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Abstract. We exhibit a �nite lattice without critical triple that cannot be em-

bedded into the enumerable Turing degrees. Our method promises to lead to a full

characterization of the �nite lattices embeddable into the enumerable Turing degrees.

0. Introduction. The search for a decision procedure for the 89-theory of the

poset, E, of (recursively) enumerable degrees is considered to be one of the major

open problems of computability theory. Attempts at �nding decision procedures

have concentrated on deciding fragments of this theory, fragments which are gener-

ally existential theories of E in expanded languages. Most of the e�orts have cen-

tered around a particular fragment, namely, the one obtained by adding a constant

symbol 0 (representing least element), a binary relation symbol _ (representing

join), and (n+1)-ary predicates M

n

(a

0

; : : : ; a

n�1

; b) for all n � 2 which are de�ned

by 8x(x � a

0

& : : :& x � a

n�1

! x � b). (As the meet of enumerable degrees

does not always exist, these predicates are meant to capture as much of the meet

operation as is feasible.) A structure in this language is called a partial lattice with

least element.

The study of (�nite) partial lattice embeddings into E was begun by Lachlan

[La1] and Yates [Y] almost thirty years ago. Since that time, many embedding and

some non-embeddability results have been obtained, but no characterization of the

�nite partial lattices which can be embedded into E has been found. The most
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2 A NONEMBEDDABLE LATTICE WITHOUT CRITICAL TRIPLE

general results for the lattice setting were obtained by Ambos-Spies and Lerman

[AL1,AL2]; they presented a su�cient condition, NEC, for non-embeddability, and

a su�cient condition, EC, for embeddability, but were unable to show that the

two conditions were complementary. (A discussion of the obstructions encountered

in embedding proofs whose analysis led to these conditions can be found in [L2].)

Subsequently, several people (including both authors) had conjectured that these

conditions are, in fact, complementary. It is the purpose of this paper to show

that this is not the case; we exhibit a non-embeddable twenty-element lattice, L

20

,

which fails to satisfy NEC. Our theorem also contradicts Downey's conjecture that

a �nite lattice is embeddable into every non-trivial interval of E i� it has no critical

triples.

Two types of obstructions are encountered when trying to implement the pinball

machine technology introduced in [L1] to embed lattices into E. The �rst type

of obstruction is captured by NEC, a condition formulated by Ambos-Spies and

Lerman [AL1]. (Lachlan and Soare [LaS] had previously provided the �rst example,

S

8

, of a non-embeddable lattice, and their proof of its non-embeddability was the

source of the intuition for the formulation of NEC.) This obstruction arises when

the procedure for satisfying a join requirement requires the use of an in�nitary

trace procedure which endangers the satisfaction of a single meet requirement. The

other type of obstruction arises from the interaction of a join requirement with

several meet requirements, and necessitates retargeting traces for new sets. The

new target causes potential injury to a meet requirement. All previous examples of

lattices which gave rise to the second type of obstruction were lattices which also

had an obstruction of the �rst type, and so satis�ed NEC. Through a process of

formulating stronger conditions than EC which were satis�ed by all the embeddable

lattices which we had hitherto examined and then trying to construct a �nite lattice

which failed to satisfy both this condition and NEC, we succeeded, after several

iterations, in constructing such a lattice which was non-embeddable. Our method

of proof can be generalized, and provides new insight towards obtaining a necessary

and su�cient condition (in terms of the complementarity of two recursion theoretic

constructions) for the embeddability of a �nite partial lattice with least element

into E. (Note that every lattice has partial lattice structure).

Our notation generally follows that of Soare [S]. We abbreviate X � (x + 1) by

X[x]. Upper case Greek letters will denote computable partial functionals, and

the corresponding lower case letter denotes its use function. We assume, without

loss of generality, that whenever we �x all but one argument x of a use function

�(�a; x), then the resulting function of one variable will be non-decreasing. We say

that there is an injury to 	(A;x) at stage s if 	

s�1

(A

s�1

;x) is de�ned with use

 (x; s � 1), and A

s�1

[ (x; s� 1)] 6= A

s

[ (x; s� 1)]. If A = B � C, then we will

want to specify the set whose change causes the injury; thus for D 2 fB;Cg, we

say that there is a D-injury to 	(A;x) at stage s if 	

s�1

(A

s�1

;x) is de�ned with

use  (x; s�1), and D

s�1

[ (x; s�1)] 6= D

s

[ (x; s�1)]. (Here, the use is computed

separately for each component of the direct sum.) These de�nitions will be used

when the functional 	 and the set A are given. If 	 is being constructed and A

is given, then the axioms being de�ned at stage s� 1 will generally have the form

	

s

(A

s�1

;x). We make the obvious modi�cation to the de�nition of injury in this

case.
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1. NEC and L

20

. The conditions EC and NEC, mentioned in the introduction,

are not central to this paper. As we deal only with a single non-embeddable lattice,

the complicated condition, EC, is not needed. And we do not need the full power

of NEC; we merely use the fact that every lattice which satis�es NEC has a critical

triple, and will note that the lattice we present has no critical triples.

The isolation of critical triples from NEC was done independently by Downey

[D] and Weinstein [W] in the pursuit of �nding a necessary and su�cient condition

ensuring the embeddability of a �nite lattice into all intervals of E.

De�nition. A triple ha; b; ci of elements of a �nite lattice L is called a critical

triple if a, b, and c are pairwise-incomparable, a _ b = a _ c and b ^ c � a.

The existence of critical triples in a lattice was shown, by Ambos-Spies and

Lerman [AL1], to be equivalent to another property which is easier to verify in most

situations; it is this latter variant of the de�nition which we will use in this paper.

For convenience, we state the condition of [AL1] and prove that it is equivalent to

the non-existence of critical triples in a �nite lattice.
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Figure 1: Lattice L

20

Proposition. A �nite lattice L with least element 0 fails to have critical triples

if for all a < d in L such that the interval (a; d) is empty, the di�erence of the

intervals [0; d]� [0; a] has a (unique) least element.

Proof. First suppose that L has a critical triple ha; b; ci. Let d = a _ b = a _ c; by

replacing a, if necessary, by a maximal element in [a; d), we can assume without



4 A NONEMBEDDABLE LATTICE WITHOUT CRITICAL TRIPLE

loss of generality that d is a minimal cover of a. Now [0; d]� [0; a] cannot have a

unique least element e, else then e � b; c so e � b ^ c, and e 6� a, contrary to the

de�nition of critical triple.

Conversely, suppose that there are a < d 2 L such that d is a minimal cover of

a and [0; d]� [0; a] does not have a least element. Then there are minimal elements

bjc 2 [0; d]� [0; a]. As b; c 6� a and d is a minimal cover of a, a_ b = a_ c = d; and

by the minimality of b and c, b ^ c � a. Hence ha; b; ci is a critical triple. �

We now verify that the lattice L

20

of Figure 1 has no critical triples.

Theorem 1.1. L

20

is a lattice which fails to have critical triples.

Proof. We apply the proposition. The table below lists all possible choices for d

and a such that d is a minimal cover of a, and the least element b of [0; d]� [0; a].

d a b d a b d a b

1 q

0

p

1

1 q

1

p

0

1 ~p w

q

0

q p

0

q

0

u

0

w

1

~p p

1

p

0

q

1

q p

1

q

1

u

1

w

0

~p p

0

p

1

q e f q f p u

0

p

0

w

u

0

v

0

p

0

u

1

v

1

p

1

u

1

p

1

w

p

1

p p

1

p

0

p p

0

e v

0

w

1

e v

1

w

0

e ~w p v

0

v w

0

v

0

w

0

p v

1

v w

1

v

1

w

1

p

f ~w f v w p v p w

p 0 p ~w w

0

w

1

~w w

1

w

0

w

1

w w

1

w

0

w w

0

w 0 w

�

In the remainder of the paper, we will show that L

20

cannot be embedded into

E. We now present the type of analysis which leads to the proof. There are only six

join and meet facts about L

20

which are used in the proof, so the proof extends to

any partial lattice which is order-isomorphic to L

20

and satis�es these facts. They

are: p

0

_w

1

� f ; p

1

_w

0

� f ; q

0

^u

1

� v

1

; q

1

^u

0

� v

0

; q

0

^ ~p � p

0

; and q

1

^ ~p � p

1

.

In order to embed a lattice L into E, we construct an enumerable set A

c

for

each c 2 L, and satisfy requirements which ensure that the correspondence yields

a lattice isomorphism. The various isomorphism-preserving requirements impose

certain restrictions on the construction. Suppose that b; c; d 2 L. If b � c, then we

require that there be a computable set C such that A

b

= A

c

\ C. If b 6� c, then

there will be stages of our construction when we will be placing numbers into A

b

while permanently restraining other numbers from A

c

. If b _ c = d, then whenever

a number x is a candidate to be placed into A

b

, we will appoint a trace y for this

number which must enter A

c

or A

d

at least as soon as x enters A

b

; and if y enters

its target set earlier than x, then a replacement trace for y must immediately be

appointed.

If b ^ c = d, then we must e�ectively compute a function g from A

d

as it is

separately e�ectively computed from A

b

and A

c

. The computation process will be

revised as new numbers separately enter A

b

and A

c

. When a number enters, say,
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A

b

, we must not let A

c

change its computation of g until a new computation from

A

b

is recovered, unless A

d

is also allowed to revise its computation, else this strategy

will fail. When a number enters A

b

, it may raise the use of the computation of g

from A

b

on some number x; after a new computation is found, a number may enter

A

c

and thereby raise the use of the computation of g(x) from A

c

. We have now

formed a dangerous interval ; numbers entering A

d

which lie below both new uses

and above the use for the computation from A

d

will now allow the computations

of g(x) from both A

b

and A

c

to change simultaneously, thereby allowing the value

of g(x) to change, without the ability to correct the computation from A

d

. Thus

we must prevent numbers in dangerous intervals from entering A

d

.

We now see that there are potential con
icts between the strategies to satisfy

join or diagonalization requirements, and the strategy to satisfy meet requirements.

Meet requirements impose a restriction which prevents numbers captured in dan-

gerous intervals from entering their target sets; if traces appointed for join require-

ments which are hereditarily related to low priority diagonalization requirements

must be captured in these intervals, they cannot enter their respective target sets.

This may ultimately force us to abandon all attempts to satisfy a �xed diagonaliza-

tion requirement. The above intuition gave rise to the speculation by Lerman that

the lattice S

8

might not be embeddable. Lachlan and Soare [LS] then showed that

these con
icts were fatal as the lattice is nonembeddable. Their proof focused on

a single meet requirement which could be forced, through diagonalization, to form

dangerous intervals. A diagonalization requirement which required in�nitely many

traces because of associated join requirements could be forced to appoint traces in

dangerous intervals, and thus can never be satis�ed.

There is another point in the standard pinball model of an embedding construc-

tion where we could potentially force traces to be appointed late and so be unable

to avoid dangerous intervals; this point is when several traces move to a new gate

and must have their entry into their target sets separated by an expansionary stage

for the gate. This can force the appointment of new traces with new targets (we

call this procedure retargeting), some of which must enter their target sets at stages

later than traces which had previously been appointed but have not yet entered

their target sets. All previous examples where this occurred were lattices which

satis�ed NEC, so they witnessed the problems arising in the previos paragraph.

L

20

is an example which shows that such problems can arise even when NEC fails.

These various restrictions fatally con
ict when we try to embed L

20

into E. Let

us �rst motivate L

20

and show that in some sense it is \the smallest example" of this

phenomenon. We informally de�ne a �nite lattice to be a \length-n" lattice if any

number x targeted for a set A corresponding to some join-irreducible element a of

the lattice needs at most n� 1 traces at any point of a construction. (Formally, we

require that any minimal prime �lter containing a can be generated (under upward

closure) by a sequence b of length at most n� 1 such that any initial segment of b

also generates a prime �lter in L.) It is now easy to see that the length-1 lattices are

exactly the distributive lattices, which are known to be embeddable independently

by Lerman and Thomason [T]. It is not too hard to see that all length-2 lattices are

embeddable. So the \smallest" nonembeddable lattice must be at least length-3.

L

20

is not only length-3 but has an even stronger property: The two traces p

0

and

p

1

required for f are interchangeable. An intermediate version of L

20

(which was
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the starting point for our search leading to L

20

) is the lattice obtained from L

20

by deleting the points between w and u

0

and between w and u

1

. The remaining

points were later added to create a lot of in�ma and to kill o� critical triples.

Let us now examine the process needed to satisfy the requirement corresponding

to f 6� e. To start, we will have to designate a number z targeted for A

f

, and

appoint traces x targeted for A

p

0

orA

w

1

and y targeted forA

p

1

orA

w

0

(to satisfy the

two join requirements). The restriction imposed by incomparability requirements

which prevents the placement of numbers into A

e

forces the targets of the original

traces x and y to be A

p

0

and A

p

1

, respectively. Now p

0

< u

0

; q

0

; p

1

< u

1

; q

1

;

and neither p

0

nor p

1

is � v

0

or � v

1

; thus the dangerous interval restrictions

for the meet requirements corresponding to q

0

^ u

1

� v

1

and q

1

^ u

0

� v

0

force

the entry of numbers into A

p

0

and A

p

1

to be separated by the appointment of a

replacement trace for the �rst of the numbers to enter. If the replacement trace is

targeted for A

p

0

or A

p

1

, then we have made no progress, as we have reestablished

the initial situation. Thus, by symmetry, we may assume that there is a stage of

the construction such that a number enters A

p

0

, and a replacement trace, x

1

, is

appointed to enter A

w

1

while a currently appointed trace, y

1

, is still targeted to

enter A

p

1

.

Now w

1

< q

0

; p

1

< ~p; and neither p

1

nor w

1

is � p

0

; thus the dangerous

interval restrictions for the meet requirements corresponding to q

0

^ ~p � p

0

forces

the entry of numbers into A

p

1

and A

w

1

to be separated by the appointment of a

replacement trace for the �rst of the numbers to enter. If x

1

enters �rst, then the

appointment of a replacement trace to enter its target set before y

1

enters its target

set will require that the replacement trace be targeted for p

0

or w

1

; and a careful

analysis shows that this will reestablish one of the situations which has already been

discussed, so no progress will have been made. And if y

1

enters �rst, we will have

violated the dangerous interval restriction corresponding to the meet requirement

for q

0

^ u

1

� v

1

. Thus we are faced with an insurmountable obstacle when trying

to carry out a pinball machine construction.

The above argument can be formalized to show that L

20

does not satisfy the

embeddability condition EC. We will not do so, as we will prove a stronger result

beginning in the next section; in particular, we will prove the following:

Theorem 1.2. L

20

cannot be embedded into the enumerable Turing degrees.

2. Non-embeddability of L

20

. Fix an usl embedding of L

20

into E. For each

of the elements of L

20

with notation as in Figure 1, we use the corresponding

upper case letter to represent an enumerable set of the degree corresponding to the

image of the lower case letter under the embedding. Without loss of generality,

we may assume that these enumerable sets are chosen so that each such set G

corresponding to the element g of L

20

is expressed as a disjoint sum of sets of the

degrees corresponding to the join irreducible elements of L

20

which are � g. We

will show that this embedding cannot be a lattice embedding. In fact, the only

join and meet relations needed to prove the non-embeddability of L

20

as a partial

lattice are the following:

(2.1) p

0

_ w

1

� f .
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(2.2) p

1

_ w

0

� f .

(2.3) q

0

^ u

1

� v

1

.

(2.4) q

1

^ u

0

� v

0

.

(2.5) q

0

^ ~p � p

0

.

(2.6) q

1

^ ~p � p

1

.

As we have �xed an usl embedding, (2.1) and (2.2) must hold. Thus we may �x

computable functionals 


0

and 


1

such that 


0

(P

0

�W

1

) = F and 


1

(P

1

�W

0

) =

F . By speeding up the enumerations, we may assume that for each x � s 2

N , 


s

0

(P

s

0

� W

s

1

;x) #= F (x) and 


s

1

(P

s

1

� W

s

0

;x) #= F (x). Furthermore, as




s

0

(P

s

0

� W

s

1

;x) and 


s

1

(P

s

1

� W

s

0

;x) are total, we may assume without loss of

generality that for each i � 1 and all numbers s; n:

(2.7) If there is an injury to 


i

(P

i

�W

1�i

;n) at stage s, then !

i

(n; s) � !

1�i

(n; s).

De�ne !(n; s) = maxf!

0

(n; s); !

1

(n; s)g.

In an attempt to contradict (2.5) or (2.6), we build enumerable sets D

0

and D

1

and computable functionals �

0

, �

1

, �

0

, and �

1

which satisfy the following global

requirement:

R : 8i � 1(D

i

= �

i

(Q

i

) = �

i

(

~

P )):

(2.5) or (2.6) will be contradicted if we can show that for some i 2 f0; 1g,

(2.8) 8j 2 N (D

i

6=

~

	

j

(P

i

));

where f

~

	

j

: j 2 Ng is an e�ective enumeration of all computable partial func-

tionals. We may, however, fail to satisfy (2.8); thus predicated on the failure of

(2.8) for i = 0; 1 as witnessed by the functionals 	

0

and 	

1

, respectively, we build

enumerable sets C

	

0

;	

1

i

and computable partial functionals �

	

0

;	

1

i

and �

	

0

;	

1

i

for

i = 0; 1 (we omit the functional superscript when these will be clear from context),

ensuring that the following requirement is satis�ed:

R

~

	

= R

	

0

;	

1

: 8i � 1(D

i

= 	

i

(P

i

)) ! 8i � 1(C

i

= �

i

(Q

i

) = �

i

(U

1�i

)):

(2.3) or (2.4) will be contradicted if we can show that for some i 2 f0; 1g,

(2.9) 8j 2 N (C

i

6=

~

�

j

(V

1�i

));

where f

~

�

j

: j 2 Ng is an e�ective enumeration of all computable partial function-

als. However, we may not succeed in satisfying (2.9); thus predicated on the failure

of (2.9) for i = 0; 1 as witnessed by the functionals �

0

and �

1

, respectively, we build

a computable partial functional �

	

0

;	

1

;�

0

;�

1

(we omit the functional superscript

when these will be clear from context), ensuring that the following requirement is

satis�ed:

R

	

0

;	

1

;�

0

;�

1

: 8i � 1(D

i

= 	

i

(P

i

)) & 8i � 1(C

i

= �

i

(V

1�i

)) ! F = �(E):

This clearly allows us to conclude that L

20

cannot be embedded into E, as it

contradicts an incomparability relationship of L

20

. For compactness of notation,

we will write R

~

	;

~

�

in place of R

	

0

;	

1

;�

0

;�

1

.
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The intuition behind the plan to satisfy the requirements is as follows. We will

work in the reverse order in which the requirements were presented. Thus we begin

with an attempt to extend the domain of �, and argue that this attempt succeeds

unless we succeed in diagonalizing against �

i

or 	

i

for some i � 1. We then

argue that if we have an opportunity to diagonalize against 	

i

which evaporates

when a small number enters P

i

, then we are presented with an opportunity to

diagonalize against �

1�i

. And if we have an opportunity to diagonalize against

�

1�i

which evaporates when a small number enters V

i

, then � is corrected, and

we can start anew without injury to any requirement; furthermore, this can only

happen �nitely often as 


i

(P

i

�W

1�i

) is total for i = 0; 1. More speci�cally, we

follow the alternating injuries to 


0

(P

0

� W

1

) and 


1

(P

1

� W

0

), showing that

the �rst injury to 


i

(P

i

� W

1�i

) in such an alternation is a P

i

-injury. Between

alternations, there may be multiple injuries to 


i

(P

i

�W

1�i

); we show that each

such injury can eventually be attributed to a change in the P

i

-oracle, else we will

be presented with a diagonalization opportunity. Now the entry of a number into

F requires a simultaneous injury to 


0

(P

0

�W

1

) and 


1

(P

1

�W

0

); thus if we fail

to have a diagonalization opportunity, E must also change, allowing us to correct

�(E).

3. The Construction. We begin with the steps of the construction designed to

satisfy R. At the end of stage s of the construction, for each integer z � s and

i � 1, we de�ne axioms

(3.1) �

s+1

i

(Q

s

i

; z) = D

s+1

i

(z) and

(3.2) �

s+1

i

(

~

P

s

; z) = D

s+1

i

(z)

whenever such an axiom is compatible with previously de�ned axioms. We require

the use functions for the axioms speci�ed in (3.1) to satisfy

(3.3) �

i

(z; s+ 1) = !

i

(z; s):

(The ability to satisfy (3.3) for i = 0; 1 at all stages s follows from the fact that

q

i

� p

i

; w

1�i

.) We require the use functions for the axioms speci�ed in (3.2) to

satisfy

(3.4) �

i

(y

i

; s+ 1) = !(y

i

; s)

whenever there are functionals 	

j

and �

j

for j = 0; 1 and numbers x

0

, x

1

, y

0

,

and y

1

such that an attack on R

~

	;

~

�

for n through hx

0

; x

1

; y

0

; y

1

i has been begun

by stage s but has not been cancelled by stage s. (We will not be able to ensure

that (3.4) holds at all stages s, but will satisfy this condition whenever changes in

the

~

P -oracle allow us to rede�ne such an axiom. The satisfaction of (3.4) at the

appropriate stages will allow us to diagonalize against 	

i

for i = 0; 1.) We track

the progress of the construction by de�ning a function

`

�

i

;�

i

;	

i

(s) = maxfx : 8z � x(�

s

i

(Q

s

i

; z) #= �

s

i

(

~

P

s

; z) #= 	

s

i

(P

s

i

; z) #)g

which measures the common length of agreement of �

i

(Q

i

), �

i

(

~

P ), and 	

i

(P

i

).

Given functionals 	

0

and 	

1

, we employ the following strategy to satisfy R

~

	

.

At the end of stage s of the construction, for each i � 1 and z � s, we de�ne axioms
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(3.5) �

s+1

i

(Q

s

i

; z) = C

s+1

i

(z), and

(3.6) �

s+1

i

(U

s

1�i

; z) = C

s+1

i

(z)

whenever such axioms are compatible with previously de�ned axioms, unless there

exist j; k � 1 and numbers x

0

, x

1

, y

0

, y

1

, and n such that x

0

� z or x

1

� z and an

attack on R

~

	;

~

�

for n through hx

0

; x

1

; y

0

; y

1

i which is not yet cancelled is currently

j-suspended (this term will be de�ned during the construction; it denotes a stage

at which we are waiting for an injury to a certain computation, which will allow us

to resume the attack), or 	

s

j

(P

s

j

; y

j

) is unde�ned. We require the use functions for

the axioms newly speci�ed in (3.5) to satisfy

(3.7) If �

s+1

i

(Q

s

i

; z) is de�ned then 


i

(z; s+ 1) = !

i

(z; s):

(The ability to satisfy (3.7) for i = 0; 1 at all stages s follows from the fact that

q

i

� p

i

; w

1�i

.) We require the use functions for the axioms newly speci�ed in (3.6)

to satisfy

(3.8) If �

s+1

i

(U

s

1�i

;x

i

) is de�ned then �

i

(x

i

; s+ 1) �  

1�i

(y

1�i

; s) and

(3.9) If �

s+1

i

(U

s

1�i

;x

i

) is de�ned then �

i

(x

i

; s+ 1) � !(n; s).

for i = 0; 1, whenever numbers x

0

, x

1

, y

0

, and y

1

and functionals �

0

and �

1

are

speci�ed such that an attack on R

~

	;

~

�

for n through hx

0

; x

1

; y

0

; y

1

i has been begun

by stage s but has not been cancelled by or at stage s. (The value of y

1�i

will

be reset only at a stage s at which �

s+1

i

(U

s

1�i

;x

i

) is unde�ned, so the ability to

satisfy (3.8) at all stages s will follow from the fact that p

1�i

� u

1�i

for i = 0; 1.

We will not be able to ensure that (3.9) holds at all stages s, but will satisfy this

condition whenever changes in the U

1�i

-oracle allow us to rede�ne such an axiom.

The satisfaction of (3.7)-(3.9) at the appropriate stages will allow us to diagonalize

against �

i

for i = 0; 1.) We track the progress of the construction by de�ning a

function

`

�

i

;�

i

;�

i

(s) = maxfx : 8z � x(�

s

i

(Q

s

i

; z) #= �

s

i

(U

s

1�i

; z) #= �

s

i

(V

s

1�i

; z) #)g

which measures the common length of agreement between �

i

(Q

i

), �

i

(U

1�i

), and

�

i

(V

1�i

). The values chosen for the use functions being de�ned are always the

smallest numbers which are consistent both with the above requirements placed on

use functions, and the requirement that use functions be non-decreasing on each

argument.

Fix functionals 	

0

, 	

1

, �

0

, and �

1

, and let

^

R = R

~

	;

~

�

. We e�ectively partition

the integers into in�nitely many in�nite sets, and e�ectively assign a di�erent such

set to each requirement

^

R. Let the correspondence assign the set

^

S = S

	

0

;	

1

;�

0

;�

1

to

^

R.

We try to satisfy

^

R as follows. We cycle through the numbers n � s at stage s,

trying to de�ne �(E;n). Thus for each n � s, we follow the sequence of steps below.

We begin a new attack on

^

R for n at stage s whenever the conditions for Step 1

are satis�ed. These conditions provide the opportunity to extend the de�nition of

�(E) to a new argument. Action to extend the de�nition is taken in Step 2. Step

3 governs the type of action to be taken (in Step 4) for each attack on

^

R which is
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now in progress (so has not yet been cancelled). Fix n. We want to act when there

is an injury to 


i

(P

i

�W

1�i

;n) at stage s for some i � 1. (We will de�ne a stage

to be an i-stage if there is an injury to 


i

(P

i

�W

1�i

;n) and the previous injury to

either 
 was to 


1�i

(P

1�i

�W

i

;n).) Such attacks may occur many times, so we

let i

j

be the i which determines the jth attack (we begin with i

0

), and require that

the value of i

j

alternate between 0 and 1 for successive attacks. We let s

j

be the

stage at which we begin to the attempt for i

j

. The injury at stage s

j

provides an

opportunity to try to satisfy

^

R.

The action, in Step 4, will depend on the nature of the injury to the computation

for the functional 


i

j

at stage s

j

. Successful attacks for n will be those which

have reached a stage which forces the opponent to correct the computation of




i

(P

i

�W

1�i

;n) for some i � 1 in order to prevent us from winning the requirement

outright. Such action will allow us to correct �(E;n). The opponent can only act

this way �nitely often for each n, so if we restart new attacks each time such action

is taken, we will argue that we eventually succeed in satisfying the requirement

for some n. The action cases of Step 4 re
ect the following situations. In Case 1,

we have simultaneous permission to diagonalize by putting a number into C

i

j

, and

the attack will be successful. Otherwise, we follow Case 2, and have simultaneous

permission to diagonalize by putting a number into D

i

j

. This will provide a win

for the requirement unless the opponent takes action. The type of action gives rise

to three subcases.

In Subcase 2.1, the opponent places a small number into P

{̂

j

. This provides us

with delayed permission to diagonalize by putting a number into D

{̂

j

. We declare

success here while suspending the attack. The opponent can only counter by putting

a smaller number into P

{̂

j

which provides delayed permission to place a number into

C

i

j

, and so we see that success is assured.

In Subcase 2.2, the opponent places a small number into W

i

j

, providing delayed

permission to diagonalize by placing a number into C

{̂

j

, and so declare the attack

to be successful.

In Subcase 2.3, the opponent will choose just to provide new expansionary stages

for a meet requirement, without making progress towards preventing us from com-

puting �(E) = F by having the opponent diagonalize this computation at n. In

this situation, we can lift up our traces and begin a replacement attack with the

larger traces, allowing us to make use of larger changes in sets computed by the

opponent for the sake of diagonalization. Replacement attacks which are not sep-

arated by cancellation caused by an element � �(n) entering E are tied to �xed

arguments of 


0

and 


1

, so only �nitely many can occur. Thus we will eventually

be forced into a di�erent case or subcase.

Step 1: We wait for a stage s

0

� n at which no prior uncancelled attack on

^

R

is successful or i-suspended for any i � 1, and

(3.10) �

s

0

(E

s

0

�1

)[n� 1] = F

s

0

�1

[n� 1] and �

s

0

(E

s

0

�1

;n) is unde�ned,

and for some choice of x

0

; x

1

; y

0

; y

1

2

^

S such that x

i

62 C

s

0

i

, y

i

62 D

s

0

i

and such that

there are no prior attacks on

^

R using numbers � minfx

0

; x

1

; y

0

; y

1

g, we have

(3.11) x

0

; x

1

; y

0

; y

1

� n; !(n; s

0

);

(3.12) x

i

� `

�

i

;�

i

;�

i

(s

0

); y

i

� `

�

i

;�

i

;	

i

(s

0

) for i = 0; 1; and
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(3.13) �

i

(x

i

; s

0

) �  

1�i

(y

1�i

; s

0

) for i = 0; 1.

Should s

0

be found, we �x the �rst (in a speci�ed e�ective ordering) such quadruple

hx

0

; x

1

; y

0

; y

1

i and begin an attack on

^

R for n at s

0

through hx

0

; x

1

; y

0

; y

1

i. We de�ne

s

0

to be the initial stage for this attack. This attack will be immediately cancelled

at stage t > s

0

if there is an injury to �(E; n) at some stage r 2 (s

0

; t].

Step 2: De�ne �

s

0

+1

(E

s

0

;n) = F

s

0

(n). The use of this computation is �(n; s

0

+

1) = maxf�

0

(x

0

; s

0

); �

1

(x

1

; s

0

)g. Set t

0

= s

0

. s

0

is said to be both a 0-stage and a

1-stage for n. Now go to Step 3, with j = 1.

Step 3: Suppose that either j = 1, or that j > 1 and s

j�1

, t

j�1

, i

j�1

, and {̂

j�1

are de�ned. We search for the �rst stage s > t

j�1

and number i � 1 such that

i = {̂

j�1

if j > 1 and either

(3.14) W

s

1�i

[!

i

(n; t

j�1

+ 1)] 6=W

s�1

1�i

[!

i

(n; t

j�1

+ 1)], or

(3.15) P

s

i

[!

i

(n; t

j�1

+ 1)] 6= P

s�1

i

[!

i

(n; t

j�1

+ 1)].

If s and i satisfying (3.14) or (3.15) exist, we let s

j

be the least such s, and we let

i

j

be the least such i for s

j

if j = 1 and i

j

= {̂

j�1

if j > 1; in both cases, we de�ne

{̂

j

= 1� i

j

. s

j

is called an i

j

-stage. We now go to Step 4.

Step 4: We follow the instructions of the �rst case which applies. (Attacks

will be declared to be successful below when we will later be able to show that the

action taken for the current attack on

^

R for n ensures that either a hypothesis of

^

R will not be satis�ed, or the attack will later be cancelled because of an injury to

�(E;n).)

Case 1: (3.14) holds at stage s

j

. Put x

i

j

into C

s

j

+1

i

j

and declare the current

attack on

^

R for n to be successful at stage s

j

. No further action will be taken for

any attack on

^

R for n until (if ever) this attack is cancelled.

Case 2: (3.15) holds at stage s

j

. Put y

i

j

into D

s

j

+1

i

j

. The attack becomes

i

j

-suspended at stage s

j

. We now wait for the �rst stage t � s

j

such that there is

a number ~y 2

^

S which is larger than any number used earlier in the construction

for

^

R and the inequalities ~y � `

�

i

j

;�

i

j

;	

i

j

(t) and y

{̂

j

� `

�

{̂

j

;�

{̂

j

;	

{̂

j

(t) are satis�ed.

If t is found and the i

j

-suspension has not been lifted prior to stage t, then the

i

j

-suspension is lifted at stage t and we set t

j

= t. If, in the course of the search for

t

j

, we encounter a stage r � s

j

at which one of (3.16) or (3.17) below holds (this

requires that r � t

j

should t

j

exist), we �x the �rst such r and adopt the �rst of

Subcases 2.1 or 2.2 which applies; otherwise we adopt Subcase 2.3.

(3.16) P

r

{̂

j

[!

{̂

j

(n; s

j

� 1)] 6= P

s

j

�1

{̂

j

[!

{̂

j

(n; s

j

� 1)].

(3.17) W

r

i

j

[!

{̂

j

(n; s

j

� 1)] 6= W

s

j

�1

i

j

[!

{̂

j

(n; s

j

� 1)].

Subcase 2.1: (3.16) holds. Put y

{̂

j

into D

r+1

{̂

j

and declare the current attack on

^

R for n to be successful at stage r. No further action will be taken for any attack

on

^

R for n until (if ever) this attack is cancelled, except for the action speci�ed

to complete this subcase. This attack becomes {̂

j

-suspended at stage r. The {̂

j

-

suspension will be lifted at the �rst stage s � r for which there is an injury to
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{̂

j

(P

{̂

j

; y

{̂

j

) at some stage in [r; s] and 	

s

{̂

j

(P

s

{̂

j

; y

{̂

j

) is de�ned. At the stage s at

which the {̂

j

-suspension is lifted, put x

i

j

into C

s+1

i

j

.

Subcase 2.2: (3.17) holds. Put x

{̂

j

into C

r+1

{̂

j

. Declare the current attack on

^

R

for n to be successful at stage r. No further action will be taken for any attack on

^

R for n until (if ever) this attack is cancelled.

Subcase 2.3: Otherwise. The attack on

^

R for n through hx

0

; x

1

; y

0

; y

1

i is

cancelled at stage t

j

, we set ~y

{̂

j

= y

{̂

j

and begin a replacement attack on

^

R for n

through hx

0

; x

1

; ~y

0

; ~y

1

i. We now return to Step 3, replacing j with j + 1.

This completes the construction. We will show in the next section that the

construction ensures the satisfaction of all requirements.

4. The Proof. We now complete the proof, showing that L

20

cannot be embedded

into the enumerable Turing degrees. The theorem follows immediately from the

satisfaction of all requirements, so our goal will be to show that this is the case.

Fix functionals 	

0

, 	

1

, �

0

, and �

1

, and set

^

R = R

~

	;

~

�

. We begin with a lemma

specifying relationships between use functions.

Lemma 4.1. Suppose that s � n and i � 1. Then (3.3) and (3.8) hold, as does

(4.1) 


i

(x

i

; s) � !

i

(n; s).

(We assume here that for any such inequality in which x

i

or y

i

is mentioned, there

is an uncancelled attack on

^

R for n through hx

0

; x

1

; y

0

; y

1

i.)

Proof. We �rst show that (3.3) holds. By the construction, if t is any stage at which

a new axiom �

t+1

i

(Q

t

i

;n) is de�ned, then the construction requires (3.3) to hold.

As p

i

; w

1�i

� q

i

, if r is any stage at which an axiom 


i

(P

i

�W

1�i

;n) is injured

(and so a new axiom is de�ned), then the axiom �

i

(Q

i

;n) is also injured at stage

r, so a new axiom �

r+1

i

(Q

r

i

;n) is de�ned to satisfy (3.3).

A proof similar to that in the preceding paragraph shows that (4.1) holds at

s; the only non-notational di�erence is that when a new axiom 


r

i

(P

r

i

�W

r

1�i

;n)

is de�ned, there may be a delay before we reach the �rst stage s � r at which

we de�ne a new axiom �

s+1

i

(Q

s

i

;n). We now note that by (3.11), n � x

i

, so as

the use function 


i

(m; t) is non-decreasing in m, 


i

(x

i

; t) � !

i

(n; t) whenever a

corresponding x

i

is de�ned. (4.1) now follows.

It remains to verify (3.8). By the construction, if t is any stage at which a

new axiom �

t+1

i

(U

t

1�i

;x

i

) is de�ned, then the quadruple hx

0

; x

1

; y

0

; y

1

i has been

speci�ed, and the construction requires (3.8) to hold. As �

i

(x

i

; s) is a use function,

it is non-decreasing in s. The construction may change its choice of number for x

i

from y

1�i

to ~y

1�i

at stage t only if Step 4, Case 2.3 of the construction is followed at

some stage s � t, in which case there is an injury to 	

1�i

(P

1�i

; y

1�i

) at some stage

r 2 [s; t], the attack on

^

R for n through hx

0

; x

1

; y

0

; y

1

i becomes (1� i)-suspended

at stage r, and this suspension is not lifted until ~y

1�i

is selected to replace y

1�i

.

As p

k

� u

k

for k = 0; 1, either �

r+1

i

(U

r

1�i

;x

i

) is unde�ned (in which case we set

u = r), or there is an injury to �

i

(U

1�i

;x

i

) at some stage in u 2 [r; t]. Furthermore,

�

v+1

i

(U

v

1�i

;x

i

) is unde�ned at all stages v 2 [u; t) because of this (1� i)-suspension.

(3.8) now follows. �
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The next lemma speci�es use-function inequalities which will enable us to show

that we will eventually be able to satisfy R, R

~

	

, and

^

R. The �rst clause tells us

that we can always attribute the change in value of !

i

j

at stage s

j

to a change in

P

i

j

(rather than W

1�i

j

), else we will satisfy the requirement based on the change

at s

j

. This is used, in the second clause, to establish an inequality relating �

k

and

! uses. To this end, we �x the quadruple hx

0

; x

1

; y

0

; y

1

i through which the attack

on

^

R for n is begun at stage s

0

.

Lemma 4.2. Fix j > 0 such that the sequence of attacks on

^

R for n begun at s

0

has not been declared to be successful at any stage t � s

j

, and assume that no attack

in this sequence is ever cancelled due to �-injury. Then:

(i) P

s

j

i

j

[!

i

j

(n; s

j

)] 6= P

s

j

�1

i

j

[!

i

j

(n; s

j

)] and W

s

j

{̂

j

[!

i

j

(n; s

j

)] =W

s

j

�1

{̂

j

[!

i

j

(n; s

j

)] if

j > 0.

(ii) �

k

(y

k

; s

j

+ 1) � !(n; s

j

) for k = 0; 1.

Proof. The lemma follows by the cancellation feature and by (3.11) for j = 1. We

now proceed, case by case, by induction on j > 0.

(i): The de�nition of s

j

implies that either P

s

j

i

j

[!

i

j

(n; s

j

)] 6= P

s

j

�1

i

j

[!

i

j

(n; s

j

)]

or else W

s

j

{̂

j

[!

i

j

(n; s

j

)] 6= W

s

j

�1

{̂

j

[!

i

j

(n; s

j

)]. Should the latter hold, then we would

follow Step 4, Case 1 of the construction at stage s

j

, and would declare the current

attack on

^

R for n to be successful at stage s

j

, contrary to hypothesis.

(ii): By induction, �

k

(y

k

; s

j�1

+ 1) � !(n; s

j�1

) � !

i

j

(n; s

j�1

). By the con-

struction, s

j�1

is a {̂

j

-stage. Hence as, by (3.14)-(3.17), there is no injury to




i

j

(P

i

j

� W

{̂

j

;n) at any stage in [s

j�1

; s

j

) and as use functions are increasing

on each argument, �

k

(y

k

; s

j

) � !

i

j

(n; s

j

� 1). By (i), there is a P

i

j

-injury to




i

j

(P

i

j

�W

{̂

j

;n) at stage s

j

, so as p

i

j

< ~p, there is an injury to �

k

(

~

P ; y

i

) at stage

s

j

, allowing us to satisfy (ii). �

Lemma 4.3. R is satis�ed.

Proof. As 


i

(P

i

�W

1�i

) is total for i = 0; 1, we have that lim

s

!(x; s) exists for all

x. By (3.3) and (3.4), �

i

(n; s+ 1) = !

i

(n; s) and �

i

(y

i

; s+ 1) = !(y

i

; s) whenever

the use functions on the left hand side are newly de�ned; and the construction

requires �

i

(n; s+1) is de�ned for all s � n and �

i

(y

i

; s+1) is de�ned for all s � y

i

.

Thus �

i

(Q

i

) and �

i

(

~

P ) are total.

An examination of the construction now shows that we place a number y

i

into

D

s+1

i

for i = 0; 1 only at a stage s at which there are n, x

0

, x

1

, and y

1�i

such that

an attack on

^

R is in progress through hx

0

; x

1

; y

0

; y

1

i and there is a P

i

-injury to




i

(P

i

�W

1�i

;n) at stage s. By Lemma 4.1, (3.3) holds so �

i

(n; s) = !

i

(n; s� 1).

We recall that r was chosen in Step 4, Subcase 2.2 of the construction to be the �rst

stage � s

j

at which (3.16) or (3.17) holds; thus by Lemma 4.2(ii), �

i

(y

i

; s+ 1) �

!

i

(n; s). Now either �

i

(y

i

; s) = �

i

(y

i

; s + 1) � !

i

(n; s) � !

i

(n; s � 1), or there is

an injury to �

i

(

~

P ; y

i

) at stage s; and in the �rst case, as p

i

< ~p, the P

i

-injury to




i

(P

i

�W

1�i

;n) at stage s will cause �

i

(

~

P ; y

i

) to be injured at stage s. Thus we

de�ne new axioms �

s+1

i

(Q

s

i

;n) = D

s+1

(y

i

) and �

s+1

i

(

~

P

s

; y

i

) = D

s+1

(y

i

) at the

end of stage s, so R is satis�ed. �

If D

i

6= 	

i

(P

i

) for some i � 1, then R

~

	

and

^

R are satis�ed. So we assume that

D

i

= 	

i

(P

i

) for i � 1. By Lemma 4.3 and this assumption, for i = 0; 1,
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(4.2) lim

s

`

�

i

;�

i

;	

i

(s) =1.

Under this assumption, we show that suspensions are always lifted or cancelled.

Lemma 4.4. Fix n. Suppose that we are given an attack on

^

R for n through

hx

0

; x

1

; y

0

; y

1

i which is i-suspended at stage s for some i � 1. Then there is a least

t > s at which the suspension is lifted or the attack is cancelled. Furthermore,

there is a stage r such that for every t � r, no uncancelled attack on

^

R for n is

i-suspended for any i � 1.

Proof. An attack on

^

R for n can only be i-suspended in Case 2 of Step 4 of the

construction. Fix i � 1 such that the attack is i-suspended at stage s.

As �

r+1

i

(Q

r

i

) and �

r+1

i

(

~

P

r

) are compatible with D

r+1

i

for all r and �

r+1

i

(Q

r

i

; y

i

)

and �

r+1

i

(

~

P

r

; y

i

) are de�ned for all r � y

i

, it follows from the construction and

(3.12) that y

i

2 D

s+1

i

�D

s

i

and 	

s

i

(P

s

; y

i

) = 0.

First assume that the i-suspension occurs at the beginning of Step 4, Case 2

of the construction. Fix a number ~y

i

2

^

S which has not yet been used in the

construction and which satis�es (3.11). By the construction, no new attacks on

^

R

for any m � n will begin until the current attack is cancelled or the i-suspension

is lifted. By (4.2), there must be a �rst t > s such that (3.12) holds for ~y

i

and

~y

1�i

. The construction now lifts the i-suspension of the original attack at stage t

and also cancels this attack, if the attack has not been cancelled earlier.

Now assume that the i-suspension occurs during Step 4, Subcase 2.1 of the

construction. By the construction, no new attacks on

^

R for any m � n will begin

until the current attack is cancelled or the i-suspension is lifted. Hence by (4.2),

there must be a �rst t > s such that there is an injury to 	

i

(P

i

; y

i

) at stage t and

(3.12) again holds for y

i

. The construction now lifts the i-suspension at stage t if

the attack was not cancelled earlier.

An attack on

^

R for n can be newly i-suspended at stage r only if there is an

s

j

< r as in the construction. Furthermore, at most one such suspension can

begin before a stage t

j

as in the construction is found (if ever). And there is no

such suspension after stage t

j

unless s

j+1

is de�ned, in which case there is no such

suspension in the interval (t

j

; s

j+1

). By the de�nition of s

j

, there is an injury to




k

(P

k

�W

1�k

) at stage s

j

for some k � 1. So as 


k

(P

k

�W

1�k

) is total for k = 0; 1,

the construction will only �nd �nitely many stages s

j

corresponding to n. The last

part of the lemma now follows from the �rst part. �

In the next lemma, we prove inequalities involving the use functions �

k

for k =

0; 1. These are needed to show that R

~

	

is satis�ed.

Lemma 4.5. Suppose that there is an attack on

^

R for n through hx

0

; x

1

; y

0

; y

1

i

at stage s

j

which has not been declared to be successful by stage s

j

� 1. Then for

k = i

j

and j > 0, if �

k

(x

k

; s

j

) is de�ned then �

k

(x

k

; s

j

) � !

k

(n; s

j

� 1).

Proof. As 


k

(P

k

�W

1�k

;x

k

) is not injured at any stage t 2 (s

0

; s

1

), the lemma

follows from (3.9) for j = 1.

Suppose that j > 1. We note that s

j�1

is a (1 � k)-stage. As the attack on

^

R

for n at stage s

j�1

was not successful, Step 4, Subcase 2.3 of the construction must

have been followed at that stage, so y

1�k

was placed into D

s

j�1

+1

1�k

at the beginning
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of Step 4, Case 2. The existence of s

j

implies the existence of t

j�1

; so as all axioms

	

t+1

1�k

(P

t

1�k

; y

1�k

) = m declared at stages t < s

j�1

set m = 0 = D

t+1

1�k

(y

1�k

), it

follows from (2.12) that there is a stage r 2 [s

j�1

; t

j�1

] at which there is an injury

to 	

1�k

(P

1�k

; y

1�k

). As p

1�k

< u

1�k

, it follows from Lemma 4.1 and (3.8) that

there is a stage r 2 [s

j�1

; t

j�1

] at which there is an injury to �

k

(U

1�k

;x

1�k

). Thus

we de�ne a new axiom �

t

j�1

+1

k

(U

t

j�1

1�k

;x

k

) = 1, and by (3.9), �

k

(x

k

; t

j�1

+ 1) �

!

k

(n; t

j�1

). As there is no injury to 


k

(P

k

�W

1�k

) at any stage in (t

j�1

; s

j

), the

lemma now follows from the increasing property of use functions. �

Lemma 4.6. R

~

	

is satis�ed.

Proof. Axioms for �

i

(Q

i

; z) and �

i

(U

1�i

; z) are declared at each su�ciently large

stage s at which there is no attack on

^

R for any n through any hx

0

; x

1

; y

0

; y

1

i which

is i-suspended for some i � 1 and for which minfx

0

; x

1

; y

0

; y

1

g � z, and 	

s

k

(P

s

k

; y

k

)

is de�ned for k = 0; 1. Whenever a new number is selected for an attack on

^

R, it

is larger than any numbers previously used in attacks on

^

R. Hence by (4.2) and

Lemma 4.4, such axioms will be declared at all su�ciently large stages s. Now by

Lemma 4.1, 


i

(x

i

; s+1) � !

i

(x

i

; s) for all stages s for which 


i

(x

i

; s+1) is de�ned,

and 


i

(P

i

�W

1�i

) is total for i = 0; 1. Hence �

i

(Q

i

) is total. Furthermore, by the

construction,

�

i

(x

i

; s+ 1) � maxf!(x

i

; s);  

1�i

(y

1�i

; s)g

for all stages s for which �

i

(x

i

; s + 1 is de�ned. A change from y

1�i

to ~y

1�i

as

the number corresponding to x

i

must follow the suspension of an attack on

^

R for

n at a stage following the stage at which the correspondence of x

i

to y

1�i

was

set. By Lemma 4.4, this can occur only �nitely often. Hence there is a �nal y

1�i

corresponding to x

i

(whenever x

i

is speci�ed), which we �x. We again note that




i

(P

i

� W

1�i

) is total for i = 0; 1, and by Lemma 4.3, 	

1�i

(P

1�i

) is total for

i = 0; 1. Hence �

i

(U

1�i

) is total.

We now consider the stage at which a number x

i

is placed into C

i

for i � 1.

Case 1: s

i

is an i-stage. It follows from Lemma 4.1 and the fact that p

i

; w

1�i

<

q

i

, that either �

s

j

i

(Q

s

j

�1

i

;x

i

) is unde�ned, or there is an injury to �

i

(Q

i

;x

i

) at

stage s

j

. Thus at the next stage s � s

j

at which �

s+1

i

(Q

s

i

;x

i

) is de�ned, the axiom

declared is compatible with C

s+1

i

(x

i

). We now consider several subcases, depending

on the case and subcase followed by the construction at stage s

j

.

Subcase 1.1: The action is taken at a stage s

j

at which Step 4, Case 1 of the

construction is followed. By Lemma 4.5 and as w

1�i

< u

1�i

, either �

s

j

i

(U

s

j

1�i

;x

1�i

)

is unde�ned, or there is an injury to �

i

(U

1�i

;x

i

) at stage s

j

. Thus at the next

stage s � s

j

at which �

s+1

i

(U

s

1�i

;x

i

) is de�ned, the axiom declared is compatible

with C

s+1

i

(x

i

).

Subcase 1.2: Suppose that Subcase 2.1 is followed at s

j

. Then the attack

begun at stage s

j

is i-suspended at stage s

j

. By Lemma 4.4 and (4.2), there is a

�rst stage t � s

j

at which this suspension is lifted. Now at some stage r 2 [s

j

; t], we

place y

1�i

into D

r+1

1�i

. By (4.2) and as 	

r

1�i

(P

r

1�i

; y

1�i

) = 0, there must be a later

stage ~s 2 (r; t] at which 	

1�i

(P

1�i

; y

1�i

) is injured. By Lemma 4.1, (3.8) holds

at stage ~s so as p

1�i

< u

1�i

, there will also be an injury to �

i

(U

1�i

;x

i

) at stage
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~s, and �

~s+1

i

(U

~s

1�i

;x

i

) is unde�ned for all s 2 [~s; t). Thus we will be able to de�ne

�

t+1

i

(U

t

1�i

;x

i

) = C

t+1

i

(x

i

).

Case 2: s

j

is a (1 � i)-stage. Then Subcase 2.2 must be followed at stage

s

j

, and the attack begun at stage s

j

is i-suspended at stage s

j

. Furthermore, we

place y

1�i

into D

s

j

+1

1�i

. By (4.2) and as 	

s

j

1�i

(P

s

j

1�i

; y

1�i

) = 0, there must be a later

stage ~s 2 (s

j

; t] at which 	

1�i

(P

1�i

; y

1�i

) is injured. By Lemma 4.1, (3.8) holds

at stage ~s so as p

1�i

< u

1�i

, there will also be an injury to �

i

(U

1�i

;x

i

) at stage

~s, and �

s+1

i

(U

s

1�i

;x

i

) is unde�ned for all s 2 [~s; t). Thus we will be able to de�ne

�

t+1

i

(U

t

1�i

;x

i

) = C

t+1

i

(x

i

).

Let r be the stage at which (3.17) holds for s

j

. As w

1�i

< q

i

, so by Lemma

4.1(i), the W

1�i

-injury to 


i

(P

i

�W

1�i

;n) at stage r forces an injury to �

i

(Q

i

;x

i

)

at stage r. Thus we will be able to rede�ne �

t+1

i

(Q

t

i

;x

i

) = C

t+1

i

(x

i

). �

If C

i

6= �

i

(V

1�i

) for some i � 1, then

^

R is satis�ed. So we assume that this is

not the case. It then follows that for i = 0; 1, 	

i

(P

i

) and �

i

(V

1�i

) are total and

(4.3) lim

s

`

�

i

;�

i

;�

i

(s) =1.

Lemma 4.7. Suppose that �(E) and F are compatible. Then �(E) is total.

Proof:. We proceed by induction on n, showing that �(E;n) is de�ned. Fix n, and

assume that �(E;m) is de�ned for all m < n. This assumption and Lemma 4.4

allow us to �x a stage t

0

such that for all t � t

0

andm < n, �

t+1

(E

t

;m) = �(E;m)

and no attack on

^

R for any m < n is suspended at stage t. As 


0

(P

0

� W

1

)

and 


1

(P

1

�W

0

) are total, we may �x a stage t

1

� t

0

such that for all t � t

1

,

!(n; t) = lim

s

!(n; s) = !(n) and E

t

[!(n)] = E[!(n)]; and as we have assumed that

�

i

(V

1�i

) is total for i � 1, we may assume that �

i

(x

i

; t) #= �

i

(x

i

) for all t � t

1

and

i � 1. We now note by de�nition that no attack on

^

R for n is cancelled at any stage

t > t

1

. Thus if �

t+1

(E

t

;n) # for any t > t

1

, then �

s+1

(E

s

;n) # = �

t+1

(E

t

;n) for

all s � t. The induction hypothesis will follow if we can show that �

t+1

(E

t

;n) is

de�ned for some t > t

1

.

If �

t

1

+1

(E

t

1

;n) is de�ned, then we are done. Suppose not. It su�ces to show

that there is a t > t

1

at which an attack on

^

R for n is in progress, as then, by Step

2 of the construction for the smallest such t, �

t+1

(E

t

;n) is de�ned. Note that as

we require �

t+1

(E

t

;n) is de�ned in order to begin an attack on

^

R for m > n, and

as, if an attack on

^

R for n at s is cancelled, then all attacks on

^

R for m > n at s

are cancelled, there will be no attack on

^

R at t > t

1

for any m > n if there is no

attack on

^

R for n at stage t.

Fix y

0

; y

1

2

^

S such that y

0

; y

1

> n; !(n; t

1

), y

i

62 C

t

1

+1

i

for i � 1, and y

0

and

y

1

are greater than any numbers in any quadruple through which there was an

attack on

^

R prior to stage t

1

. As

^

S is in�nite, y

0

and y

1

must exist. By (4.2),

there is a stage t

2

� t

1

such that for all t � t

2

and i � 1, 	

t

i

(P

t

i

; y

i

) is de�ned,

P

t

i

[ 

i

(y

i

; t

2

)] = P

t

2

i

[ 

i

(y

i

; t

2

)], and `

�

i

;�

i

;	

i

(t) � y

i

.

Next, we �x x

0

; x

1

2

^

S such that for i = 0; 1, x

i

> n; !(n; t

2

);  

1�i

(y

1�i

; t

2

),

x

i

62 D

t

2

+1

i

, and x

0

and x

1

are greater than any numbers in any quadruple through

which an attack on

^

R was begun prior to stage t

2

. As

^

S is in�nite, x

0

and x

1

must

exist. By (4.3), there is a stage t

3

� t

2

such that for all t � t

3

and i � 1, �

t

i

(V

t

1�i

;x

i

)
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is de�ned, V

t

1�i

[�

i

(x

i

; t

3

)] = V

t

3

1�i

[�

i

(x

i

; t

3

)], `

�

i

;�

i

;�

i

(t) � x

i

, and (3.13) holds for

i � 1.

We may assume that �

t

3

(E

t

3

�1

;n) is unde�ned, else we are done. Under this

assumption, all the conditions required for action for n in Step 1 of the construction

hold at stage t

3

; hence an attack on

^

R for n will be begun at stage t

3

, completing

the proof of the induction step. �

By Lemma 4.7, by our assumption that

^

R is not satis�ed, and as e 6� f , we

may �x the least n such that �(E;n) # 6= F (n). Note that as any newly declared

axiom �

s+1

(E

s

;n) = k sets k = F (n), this can only be the case if n 2 F . We now

look only at stages following the last stage s

0

at which a new axiom �

s

0

+1

(E

s

0

;n)

is declared. At this stage s

0

, an attack on

^

R for n through some hx

0

; x

1

; y

0

; y

1

i

is begun, and we �x the numbers in this quadruple. By choice of s

0

, this attack

will be cancelled only if it is replaced by another attack, so there is an uncancelled

attack on

^

R for n at all stages t > s

0

.

In the next lemma, we will show that

^

R is satis�ed.

Lemma 4.8. Fix the uncancelled attack on

^

R for n through hx

0

; x

1

; y

0

; y

1

i which

is the �nal replacement attack for the attack begun at stage s

0

. Then there is a

stage r at which we declare this attack to be successful. Thus

^

R is satis�ed.

Proof. We �rst show that there is a stage r as speci�ed in the lemma. We have

chosen n so that at some stage t � s

0

, n 2 F

t

� F

t�1

. Thus by the remarks

following (2.7), there must be an injury to 


k

(P

k

�W

1�k

;n) for k = 0; 1 at stage t.

Now either there will be a j such that an attack on

^

R for n through hx

0

; x

1

; y

0

; y

1

i

is begun before stage s

j

, or we will begin such an attack at stage s

j

. If this

attack is completed before stage t, then it must have been declared to be successful,

else it would have been cancelled and replaced by another attack. So assume

that this attack is not completed before stage t. Now the attack will be declared

to be successful if there is a �rst stage in [s

j

; t] at which there is an injury to




1�i

(P

1�i

� W

i

;n); since t is such a stage, this must eventually happen. Thus

there must be an r as speci�ed in the lemma.

When an attack is begun at s

0

, we have �(n; s

0

+ 1) � �

i

(x

i

; s

0

) for i = 0; 1.

As this attack is never cancelled, we have E

s

[�(n; s

0

+ 1)] = E[�(n; s

0

+ 1)] for all

s � s

0

, and so as v

i

� e for i = 0; 1,

(4.4) V

s

1�i

[�

i

(x

i

; s

0

)] = V

1�i

[�

i

(x

i

; s

0

)] for all s � s

0

.

Now at the least stage r > s

0

at which an attack on

^

R for n is declared to be

successful, we place x

i

into C

r+1

i

for some i � 1, and note that �

r�1

i

(V

r�1

1�i

;x

i

) # = 0

for that i. By (4.3), there must be a stage s � r at which there is an injury to

�

i

(V

1�i

;x

i

), contrary to (4.4). The lemma now follows. �

Theorem 1.2 follows immediately from Lemmas 4.3, 4.6, and 4.8 and the earlier

comment that the theorem follows if all requirements are satis�ed.
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