) (9

<1

s)[f

s

<

L

�] and

(b) (9

1

s)[� � f

s

].

Given a node � 2 T , a stage s is called a � -stage if � � f

s

. The set of all � -stages

is denoted by S

�

.

The construction. We build all sets and functionals in stages. At a given stage

s, we construct the current approximation f

s

to the true path, taking action for each

of the nodes visited along the way.

An �-node will always be either active for some lower �, meaning it is ready to

perform step 7 of the algorithm, or passive, meaning that if visited, it should perform

its default action of extending the de�nition of �.

Similarly, a � node will be marked as active for some lower
 if it has started

performing step 5 of the algorithm, and passive otherwise, in which case it should

simply extend the de�nition of

^

�.

During the construction below, to reset an � node means to mark � as passive,

abandon the current functional � associated with � and start building a new functional

(which we will still denote by � to ease the notation). To reset a � node means to mark

� as passive, cancel any uncancelled �-witnesses, and start over with a new functional

^

�. To reset a
 node means to cancel any uncancelled
-witnesses.

Stage s + 1: We de�ne f

s+1

recursively for arguments n < s + 1. Assume that

f

s+1

� n is de�ned. Depending on whether f

s+1

� n is an �, �, or
 node, we take

action accordingly and de�ne f

s+1

(n).

Case 1: f

s+1

� n is an � node. Let l(�; s+ 1) denote the length of agreement

l(�; s+ 1) = maxfy : 8x < y[

A

(x) = 	

C

(x) = V (x) &

^

	

^

A

(x) =

^

	

C

(x) =

^

V (x)g;

and let m(�; s + 1) = maxfl(�; t) : t < s + 1 & t 2 S

�

g. Stage s + 1 is called

�-expansionary if l(�; s+ 1) > m(�; s+ 1).

If s+ 1 is not �-expansionary, then just de�ne f

s+1

(n) = 1 and take no action for

�.

If s+ 1 is �-expansionary, then de�ne f

s+1

(n) = 0 and take the following action.

If � is active for some � � �, then � must have a unique uncancelled �-witness

x

n

2 A and must in turn be active for some
 � � that has an uncancelled
-

witness x̂ 2

^

A. Check if

^

�

C

(x̂) is still de�ned. If not, then put x

n

into B. De�ne

�

A

(z) = �

C

(z) = B(z) for all z < l(�; s+ 1), and return � to passive mode.

If � is passive, then check whether there is any � � � that is active for some

 � � and has an uncancelled �-witness x

n

2 A (i.e., � has performed step 5d of

the algorithm). If so, then check whether �

C

(x

n

) is still de�ned. If so, then put x̂

into

^

A and

^

B but do not rede�ne �. Mark � as active for �, stop building f

s+1

, and

proceed directly to the next stage. If �

C

(x

n

) is no longer de�ned, then cancel x

n

,

de�ne �

A

(z) = �

C

(z) = B(z) for all z < l(�; s+ 1), and leave � in passive mode.

Finally if � is passive but there is no such � as in the previous paragraph, then just

de�ne �

A

(z) = �

C

(z) = B(z) for all z < l(�; s+ 1), and leave � in passive mode.

10 RICH BLAYLOCK, ROD DOWNEY, AND STEFFEN LEMPP

Case 2: f

s+1

� n is a � node. De�ne the length of agreement l(�; s + 1) by

l(�; s+1) = minfl(�; s+1);

�

l(�; s+1)g, where � is the � node associated with � and

�

l(�; s+ 1) = maxfy : 8x < y[�

V

(y) = B(y) & 	

C

� �(y) = 	

A

� �(y) = V � �(y)]g:

Letm(�; s+1) = maxfl(�; t) : t < s+1 & t 2 S

�

g and call stage s+1 �-expansionary

if l(�; s+ 1) > m(�; s+ 1).

If s+ 1 is not �-expansionary, then just de�ne f

s+1

(n) = 1 and take no action for

�.

If s+ 1 is �-expansionary, then de�ne f

s+1

(n) = 0 and take the following action.

If � is active for some
 � �, �rst check if there is any uncancelled
-witness

x̂ 2

^

A. If so, then we must have passed step 6 of the algorithm, and the fact that

we are visiting � again means that in fact we have performed step 7 as well. De�ne

^

�

^

A

(z) =

^

�

C

(z) =

^

B(z) for all z < l(�; s+ 1), and return � to passive mode.

If there is no such
-witness, check whether � has an uncancelled witness x

n

for

with �

V

(x

n

) #= 0, x

n

not yet in A, and n 2 K. If so, enumerate x

n

into A. Stop

building f

s+1

, and proceed directly to the next stage.

If there is no such
- or �-witness as above, check whether �

V

(x

n

) #= 0 for every

uncancelled � witness x

n

. If so then pick the least n such that there is no �-witness x

n

for
, and assign the least element x

n

2 !

[h�;�i]

greater than s+ 1 as a new �-witness

for
. Stop building f

s+1

, and proceed directly to the next stage.

If, on the other hand, � has an uncancelled witness x

n

for
 with �

V

(x

n

) 6= 0, then

simply continue to wait for �

V

(x

n

) #= 0. Stop building f

s+1

, and proceed directly to

the next stage.

If � is passive, then �rst check whether there is any
 node
 � �b0 that has

no uncancelled
-witness in A but has an uncancelled, realized
-witness x̂ for which

C

s+1

� x̂ 6= C

t

� x̂, where t is the stage at which x̂ became realized.

If there is any such node, let
 denote the one of highest priority, and mark � as

active for
. Stop building f

s+1

, and proceed directly to the next stage.

If there is no such
 node, then de�ne

^

�

^

A

(z) =

^

�

C

(z) =

^

B(z) for all z < l(�; s+1),

and de�ne f

s+1

(n) = 0.

Case 3: f

s+1

� n is a
 node. We must de�ne f

s+1

(n) = 1 in all cases. De�ne the

length of agreement l(
; s+ 1) by l(
; s+ 1) = minfl(�; s+ 1);

�

l(
; s+ 1)g, where � is

the � node associated with
 and

�

l(
; s+ 1) = maxfy : 8x < y[

^

�

^

V

(y) =

^

B(y) &

^

	

C

�

^

�(y) =

^

	

^

A

�

^

�(y) =

^

V �

^

�(y)]g:

Letm(
; s+1) = maxfl(
; t) : t < s+1 & t 2 S

g and call stage s+1
-expansionary

if l(
; s+ 1) > m(
; s+ 1).

If s+ 1 is not
-expansionary, then take no action for
.

If s+ 1 is
-expansionary, check if there is any uncancelled, unrealized
-witness x̂

for which

^

�

^

V

(x̂) #= 0. If so, pick the least such x̂ and call it realized (and cancel the

others).

If there is no
-witness x̂ for which

^

�

^

V

(x̂) ", then assign the least element x

n

2 !

[�]

greater than s+ 1 as a new
-witness.

This concludes the description of the cases. At the end of stage s+1, we reset all

nodes � > f

s+1

.

INFIMA IN THE RECURSIVELY ENUMERABLE WEAK TRUTH TABLE DEGREES 11

The veri�cation. To show that the construction works, �rst note that there is a

unique path f 2 [T], called the true path, for which f � n = lim inf

s

f

s

� n for all n, in

the usual sense that for � = f � m we have

a) (9

<1

s)[f

s

<

L

�] and

b) (9

1

s)[� � f

s

].

Note also that any node � � f is reset at most �nitely often.

It remains to show that each node along the true path f ful�lls its commitment by

satisfying its associated requirement.

Lemma 2.1. If for any � node there are in�nitely many �-expansionary stages, then

there are in�nitely many stages at which � is passive.

Proof. If � becomes active for some � � �, then � will become passive by the next

�-expansionary stage. �

Lemma 2.2. If for any � node there are in�nitely many �-expansionary stages, then

there are in�nitely many stages at which � is passive.

Proof. If � becomes active for some
 � �, then every �-witness x

n

for
 will eventually

satisfy �

V

(x

n

) #= 0 since there are in�nitely many �-expansionary stages. There are

in�nitely many n that enter K after C has settled down below x

n

. Thus some such

witness x

n

must eventually get enumerated into A. The �-node associated with �

must then go active for �, and by the previous Lemma must become passive again. If

� has not been reset (and so become passive) by the next �-expansionary stage, then

� will become passive at that stage.

�

Lemma 2.3. Any � node � 2 f satis�es its associated P type requirement.

Proof. Suppose that � is devoted to the requirement

	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V �! B �

w

A & B �

w

C;

and that the hypothesis of this requirement is true. Then there are in�nitely many

�-expansionary stages, so by Lemma 2.1, there are in�nitely many stages at which

� is passive. If � becomes active for some � � � at some stage, then �

A

and �

C

will not be extended at that stage, but will be extended at the next stage when �

becomes passive. Thus �

A

and �

C

are extended in�nitely often. For any argument

x, we always de�ne �

A

(x) = �

C

(x) = B(x), and this value only changes (from 0 to 1)

if both x has entered A and C � x has changed since the last time �

A

(x) and �

C

(x)

were de�ned. So � gives the desired w-reductions, with the use function � being the

identity function. �

Lemma 2.4. Any � node � 2 f satis�es its associated Q type requirement.

Proof. Exactly as the proof of the previous Lemma. �

Lemma 2.5. Any
 node
 2 f satis�es its associated R type requirement.

Proof. Wait for a stage after which
 is never reset. Assuming that the hypotheses of

R hold, any
-witness that gets assigned afterwards will eventually become realized.

Because C is nonrecursive, the associated �-node � will become active for
, and by

12 RICH BLAYLOCK, ROD DOWNEY, AND STEFFEN LEMPP

Lemma 2.2 must eventually become passive again. Because C is w-incomplete, the

associated �-node � will eventually go active for �. Now if C has changed below

the witness x̂ which caused � to go active, then we will enumerate x

n

into B, after

which we will have B(x

n

) = 1 but �

	

A

(x

n

) #= 0 ever afterward, contradicting the

assumption that there are in�nitely many �-expansionary stages. Thus we still have

^

�

^

	

^

A

(x̂) #= 0, but

^

B(x̂) = 1. Thus R is satis�ed. � �

In the r.e. Turing degrees, there are several ways to show that there exists a pair with

no in�mum (and hence that the r.e. Turing degrees do not form a lattice). The �rst

proofs of this fact were given by Lachlan [La66, p. 569] and Yates [Ya65]. Lachlan's

proof was based on his \non-diamond" theorem and the Sacks splitting theorem, while

Yates indicated a proof by relativizing the minimal pair construction to a certain

uniformly ascending sequence of r.e. degrees. Later, Jockusch [Jo81] gave an elegant

�nite injury construction of a pair of r.e. Turing degrees with no in�mum. Fischer

[Fi86] showed that this last construction carries over to the r.e. w-degrees to give a

pair of r.e. w-degrees with no in�mum. Blaylock [Bl91] used the same non-in�mum

strategy combined with standard techniques to give uniform proofs of Theorem 2 in

the case when the given degree is either low or promptly simple.

References

[Am84a] K. Ambos-Spies, Contiguous r.e. degrees, Computation and Proof Theory (M. M. Richter

et al., eds.), Lecture Notes in Mathematics 1104, Springer-Verlag, 1984, pp. 1{37.

[Am84b] K. Ambos-Spies, On pairs of recursively enumerable degrees, Trans. Amer. Math. Soc. 283

(1984), 507{531.

[Am85] K. Ambos-Spies, Cupping and noncapping in the r.e. weak truth table and Turing degrees,

Arch. Math. Logik Grundlag. 25 (1985), 109{126.

[Bl91] R. Blaylock, Some Results on e-Genericity and Recursively Enumerable Weak Truth Table

Degrees, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1991.

[Co75] P. F. Cohen, Weak Truth-Table Reducibility and the Pointwise Ordering of 1�1 Recursive

Functions, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1975.

[Do87] R. G. Downey, �

0

2

degrees and transfer theorems, Illinois J. Math. 31 (1987), 419{427.

[Fi86] P. Fischer, Pairs without in�mum in the recursively enumerable weak truth table degrees,

J. Symbolic Logic 51 (1986), 117{129.

[FR59] R. M. Friedberg and H. Rogers, Jr., Reducibility and completeness for sets of integers, Z.

Math. Logik Grundlag. Math. 5 (1959), 117{125.

[Jo81] C. G. Jockusch, Jr., Three easy constructions of recursively enumerable sets, Logic Year

1979{80 (Lerman, Schmerl, and Soare, eds.), Lecture Notes in Mathematics 859,

Springer-Verlag, 1981, pp. 83{91.

[La66] A. H. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc. London

Math. Soc. 16 (1966), 537{569.

[LS75] R. E. Ladner and L. P. Sasso, The weak truth table degrees of recursively enumerable sets,

Ann. Math. Logic 8 (1975), 429{448.

[So87] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987.

[St83] M. Stob, wtt-degrees and T-degrees of recursively enumerable sets, J. Symbolic Logic 48

(1983), 921{930.

[Ya65] C. E. M. Yates, A minimal pair of recursively enumerable degrees, J. Symbolic Logic 32

(1965), 159{168.

