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x0. Introduction and Notation. Weak truth table reducibility (w-reducibility) was

�rst introduced by Friedberg and Rogers [FR59]. Intuitively, we say that a set A is

w-reducible to a set B (written A �

w

B) if there is a Turing reduction from A to B

and a recursive function f such that, for any x, the value f(x) bounds the greatest

number whose membership or nonmembership in B is used to determine A(x).

Since w-reducibility is a stronger reducibility than Turing reducibility, each Turing

degree can be partitioned into the w-degrees of its sets. Ladner and Sasso [LS75]

showed that there exists a nonzero contiguous degree, i.e., an r.e. Turing degree which

contains a single r.e. w-degree. The existence of such contiguous degrees, as well as the

strongly contiguous degrees introduced by Downey [Do87], has been used to establish

numerous existence results (cf. [LS75], [St83], [Am84a]) in the r.e. Turing degrees

by establishing the corresponding results in the r.e. w-degrees.

Our results here deal with in�ma in the r.e. w-degrees, thus continuing the inves-

tigations of Cohen [Co75], Ambos-Spies [Am85], and Fischer [Fi86]. Cohen's result

that every incomplete r.e. w-degree is w-branching and Fischer's result that some ini-

tial segments of the r.e. w-degrees are lattices indicate that in�ma are more common

in the r.e. w-degrees than in the r.e. Turing degrees. We reinforce this notion.

After giving an elegant �nite injury construction of a pair of r.e. Turing degrees with

no in�mum [Jo81], Jockusch asked whether every nonrecursive incomplete r.e. Turing

degree was half of a pair without in�mum. Ambos-Spies [Am84b] and Harrington

independently answered this question a�rmatively by introducing strongly noncappable

r.e. degrees. An r.e. Turing degree a is strongly noncappable if no r.e. bj

T

a has

an in�mum with a. Ambos-Spies and Harrington showed that there is a strongly

noncappable degree incomparable with any given nonrecursive incomplete r.e. degree.

In Theorem 1, we show that every nontrivial r.e. w-degree caps nontrivially, so that

the only r.e. w-degrees analogous to strongly noncappable Turing degrees are trivial.

This result gives yet another contrast between the r.e. w-degrees and the r.e. Turing

degrees.

In Theorem 2, however, we show that no nontrivial r.e. w-degree caps with all r.e. w-

degrees. Thus in the r.e. w-degrees, like the r.e. Turing degrees, every degree is half

of a pair without in�mum.

We remark that if two r.e. w-degrees do have an in�mum, then the in�mum is itself

r.e. (cf. [So87, Exercise IX.3.5]).
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Our notation is for the most part standard, as in Soare [So87].

Let ! denote the set of natural numbers including zero. By number we mean an

element of ! and by set we mean a subset of !. We use 2

!

to denote the set of in�nite

sequences of 0's and 1's, and 2

<!

for the set of �nite sequences of 0's and 1's. For any

set S and number j, we denote the set of elements of S which are strictly less than j

by S � j.

Fix a recursive bijection from !

n

to ! which is increasing in each argument, and let

hx

1

; x

2

; : : : ; x

n

i denote the image of the n-tuple (x

1

; x

2

; : : : ; x

n

) under this bijection.

For a �xed j, !

[j]

denotes the set of all pairs of the form hx; ji.

Let T

e

denote the e

th

oracle Turing machine in some e�ective listing of all oracle

Turing machines, and let feg

A

denote the partial function computed by T

e

with oracle

A. We write feg

A

s

(x) = y if x; y; e < s, machine T

e

computes feg

A

(x) = y in less

than s steps, and the largest number used in the computation is less than s. The use

function use(A; e; x; s) is the least number greater than all those used in the compu-

tation feg

A

s

(x), if this computation is convergent, and 0 otherwise. The use function

use(A; e; x) is use(A; e; x; s) if feg

A

s

is de�ned for some s, and is unde�ned otherwise.

We use upper case greek letters (�, 	, etc.) to denote w-reductions and their lower

case counterparts (�,  , etc.) to denote the corresponding use functionals.

x1. Nontrivial capping in the r.e. w-degrees. Here we show that every nontrivial

r.e. w-degree caps nontrivially.

Theorem 1. For any nonrecursive, w-incomplete r.e. w-degree c, there is an r.e. w-

degree aj

w

c such that the in�mum a \ c exists.

Proof. Let C be a set of the given w-degree c with recursive enumeration fC

s

g. We

will construct sets A and B such that Aj

w

C and the w-degree of B is the in�mum of

those of A and C.

To make Aj

w

C, we will satisfy for each w-reduction � the requirements

P

�

: A 6= �

C

and

N

�

: C 6= �

A

:

To make the w-degree of B the in�mum of those of A and C, we will satisfy for

each w-reduction � the requirement

Q

�

: �

A

= �

C

= D �! D �

w

B;

as well as the global requirements B �

w

A and B �

w

C.

We will achieve both of these last reductions by permitting, i.e., we will only enu-

merate a number x into B at a stage when numbers lesser or equal to x enter both

A and C. In fact we will enforce this on the A side by enumerating x itself into A

whenever we enumerate it into B.

To aid in satisfying the remaining requirements, we will use a priority tree, with each

node on the tree devoted to a single requirement. The nodes devoted to requirements of

the form Q

�

, called in�mum nodes will be regarded as having two possible outcomes,

according as to whether the hypothesis of the requirement is true or not. Nodes
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devoted to requirements of the form P

�

or N

�

, called coding nodes and preservation

nodes, respectively, will be regarded as having only a single outcome. Thus our priority

tree T is a subtree of a binary tree.

To be more precise, choose any priority ordering of all the requirements, and de�ne

the tree by recursion on the length of its nodes. Assuming that T has been de�ned

for nodes of length less than j�j, let � be devoted to the least requirement not yet

associated with any node � � �. If this requirement is of the form Q

�

, then � has two

successors, �b0 and �b1. Otherwise, � has a single successor �b0.

As usual, [T ] denotes the set ff 2 2

!

: (8n)[f � n 2 T ]g of all in�nite paths through

T . We order nodes on the priority tree as follows: for �; � 2 T ,

(i) � is to the left of � (� <

L

�) if

(9� 2 T )[�b0 � � & �b1 � � ];

(ii) � � � if � <

L

� or � � � ;

(iii) � < � if � � � and � 6= � .

Fix an e�ective coding of the elements of T and denote the code number of a node

� 2 T under this coding by #� .

To meet a requirement like P

�

, we will code K into A at stages when the length of

agreement between A and �

C

grows. The particular coding is not crucial, as long as

we are able to code all of (or even co�nitely much of) K into A if this length continues

to grow. Then, if A were equal to �

C

, we would have C �

w

A �

w

K, a contradiction.

Of course this strategy for a node � devoted to P

�

may need to respect \restraints"

of various higher priority nodes devoted to N - or Q-type requirements. This will be

accomplished by \resetting" �, which simply means starting the coding process over

using markers greater than the current stage number (which will be larger than any

such restraints). Requirement P

�

will eventually be satis�ed since the node on the

true path devoted to it will be reset only �nitely often.

The strategy for a requirement of the form N

�

is the Sacks preservation strategy.

When the agreement between C and �

A

grows to a new maximum m, we will try to

prevent numbers less than the combined use maxf�(x) : x < mg from entering A.

This will be done by resetting all lower priority coding and in�mum nodes. If � is

the node on the true path devoted to N

�

, then higher priority coding nodes will be

�nitary, so the only danger to � comes from higher priority in�mum nodes. We will

arrange so that, after an �-expansionary stage, such an in�mum node will enumerate

a number into A only if a smaller number has already entered A. Thus the in�mum

node will not be allowed to cause the �rst \injury" to �.

Finally, the basic strategy for a requirement of the form Q

�

is to try to maintain

computations common to �

A

and �

C

. At any given stage of the construction, a node

� devoted to Q

�

will have a certain length of agreement between �

A

and �

C

. At

stages when this length grows, we will arrange for � to have a \trace" z for every pair

hx; yi such that x is below the length of agreement and y is below the use �(x). Node

� cannot reset all lower priority nodes when its length of agreement grows, since this

may happen in�nitely often. Thus � must occasionally allow lower priority nodes to

enumerate into A and destroy a computation �

A

(x). If a number such as y later enters

C before the next �-expansionary stage, then we will enumerate the trace z into B to

\inform" B that both sides of the computation have been lost. As mentioned earlier,
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in this case we will also simultaneously enumerate z into A to keep the reduction

B �

w

A.

At each stage s of the construction, we will construct a string f

s

2 T of length s

which will be our current approximation to the true path, i.e., the path f 2 [T ] for

which f � m = lim inf

s

f

s

� m for all m, in the sense that for � = f � m we have

(a) (9

<1

s)[f

s

<

L

�] and

(b) (9

1

s)[� � f

s

].

Given a node � 2 T , a stage s is called a � -stage if � � f

s

. The set of all � -stages

is denoted by S

�

.

At various substages of the construction we will be enumerating elements into A.

At each stage s, we will need to de�ne a length of agreement l(�; s) for each � � f

s

appropriate for the requirement to which � is devoted. The value of l(�; s) will depend

on the elements enumerated into A up to the point at which we de�ne l(�; s). Thus

for convenience, at any point during the construction, we let A

+

denote the set of

elements enumerated into A up to that point.

In the following construction, to reset a coding node simply means to mark it as

having been reset, while to reset an in�mum node additionally means to cancel all of

the uncancelled traces associated with it.

Construction of A and B.

Stage s = 0.

Let A

0

= B

0

= ;, and let f

0

be the empty string.

Stage s+ 1.

Trace enumeration.

First consider each number y 2 C

s+1

� C

s

. (Depending on the convention chosen,

there might be at most one such number y.) Each such y may have several traces

associated with it for the sake of di�erent nodes devoted to in�mum requirements.

Suppose z = h#�; x; y; wi is a trace assigned to hx; yi for the sake of some node �

devoted to an in�mum requirement Q

�

.

Let t be the greatest �-expansionary stage less than s + 1 (there must be such a

stage since the stage at which z was assigned as a trace is �-expansionary). Check

whether any number less than �(x) has entered A since the beginning of substage j�j of

stage t (i.e., since the exact substage at which the largest length of agreement between

�

A

and �

C

was established). The idea is that unless such a change has occurred in

A, there is no need to notify the in�mum since A has held its side of the computation

on x. If such a change in A has indeed occurred, then enumerate the trace z into both

A and B, and reset all coding or in�mum nodes � � �b1.

Constructing f

s+1

.

Now we construct the current approximation f

s+1

to the true path, taking appro-

priate action at each node visited along the way. Perform the following substage in

increasing order of t for each t with 0 � t � s.

Substage t. Let � = f

s+1

� t, and consider the three possibilities for the type of

requirement to which � is devoted.

Case 1.

If � is devoted to an in�mum requirement Q

�

, then let

l(�; s+ 1) = maxfx : (8y < x)[�

C

s+1

s+1

(y) #= �

A

+

s+1

(y)]g;



INFIMA IN THE RECURSIVELY ENUMERABLE WEAK TRUTH TABLE DEGREES 5

and let

m(�; s+ 1) = maxfl(�; r) : r < s+ 1 and r 2 S

�

g:

Call s+ 1 �-expansionary if l(�; s+ 1) > m(�; s+ 1).

Put f

s+1

(t) = 0 if s+ 1 is �-expansionary, and f

s+1

(t) = 1 otherwise.

If s+1 is �-expansionary then for each pair hx; yi with x < l(�; s+1) and y < �(x)

which does not already have an uncancelled �-trace, �nd the least number w such that

z = h#�; x; y; wi > s+ 1 and assign z as an �-trace for hx; yi.

Finally if s+1 is �-expansionary then reset every coding or in�mum node � � �b1.

Case 2.

If � is devoted to a coding requirement P

�

, we automatically have f

s+1

(t) = 0.

Let

l(�; s+ 1) = maxfx : (8y < x)[�

C

s+1

s+1

(y) = A

+

(y)]g:

Let r be the greatest stage less than s+1 at which � was reset, and enumerate into

A all elements of the set fh#�; r; ki : k 2 K

s+1

g which do not exceed l(�; s+1). If the

set of numbers so enumerated is nonempty, then reset every coding or in�mum node

� > �.

Case 3.

Finally, if � is devoted to a preservation requirement N

�

, we automatically have

f

s+1

(t) = 0. Let

l(�; s+ 1) = maxfx : (8y < x)[�

A

+

s+1

= C

s+1

(y)]g

and

m(�; s+ 1) = maxfl(�; r) : r < s+ 1 and r 2 S

�

g:

If l(�; s+ 1) > m(�; s+ 1), call s+ 1 �-expansionary.

If s+ 1 is �-expansionary then reset every coding or in�mum node � > �.

This completes the construction.

As remarked earlier, both reductions B �

w

A and B �

w

C should be clear. The

existence of the true path f should also be clear. So it only remains to show that

each node on the true path satis�es the requirement to which it is assigned. This is

accomplished by an inductive lemma.

Lemma. For each w-reduction �,

(i) P

�

is satis�ed, and the node on the true path devoted to P

�

causes �nitely

many elements to enter A and resets other nodes �nitely often,

(ii) N

�

is satis�ed and the node on the true path devoted to N

�

resets other nodes

�nitely often, and

(iii) Q

�

is satis�ed.

Proof. (i) Let � denote the node on the true path devoted to P

�

. Note that by the

inductive hypothesis, � is reset �nitely often by preservation nodes and other coding

nodes. Since in�mum nodes above � are either �nitary or do not reset �, � is in fact

reset only �nitely often. Let r be the largest stage at which � is reset. Assume for a

contradiction that A = �

C

. Then l(�; s) �!1, so eventually all numbers of the form

h#�; r; ki with k 2 K enter A. In fact we have k 2 K if and only if h#�; r; ki 2 A, so

K �

1

A �

w

C, a contradiction.
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Since P

�

is satis�ed, q = maxfl(�; s) : s 2 !g is �nite, and � never enumerates any

number larger than q into A.

Since � resets nodes only at stages when it enumerates into A, this can happen only

�nitely often as well.

(ii) Let � denote the node on the true path devoted to N

�

. Suppose that �

A

= C.

Then l(�; s) �! 1. We will show for a contradiction that C is recursive. Choose a

stage s large enough so that after stage s, no node to the left of �, no �nitary in�mum

node above �, and (by inductive hypothesis) no coding node above � enumerates any

numbers into A. To compute C(x) for some x, let s

x

be the least �-expansionary

stage greater than s with l(�; s

x

) > x. Then we claim that A � �(x) = A

s

x

� �(x),

so C(x) = �

A

(x) = �

A

s

x

s

x

(x). For suppose that some number less than �(x) enters A

after stage s

x

. Let z be the smallest number to do so. By choice of s

x

, z could only

enter A for the sake of an in�mum node � � � for which there are in�nitely many

�-expansionary stages. In particular this means that s

x

is itself �-expansionary. But

then z could only enter A after s

x

if a smaller number enters �rst, contradicting the

choice of z.

Since N

�

is satis�ed, there are only �nitely many �-expansionary stages, so � resets

other nodes �nitely often.

(iii) Let 
 denote the node on the true path devoted to Q

�

. As in part (i), it should

be clear that 
 is reset only �nitely often. Let r be the greatest stage at which 


is reset, and assume that the hypothesis of Q

�

holds, namely that �

A

= �

C

= D.

To compute D(x) from B, let s

x

be the least 
-expansionary stage greater than r

for which l(
; s

x

) > x, B

s

x

� �(x) = B � �(x), and B

s

x

(z) = B(z) for every 
-trace

associated with x.

Let p denote the common value of �

C

s

x

s

x

(x) and �

A

+

s

x

(x) at the end of the 
-

expansionary substage. We claim that for every stage t � s

x

, either �

A

t

t

(x) = p

or �

C

t

t

(x) = p, so D(x) = p. For since B has settled down below �(x), only coding

nodes could cause an injury to the computation from A, and in particular only coding

nodes � � 
, since all other coding nodes have either stopped acting or have been reset

by 
. But if such a node (or nodes) enumerates numbers less than �(x) into A, then

C must remain unchanged below �(x) until at least the next 
-expansionary substage.

Otherwise, a 
-trace for x would enter B, contrary to the choice of s

x

. Thus, between


-expansionary substages, either A � �(x) or C � �(x) is preserved, as desired.

This completes the proof of the lemma, and hence of the theorem. � �

x2. Noncapping.

In contrast to Theorem 1, we now show that every r.e. w-degree is half of a pair

without in�mum.

Theorem 2. For any nonrecursive, w-incomplete r.e. w-degree c, there is an r.e. w-

degree a such that the in�mum a \ c fails to exist.

Proof. Let C be an r.e. set of the given degree c with recursive enumeration fC

s

g

s2!

.

The proof will be nonuniform in the sense that we will construct two r.e. sets A and

^

A, only one of whose w-degrees is guaranteed to have the desired property.

Our requirements are therefore based on pairs of sets. In addition to constructing

the main sets A and

^

A, we will construct for each quadruple (V;

^

V ;	;

^

	), where V
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and

^

V are r.e. sets and 	 and

^

	 are w-reductions, a corresponding pair B and

^

B. The

idea is that if 	

A

= 	

C

= V and

^

	

^

A

=

^

	

C

=

^

V , then either B will be w-reducible to

both A and C but not V (so that deg

w

(V ) 6= deg

w

(A) \ deg

w

(C)), or

^

B will have the

corresponding relationship with

^

A, C, and

^

V .

If we can do this for each such quadruple then we are done. For if the w-degree

of V is actually the in�mum of those of A and C (for example), then we will have

guaranteed that no

^

V could have a w-degree which is the in�mum of those of C and

^

A.

Requirements. There are three types of requirements we will satisfy in order to

achieve the desired results. First, for each pair V and

^

V , and each pair of w-reductions

	 and

^

	, we have a requirement

P

V;

^

V ;	;

^

	

: 	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V �! B �

w

A & B �

w

C:

To facilitate the notation, we will suppress the subscripts and call this a P -type re-

quirement.

For each P -type requirement, and each w-reduction �, we have a Q-type subre-

quirement

Q : 	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V & �

V

= B �!

^

B �

w

^

A &

^

B �

w

C:

Finally for each Q-requirement and each w-reduction

^

� we have an R-type subre-

quirement

R : 	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V & �

V

= B �!

^

�

^

V

6=

^

B:

Strategy. Consider how we might try to satisfy a single triple of P -, Q-, and R-

type requirements. We need take no action at all until we see a certain amount of

agreement between 	

A

and 	

C

and between

^

	

^

A

and

^

	

C

. As this agreement grows,

we must ensure that the conclusion of the P -requirement holds, which we will do by

constructing a functional � which will give the desired reductions B = �

A

= �

C

.

Similarly, we need only take action on behalf of the Q-requirement if we begin to see

additional agreement between �

V

and B, in which case we will extend the de�nition

of another functional

^

� which will satisfy

^

B =

^

�

^

A

=

^

�

C

.

Since Q and R have the same hypotheses, we must also take action to satisfy R.

To this end, we begin execution of the following algorithm.

1) First, we pick a number x̂ for possible enumeration into both

^

B and

^

A.

2) Wait until

^

�

^

V

(x̂) #= 0 and

^

	

^

A

�

^

�(x̂) =

^

	

C

�

^

�(x̂) = V �

^

�(x̂). (If this

never happens, then R is satis�ed.) When this occurs, restrain numbers less than

maxf

^

 (y) : y �

^

�(x̂)g from entering

^

A, so that

^

A indirectly maintains the 0 com-

putation from

^

V .

3) Wait for C to change below x̂. While waiting, repeat steps 1 and 2. If we keep

passing step 2, then eventually some such C change must occur, since C is nonre-

cursive.

4) Wait for

^

	

C

to recompute

^

V �

^

�(x̂).

At this point, we have C permission to enumerate x̂ into

^

B, and C is maintaining

the 0 computation from

^

V . So we would like to enumerate x̂ into both

^

B and

^

A,
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rede�ne

^

�(x̂), and wait for

^

A to reestablish its control over

^

V . The problem is that

C might change before this happens. So we hold o� on enumerating, and instead

start working on the unhatted side to set up a situation where a C change would be

bene�cial.

5) For each n starting with n = 0, perform the following subroutine.

a) Pick a number x

n

for possible enumeration into both B and A.

b) Wait until �

V

(x

n

) #= 0 and 	

A

� �(x

n

) = 	

C

� �(x

n

) = V � �(x

n

). (If this

never happens then the hypothesis of Q is falsi�ed.) When this occurs, restrain

numbers less than m = maxf (y) : y � �(x

n

)g from entering A, so that A

indirectly maintains the 0 computation from V .

c) Wait for n to enter K. The idea here is that since C is w-incomplete, if there

are in�nitely many x

n

, then for in�nitely many of them, n will enter K after C

has already settled down below x

n

(else we could compute K from C). Thus

by waiting for n to enter K before committing ourselves to using x

n

as a �-

witness, we are using the w-incompleteness of C as a pseudo-restraint on C.

While waiting, repeat 5a and 5b for the next value of n.

d) Put x

n

into A.

e) Wait for 	

A

to recompute V � �(x). If C changes below m before this happens,

then abandon x

n

and start over at 5a with the next value of n. Since C is

w-incomplete, we will eventually get a recomputation before any such C change.

Now the unhatted side is just waiting for a C permission, so we return to the hatted

side as previously planned.

6) Put x̂ into both

^

A and

^

B, and

7) Wait for

^

	

^

A

to recompute

^

V �

^

�(x̂). If C changes below x

n

before this happens, then

we can enumerate x

n

into B to falsify the hypothesis of requirement Q. Otherwise

we have at least satis�ed requirement R.

The Priority Tree. In order to satisfy all of the requirements simultaneously, we

use a priority tree, with each node devoted to a single requirement. Nodes devoted to

P -, Q-, and R-type requirements are called �, �, and 
 nodes, respectively. Each �

node has its own functional �, and each � node has its own functional

^

� as described

in the general strategy above. We regard both � and � nodes as having two possible

outcomes, depending on whether or not the hypotheses of their requirements appear

in�nitely often to be satis�ed. However, 
 nodes will have a single outcome (success).

Thus our tree is a subtree of the binary tree 2

<!

.

More precisely, we can de�ne the tree T recursively as follows. Fix a priority ordering

of the set of all P -, Q-, and R-type requirements such that any subrequirement Q

comes after its associated P -type requirement and any subrequirement R comes after

its associated Q-type requirement.

For any node � 2 T , let S be the highest priority requirement such that

1) S is not yet assigned to any node � � �;

2) if S is a Q-type requirement, then �b0 � � where � is devoted to S's associated

P -type requirement.

3) if S is a R-type requirement, then �b0 � � where � is devoted to S's associated

Q-type requirement.

Then � will be devoted to S, and will have two successors �b0 and �b1 unless S

is an R-type requirement, in which case it has the single successor �b1.
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At each stage s of the construction, we will construct a string f

s

2 T of length at

most s, which will be our current approximation to the true path, i.e., the path f 2 [T ]

for which f � m = lim inf

s

f

s

� m for all m, in the sense that for � = f � m we have

(a) (9

<1

s)[f

s

<

L

�] and

(b) (9

1

s)[� � f

s

].

Given a node � 2 T , a stage s is called a � -stage if � � f

s

. The set of all � -stages

is denoted by S

�

.

The construction. We build all sets and functionals in stages. At a given stage

s, we construct the current approximation f

s

to the true path, taking action for each

of the nodes visited along the way.

An �-node will always be either active for some lower �, meaning it is ready to

perform step 7 of the algorithm, or passive, meaning that if visited, it should perform

its default action of extending the de�nition of �.

Similarly, a � node will be marked as active for some lower 
 if it has started

performing step 5 of the algorithm, and passive otherwise, in which case it should

simply extend the de�nition of

^

�.

During the construction below, to reset an � node means to mark � as passive,

abandon the current functional � associated with � and start building a new functional

(which we will still denote by � to ease the notation). To reset a � node means to mark

� as passive, cancel any uncancelled �-witnesses, and start over with a new functional

^

�. To reset a 
 node means to cancel any uncancelled 
-witnesses.

Stage s + 1: We de�ne f

s+1

recursively for arguments n < s + 1. Assume that

f

s+1

� n is de�ned. Depending on whether f

s+1

� n is an �, �, or 
 node, we take

action accordingly and de�ne f

s+1

(n).

Case 1: f

s+1

� n is an � node. Let l(�; s+ 1) denote the length of agreement

l(�; s+ 1) = maxfy : 8x < y[	

A

(x) = 	

C

(x) = V (x) &

^

	

^

A

(x) =

^

	

C

(x) =

^

V (x)g;

and let m(�; s + 1) = maxfl(�; t) : t < s + 1 & t 2 S

�

g. Stage s + 1 is called

�-expansionary if l(�; s+ 1) > m(�; s+ 1).

If s+ 1 is not �-expansionary, then just de�ne f

s+1

(n) = 1 and take no action for

�.

If s+ 1 is �-expansionary, then de�ne f

s+1

(n) = 0 and take the following action.

If � is active for some � � �, then � must have a unique uncancelled �-witness

x

n

2 A and must in turn be active for some 
 � � that has an uncancelled 
-

witness x̂ 2

^

A. Check if

^

�

C

(x̂) is still de�ned. If not, then put x

n

into B. De�ne

�

A

(z) = �

C

(z) = B(z) for all z < l(�; s+ 1), and return � to passive mode.

If � is passive, then check whether there is any � � � that is active for some


 � � and has an uncancelled �-witness x

n

2 A (i.e., � has performed step 5d of

the algorithm). If so, then check whether �

C

(x

n

) is still de�ned. If so, then put x̂

into

^

A and

^

B but do not rede�ne �. Mark � as active for �, stop building f

s+1

, and

proceed directly to the next stage. If �

C

(x

n

) is no longer de�ned, then cancel x

n

,

de�ne �

A

(z) = �

C

(z) = B(z) for all z < l(�; s+ 1), and leave � in passive mode.

Finally if � is passive but there is no such � as in the previous paragraph, then just

de�ne �

A

(z) = �

C

(z) = B(z) for all z < l(�; s+ 1), and leave � in passive mode.
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Case 2: f

s+1

� n is a � node. De�ne the length of agreement l(�; s + 1) by

l(�; s+1) = minfl(�; s+1);

�

l(�; s+1)g, where � is the � node associated with � and

�

l(�; s+ 1) = maxfy : 8x < y[�

V

(y) = B(y) & 	

C

� �(y) = 	

A

� �(y) = V � �(y)]g:

Letm(�; s+1) = maxfl(�; t) : t < s+1 & t 2 S

�

g and call stage s+1 �-expansionary

if l(�; s+ 1) > m(�; s+ 1).

If s+ 1 is not �-expansionary, then just de�ne f

s+1

(n) = 1 and take no action for

�.

If s+ 1 is �-expansionary, then de�ne f

s+1

(n) = 0 and take the following action.

If � is active for some 
 � �, �rst check if there is any uncancelled 
-witness

x̂ 2

^

A. If so, then we must have passed step 6 of the algorithm, and the fact that

we are visiting � again means that in fact we have performed step 7 as well. De�ne

^

�

^

A

(z) =

^

�

C

(z) =

^

B(z) for all z < l(�; s+ 1), and return � to passive mode.

If there is no such 
-witness, check whether � has an uncancelled witness x

n

for 


with �

V

(x

n

) #= 0, x

n

not yet in A, and n 2 K. If so, enumerate x

n

into A. Stop

building f

s+1

, and proceed directly to the next stage.

If there is no such 
- or �-witness as above, check whether �

V

(x

n

) #= 0 for every

uncancelled � witness x

n

. If so then pick the least n such that there is no �-witness x

n

for 
, and assign the least element x

n

2 !

[h�;�i]

greater than s+ 1 as a new �-witness

for 
. Stop building f

s+1

, and proceed directly to the next stage.

If, on the other hand, � has an uncancelled witness x

n

for 
 with �

V

(x

n

) 6= 0, then

simply continue to wait for �

V

(x

n

) #= 0. Stop building f

s+1

, and proceed directly to

the next stage.

If � is passive, then �rst check whether there is any 
 node 
 � �b0 that has

no uncancelled 
-witness in A but has an uncancelled, realized 
-witness x̂ for which

C

s+1

� x̂ 6= C

t

� x̂, where t is the stage at which x̂ became realized.

If there is any such node, let 
 denote the one of highest priority, and mark � as

active for 
. Stop building f

s+1

, and proceed directly to the next stage.

If there is no such 
 node, then de�ne

^

�

^

A

(z) =

^

�

C

(z) =

^

B(z) for all z < l(�; s+1),

and de�ne f

s+1

(n) = 0.

Case 3: f

s+1

� n is a 
 node. We must de�ne f

s+1

(n) = 1 in all cases. De�ne the

length of agreement l(
; s+ 1) by l(
; s+ 1) = minfl(�; s+ 1);

�

l(
; s+ 1)g, where � is

the � node associated with 
 and

�

l(
; s+ 1) = maxfy : 8x < y[

^

�

^

V

(y) =

^

B(y) &

^

	

C

�

^

�(y) =

^

	

^

A

�

^

�(y) =

^

V �

^

�(y)]g:

Letm(
; s+1) = maxfl(
; t) : t < s+1 & t 2 S




g and call stage s+1 
-expansionary

if l(
; s+ 1) > m(
; s+ 1).

If s+ 1 is not 
-expansionary, then take no action for 
.

If s+ 1 is 
-expansionary, check if there is any uncancelled, unrealized 
-witness x̂

for which

^

�

^

V

(x̂) #= 0. If so, pick the least such x̂ and call it realized (and cancel the

others).

If there is no 
-witness x̂ for which

^

�

^

V

(x̂) ", then assign the least element x

n

2 !

[�]

greater than s+ 1 as a new 
-witness.

This concludes the description of the cases. At the end of stage s+1, we reset all

nodes � > f

s+1

.
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The veri�cation. To show that the construction works, �rst note that there is a

unique path f 2 [T ], called the true path, for which f � n = lim inf

s

f

s

� n for all n, in

the usual sense that for � = f � m we have

a) (9

<1

s)[f

s

<

L

� ] and

b) (9

1

s)[� � f

s

].

Note also that any node � � f is reset at most �nitely often.

It remains to show that each node along the true path f ful�lls its commitment by

satisfying its associated requirement.

Lemma 2.1. If for any � node there are in�nitely many �-expansionary stages, then

there are in�nitely many stages at which � is passive.

Proof. If � becomes active for some � � �, then � will become passive by the next

�-expansionary stage. �

Lemma 2.2. If for any � node there are in�nitely many �-expansionary stages, then

there are in�nitely many stages at which � is passive.

Proof. If � becomes active for some 
 � �, then every �-witness x

n

for 
 will eventually

satisfy �

V

(x

n

) #= 0 since there are in�nitely many �-expansionary stages. There are

in�nitely many n that enter K after C has settled down below x

n

. Thus some such

witness x

n

must eventually get enumerated into A. The �-node associated with �

must then go active for �, and by the previous Lemma must become passive again. If

� has not been reset (and so become passive) by the next �-expansionary stage, then

� will become passive at that stage.

�

Lemma 2.3. Any � node � 2 f satis�es its associated P type requirement.

Proof. Suppose that � is devoted to the requirement

	

A

= 	

C

= V &

^

	

^

A

=

^

	

C

=

^

V �! B �

w

A & B �

w

C;

and that the hypothesis of this requirement is true. Then there are in�nitely many

�-expansionary stages, so by Lemma 2.1, there are in�nitely many stages at which

� is passive. If � becomes active for some � � � at some stage, then �

A

and �

C

will not be extended at that stage, but will be extended at the next stage when �

becomes passive. Thus �

A

and �

C

are extended in�nitely often. For any argument

x, we always de�ne �

A

(x) = �

C

(x) = B(x), and this value only changes (from 0 to 1)

if both x has entered A and C � x has changed since the last time �

A

(x) and �

C

(x)

were de�ned. So � gives the desired w-reductions, with the use function � being the

identity function. �

Lemma 2.4. Any � node � 2 f satis�es its associated Q type requirement.

Proof. Exactly as the proof of the previous Lemma. �

Lemma 2.5. Any 
 node 
 2 f satis�es its associated R type requirement.

Proof. Wait for a stage after which 
 is never reset. Assuming that the hypotheses of

R hold, any 
-witness that gets assigned afterwards will eventually become realized.

Because C is nonrecursive, the associated �-node � will become active for 
, and by
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Lemma 2.2 must eventually become passive again. Because C is w-incomplete, the

associated �-node � will eventually go active for �. Now if C has changed below

the witness x̂ which caused � to go active, then we will enumerate x

n

into B, after

which we will have B(x

n

) = 1 but �

	

A

(x

n

) #= 0 ever afterward, contradicting the

assumption that there are in�nitely many �-expansionary stages. Thus we still have

^

�

^

	

^

A

(x̂) #= 0, but

^

B(x̂) = 1. Thus R is satis�ed. � �

In the r.e. Turing degrees, there are several ways to show that there exists a pair with

no in�mum (and hence that the r.e. Turing degrees do not form a lattice). The �rst

proofs of this fact were given by Lachlan [La66, p. 569] and Yates [Ya65]. Lachlan's

proof was based on his \non-diamond" theorem and the Sacks splitting theorem, while

Yates indicated a proof by relativizing the minimal pair construction to a certain

uniformly ascending sequence of r.e. degrees. Later, Jockusch [Jo81] gave an elegant

�nite injury construction of a pair of r.e. Turing degrees with no in�mum. Fischer

[Fi86] showed that this last construction carries over to the r.e. w-degrees to give a

pair of r.e. w-degrees with no in�mum. Blaylock [Bl91] used the same non-in�mum

strategy combined with standard techniques to give uniform proofs of Theorem 2 in

the case when the given degree is either low or promptly simple.
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