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ABSTRACT. What information does one need to know in order to build
the models of a strongly minimal theory? To answer this question, we
first formalize it in two ways. Note that if a theory T has a computable
model, then T ∩ ∃n is uniformly Σ0

n. We call such theories Solovay the-
ories. A degree is strongly minimal computing if it computes a copy of
every countable model of every strongly minimal Solovay theory. A sec-
ond notion, introduced by Lempp in the mid-1990’s, is that of a strongly
minimal relatively computing degree. A degree d is strongly minimal
relatively computing if whenever T is a strongly minimal theory with
one computable model, d computes a copy of every countable model
of T . We characterize both classes of degrees as exactly the degrees
which are high over 0′′, i.e., d ≥ 0′′ and d′ ≥ 0(4).

1. INTRODUCTION

In computable model theory, we try to understand the difficulty of build-
ing mathematical structures. A fundamental question in computable model
theory is to understand the relationship between computing facts about a
theory and being able to compute a copy of its model(s). If T has a com-
putable model, then T ∩ ∃n is uniformly Σ0

n, but many theories with this
property have no computable models. We say a theory is a Solovay theory
if T ∩∃n is uniformly Σ0

n. Knight and Solovay (see Knight [Kn99]) showed
that a degree computes a copy of some model of every Solovay theory if
and only if it computes a non-standard model of true arithmetic. In partic-
ular, no such degree is arithmetical. For model-theoretically nice theories,
we can hope that if T is a Solovay theory, then we can get some reasonable,
say, at least arithmetical, copies of its models.

Put another way, we ask: Precisely what information, beyond the obvious
necessity of the theory being a Solovay theory, is needed to build a model
of T . In the case of an ℵ0-categorical theory, Lerman-Schmerl [LS79],
improved by Knight [Kn94], showed that if T is an ℵ0-categorical Solovay
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theory, then the countable model of T has a 0′-computable copy. Further,
their proof exactly highlighted what information was needed.

Andrews and Knight [AK18] examined this question for strongly min-
imal theories. They showed that if T is a strongly minimal Solovay the-
ory, then every countable model of T has a copy computable in 0′′′. They
ask whether 0′′ suffices. Now by Khoussainov-Laskowski-Lempp-Solomon
[KLLS07], we know that at least 0′′ is necessary. We improve the result
of Andrews-Knight slightly, and construct a theory which shows that this
bound is sharp. The sharpness of this bound constitutes the bulk of this pa-
per. We say that a degree is strongly minimal computing if whenever T is a
strongly minimal Solovay theory, then d computes a copy of every count-
able model of T .

In the 1990’s, Lempp asked about the complexity of computing the mod-
els of a strongly minimal theory T which has at least one computable model.
Since this implies that T is a Solovay theory, this is a closely related ques-
tion. We say that a degree is strongly minimal relatively computing if when-
ever T is a strongly minimal theory with at least one computable model,
then d computes a copy of every countable model of T .

In general, for a class of theories C, we say that a degree is C-computing if
it computes a copy of every countable model of every Solovay theory in C.
We say that a degree is C-relatively computing if it computes a copy of
every countable model of a theory T ∈ C which has at least one computable
model.

We believe that understanding the C-computing and the C-relatively com-
puting degrees are a way of capturing the general question: What informa-
tion do we need to compute models of theories from C. Examples of natural
such further questions include: What are the ℵ1-categorical computing de-
grees? What are the few models computing degrees, i.e., let C be the class
of theories with countably many countable models?

Our main theorem is the following:

Main Theorem. A degree d is strongly minimal computing if and only if d
is strongly minimal relatively computing if and only if d is high over 0′′, i.e.,
d ≥ 0′′ and d′ ≥ 0(4).

It follows immediately from the definitions that every strongly minimal
computing degree is strongly minimal relatively computing. We will con-
struct a particular class of theories Tf in section 2, each with a computable
prime model, and in section 3, we show that we can choose f so that any
presentation A of a positive-dimensional model of T has 0(4) ≤ A′. The
construction of these theories Tf constitutes the bulk of this paper. By
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Khoussainov-Laskowski-Lempp-Solomon [KLLS07], every strongly mini-
mal relatively computing degree is also above 0′′, so this suffices to show
that every strongly minimal relatively computing degree is high over 0′′.
Lastly, in section 4, we show that every degree which is high over 0′′

is strongly minimal computing. This is done by using the methods and
machinery (which require very little change) in Andrews-Knight [AK18],
where they prove 0′′′ is strongly minimal computing.

2. THE STRONGLY MINIMAL THEORIES Tf

We will first construct a strongly minimal structure G which does not
code any computability-theoretic content. Rather, G will give us a template
on which we can easily code a function f to create the structure M := Mf .
The function f can be any function f : ω2 → {0, 1} computable from 0′′′

so that for each k, there is at most one n so that f(k, n) = 1 and such an n
is of the form 〈k, n0〉. The goal is to code the set of k for which there exists
an n with f(k, n) = 1 (which can be of degree 0(4)) into the jump of the
structure M . The way G creates the template is by leaving some tuples as
being ready to code information. In particular, we will have a configuration
called a k-hook below. In G, k-hooks will never have a relation Sn

0 hold
on them; but in M , we will place relations Sn

0 on a k-hook depending on
(a computable approximation to) whether f(k, n) = 1. The result will be
that for a sufficiently generic k-hook, Sn

0 holds on the k-hook if and only if
f(k, n) = 1.

The zero-dimensional models have the benefit of not having generic k-
hooks, while the positive-dimensional models will. At first, it appears that
this only provides one jump of distinction (finding sufficiently generic ele-
ments), but the structure of a k-hook is so that fixing a subtuple on which
R2(a, b) holds makes it easy (only one jump) to find k-hooks containing ab,
but R2 is only ∀∃-definable, so finding sufficiently generic tuples satisfy-
ing R2 takes already 3 jumps in the prime model. This, in addition to the
one jump (which is the same over any model) to de-code ∅(4), will force
that ∅(4) can only be computed by 4 jumps over the prime model (which
will be computable), but by only 1 jump over any other model.

2.1. Building the structure G. In this section, we will use the Hrushovski
amalgamation method in a novel way to construct our template structure G.
For an introduction to the amalgamation method, we still recommend Hru-
shovski’s original paper [Hr93]. For an introduction to the amalgamation
method using an infinite language (which introduces some subtleties over
the original construction), we recommend [An10], [An11], or [An13]. For
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a more modern presentation of a general construction which covers each
of the previous constructions, see [AMta]. In order for G to serve as a
template, we need to allow room for the computable model M (constructed
in the next subsection) to change its mind about occurrences of R2. In
particular, M might replace some k-n-coincidences with k-hooks, in the
terminology introduced below, and we need our bound µ to count these
together. This leads to the strange-looking definition of which extensions
are counted together, i.e., which extensions are of the form of which other
extensions, in Definition 2.11. This is the main cause why we must re-do
much of the technical details of the amalgamation construction here and
cannot simply cite any existing presentation.

For the construction, we will use the language L = {Rj
0, R

j
1 | j ∈ ω} ∪

{R2} ∪ {Sk
0 | k ∈ ω} where R2 is binary, and Rj

1, R
j
0, and Sj

0 are 4-
ary for every j. We will also use the language L0 = {Rj

0 | j ∈ ω} ∪
{Sk

0 | k ∈ ω}. The structure M we construct in section 2.2 will be in
the language L0, though it should be appropriately understood in terms of a
definitional expansionM ′ in the languageL. The subscripts for the symbols
in L represent the number of quantifiers that will be needed to define the
symbol in M . Rj

1 will be ∀-definable in M , and R2 will be ∀∃-definable
in M . We do this by making Rj

1 holding on a tuple cause that tuple to
have fewer than the generic number of extensions for an extension involving
only Rj

0. In this way, we will make Rj
1 definable via a universal formula

which uses the symbol Rj
0. We will do the same with R2 being ∀-definable

via a universal formula which uses the symbol R0
1, which makes R2 ∀∃-

definable using R0
0.

We will employ the amalgamation construction machinery, which means
that we will define a class C of finite L-structures and amalgamate members
of this class to form the generic structure G. We first begin with several
combinatorial definitions which will be used to describe the class C.

Definition 2.1. A 4-tuple for which R2(x, y) and Rk
1(x, y, z, w) hold is

called a k-hook. A hook is a k-hook for some k.

For A a finite L-structure, we define δ(A) to be

|A| − ΣU∈L|{ā ∈ Aarity(U) | A |= U(ā)}| −#(Hooks appearing on A).

Definition 2.2. For A,B ⊆ N , we say that A and B are freely joined over
A∩B if there are no relations holding in A∪B other than those that occur
inA or inB. In this case, we writeA⊕A∩BB for this structure with domain
A ∪B.

Observation 2.3. If A,B ⊆ N , then δ(A∪B) ≤ δ(A) + δ(B)− δ(A∩B).
Further, equality holds if and only if A and B are freely joined over A∩B.
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Proof. The inequality is because of the usual counting: In A ∪ B, we sub-
tract one for every relation or hook in A or in B. On the right side of the
inequality, we subtract one for every relation in A or in B, but then we have
double counted those in A ∩B, so subtracting δ(A ∩B) corrects for this.

Equality holds if and only if A and B are freely joined: If equality holds,
then there can be no relation on A ∪ B aside from those entirely in A or
in B, so A and B are freely joined over A ∩ B. If A and B are freely
joined over A ∩ B, then there are no relations aside from those in A or
in B. Similarly, there can be no hooks aside from those in A or in B.
This is because whenever abcd forms a k-hook, then Rk

1(a, b, c, d) holds.
Since A and B are freely joined over A ∩ B, Rk holding on abcd implies
that abcd ⊆ A or abcd ⊆ B. �

Definition 2.4. • For finite subsets B and A of a structure M , we set
δ(B/A) = δ(B ∪ A)− δ(A).
• If X is infinite, set δ(B/X) = min{δ(B/A) | A ⊆ X,A finite}.
• If A ⊆ B, δ(A,B) = min{δ(C) | A ⊆ C ⊆ B,C finite}.
• We say that A is a strong substructure of B and write A ≤ B to

mean that A ⊆ B and δ(A,B) = δ(A).
• If A ⊆ B are infinite, we say A ≤ B if and only if δ(X,A) =
δ(X,B) for every finite subset X ⊆ A.
• B is simply algebraic overA ifA∩B = ∅,A ≤ A∪B, δ(B/A) = 0,

and there is no proper subset B′ of B so that δ(B′/A) = 0.
• B is minimally simply algebraic over A if B is simply algebraic

over A and there is no proper subset A′ of A so that B is simply
algebraic over A′. In this case, we write B/A is a minimally simply
algebraic extension.

The following lemmas, which are repeated here without proof from An-
drews [An11, Lemmas 5 and 6], describe the basic combinatorics which
allow us to build amalgamation constructions.

Lemma 2.5 (≤ is transitive). Let A be a finite L-substructure of N so that
A ≤ N .

(1) δ(X ∩ A) ≤ δ(X) for any finite set X ⊆ N .
(2) δ(A′, A) = δ(A′, N) for any set A′ ⊆ A.
(3) If A′ ≤ A and A ≤ N , then A′ ≤ N . �

Lemma 2.6 (Modding out by more can only decrease dimension). If X , A,
and B are finite L-structures so that A ⊆ B, then δ(X/A ∪ (X ∩ B)) ≥
δ(X/B). In particular, if X ∩B = ∅, then δ(X/A) ≥ δ(X/B). �
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Fix two minimally simply algebraic extensions Λ and Ω over sets of size 2
and 4, respectively, where no relations hold on the base and each involves a
single 4-ary relation symbol R. Let Ωi be the extension obtained by replac-
ing R by the relation symbol Ri

0. And let Λ be the extension obtained by
replacing R by the relation symbol R0

1. The lack of symmetry here that we
use R0

1 as the relation for a special extension and no other Rk
1 is simply be-

cause we only need a single relation R2, which will become definable using
this extension. Fix K to be the maximum of the size of the extension Ω and
the size of the extension Λ.

Definition 2.7. Let B/A be a minimally simply algebraic extension. We
say B/A is a Λ-extension if |A| = 2 and every relation that holds in Λ holds
in B/A.

Similarly, we say B/A is a Ωi-extension if |A| = 4 and every relation
which holds in Ωi holds in B/A.

We now define a function µ that will prescribe the number of allowed
copies of a minimally simply algebraic extension over a base inside a mem-
ber of C.

Definition 2.8. Let Y/X be a minimally simply algebraic extension. We
define

µ(X, Y ) =



8 + 2K if Y/X is an Ωi-extension
and Ri

1(X) holds,
4 + 2K if Y/X is an Λ-extension

and R2(X) holds,
2 · |X|+ 1 + 2K otherwise.

Definition 2.9. A 4-tuple on which both Rk
1(x, y, z, w) and Sn

0 (x, y, z, w)
hold is called a k-n-coincidence.

Definition 2.10. Fix B/A to be a minimally simply algebraic extension.
We say that X is a B/A-base if |X| = |A| and one of the following holds:

• B/A is not an Ωi- or a Λ-extension.
• B/A is an Ωi-extension, and Ri

1(X) iff Ri
1(A).

• B/A is a Λ-extension, and R2(X) iff R2(A).

Definition 2.11. Fix B/A to be a minimally simply algebraic extension.
We say that an extension Y/X is of the form B/A if X is a B/A-base and
after replacing some k-n-coincidences in (A ∪ B)4 r A4 with k-hooks we
get an extension B′/A′ so that Y/X realizes every (positive) relation which
holds in B′/A′ (i.e., holds of a tuple in (A′ ∪ B′)m r (A′)m where m is
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the arity of the relation). Note that for finite L-structures B/A, there is a
first-order formula ΘB/A(X, Y ) which says that Y/X is of the form B/A.

We now have all the components necessary to describe our class of finite
structures C.

Definition 2.12. Let C be the collection of finite L-structures A so that the
following hold:

(1) If X ⊆ A, then δ(X) ≥ 0.
(2) If F,C1, . . . , Cr are disjoint subsets of A and each Ci/F is of the

form B/A for a minimally simply algebraic extension B/A, then
r ≤ µ(A,B).

(3) If abcd ∈ A is a k-hook, then there is no n ∈ ω so that Sn
0 holds

on abcd.
(4) If Rk

1(a, b, c, d) then there is at most one n so that Sn
0 (a, b, c, d).

Our next major goal is to show that C has certain amalgamation proper-
ties, which will allow us to form the amalgamation genericG for the class C.

The following shows that among the minimally simply algebraic exten-
sions in C, if one is of the form of another, then they only differ on the base.
Furthermore, since they have the same µ, it doesn’t matter which one we
work with.

Lemma 2.13. If δ(B/A) = 0, B′/A′ is a minimally simply algebraic ex-
tension, and B/A is of the form B′/A′, then they realize exactly the same
relations on the extensions. That is, there is a map f : (A∪B)→ (A′∪B′)
satisfying that for all x̄ ∈ (A ∪ B)n r An and all R ∈ L that R(x̄) iff
R(f(x̄)). Furthermore, B/A is a minimally simply algebraic extension and
µ(A,B) = µ(A′, B′). Lastly, for any other extension E/D, E/D is of the
form B/A if and only if it is of the form B′/A′.

Proof. Note that B/A cannot realize all the relations of any form B′/A′ in
which we replaced any k-n-coincidences with k-hooks. This is because k-
hooks are counted as −3 in δ: −1 for R2, −1 for Rk

1 , and −1 for being a
k-hook, whereas a k-n-coincidence is counted as−2 in δ:−1 forRk

1 and−1
for Sn

0 . Thus, since δ(B/A) = δ(B′/A′) = 0, B/A cannot realize all the
relations in any form B′/A′ in which we replaced any k-n-coincidences
with k-hooks. So, B/A realizes all relations in B′/A′. But since δ(B/A) =
δ(B′/A′) = 0, we also have B′/A′ realizes all relations in B/A.

Since these two extensions satisfy precisely the same relations except on
the base, it follows thatB/A is also a minimally simply algebraic extension.
We now show that µ(A,B) = µ(A′, B′). If B/A is not an Ωi-extension or a
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Λ-extension, then µ(A′, B′) = µ(A,B) since |A| = |A′|. Otherwise, we de-
mand in the definition of being “of the form” that the bases look sufficiently
similar that µ(A′, B′) = µ(A,B). �

The following is the main combinatorial tool which we will use below to
show C has nice amalgamation properties.

Lemma 2.14. Let A, B1, and B2 be L-structures so that any substructure
has non-negative δ, A = B1 ∩ B2, and A ≤ B1. Let E = B1 ⊕A B2.
Let Y/X be a minimally simply algebraic extension and supposeC1, . . . Cr,
F are disjoint substructures of E so that each Cj/F is of the form Y/X .
Then one of the following conditions holds:

(1) One of the Cj is contained in B1 r A and F ⊆ A.
(2) F ∪

⋃
j C

j is contained entirely in B1 or entirely in B2.
(3) For one of the Cj , Cj ⊆ B2, and setting Z = (F ∩A)∪ (Cj ∩B2),

we have δ(Z/Z ∩ A) < 0. Further, at least r − δ(F ) of the Ck

are entirely contained in B1 r A. (Note that this cannot happen if
A ≤ B2.)

Proof. This proof is an adaptation of Hrushovski [Hr93, Lemma 3], as in
Andrews’s thesis [An10, Lemma 42]. The notion of being of the form Y/X
was different there, but the proof does not rely on that; rather, it works
whenever each Ci/F is either minimally simply algebraic or δ(Ci/F ) <
0. �

We must describe the possible cases where µ allows us to have more
realizations of an extension, yet adding such an extension is not possible
inside C.

Definition 2.15. Let B/A be a minimally simply algebraic extension and
let Y/X be minimally simply algebraic and of the form B/A with Y ∈
C. Let Z ⊇ X be so that Z ∈ C. We say that Z is a B/A-obstruction
over X if Z does not contain µ(A,B) many disjoint extensions over X of
the form B/A, yet Y ⊕X Z /∈ C.

Lemma 2.16. Let B/A be a minimally simply algebraic extension. Then
there is a finite list of extensions Z1 ⊇ X1, . . . , Zn ⊇ Xn so that a set Z is a
B/A-obstruction over X if and only if Z contains a set W ⊇ X so that W
realizes all the relations in Zi for some i ≤ n. Furthermore, Xi 6≤ Zi for
each i ≤ n.

Proof. Let Z be a B/A-obstruction over X . Let Y/X be the minimally
simply algebraic extension of X of the form B/A (unique by Lemma 2.13).
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We consider the possible reasons why Y ⊕X Z /∈ C. Since Y ⊕X Z is freely
joined, we have that for any V ⊆ Y ⊕X Z, δ(V ) = δ(V ∩ Y ) + δ(V ∩
Z) − δ(V ∩ X) = δ(V ∩ Y/V ∩ X) + δ(V ∩ Z) ≥ 0 since X ≤ Y and
Z ∈ C. Thus, Y ⊕X Z satisfies the first condition of C. It also satisfies the
third and fourth conditions since it is freely joined, any 4-tuple on which
Rk

1(a, b, c, d) holds must be in Y or in Z, and Y, Z ∈ C. Thus, we must
have disjoint subsets F,C1, . . . , Cr of Y ⊕X Z, each of the form B′/A′ for
some minimally simply algebraic extension B′/A′, and r > µ(A′, B′). Let
Z ′ = X ∪ (F ∩Z)∪

⋃
j(C

j ∩Z). From Z ′, remove all relations aside from
those on tuples in (Cj ∪F )krF k or relations Ri

1 or R2 holding on all of X
needed to make Y/X be of the form B/A, let X ′ be this Z ′ restricted to the
set X and let Z ′/X ′ be one of the Zi/Xi. We will argue below that there
are only finitely many extensions Zi/Xi, even as we range this construction
over all possible B/A-obstructions Z over X .

Suppose Z is a B/A-obstruction over X witnessed by F,C1, . . . , Cr.
Then Lemma 2.14 gives four possibilities to consider, and we begin by
verifying that Z must be in the fourth case, by deriving contradictions from
the first three cases:

(1) One of the Cj is contained in Y r X and F ⊆ X: In this case,
since Y/X is minimally simply algebraic, we get that Cj = Y and
F = X . Thus, the remaining Cj’s are all contained in Z r X .
Also, B/A is of the form B′/A′, so µ(A,B) = µ(A′, B′). Thus, Z
already contains µ(A,B) extensions of the form B′/A′, and thus,
also of the form B/A, contradicting Z being a B/A-obstruction.

(2) Either F ∪
⋃

j C
j is entirely contained in Y or is entirely contained

in Z: This cannot happen since Y, Z ∈ C.
(3) r ≤ δ(F ): This is impossible since δ(F ) ≤ |F | = |A′| < µ(A′, B′).

So we must be in the fourth case, that for one of the Cj ⊆ Z, setting U =
(F∩X)∪(Cj∩Z), we have δ(U/U∩A) < 0. Further, r−δ(F ) of theCj are
entirely contained in YrX . Let J be the collection of j so thatCj is entirely
contained in Y rX . Thus, F ⊆ Y , though F 6⊆ X . Since theCj are disjoint
and |J | ≥ r − δ(F ) ≥ µ(A′, B′) − |A′| ≥ |A′| ≥ δ(F ), it follows that at
least one of the Cj over F which is entirely contained in Y rX must have
δ(Cj/F ) = 0 (otherwise, we would have δ(

⋃
j∈J C

j/F ) ≤ −|J | ≤ −δ(F ),
so δ(

⋃
j∈J C

j ∪ F ) < 0). Then, by Lemma 2.13, this extension Cj/F must
satisfy exactly the relations in the extension B′/A′. In particular, no k-n-
coincidence has been replaced by a k-hook. Thus, we can identify from the
set F ∪ Cj the exact extension B′/A′. Since F ∪ Cj is contained in Y ,
we can identify a particular minimally simply algebraic extension B′/A′

(namely Cj/F ) that causes Z to be a B/A-obstruction over X . Thus, it
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follows that there is a finite list of minimally simply algebraic extensions
so that any Z that is a B/A-obstruction is a B/A-obstruction due to one of
these finitely many minimally simply algebraic extensions.

Thus, to see that our list has only finitely many Zi/Xi, it suffices to show
that for each fixed minimally simply algebraic extension B′/A′, there are
only finitely many Zi created on behalf of an obstruction with this form as
the witness.

For each of these formsB′/A′, we can specify the fragment of F ∪
⋃

j C
j

that is contained in Y , and which elements of Y they are; again this is a
finite amount of information. Then, since the Cj are disjoint and F ⊆ Y ,
we have exactly one Zi/Xi from this configuration. That is,

Zi = (X ∪ F ∪
⋃
j≤r

Cj) r (Y rX)

with only relations holding on tuples in (Cj ∪ F )k r F k and also possibly
a relation holding on all of X to ensure that X is a B/A-base. Thus, there
are only finitely many Zi/Xi. Furthermore, since Zi has this form, we see
that Xi 6≤ Zi: First, Zi 6= X , since otherwise this would be an obstruction
in the second case above, which we ruled out. Thus, there is some Cj so
that Cj ∩ (Z rX) 6= ∅. But if Cj ⊆ Z rX , then we would have F ⊆ Z,
and we would be in the first case above, which we already ruled out. Recall
that Cj ⊆ Z, so we must have Cj ∩X 6= ∅ and Cj ∩ (Z rX) 6= ∅. Thus,
by simple algebraicity, δ(Cj ∩ (Z r X)/Y ) < 0. But since Z and Y are
freely joined over X , this yields δ(Cj ∩ (Z rX)/X) < 0, so X 6≤ Zi.

We next check that each Zi is a B/A-obstruction over Xi. Consider the
B/A-obstruction Z over X which caused Zi/Xi to enter our list. There
are F and Cj for j ≤ r in Z ⊕X Y which violate the µ-bound for some
extension B′/A′. By the above, we saw that F ⊆ Y and F 6⊆ X . Let Yi/Xi

be the minimally simply algebraic extension of the formB/A. Consider the
subset of Yi ⊕Xi

Zi comprised of the elements in F ∪
⋃

j C
j in Z ⊕X Y .

We have preserved all of the relations between Cj’s and F , and since F is
contained in Y but not in X , if R2 or Ri

1 hold on F in Y , then the same
relation holds on Yi. It follows that each Cj/F is still of the form B′/A′

showing that Yi ⊕Xi
Zi also violates the µ-bound and thus Zi is a B/A-

obstruction over Xi. Similarly, we see that any extension of any X that
contains a subset W so that W/X realizes all the relations in Zi/Xi is also
a B/A-extension.

By construction of our list of Zi/Xi’s, it is immediate that any B/A-
obstruction Z over X contains a subset W so that W/X realizes all of the
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relations in Zi/Xi for some i. Namely, the Zi/Xi added to the list for this
particular B/A-obstruction Z over X . �

Corollary 2.17. It is first-order to say that X ⊆ M is contained in some
Z ⊆M that is a B/A-obstruction over X .

Proof. This is immediate from the previous lemma. �

Corollary 2.18. If X ⊆ W ≤ M and M contains a B/A-obstruction
over X , then W contains a B/A-obstruction over X .

Proof. M contains an extension Z ′i so that Z ′i/X realizes all the relations
in Zi/X . We show that each of the Cj in the construction of Zi must be
contained in W . Suppose otherwise, then there is a Cj so that Cj ∩X 6= ∅
and Cj r W 6= ∅. Since Cj is of the form B′/A′ over F , which is a
minimally simply algebraic extension, we see that δ(Cj rW/F ∪W ) < 0.
Since F is freely joined with Cj over X , we get that δ(Cj rW/W ) < 0.
But this contradicts W ≤ M . Thus, each Cj is contained in W and Z ′i ⊆
W . �

Lemma 2.19 (Algebraic Amalgamation Lemma). If A,B,C ∈ C and A ≤
B and A ≤ C and C is simply algebraic over A, say, minimally simply
algebraic over F ⊆ A, then either B⊕AC ∈ C, or B contains µ(F,CrA)
many disjoint extensions over F of the form (C r A)/F , or A contains a
(C r A)/F -obstruction over F .

Note that if C ∈ C, then the last possibility cannot hold.

Proof. We consider the structure B ⊕A C. It cannot violate the conditions
on being in C in the first way, since for any X ⊆ B ⊕A C, δ(X) = δ(X ∩
B)+δ(X∩C)−δ(X∩A) = δ(X∩C)+δ(X∩B/X∩A) ≥ δ(X∩C) ≥ 0,
since X ∩ B and X ∩ C are freely joined over X ∩ A. Similarly, every k-
hook or k-n-coincidence in B ⊕A C is contained in either B or in C, so
B ⊕A C cannot violate the third or fourth condition. Therefore, if B ⊕A C
is not in C, it is because it violates the µ-bound. Thus, by the definition of
obstruction, either B ⊕A C ∈ C, or B contains µ(F,C r A) many disjoint
extensions over F of the form (C r A)/F , or B contains a (C r A)/F -
obstruction. By Corollary 2.18, since A ≤ B, it follows that A contains a
(C r A)/F -obstruction over F . �

Corollary 2.20. If X ⊆ W ∈ C, X is a B/A-base and W does not contain
aB/A-obstruction overX , then there is a V so thatW ≤ V and V contains
µ(A,B) many disjoint B/A-extensions over X .
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Proof. If W does not contain a B/A-obstruction over X or µ(A,B) many
disjoint B/A-extensions over X , then let Y/X be minimally simply alge-
braic and of the form B/A. Then V1 = W ⊕X Y ∈ C. Since W ≤ V1, V1
also does not contain a B/A-obstruction over X . Thus, either V1 con-
tains µ(A,B) many disjoint B/A-extensions over X , or we can pass to
V2 = V1 ⊕X Y . Continuing in this way, we eventually find a Vk which
has µ(A,B) many disjoint extensions over X of the form B/A. Since
W ≤ V1 ≤ V2 ≤ · · · , we have that W ≤ Vk. �

Finally, we can present the Strong Amalgamation Lemma, which shows
that we can amalgamate the class C to build a generic structure G.

Lemma 2.21 (Strong Amalgamation Lemma). Suppose A,B,C ∈ C and
A ≤ B and A ≤ C. Then there exists D ∈ C so that B ≤ D and there is
an embedding f : C → D with f(C) ≤ D and f �A = idA.

Proof. We proceed by induction on the size of C r A. First suppose that
there is a c ∈ C where there are no relations holding between c and A
whatsoever with A∪{c} ≤ C. Then A∪{c} ≤ B ∪{c} and A∪{c} ≤ C.
Then, by induction since |C r (A ∪ {c})| < |C rA|, we get our D so that
B ∪ {c} ≤ D and f : C → D as needed.

Now suppose that there is no such c. Then we can take X ⊆ C minimal
so that A ⊂ X and A ≤ X ≤ C. By inductive hypothesis, we may
assume that this X = C. Then C is simply algebraic over A, say minimally
simply algebraic over F ⊆ A. Thus, we can use Lemma 2.19. Either
D = B ⊕A C works, or B has µ(F,C r A) many disjoint extensions
over F of the form C r A/F . Not all of these can be contained in A
as otherwise C would violate the µ-bound. Thus, one of them must be
contained in B r A (since A ≤ B, it cannot be partly in A and partly in
BrA). Thus, Lemma 2.13 shows that we can map CrA to this extension
in B, and D = B suffices. �

We will now describe a structure G which is the strong amalgamation
limit for the class C. We will establish the properties of this G over the next
several lemmas. In particular, we need to establish that G is saturated, and
from there that, the theory of G is strongly minimal.

Corollary 2.22. There exists G so that

(1) G is countable.
(2) A ⊂ G and A finite implies A ∈ C.
(3) A ≤ G, A ≤ B and B ∈ C implies that there exists an embedding f

of B into G so that f is the identity on A and f(B) ≤ G.
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Proof. By amalgamating within the class C repeatedly using Lemma 2.21,
and using the fact that C is countable and closed under substructure, we
get G with these three properties. �

Lemma 2.23. G satisfies the following conditions:

(1) G is countable.
(2) A ⊂ G and A finite implies A ∈ C.
(3) There is an infinite set I so that I ≤ G and no relations hold on I .
(4) If A ⊆ G is finite and A ⊆ C ∈ C is a minimally simply algebraic

extension, then either G contains µ(A,C) many disjoint extensions
over A of the form C/A or it contains a C/A-obstruction over A.

Proof. The first two follow from the previous corollary. Since, for any A,
A ≤ A ∪ {c} where there is no relation holding involving c, we can apply
the third item in the previous corollary infinitely often to attain our I .

Let A ⊆ G be finite and A ⊆ C ∈ C. Let B ⊆ G be so that A ≤ B
and so that there is no extension of A of the form C/A which is disjoint
from B. Since B ≤ B⊕AC, it must be that B⊕AC /∈ C. By the Algebraic
Amalgamation Lemma, either B contains µ(A,C) extensions over A of the
form C/A, or it contains a C/A-obstruction over A. �

Lemma 2.24. Any structure satisfying the four properties in Lemma 2.23 is
isomorphic to G.

Proof. Let G′ be a structure satisfying (1)-(4). We use a back-and-forth
construction along strong substructures to show that G ∼= G′. At every
stage, we have an isomorphism f : X → X ′ from some X ≤ G to an
X ′ ≤ G′. Without loss of generality, we consider a forth stage. That is,
we are given some Y ⊆ G with X ⊂ Y ≤ G. We may assume that Y
is minimal with X ⊂ Y ≤ G, so either Y is a simply algebraic extension
of X , or Y is comprised one new element which is unrelated to X . In the
latter case, property (3) for G′ suffices to give an image for Y extending f ,
so we consider the former case. Let F ⊆ X be so that Y rX is minimally
simply algebraic over F . Suppose G′ contains µ(F, Y rX) many disjoint
extensions over F ′ of the form (Y r X)/F . Not all of these extensions
can be contained in X ′, since then Y would violate the µ-bound, so there
is one that is not contained in X ′. Since X ′ ≤ G′, there cannot be such
an extension which is partially in X ′ and partially not. Thus, there is an
extension V/F ′ of the form (Y r X)/F which is disjoint from X ′. Since
X ′ ≤ G′, we see F ′ ≤ V , so V is minimally simply algebraic over F ′,
and X ′ is freely joined with V over F ′. Thus, by Lemma 2.13, V/F ′ ∼=
(Y rX)/F , and we can send Y rX to this extension.
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Now we consider the other possibility, which is that G′ contains a (Y r
X)/F -obstruction. Since X ′ ≤ G, it follows that X ′ contains this obstruc-
tion. But then X contains the same obstruction, and we have that Y is not
in C, contradicting property (2) of G. Thus, G and G′ allow a back-and-
forth construction along strong substructures. Since both are countable,
G ∼= G′. �

Lemma 2.25. Any countable H � G is isomorphic to G.

Proof. It suffices to show that H satisfies each of the four conditions in
Lemma 2.23. It is countable by assumption. Note that the condition X ∈ C
is defined by a collection of ∀-sentences, so for each such ϕ,G |= ∀Xϕ(X).
Thus, H satisfies the same collection of formulas, giving (2). The same
set I shows that (3) holds. Lastly, let A ⊆ G be finite and A ⊆ C ∈ C be
a minimally simply algebraic extension. G satisfies that for all X , if X is
a base for C/A, then either there exists µ(A,C) many Z so that Z/A is of
the form C/A, or there exists W so that W is a C/A-obstruction over A.
This is first-order, since being of the form C/A is first-order and having a
C/A-obstruction is first-order (see Lemma 2.17). Thus, H satisfies this as
well. �

Corollary 2.26. G is saturated.

Proof. Since every countable elementary superstructure of G is isomor-
phic to G, we see that there are only countably many types consistent with
Th(G). Thus, Th(G) has a countable saturated model. But then G elemen-
tarily embeds in this and we see that it must be isomorphic to G. So G is
saturated. �

We now move towards showing strong minimality of G. To do so, we
need to characterize algebraicity in G. So, we now verify that algebraicity
is determined by δ.

Definition 2.27. For any finite A ⊆ G, we define d(A) = min{δ(B) | A ⊆
B ⊆ G}.

In the following, we use standard model-theoretic notation and write, for
example, xA or Ax for the set A ∪ {x}.

Lemma 2.28. If d(xA) = d(yA) = d(A) + 1 then (G,Ax) ∼= (G,Ay)

Proof. Fix B so that A ⊆ B ⊂ G and δ(B) = d(A). Then B ≤ G and
d(xB) = d(yB) = d(A)+1 = d(B)+1. Thus, xB and yB are both strong
in G and isomorphic. Using the back-and-forth argument along strong sub-
structures of G as in Lemma 2.24, we see that (G,Bx) ∼= (G,By). �
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We now know that there is only one type over A of an element x so that
d(xA) > d(A). We next see that d(xA) = d(A) implies that x ∈ acl(A).

Lemma 2.29. If d(xA) = d(A) then x ∈ acl(A).

Proof. Let B containing A be minimal so that δ(B) = d(A). We first show
that B is algebraic over A.

Claim 2.30. If B′ is any set containing A so that δ(B′) = d(A), then B ⊆
B′.

Proof. We are assuming that δ(B) = δ(B′) = d(A), and B is minimal with
this property. Then δ(B∪B′) ≤ δ(B)+δ(B′)−δ(B∩B′). If B∩B′ ( B,
then δ(B) + δ(B′) − δ(B ∩ B′) < δ(B′) = d(A). The strict inequality is
due to the minimality of B. But then we have d(A) < d(A), which is a
contradiction. Thus, B ∩B′ = B, so B ⊆ B′. �

To see thatB is algebraic overA, suppose thatB andB′ are automorphic
over A. In particular, they both have the property of being minimal contain-
ing A with δ(B) = δ(B′) = d(A). Then the claim shows that B ⊆ B′ and
B′ ⊆ B. Therefore, B′ = B, and B is algebraic over A.

It is direct from the definition of d that d(A) ≤ d(B) ≤ d(xB). Let C be
any set containing xA such that δ(C) = d(xA). Then d(xA) ≤ δ(C∪B) ≤
δ(C) + δ(B) − δ(C ∩ B) = d(xA) + d(A) − δ(C ∩ B) ≤ d(xA) +
d(A) − d(A) = d(xA). Thus, each inequality is an equality, and we have
δ(C ∩ B) = d(A). Thus, by the claim, B ⊆ C. Thus, d(xB) ≤ δ(C) =
d(xA) = d(A). So d(xB) = d(B), and it suffices to show that x ∈ acl(B).

Take a sequence of extensions B0, B1, . . . , Bn so that B0 = B and x ∈
Bn and so that Bi+1 is minimal so that Bi ( Bi+1 and δ(Bi+1) = δ(B).
Then Bi+1 is simply algebraic over Bi. By property (2) of G, there are only
finitely many copies of this simply algebraic extension over Bi, thus Bi+1

is algebraic over Bi. Finally, we can conclude that x ∈ acl(B). �

Corollary 2.31. G is strongly minimal.

Proof. Over any set there is a unique non-algebraic type realized in G.
Since G is saturated, this means that there is a unique non-algebraic type.
This is equivalent to strong minimality. �

Now that we have strong minimality of G, we see that G is a definitional
expansion of G|L0. Below, we write ∃KZϕ to mean that there exists K
disjoint sets Z which satisfy ϕ.

Lemma 2.32. We have
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(1) G |= ∀xy(R2(x, y)↔ ¬(∃5+2KZ)(Z/xy is a Λ-extension)), and
(2) G |= ∀xyzw(Rk

1(x, y, z, w)↔
¬(∃9+2KZ)(Z/xyzw is an Ωk-extension))

Proof. The left-to-right direction for both (1) and (2) is due to the µ-bound
and property (2) of G.

Conversely, for (1), choose xy such that

G |= ¬(∃3+2KZ)(Z/xy is a Λ-extension)).

Let B ≤ G be such that xy ⊆ B. Then B ⊕xy D /∈ C where D/xy is
a minimally simply algebraic Λ-extension. This must be because it vio-
lates the µ-bound. That is, there are disjoint F,C1, . . . Cr in B ⊕xy D so
that each Ci/F is of the form Y/X for some minimally simply algebraic
extension Y/X and r > µ(X, Y ).

We must consider the four cases from Lemma 2.14. In the first case,
since D/xy is a minimally simply algebraic extension, we have Cj = D r
xy and F = xy. We conclude that each of the other Cj must be contained
in B, so B contains already µ(xy,D) many disjoint extensions over xy of
the form D/xy. But then µ(xy,D) < 5 + 2K . This implies R2(x, y).

In the second case, we have that either B or D is not in C, which is
impossible. In the third case, r ≤ δ(F ) ≤ |F | = |X| < µ(X, Y ), which
is a contradiction. In the last case, aside from the Cj which are entirely
contained in B1 r A, there can be at most δ(F ) many Cj’s. But there can
be no more than K many disjoint sets Cj which each intersect B1 rA. So,
r ≤ δ(F ) +K < 2 · |X|+ 2K ≤ µ(X, Y ).

The right-to-left proof of (2) is similar. �

2.2. Creating M from G. Now we turn our attention towards building a
theory that codes computability-theoretic content. Fix f : ω2 → {0, 1}
to be a 0′′′-computable total function with the property that for every k,
there is at most one n so that f(k, n) = 1 and such an n satisfies n =
〈k, n0〉 for some n0. We first construct a theory Tf for any such function,
and we show that for every such Tf , the prime model has a computable
copy. In Theorem 2.36, we construct M coding information about f into
the “template” of G. Though M is related to G (as stated precisely in the
theorem), our extra coding may (depending on f and its approximation)
make M the prime model of its theory. To ensure that M is always the
prime model of its theory and make it easier to see dimension inM , we will
add constant symbols for all of the elements in M to form Mc, and Tf will
be the theory of this Mc.
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In Section 3, we will consider Tf for f chosen so that {k | ∃nf(k, n) =
1} = ∅(4), and we consider which degrees compute positive-dimensional
models of Tf .

Definition 2.33. Given any L-structure A, we let A
∧

be the result of remov-
ing any relations Sn

0 (a, b, c, d) that hold on a hook abcd.

Definition 2.34. Given M an L0-structure, we define an L-structure M̃ to
be a definitional expansion as follows: Ri

1(x̄) iff

¬(∃9+2KZ)(Z/x̄ is a Ωi-extension)).

Then we define R2(x̄) iff

¬(∃5+2KZ)(Z/x̄ is a Λ-extension)).

Definition 2.35. For σ ∈ 2<ω, we define σ′ ∈ 2ω so that

• For every k, there is exactly one n = 〈k, n0〉 so that σ′(k, n) = 1.
• If (σ(k, 〈k,m〉) = 0 for every m < n0) and (σ(k, 〈k, n0〉) = 1 or is

undefined) then σ′(k, 〈k, n0〉) = 1.

Theorem 2.36. There is a computable L0-structure M along with a com-
putable function g : M2 → 2<ω (written g : (x, y) 7→ σxy) so that M̃
satisfies the following:

(1) For every k, n, there are at most finitely many pairs x, y ∈ M ′ so
that R2(x, y) holds and σ′xy(k, n) 6= f(k, n).

(2) M̃
∧
∼= G

(3) If abcd is a k-hook, then σ′ab(k, n) = 1 iff M |= Sn
0 (a, b, c, d).

Proof. As we give a construction of M and g, we also build an L-structure
N by simultaneously giving a Π0

1-approximation to the collection of tuples
satisfying the symbols Ri

1 and a Π0
2-approximation to the collection of tu-

ples satisfying R2. As such, we may say that we remove Ri
1 from some

tuple. This simply means that in the Π0
1-approximation that we are build-

ing, we determine that Ri
1 does not hold on some tuple. We may say that

we remove R2 from some tuple or that we place R2 on some tuple. It is
understood that, for a tuple xy, if we place R2 on xy infinitely often, then
we have N |= R2(x, y). As M is simply N restricted to L0, we describe the
construction of N and then we will show that N = M̃ .

Fix a function f0(w, x, y, z) ≤T 0′ such that

f(w, x) = lim
y

lim
z
f(w, x, y, z).

For each j ∈ ω we say that y0 is the j-decider if y0 is least so that for
every y ≥ y0 and w0, x0 ≤ j, limz f0(w0, x0, j, z) = f0(w0, x0, j, y) =
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f0(w0, x0, j, y0). Note that the property of being the j-decider is a Π0
2-

property. Further, since f0 is ∆0
2, it is a Π0

2-property for y to be the j-decider
and σ : j2 → {0, 1} to be given by σ(w0, x0) = f0(w0, x0, j, y). We call
this pair (y, σ) the j-decision.

We will attempt to satisfy the following requirements: Ext(X,B/A)
whereX ⊆ ω andB/A is a minimally simply algebraic extension in C. The
requirement says: If it is possible to keep N

∧
in C and add µ(A,B) many

disjoint extensions over X of the form B/A, then do that. We create a tree
of strategies. Each Ext(X,B/A)-strategy has an accompanying guess as
to the j-decision (y, σ) where j = 〈X,A,B〉. On a tree of strategies, this
strategy has two outcomes, which we label Π0

2 and Σ0
2, with the Π0

2-outcome
on the left. Below the Σ0

2-outcome (which represents that the strategy failed
to have the correct j-decision), we place a new Ext(X,B/A)-strategy with
the next guess (y, σ) at the j-decision, which in turn has two outcomes.
We keep placing new Ext(X,B/A)-strategies below the Σ0

2-outcome. We
needn’t worry that this gives an infinite path on the tree of strategies com-
prised entirely of Ext(X,B/A)-strategies. This path cannot be the true
path, because there is some correct j-decision. Below the Π0

2-outcome we
place a Ext(X ′, B′/A′) strategy so that 〈X ′, A′, B′〉 = j + 1. Whatever the
true path is, every requirement Ext(X,B/A) will have some strategy on the
true path that takes the Π0

2-outcome infinitely often.

At each stage, we first determine the current true path on the tree (by
approximations to the series of Π0

2-statements about j-decisions). Then we
use this current true path to determine an approximation to N as follows:
Any R2- or Rk

1-relation placed by a strategy to the right of the true path
does not hold on N (since this strategy is injured and re-initialized, this
is permanent). For any strategy to the left of the current true path, every
instance of an Rk

1 continues to hold, but we guess that no R2-relation that
it placed holds. For strategies on the current true path, if the current true
path extends the Σ0

2-outcome, then we see the Rk
1-relations as holding, but

not the R2-relations that it placed; whereas, if the current true path extends
the Π0

2-outcome, we keep all relations placed by that strategy, including
R2-relations.

This builds a current approximation to N . We will argue below, once we
describe the actions that each strategy takes, that this approximation has the
property that N

∧
∈ C. Now, we take the first strategy on the current true

path that has never acted (i.e., has not placed any relations or created any
elements since the last time it was re-initialized) and such that the current
true path is below the Π0

2-outcome of this strategy. Let this be α, where α is
an Ext(X,B/A)-strategy with approximation (y, σ) at the j-decision with
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j = 〈X,A,B〉. Since N
∧
∈ C, it makes sense to ask if there is some way to

extendN
∧

to add µ(A,B) many disjoint extensions overX of the formB/A.
This is done via free-amalgamation as in Lemma 2.19. This means checking
ifX is aB/A-base and if there already is aB/A-obstruction overX . IfX is
aB/A-base and there is noB/A-obstruction overX , then we build µ(A,B)
many disjoint extensions over X of the form B/A. For each new pair xy,
we determine σxy = σ. Then, for each new k-hook xyzw, we decide to
place Sn

0 (x, y, z, w), where n is so that σ′(k, n) = 1. Lastly, we add one
new element unrelated to anything. This is to ensure that N

∧
will satisfy

property (3) of Lemma 2.23.

This completes the construction.

Let As be the set of elements constructed by stage s. Let As[t] be the
structure with universe As as seen in our approximation to N at stage t.
Thus, at stage s, we consider that we have built the structure As[s].

Lemma 2.37. For every s < t, As[t]
∧

≤ As+1[t]
∧

.

Proof. The only relations that can hold between As+1[t] and As[t] are those
placed at stage s+1. That is, each strategy when it places relations, does so
with new elements, so only at this one stage can we place relations between
As+1[t] and As[t]. At this stage, a strategy is building As+1[s+ 1] by freely
joining in realizations of a simply algebraic extension over As[s + 1]. As
such, we have As[s+ 1]

∧

≤ As+1[s+ 1]
∧

. The remaining subtlety is that
at a later stage, we may have extra S-relations holding in As+1[t]

∧

between
As+1 r As and As. This can happen because at a stage t, we no longer see
a relation R2(x, y). This might turn a k-hook xyzw into a k-n-coincidence.
Regardless, at stage s, on the 4-tuple xyzw, we counted −2 in δ: −1 for Rk

1

and −1 for being a k-hook (this is in addition to the −1 for R2(xy)). After
removing R2, we still count −2 for xyzw: −1 for Rk

1 and −1 for Sn
0 . Thus,

we have not decreased δ(X
∧
/As

∧
) for any X ⊆ As+1. Thus, we still have

As[t]
∧

≤ As+1[t]
∧

. �

Lemma 2.38. At every pair of stages s ≤ t, As[t]
∧

is in C.

Proof. The lemma clearly holds for s = t = 0. We proceed to show that
it holds for s ≤ t assuming that the lemma holds for all pairs s′ ≤ t′ so
that (t′, s′) is lexicographically less than (t, s). Since A0 = ∅, Lemma 2.37
shows that ∅ ≤ As[t]

∧

, so the first condition for being in C holds. Since
we took the hat-operation of As[t], the third condition holds by definition.
There is only one stage where we can place any relations on a tuple xyzw.
If we placed Rk

1(x, y, z, w), then we could only have placed one relation
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Sn
0 (x, y, z, w). As such, at all future stages, there can similarly be only one

relation Sn
0 on xyzw, and the fourth condition holds as well.

We must verify that As[t]
∧

does not violate the µ-bound. Suppose towards
a contradiction that F,C1, . . . , Cr are disjoint subsets ofAs[t]

∧

each of which
is of the form B/A and r > µ(A,B). Let n be least so that X =

⋃
i≤r C

i ∪
F ⊆ An, and let us consider An[t]. Since An[t]

∧

∈ C for any n < s by the
inductive hypothesis, we see that n = s. By the inductive hypothesis, we
can assume As−1[s] ∈ C. But then the construction at stage s amalgamates
within C, soAs[s]

∧

∈ C. There can be no moreRk
1-relations holding insideX

than existed in As[s]
∧

.

The concern is with regard to R2-relations and Sm
0 -relations, for which

As[s]
∧

and As[t]
∧

may disagree. Let α be the strategy that acts at stage t,
i.e., α represents the true path at stage t, and let β be the strategy that acted
at stage s. We handle the four cases that β

∧
Π0

2 <L α, α
∧

Π0
2 <L β, β

∧
Π0

2 �
α, or α

∧
Π0

2 � β.

For each r ∈ [s, t), let βr be the strategy which acts at stage r. We
first suppose βr

∧
Π0

2 <L α for some r ∈ [s, t). This includes the case
where β

∧
Π0

2 <L α. Then As[r] may have more R2-realizations than As[t].
In turn, since we are taking the hat operation, As[t]

∧

may have more Sm
0 -

relations than As[r]
∧

does. In the definition of “of the form”, if we turn a
k-hook into a k-m-coincidence, and we turn Y/X into an extension of the
form B/A (for B/A minimally simply algebraic), then Y/X was already
of the form B/A. Thus, when we consider the sets F,C1, . . . Cr in As[r]

∧

,
these sets are of the formB/A already. This is impossible because we know
by the inductive hypothesis that As[r]

∧

∈ C.

We next suppose that α
∧

Π0
2 <L β. The fear is that we may have relations

R2(x, y) which did not appear in As[s] but do appear in As[t]. Note that
such xy must be in As−1. First we consider the case that B/A is a Λ-
extension, in particular the extension uses only R0

1-relations. Note that it is
impossible to have all of ∪i≤rCi contained inside As−1, for if this were the
case then As−1[t] 6≤ As[t]. Thus, we have some element of one Cj which
was new at stage s. When we visit α

∧
Π0

2 at stage s, we remove every Rk
1-

relation that holds on this element, so Cj/F is not of the form B/A after
all. Thus, we can assume B/A is not a Λ-extension. So the concern is
not appearances of R2 inside F , but rather holding inside each Ci. Now,
since α

∧
Π0

2 <L β, any occurrence of R2 which was placed by β would
be removed, so any occurrence of R2 inside X must be in As−1. Thus,
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each Cj contains at least two elements inside As−1. Now, we compute
δ(X[t]
∧

/As−1[t]
∧

). Since As−1[t]
∧

≤ As[t]
∧

, δ(X[t]
∧

/As−1[t]
∧

) should be ≥ 0.

Case 1: F ⊆ As−1. Then there is one Cj that intersects As r As−1.
It also intersects As−1. This witnesses that As−1[t]

∧

6≤ As[t]
∧

contradicting
Lemma 2.37. Thus, Case 1 is impossible.

Case 2: F 6⊆ As−1. We partition the C’s into two groups: I = {j |
Cj ⊆ As−1} and J = {j | Cj 6⊆ As−1}. In the following sequence of
inequalities, we omit the [t] after the first instance, but all computations are
done at stage t. Then

δ(X[t]
∧

/As−1[t]
∧

)

= δ(
⋃

J C
j

∧

/(F ∪
⋃

I C
j ∪ As−1)
∧

) + δ((F ∪
⋃

I C
j

∧

/As−1

∧
)

≤ δ(
⋃

J C
j

∧

/F ∪ As−1

∧
) + δ(F

∧
/As−1

∧
)

≤ −|J |+ δ(F
∧
/As−1

∧
)

≤ −|J |+ δ(F
∧

)− |I|

= δ(F
∧

)− r

≤ δ(F
∧

)− µ(B/A)

≤ δ(F
∧

)− (2 · |F |+ 2K) < 0.

This witnesses that As−1[t]
∧

6≤ As[t]
∧

, again contradicting Lemma 2.37.

Thus, neither case is possible.

We next consider the case where α
∧

Π0
2 � β. Since at stage s, β was the

least node on the current true path which hadn’t acted, we see that α acted
before stage s. Since it acted again at stage t, we see that both α and β have
been re-initialized by the current path at some stage r ∈ (s, t) visiting some
γ <L α. We thus are in the case where βr

∧
Π0

2 <L α, which we considered
above.

Lastly, we suppose that β
∧

Π0
2 � α. If β has not been re-initialized since

stage s, then we haveAs[s] = As[t], thus since we knowAs[s]
∧

∈ C, we have
that also As[t]

∧

∈ C. If β has been re-initialized, say by visiting a γ <L β,
then there is an r ∈ (s, t) so that βr

∧
Π0

2 <L α, which we considered above.

Thus, in any one of the cases, we get a contradiction to As[t]
∧

violating
the µ-bound, and we have shown that As[t]

∧

∈ C. �
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Since, by definition, the true N is the structure defined in this way by the
true path, this shows that N satisfies property (2) of Lemma 2.23.

Lemma 2.39. For every minimally simply algebraic extension B/A with
B ∈ C and for every B/A-base X ⊆ N

∧
, either there exist µ(A,B) many

disjoint extensions over X of the form B/A, or there exists a B/A-ob-
struction over X in N

∧
.

Proof. Consider a requirement of the form Ext(X,B/A) that is on the true
path and has the correct guess at the j-decision for j = 〈X,A,B〉. Let s
be a stage when this requirement has a chance to act, and after which it
will never be re-initialized. Since the requirement is on the true path, its
beliefs about N are correct. That is, at this stage, As[s] actually is the
structure N on the set As. Either the strategy ensures that there are µ(A,B)
many disjoint extensions over X of the form B/A, and since it is correct
about N , this extension exists in N over X , or it finds a B/A-obstruction
over X . Since its approximation to N is correct, this obstruction is actually
in N . �

Lastly, since we explicitly build a sequence of elements, one from each
As, which have no relation holding with any other tuple from As in N , we
build a sequence I so that no relation holds on a tuple from I , and I

∧
≤ N
∧

.

We have now verified that N
∧

satisfies each of the properties from Lemma
2.23. Therefore, it is isomorphic to G.

Lemma 2.40. N = M̃ .

Proof. Since N
∧
∼= G, we see that the restriction of N to the language in-

volving only the R-relations (no S-relations) is the same as the restriction
of G to these relations.

Thus, by Lemma 2.32,

N |= ∀xy(R2(x, y)↔ ¬(∃5+2KZ)(Z/xy is a Λ-extension)) and

N |= ∀xyzw(Rk
1(x, y, z, w)↔ ¬(∃9+2KZ)(Z/xyzw is a Ωi-extension))

sinceG satisfies these sentences. But the formulas on the right are precisely
the definitions in M̃ of the relations R2 and Rk

1 . Thus, N = M̃ . �

The first condition of Theorem 2.36 follows from the equation f(w, x) =
limy limz f(w, x, y, z), and the third follows from the construction: If we
have σ′ab(k, n) = 1 and, when we construct the 4-tuple abcd, believe that it
forms a k-hook, then we place Sn

0 (a, b, c, d) and no other S-relations. Since
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no other strategy can place any relations on the tuple abcd, it either is a k-
hook and Sn

0 (a, b, c, d), or it is not a k-hook. Either way, we have that if it
is a k-hook, then Sn

0 (a, b, c, d) for the unique n so that σ′ab(k, n) = 1. �

We expand M to Mc in the language Lc
0 = L ∪ {ci | i ∈ ω} computably

for new distinct constant symbols ci. Since M is a computable structure, it
has universe ω, and we let ci be interpreted as the ith element in M .

Let Tf be the theory of the structure Mc. It is immediate that the prime
model of Tf is Mc, which is computable.

Theorem 2.41. Tf is strongly minimal.

Proof. It suffices to show that M̃ is strongly minimal. We do this by show-

ing that M̃ is definable in G, or equivalently, M̃ is definable in M̃
∧

.

For the sake of this proof, we refer to the relations Sn
0 that appear in M̃

∧

as S
∧n

0 , to distinguish them from the relations Sn
0 that hold in M . Note that

S
∧n

0 ⊆ Sn
0 , and if n = 〈k, n0〉, then Sn

0 r S
∧n

0 consists only of k-hooks. In
particular, a 4-tuple abcd is in Sn

0 r S
∧n

0 if and only if it is a k-hook and
σ′ab(k, n) = 1.

If f(k, n) = 1, then we have that all but finitely many k-hooks abcd

satisfy σ′ab(k, n) = 1, so Sn
0 rS

∧n

0 is definable and thus Sn
0 is definable in M̃

∧

(note that we use the fact that each R-relation is definable in G).

If f(k, n) = 0, then we have that all but finitely many k-hooks abcd
satisfy σ′ab(k, n) = 0, so Sn

0 r S
∧n

0 is finite, and thus definable. Once again,

we obtain that Sn
0 is definable in M̃

∧

. Thus, since G is strongly minimal, we
see that M is strongly minimal, showing that Mc is strongly minimal. �

3. THE POSITIVE-DIMENSIONAL MODELS OF Tf

Now fix a total 0′′′-computable function f : ω2 → {0, 1} such that for
every k, there is at most one n with f(k, n) = 1 and such an n is of the
form 〈k, n0〉 for some n0, and such that {k | ∃nf(k, n) = 1} = ∅(4).

Lemma 3.1. If d computes a positive-dimensional model of Tf , then 0(4) ≤
d′.

Proof. Let N be a positive-dimensional model of Tf . Fix a, b ∈ N rM so
that N |= R2(a, b). The lemma is now immediate from the following
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Claim 3.2. k ∈ ∅(4) if and only if

Ñ |= ∀x∀y(Rk
1(a, b, x, y)→ ∃nSn

0 (a, b, x, y)),

or equivalently

Ñ |= ∃x∃y(Rk
1(a, b, x, y) ∧ ∃nSn

0 (a, b, x, y)).

Proof. Suppose k ∈ ∅(4). Let n be so that f(k, n) = 1. Then for any pair xy,
if we have Rk

1(a, b, x, y), then we must have Sn
0 (a, b, x, y), showing that

the first condition is true. Now suppose that Ñ |= ∀x∀y(Rk
1(a, b, x, y) →

∃nSn
0 (a, b, x, y)); then certainly

Ñ |= ∃x∃y(Rk
1(a, b, x, y) ∧ ∃nSn

0 (a, b, x, y)),

since there is a pair xy on which Rk
1(a, b, x, y) holds. Lastly, suppose

that N |= ∃x∃y(Rk
1(a, b, x, y) ∧ ∃nSn

0 (a, b, x, y)). In M , either all k-
hooks z̄ aside from finitely many satisfy Sn

0 (z̄), or all k-hooks z̄ aside
from finitely many satisfy ¬Sn

0 (z̄), depending on whether f(k, n) = 1 or
f(k, n) = 0. Thus, since Ñ models the theory of M and ab /∈ acl(∅), we
have Sn

0 (a, b, x, y) iff f(k, n) = 1. Thus, if Ñ |= ∃x∃y(Rk
1(a, b, x, y) ∧

∃nSn
0 (a, b, x, y)), then there is an n so that f(k, n) = 1 and k ∈ ∅(4). �

Since Rk
1 is ∀1 in the atomic diagram of N , thus in d, we see that ∅(4) ∈

∆0
2(d), i.e., 0(4) ≤ d′. �

We can now explicitly answer a question which was posed and left open
in Andrews-Knight [AK18]:

Corollary 3.3. There is no positive-dimensional model of Tf which is com-
putable in 0′′. Thus, 0′′ is not strongly minimal relatively computing.

Proof. 0(4) 6≤ (0′′)′. �

4. THE STRONGLY MINIMAL COMPUTING AND THE STRONGLY
MINIMAL RELATIVELY COMPUTING DEGREES

In this section, we put together the work done already to show that a
degree being strongly minimal computing implies that it is strongly minimal
relatively computing, which in turn implies that it is high over 0′′. Lastly,
we will conclude the cycle of implications by showing that every degree
high over 0′′ is strongly minimal computing.

Definition 4.1. We call a degree d strongly minimal computing if when-
ever T is a strongly minimal Solovay theory, then d computes a copy of
every countable model of T .



BUILDING MODELS OF STRONGLY MINIMAL THEORIES 25

We call a degree d strongly minimal relatively computing if whenever T
is a strongly minimal theory with a computable model, then d computes a
copy of every countable model of T .

The following observation follows trivially from the definitions since the
theory of a computable structure is always Solovay.

Observation 4.2. If d is strongly minimal computing, then d is strongly
minimal relatively computing.

Lemma 4.3. If d is strongly minimal relatively computing, then d is high
over 0′′, i.e., d ≥T 0′′, and d′ ≥ 0(4).

Proof. By Khoussainov-Laskowski-Lempp-Solomon [KLLS07], we have
that every strongly minimal relatively computing degree d is ≥ 0′′. By
Lemma 3.1, d′ ≥ 0(4). �

It remains to show that degrees which are high over 0′′ are strongly min-
imal computing. In the proof of the following lemma, we rely heavily on
both the results and the proofs in Andrews-Knight [AK18]. In particular, in
order to prove that a structure M has a 0′′′-computable copy, they prove
first that there must be a 0(4)-computable P 1-labeling of a copy of M .
A P 1-labeling is a function f from finite tuples in ω to pairs (θ(x̄), k) so
that θ is a B1-formula (i.e. a Boolean combination of existential formulas),
k = MR(θ), and there is a unique B1-type containing θ of Morley rank k.
To be a labeling of a copy of M , there must be a copy of M so that for
every tuple, the function f(ā) gives a pair (θ, k) so that the unique B1-type
containing θ of Morley rank k is the B1-type of ā in M .

Lemma 4.4. Let d be high over 0′′. Then d is strongly minimal computing.

Proof. First suppose that M is a 1-saturated model (i.e. for every ā ∈ M
every B1-type p(āx) consistent with the type of ā is realized in M ) of
a strongly minimal Solovay theory T . By the work of Andrews-Knight
[AK18] (see the penultimate step of the proofs of Theorems 4.7, 5.7, and
Theorems 6.3 and 7.1 combined with Lemma 4.4), we see that there is a
0(4)-computable P 1-labeling of a copy of M . The degree 0′′ suffices to de-
code any P 1-code for a B1-type by [AK18, Lemma 3.7-2]. Thus, a careful
reading of the proof of [AK18, Lemma 4.6 (Second Pull-Down Lemma)]
shows that d suffices to give a computable copy of M .

Now, let us suppose that M is not 1-saturated. Andrews-Knight [AK18,
Lemma 5.6] shows that M has a copy A where a P 1-labeling is 0′′′-com-
putable. Then, we use Robinson low guessing over d to give a d-com-
putable copy of M . Note that since d is high over 0′′, 0′′′ is low and c.e.
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over d. Thus, we can “certify” computations and after only finitely many
errors, we will have correct 0′′′-computations. The process of certifying
computations from 0′′′ involves constructing a single set V c.e. in d, and
when we see a computation from our approximation to 0′′′, which is c.e.
in d, with use σ, we add σ to V . We only consider the computation certi-
fied if our approximation to 0(4), which is ∆0

2 in d, includes the statement
∃σ ∈ V (σ � 0′′′). This lets us demand that either we see a certified com-
putation or our approximation changes. If we see certified computations
infinitely often, then in fact ∃σ ∈ V (σ � 0′′′) is true, and one of our certi-
fied computations must be correct.1

We now describe the pull-down strategy for moving from A with a 0′′′-
computable P 1-labeling to a d-computable copy. As in [AK18, Lemma 4.6
(Second Pull-Down Lemma)], we use d to build a structure B and d-
computable approximations to a d′-computable function f : B → A. Since
0′′ can compute the B1-type associated to a P 1-index (θ, k), assigning the
quantifier-free formulas to tuples in B can be done and checked to be con-
sistent with the P 1-index assigned to the image of f . Of course, d must
use its approximation to the 0′′′-computable P 1-labeling and will unassign
some values of f when its approximation to the assigned P 1-index of a tuple
in the range of f changes.

Our requirements are that every element b ∈ B eventually has a sta-
ble image f(b) and that every a ∈ A eventually has a stable preimage
f−1(a). These second requirements are not difficult and handled exactly
as in [AK18, Lemma 4.6 (Second Pull-Down Lemma)].

The requirements to handle every b ∈ B need a new idea. In [AK18,
Lemma 4.6 (Second Pull-Down Lemma)], the strategy to find an image
for b uses the fact that, even if we were to fail to find an image for b, we
could ensure that b realizes some consistentB1-type over the higher-priority
elements. But by 1-saturation, this type is realized. Thus, at a sufficiently
late stage, if f chooses to send b to this realization of the type, it will never
later be injured. In other words, by 1-saturation, we would “luck into” a
good image for b. Here, we do not have 1-saturation, but we have the fact
that 0′′′ is c.e. and low over d (as opposed to a full jump above d). This is
the key to the solution. We will simply ask 0′′′ for a certified computation
telling us exactly where we should send b. This includes asking for the
computation showing the P 1-indices on all the appropriate subtuples, so

1A further summary of Robinson’s guessing method can be found in Soare [So87, de-
tailed hint to exercise XI.3.5], summarizing the original argument in Robinson [Rob66].
An alternate approach, via cost functions, can be found, e.g., in Nies [Nie02, proof of
Theorem 5.1].
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that the approximation will not change and make f undefined on b. Since
we will eventually find a certified computation that is correct, we will find
our image for b.

In more detail: At any given stage, when we consider this requirement,
we have a finite b̄ ∈ B so that f(b̄) = ā is fixed by higher priority re-
quirements. And we have a tuple bd̄ on which we have committed to some
formula θ(b̄bd̄). We now look for a certified computation from 0′′′ — and
do not proceed further until one appears — providing the following:

• an element c ∈ A so that extending f to add f(b) = c is consistent,
and
• the P 1-index of the type of āc and all of its subtuples for the c pro-

vided in the previous bullet.

Once we see a certified computation, we continue our construction with
f(b) = c. This strategy is only injured if the P 1-index for āc or a subtuple
changes after the computation is certified. In this case, we repeat this strat-
egy. As only finitely many certified computations can be wrong, eventually
we succeed in the requirement. �

Putting the previous results together, we have proved:

Main Theorem. A degree is strongly minimal computing if and only if it is
strongly minimal relatively computing if and only if it is high over 0′′.
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