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ON THE ROLE OF THE COLLECTION PRINCIPLE
FOR Σ0

2-FORMULAS IN SECOND-ORDER REVERSE
MATHEMATICS

C. T. CHONG, STEFFEN LEMPP, AND YUE YANG

Abstract. We show that the principle PART from Hirschfeldt
and Shore [7] is equivalent to the Σ0

2-Bounding principle BΣ0
2

over RCA0, answering one of their open questions.
Furthermore, we also fill a gap in a proof in Cholak, Jockusch

and Slaman [1] by showing that D2
2 implies BΣ0

2 and is thus indeed
equivalent to Stable Ramsey’s Theorem for Pairs (SRT2

2). This also
allows us to conclude that the combinatorial principles IPT2

2, SPT2
2

and SIPT2
2 defined by Dzhafarov and Hirst [5] all imply BΣ0

2, and
thus that SPT2

2 and SIPT2
2 are both equivalent to SRT2

2 as well.
Our proof uses the notion of a bi-tame cut, the existence of

which we show to be equivalent, over RCA0, to the failure of BΣ0
2.

1. Introduction and results

Let M be a model of RCA0. In their paper on combinatorial prin-
ciples implied by Ramsey’s Theorem for pairs (RT2

2), Hirschfeldt and
Shore [7, section 4] introduced the following combinatorial principle:

Definition 1.1. The Principle PART states: Let 〈M,≺〉 be a recur-
sive (i.e., ∆0

1-definable in M) linear ordering with least and greatest
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element. Assume that for any x ∈ M , exactly one of {y ∈ M : y ≺ x}
and {y ∈ M : x ≺ y} is M-finite. Then for any M-finite partition
{ai : i ≤ k} of 〈M,≺〉, {y ∈ M : ai ≺ y ≺ ai+1} is not M-finite for
exactly one i < k. (For simplicity, we will assume here that the end-
points of M under ≺ are a0 and ak. Note that we will always denote
the universe of the model M by M .)

Note that the conclusion of PART clearly implies the hypothesis,
which in turn implies that there is at most one i < k for which
{y ∈ M : ai ≺ y ≺ ai+1} is not M-finite. PART was introduced
by Hirschfeldt and Shore [7] as one in a series of principles shown to be
strictly weaker than Ramsey’s Theorem for pairs. In fact, they studied
the Chain Antichain Principle (CAC), the Ascending and Descending
Sequence Principle (ADS), and their stable versions, denoted respec-
tively as SCAC and SADS, and proved that CAC, and hence SCAC, is
strictly weaker than RT2

2, and that SCAC implies SADS, which strictly
implies PART.

A general problem that was discussed quite extensively in [7] is the
strength of the first-order theory of these principles. Hirst [8] has shown
that RT2

2 implies the Σ0
2-Bounding principle BΣ0

2, and in [7, Proposi-
tion 4.1], BΣ0

2 was proved to be strictly weaker than SCAC. On the
other hand, while PART does not follow from Recursive Comprehen-
sion (RCA0, see [7, Corollary 4.7]), it is a consequence of BΣ0

2 over RCA0

(see [7, Proposition 4.4]). Question 6.4 of [7] asks whether SADS or in-
deed PART implies, or is weaker than, BΣ0

2. In the latter case, PART
would have been the first “natural” principle of reverse mathematics
strictly between RCA0 and BΣ0

2. However, we show in this paper that
the former case holds, namely, that PART and BΣ0

2 are indeed equiva-
lent, adding further evidence toBΣ0

2 being a very robust proof-theoretic
principle:

Theorem 1.2. The Principle PART is equivalent to BΣ0
2 over RCA0.

The key idea of the proof is to show that PART does not hold in any
model of RCA0 in which BΣ0

2 fails. It turns out that the failure of BΣ0
2

in a model of RCA0 where, by definition, the Σ0
1-induction scheme IΣ0

1

holds, is captured by the existence of cuts with a property we call “bi-
tameness”. The notion of a tame Σ0

2-function was introduced by Ler-
man in α-recursion theory (Lerman [9], Chong [2]), and later adapted
to models of fragments of Peano arithmetic to study the complexity
of infinite injury priority arguments in the context of reverse recursion
theory (Chong and Yang [3]).

A cut is a nonempty bounded subset of M that is closed downwards
and under the successor function. A Σ0

2-cut is a cut that is Σ0
2-definable.
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The existence of a Σ0
2-cut characterizes models of BΣ0

2 in which the
Σ0

2 induction scheme IΣ0
2 fails. Let I be a Σ0

2-cut bounded by k. Then I
is bi-tame if both it and [0, k]\I are tame Σ0

2 (to be defined below). As
we shall see, the existence of a bi-tame cut characterizes precisely the
models of RCA0 that do not satisfy BΣ0

2. This fact will then be used
to establish the failure of PART. Recall here that the existence of a
Σ0

2-cut characterizes the failure of IΣ0
2 over the base theory IΣ0

1. Thus
bi-tameness separates the Σ0

2-cuts I in models satisfying only IΣ0
1 from

those in models also satisfying BΣ0
2.

We conclude this paper by proving Theorem 1.4, which implies some
other consequences of Ramsey type combinatorial principles. To elab-
orate, our method allows one to fill a gap in Cholak, Jockusch and
Slaman [1]. They define the following principle:

Definition 1.3. The Principle D2
2 states: For any ∆0

2-definable sub-
set A of M , there is an infinite subset B inM which is either contained
in, or disjoint from, A.

It was claimed in [1, Lemma 7.10] that D2
2 is equivalent to Stable

Ramsey’s Theorem for Pairs (SRT2
2) over RCA0. However, the argument

that D2
2 implies SRT2

2 implicitly assumes BΣ0
2 and thus contains a gap.

We close this gap in the following

Theorem 1.4. The Principle D2
2 implies BΣ0

2, and is therefore equiv-
alent to Stable Ramsey’s Theorem (SRT2

2), over RCA0.

Dzhafarov and Hirst [5] introduced the following “polarized” versions
of Ramsey’s Theorem, based on similar notions in Erdős and Rado [4,
§9]:

Definition 1.5. Let n, k ≥ 1 and f : [M ]n → k.

(1) A p-homogeneous set for f is a sequence 〈H1, . . . , Hn〉 of M-
infinite sets such that for some c < k, f({x1, . . . , xn}) = c for
every 〈x1, . . . , xn〉 ∈ H1 × · · · ×Hn.

(2) Such a sequence 〈H1, . . . , Hn〉 of M-infinite sets is called in-
creasing p-homogeneous if (1) is required to hold only for in-
creasing tuples 〈x1, . . . , xn〉.

(3) PT2
2 (or IPT2

2, respectively, for “(Increasing) Polarized Theo-
rem”) is the statement that every f : [M ]2 → 2 has an (increas-
ing) p-homogeneous set.

(4) SPT2
2 (or SIPT2

2, respectively, for “Stable (Increasing) Polarized
Theorem”) is the statement that every f : [M ]2 → 2 has an
(increasing) p-homogeneous set.
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(There are natural extensions to k many colors and, for (I)PT2
2, to

n-tuples.)

The following was proved in [5]:

Theorem 1.6 (Dzhafarov, Hirst [5]).

(1) Over RCA0, PT2
2 implies BΣ0

2.
(2) Over RCA0, PT2

2 implies IPT2
2 and SPT2

2.
(3) Over RCA0, both IPT2

2 and SPT2
2 imply SIPT2

2.
(4) Over RCA0, SIPT2

2 implies D2
2.

(5) Over RCA0 +BΣ0
2, IPT2

2 implies SPT2
2.

(6) Over RCA0 +BΣ0
2, all of SRT2

2, SPT
2
2 and SIPT2

2 are equivalent.

Since all these principles imply D2
2, Theorem 1.4 considerably sim-

plifies the picture (and answers Questions 5.1 (part 2) and 5.2 in [5]):

Theorem 1.7.

(1) Over RCA0, all of IPT2
2, SPT2

2 and SIPT2
2 imply BΣ0

2.
(2) SRT2

2, SPT
2
2 and SIPT2

2 are equivalent over RCA0.
(3) Over RCA0, IPT2

2 implies SPT2
2. �

The question of whether either or both of the middle two implications
in

RT2
2 ⇔ PT2

2 ⇒ IPT2
2 ⇒ SPT2

2 ⇔ SRT2
2

are strict remains open.

The rest of this paper is devoted to the proofs of Theorems 1.2
and 1.4.

2. The proof of Theorem 1.2

We work in models of RCA0. Since IΣ0
1 is the most important con-

sequence of RCA0 we use, we can work as if we were in first-order
Peano arithmetic. (We refer the reader to Hájek/Pudlák [6] for back-
ground on first-order arithmetic and to Simpson [10] for background
on second-order arithmetic and reverse mathematics.)

We will show the equivalence of PART and BΣ0
2 in two steps, after

introducing the notion of bi-tame cuts.

Definition 2.1. Suppose M is a model of IΣ0
1. We say a set I is a

bi-tame cut in M iff

(1) I is a cut, i.e., closed under successor and closed downward.
(2) There are a point k /∈ I and a Σ0

2-function g : [0, k]→ M with
recursive approximation h(i, s) : [0, k]×M →M such that:
(a) The domain of g is the whole interval [0, k].
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(b) The range of g is unbounded in M.
(c) (Tame Σ0

2 on I) For any i ∈ I, there is an s such that for
all j < i, for all t > s, h(j, t) = h(j, s), i.e., g settles down
on all initial segments, and so, in particular, g � [0, i) is
M-finite.

(d) (Tame Σ0
2 on Ī) For any i < k not in I, there is an s such

that for all j with i < j ≤ k and all t > s, h(j, t) = h(j, s),
i.e., g also settles down on all final segments, and so, in
particular, g � (i, k] is M-finite.

Remark. Throughout this paper, we use boldface definability, so,
e.g., Σ0

2 is really Σ0
2(M), i.e., with parameters from M . Observe that

any bi-tame cut I is ∆0
2, as both I and [0, k] \ I are Σ0

2.
First we show that the failure of PART is equivalent to the existence

of bi-tame cuts.
The failure of PART can be stated as: There is a recursive linear

orderingM = (M,≺) together with anM-finite partition {ai : i ≤ k}
(which we refer to as landmarks) such that for any x ∈M , exactly one
of {y : y ≺ x} and {y : x ≺ y} is M-finite, but that for all i < k, the
interval {y : ai ≺ y ≺ ai+1} is M-finite.

Lemma 2.2. The existence of a linear ordering witnessing the failure
of PART is equivalent to the existence of a bi-tame cut.

A pictorial version of the proof proceeds as follows: Imagine the
graph of the function g which witnesses the bi-tameness of I as consist-
ing of k many vertical columns, the i-th one of which is of height g(i).
Now “push the columns from both ends” as in Domino, to produce
a linear ordering. The resulting horizontal picture is more or less the
linear order.

For the converse, just “un-Domino” the horizontal picture. We get
the bi-tameness from the condition that either the initial segment or
the final segment is M-finite.

Proof. (⇐) Let I be a bi-tame cut with witness Σ0
2-function g : [0, k]→

M and recursive approximation h(x, s) of g(x) as in Definition 2.1. We
recursively enumerate the linear order ≺ as follows.

Stage 0 (laying out the landmarks): Set ai = i for i ≤ k and ai ≺ aj
iff i < j.

Stage s + 1: Suppose we have specified the order up to m ∈ M at
the end of the stage s. Then, for each i < k in increasing order, if
h(i, s + 1) > h(i, s), then set k = h(i, s + 1) − h(i, s) and insert the
next k many elements ofM between the landmarks ai and ai+1, to the
right of all the elements previously inserted between these landmarks.
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We check that the linear order ≺ works: It is a recursive linear
ordering because a linear order ≺ is recursive iff it has an r.e. copy.
Once the approximation h(i, s) of g(i) has settled down on the initial
segment [0, i+1] or the final segment [i, k], depending on whether i ∈ I
or not, no elements will enter the interval {y : ai ≺ y ≺ ai+1}, hence
this interval isM-finite. Finally, a one-point partition leaves either an
initial segment or a final segmentM-finite because of the bi-tameness,
and it cannot leave both M-finite as g is unbounded.

(⇒) Suppose ≺ is such a recursive linear order with landmarks
{ai : i ≤ k}. Fix a recursive enumeration of M. Define a recur-
sive approximation h(i, s) = x of g : [0, k]→ M by taking x to be the
maximal element enumerated into the interval {y : ai ≺ y ≺ ai+1} up
to stage s. g is unbounded since every element of M appears in the
enumeration. Define the Σ0

2-cut I by i ∈ I iff i < k and the initial
segment of the one-point partition by ai is M-finite. We check that I
is bi-tame. We only need to show that if i ∈ I then g settles down
on the initial segment [0, i], as the other case for the final segment is
symmetric. Since the interval [0, ai] = {y : y ≺ ai} is M-finite, ap-
ply BΣ0

1 to the formula ∀y ∈ [0, ai] ∃s [y ≺ ai at stage s] to obtain a
uniform upper bound t such that no element enters the interval [0, ai]
after stage t. Thus h(i, s) = h(i, t) for all s > t. �

The second part of the proof is to link the existence of bi-tame cuts
to BΣ0

2. The essential idea is based on the proof of the equivalence
of BΣ0

2 and I∆0
2 by Slaman [11].

Lemma 2.3. Suppose M |= IΣ0
1. Then M 6|= BΣ0

2 iff there exists a
bi-tame cut in M.

Proof. Clearly, ifM |= BΣ0
2 then there is no ∆0

2-cut and thus a fortiori
no bi-tame cut.

On the other hand, suppose that M 6|= BΣ0
2. We need to construct

a bi-tame cut. We start by proving two claims:

Claim 2.4. Suppose that M |= IΣ0
1 and M 6|= BΣ0

2. Then there are
an element k ∈M and a function f : [0, k)→M such that

(a) f is injective;
(b) the domain of f is [0, k) and the range of f is unbounded; and
(c) the graph of f is Π0

1.

Proof. Let ∀t ψ(x, y, t) be a Π0
1-formula which witnesses the failure

of BΠ0
1 (which is equivalent to BΣ0

2) on some interval [0, k). We define
a Π0

1-function f : [0, k)→M by setting f(x) = 〈x, 〈y, s〉〉 iff

∀t ψ(x, y, t)∧∀z < y ∃t < s¬ψ(x, z, t)∧∀t < s ∃z < y ∀v < tψ(x, z, v).
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Intuitively, the first coordinate x of f(x) just makes f injective. So, f
essentially maps x to the least y such that ∀t ψ(x, y, t), but this alone
would give us only a ∆0

2-graph. To make the graph Π0
1, we observe

furthermore that for any z < y, ∃tz ¬ψ(x, z, tz). The number s in f(x)
is the least upper bound on all such tz, which exists by BΣ0

1. It is now
easy to check that f works, concluding the proof of Claim 2.4. �

We may think of f(x) as the stage at which x is enumerated into
[0, k). We now construct a “tame” Σ0

2-function g which enumerates the
interval [0, k). Here, “tameness” means that g settles down on all initial
segments. This tameness constitutes the essential difference between g
and f . More precisely, we have the following

Claim 2.5. Let k and f be as in Claim 2.4. Then there are a Σ0
2-cut I

and a Σ0
2-function g : I → [0, k), together with a recursive approxima-

tion h to g, such that

(a) g is 1-1 from I onto [0, k);
(b) g is “tame”, i.e., for all i ∈ I, there is a stage s such that for all

j < i and all t > s, h(j, t) = h(j, s) = g(j); so, in particular, g � i
is M-finite; and

(c) g is not “coded” on I × [0, k), i.e., g 6= X ∩ (I × [0, k)) for any
M-finite set X. (Informally, there is no M-finite “end-extension”
of (the graph of) g).

Proof. We start with the definition of a function F . Let θ(x, y, u) be
a Σ0

0-formula such that (x, y) ∈ f iff ∀u θ(x, y, u). For each s ∈ M ,
we will define F (s) as the approximation to f at stage s; since f is a
1-1 function, F (s) can be made a 1-1 function as well (possibly with a
smaller domain). F (s) is defined as follows: Set (x, y) ∈ F (s) iff

x < k ∧ y ≤ s ∧ ∀u < s θ(x, y, u) ∧ ∀y′ < y ∃u′ < s¬θ(x, y′, u′)
∧ ¬∃x′ < x [∀u < s θ(x′, y, u) ∧ ∀y′ < y ∃u′ < s¬θ(x′, y, u′)].

Since F (s) is an M-finite set of pairs, we can list all its elements
(x0, y0), . . . , (xe, ye) (for some e = es < k, say) ordered by their second
coordinates, i.e., such that yi < yj iff i < j. We define h(i, s) = xi for
all i ≤ e. Formally, we define h(i, s) = x iff there is c < 2〈k,s〉 which
is a code of an M-finite sequence 〈c0, . . . , ci〉 of length i+ 1, say, such
that

(1) for each j ≤ i, cj is a pair 〈xj, yj〉;
(2) x = xi;
(3) ∀j ≤ i ((xj, yj) ∈ F (s));
(4) ∀j < k ≤ i (yj < yk); and
(5) ∀j < i∀z < yj+1 [yj < z → ∀x < k ((x, z) /∈ F (s))].



8 C. T. CHONG, STEFFEN LEMPP, AND YUE YANG

Let I = {i : ∃s ∀j ≤ i ∀t > s [h(j, s) = h(j, t)]} and, for each i ∈ I,
let g(i) = lims h(i, s). We first note that since F and h are ∆0

0, both I
and the graph of g are Σ0

2.
We now check that I, g and h satisfy statements (a)-(c) from the

claim.
(a) We first show that g is 1-1. Observe that if g(i) = x then there

is s such that ∀t > s (h(i, t) = x); so, in particular, there is some y such
that for all t > s, (x, y) ∈ F (t), i.e., f(x) = y. Suppose that i1 < i2 are
two elements in I, and that g(i1) = x1 and g(i2) = x2. By definition
of I, there is a stage s such that g settles down at both i1 and i2. Thus
there are y1 and y2 such that (x1, y1), (x2, y2) ∈ F (t) for all t > s. By
the choice of F (t), y1 6= y2 and thus x1 6= x2.

Next we show that g is onto [0, k). For any m < k, f(m) is defined,
thus f � [0, k)× [0, f(m)) is a bounded Π0

1-set and hence coded. There-
fore, its complement [0, k)× [0, f(m)) \ f is an M-finite Σ0

1-set. Now,
by BΣ0

1, there is a uniform bound s such that for each (x, y) in this com-
plement, ∃u < s¬θ(x, y, u). Hence for all t > s, (x, y) /∈ F (t). Hence,
if (m, f(m)) is the e-th pair in F (s), g(e) = m. This establishes (a).

(b) follows from the definition of g and h.
(c) Observe that I is indeed a cut. Suppose that i ∈ I. Let s be the

(least) stage by which g settles down on [0, i]. At stage s, we will see
theM-finite set F (s), say, {(x0, y0), . . . , (xi, yi)}, listed with increasing
y-coordinates. Since f is unbounded, let z be the (least) number in the
range of f such that z > yi. Then g(i+1) = z. Finally, we show that g
is not coded on I × [0, k). Suppose otherwise, say, X ∩ (I × [0, k)) = g
for some M-finite set X. Then

g = {(i,m) ∈ X : m < k and i is the least j such that (j,m) ∈ X},

which isM-finite. Hence its domain I would beM-finite, a contradic-
tion. This concludes the proof of Claim 2.5. �

Finally, we use g and h to obtain a bi-tame cut J with its approxi-
mation l(j, s).

We start with the interval [0, kk] and initially place two markers l
and r at 0 and kk, respectively. At each stage s, the construction is
performed in e many steps, where e is the least number not in the
domain of h(·, s). At the end of each step, we shrink the gap between l
and r by a factor of k.

Step 0. Calculate h(0, s). Set l(0, s) = h(0, s)kk−1 and r(0, s) =
l(0, s) + kk−1.
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Step i. Suppose l(i− 1, s) and r(i− 1, s) are the current positions of
the markers and r(i− 1, s)− l(i− 1) = kk−i. Calculate h(i, s), and let
l(i, s) = l(i− 1, s) + h(i, s)kk−i−1 and r(i, s) = l(i, s) + kk−i−1.

Now let J = {x : ∃s ∃i ∀t > s∀j < i [l(j, s) = l(j, t) ∧ x < l(i, s)]}
and J̄ = {x : ∃s∃i ∀t > s ∀j < i [r(j, s) = r(j, t)∧x > r(i, s)]}. Then J
and J̄ are both Σ0

2, and when h settles down on the initial segment
[0, i], then both l(i, s) and r(i, s) settle down as well. Clearly, J and J̄
are disjoint, so it remains to show that J ∪ J̄ = [0, kk], i.e., that there is
no “gap” left. Suppose m belongs to the gap. Then write m as an k-ary
number. We can then read out g(i) from m for all i ∈ I, contradicting
the fact that g is not coded on I × [0, k).

This concludes the proof of Lemma 2.3. �

Lemmas 2.2 and 2.3 now immediately establish Theorem 1.2 as de-
sired.

3. The proof of Theorem 1.4

Using Theorem 1.2, it suffices to prove PART from D2
2. So suppose

that (M,≺) is a linear order in M such that for any x ∈ M , exactly
one of {y ∈ M : y ≺ x} and {y ∈ M : x ≺ y} is M-finite. Let A
be the set of all x ∈ M such that {y ∈ M : y ≺ x} is M-finite, or
equivalently, such that {y ∈ M : x ≺ y} is M-infinite. Thus A is
a ∆0

2-definable subset of M . Applying D2
2 (and by symmetry), let B

be an infinite subset of A which exists in the second-order model M.
Then the ≺-downward closure C of B is a Σ0

1-definable subset of M ;
and by our assumption on (M,≺), C = A. Now fix any M-finite
partition {ai : i ≤ k} of 〈M,≺〉 (where a0 and ak are the least and
greatest element), and assume that for each i < k, the interval [ai, ai+1]
is M-finite. By Σ0

1-induction, we then have that for each i ≤ k, the
set {a0, a1, . . . , ai} is a subset of C, and thus [a0, ai] is M-finite. But
clearly ak /∈ C, giving the desired contradiction.

As a final remark, we note that Jockusch later observed a shorter
but less direct proof, using Hirschfeldt and Shore’s result [7, Propo-
sition 4.6] that SADS implies BΣ0

2 and thus requiring only a proof
of SADS from D2

2 as in the first half of the previous paragraph: Once
the infinite set B is obtained, one can argue immediately that it has
order-type M or M∗ and has thus established SADS.
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[4] Erdős, Paul and Richard Rado, A partition calculus in set theory, Bull. Amer.
Math. Soc. 62 (1956), 427–489.

[5] Dzhafarov, Damir D. and Hirst, Jeffry L., The polarized Ramsey’s theorem,
Arch. Math. Logic 48 (2009), 141–157.
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