From equivalence structures to topological groups

Alexander Melnikov

Dagstuhl, Feb 2017.
Suppose \mathcal{K} is a class of (computable) algebraic structures.

What would be considered a “good” classification of structures in \mathcal{K}?

Definition
A computable enumeration of structures in \mathcal{K} is *Friedberg* if it is 1-1 up to isomorphism.
Suppose \mathcal{K} is a class of (computable) algebraic structures.

What would be considered a “good” classification of structures in \mathcal{K}?

Definition

A computable enumeration of structures in \mathcal{K} is *Friedberg* if it is 1-1 up to isomorphism.
Very few classes admit a Friedberg enumeration.

References:
- Three theorems on recursive enumeration (Friedberg)
- Friedberg Numberings of Families of n-Computably Enumerable Sets (Goncharov, Lempp, Solomon)
- Structure and Anti-structure theorems (Goncharov and Knight)
- Effective classification of computable structures (MillerR., Lange, and Steiner)
- Effectively closed sets and enumerations (Brodhead and Cenzer)
- Theory of numberings (A book by Ershov)
- PhD Dissertation (Ospichev, in Russian)

Question (Goncharov and Knight 2002)
Is there a Friedberg enumeration of the class of computable equivalence structures?

Goncharov and Knight conjectured that the answer is NO because the invariants are too complicated.

WHAT??
Very few classes admit a Friedberg enumeration.

References:
- Three theorems on recursive enumeration (Friedberg)
- Friedberg Numberings of Families of n-Computably Enumerable Sets (Goncharov, Lempp, Solomon)
- Structure and Anti-structure theorems (Goncharov and Knight)
- Effective classification of computable structures (MillerR., Lange, and Steiner)
- Effectively closed sets and enumerations (Brodhead and Cenzer)
- Theory of numberings (A book by Ershov)
- PhD Dissertation (Ospichev, in Russian)

Question (Goncharov and Knight 2002)

Is there a Friedberg enumeration of the class of computable equivalence structures?

Goncharov and Knight conjectured that the answer is NO because the invariants are too complicated.

WHAT??
Very few classes admit a Friedberg enumeration.

References:
- Three theorems on recursive enumeration (Friedberg)
- Friedberg Numberings of Families of n-Computably Enumerable Sets (Goncharov, Lempp, Solomon)
- Structure and Anti-structure theorems (Goncharov and Knight)
- Effective classification of computable structures (MillerR., Lange, and Steiner)
- Effectively closed sets and enumerations (Brodhead and Cenzer)
- Theory of numberings (A book by Ershov)
- PhD Dissertation (Ospichev, in Russian)

Question (Goncharov and Knight 2002)

Is there a Friedberg enumeration of the class of computable equivalence structures?

Goncharov and Knight conjectured that the answer is NO because the invariants are too complicated.

WHAT??
Very few classes admit a Friedberg enumeration.

References:

- Three theorems on recursive enumeration (Friedberg)
- Friedberg Numberings of Families of n-Computably Enumerable Sets (Goncharov, Lempp, Solomon)
- Structure and Anti-structure theorems (Goncharov and Knight)
- Effective classification of computable structures (MillerR., Lange, and Steiner)
- Effectively closed sets and enumerations (Brodhead and Cenzer)
- Theory of numberings (A book by Ershov)
- PhD Dissertation (Ospichev, in Russian)

Question (Goncharov and Knight 2002)

Is there a Friedberg enumeration of the class of computable equivalence structures?

Goncharov and Knight conjectured that the answer is NO because the invariants are too complicated.

WHAT??
Guessing isomorphism $E \cong F$ between eq. structures is a Π^0_4-complete problem.

Compare this to c.e. sets where $W_e = W_j$ is Π^0_2.

Earlier attempts by Goncharov and Knight, and by Miller R., Lange, and Steiner.

Theorem (Downey, M., Ng)

There **exists** a Friedberg enumeration of computable eq. structures.

This is a non-uniform $0'''$.
Guessing isomorphism $E \cong F$ between eq. structures is a Π^0_4-complete problem.

Compare this to c.e. sets where $W_e = W_j$ is Π^0_2.

Earlier attempts by Goncharov and Knight, and by Miller R., Lange, and Steiner.

Theorem (Downey, M., Ng)

There exists a Friedberg enumeration of computable eq. structures.

This is a non-uniform 0″″.
Guessing isomorphism $E \cong F$ between eq. structures is a Π^0_4-complete problem.

Compare this to c.e. sets where $W_e = W_j$ is Π^0_2.

Earlier attempts by Goncharov and Knight, and by Miller R., Lange, and Steiner.

Theorem (Downey, M., Ng)

There **exists** a Friedberg enumeration of computable eq. structures.

This is a non-uniform $0'''$.
Guessing isomorphism $E \cong F$ between eq. structures is a \(\Pi^0_4 \)-complete problem.

Compare this to c.e. sets where $W_e = W_j$ is Π^0_2.

Earlier attempts by Goncharov and Knight, and by Miller R., Lange, and Steiner.

Theorem (Downey, M., Ng)
There exists a Friedberg enumeration of computable eq. structures.

This is a non-uniform $0'''$.
From equivalence structures to abelian groups
A structure is **computably categorical** if it has a unique computable copy, up to computable isomorphism.

Problem (Maltsev, in the 1960-s)

Describe computably categorical abelian groups.

We have nice satisfactory classifications for:

- p-groups (Smith, indep. Goncharov)
- torsion-free (Nurtazin)
- infinite rank (Goncharov)

Missing cases:

- torsion
- mixed of finite rank > 1
A structure is **computably categorical** if it has a unique computable copy, up to computable isomorphism.

Problem (Maltsev, in the 1960-s)
Describe computably categorical abelian groups.

We have nice satisfactory classifications for:
- \(p \)-groups (Smith, indep. Goncharov)
- torsion-free (Nurtazin)
- infinite rank (Goncharov)

Missing cases:
- torsion
- mixed of finite rank > 1
A structure is **computably categorical** if it has a unique computable copy, up to computable isomorphism.

Problem (Maltsev, in the 1960-s)
Describe computably categorical abelian groups.

We have nice satisfactory classifications for:
- p-groups (Smith, indep. Goncharov)
- torsion-free (Nurtazin)
- infinite rank (Goncharov)

Missing cases:
- torsion
- mixed of finite rank > 1
Case of study: Torsion abelian groups.

What would be considered a “good” classification of c.c. torsion abelian groups?

Theorem (M. and Ng)

There exists a $\mathcal{L}_{\omega_1 \omega}^\omega \Pi_4^c$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

Furthermore, Π_4^c is the optimal complexity. (The index set is Π_4^0-complete.)

No algebraic description may possibly exist.
Case of study: Torsion abelian groups.

What would be considered a “good” classification of c.c. torsion abelian groups?

Theorem (M. and Ng)
There exists a $\mathcal{L}_{\omega_1\omega}^{c} \Pi^c_4$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

Furthermore, Π^c_4 is the optimal complexity. (The index set is Π^0_4-complete.)

No algebraic description may possibly exist.
Case of study: Torsion abelian groups.

What would be considered a “good” classification of c.c. torsion abelian groups?

Theorem (M. and Ng)

There exists a $L_{\omega_1 \omega}^c \Pi^c_4$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

Furthermore, Π^c_4 is the optimal complexity. (The index set is Π^0_4-complete.)

No algebraic description may possibly exist.
Theorem (M. and Ng)

There exists a $L_{\omega_1\omega}^c$ Π^c_4-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

The complexity Π^c_4 is optimal.

- Π^c_4-harness of the index set is the easy(er) part.
- Ψ relies on several subtle algebraic reductions.
- Ψ says that a certain diagonalization attempt on equivalence structures must fail.
- The analysis of computable equivalence structures is in the (scary) combinatorial core of the proof.
Theorem (M. and Ng)

There exists a $\mathcal{L}_{\omega_1 \omega}^c \Pi^c_4$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

The complexity Π^c_4 is optimal.

- Π^c_4-harness of the index set is the easy(er) part.
- Ψ relies on several subtle algebraic reductions.
- Ψ says that a certain diagonalization attempt on equivalence structures must fail.
- The analysis of computable equivalence structures is in the (scary) combinatorial core of the proof.
Theorem (M. and Ng)

There exists a $\mathcal{L}_{\omega_1 \omega}^c \Pi_4^c$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

The complexity Π_4^c is optimal.

- Π_4^c-harness of the index set is the easy(er) part.
- Ψ relies on several subtle algebraic reductions.
- Ψ says that a certain diagonalization attempt on equivalence structures must fail.
- The analysis of computable equivalence structures is in the (scary) combinatorial core of the proof.
Theorem (M. and Ng)

There exists a $L^c_{\omega_1\omega} \Pi^c_4$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

The complexity Π^c_4 is optimal.

- Π^c_4-harness of the index set is the easy(er) part.
- Ψ relies on several subtle **algebraic reductions**.
- Ψ says that a certain diagonalization attempt on *equivalence structures* must fail.
- The analysis of *computable equivalence structures* is in the (scary) combinatorial core of the proof.
Theorem (M. and Ng)

There exists a $\mathcal{L}_{\omega_1 \omega}^c \Pi^c_4$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

The complexity Π^c_4 is optimal.

- Π^c_4-harness of the index set is the easy(er) part.
- Ψ relies on several subtle algebraic reductions.
- Ψ says that a certain diagonalization attempt on equivalence structures must fail.

The analysis of computable equivalence structures is in the (scary) combinatorial core of the proof.
Theorem (M. and Ng)

There exists a $\mathcal{L}_{\omega_1\omega}^c \Pi^c_4$-sentence Ψ such that

$$A \models \Psi \iff A \text{ is a c.c. torsion abelian group.}$$

The complexity Π^c_4 is optimal.

- Π^c_4-harness of the index set is the easy(er) part.
- Ψ relies on several subtle algebraic reductions.
- Ψ says that a certain diagonalization attempt on equivalence structures must fail.
- The analysis of computable equivalence structures is in the (scary) combinatorial core of the proof.
Would my academic semi-grate grate grandfather be happy?
From computable groups to Polish groups
A **computable Polish group** is a computable Polish (metric) space equipped with computable group operations.

We consider Polish groups up to topological isomorphism.

Suppose K is a natural class of Polish groups (e.g., connected compact groups).

Can we classify members of K?
Definition

A **computable Polish group** is a computable Polish (metric) space equipped with computable group operations.

We consider Polish groups up to topological isomorphism.

Suppose K is a natural class of Polish groups (e.g., connected compact groups).

Can we classify members of K?
Definition

A computable Polish group is a computable Polish (metric) space equipped with computable group operations.

We consider Polish groups up to topological isomorphism.

Suppose K is a natural class of Polish groups (e.g., connected compact groups).

Can we classify members of K?
Theorem (M. and Khoussainov)

1. The index sets of **profinite** and of **connected compact** Polish groups are Arithmetical.

2. The topological isomorphism problems for **profinite abelian groups** and for **connected compact abelian** groups are \(\Sigma_1^1 \)-complete.

We can list all partial computable Polish groups: \(G_0, G_1, G_2, \ldots \)

- \(\{ i : G_i \text{ is a connected topological group} \} \) is Arithmetical.
- \(\{ (i, j) : G_i \cong G_j \text{ and } G_i, G_j \text{ are connected} \} \) is \(\Sigma_1^1 \)-complete.

The result is uniform. It follows connected and profinite (abelian) groups are **unclassifiable**.
Theorem (M. and Khoussainov)

1. The index sets of **profinite** and of **connected compact** Polish groups are Arithmetical.

2. The topological isomorphism problems for **profinite abelian groups** and for **connected compact abelian** groups are Σ^1_1-complete.

We can list all partial computable Polish groups: G_0, G_1, G_2, \ldots

- $\{i : G_i \text{ is a connected topological group}\}$ is Arithmetical.
- $\{(i, j) : G_i \cong G_j \text{ and } G_i, G_j \text{ are connected}\}$ is Σ^1_1-complete.

The result is uniform. It follows connected and profinite (abelian) groups are **unclassifiable**.
Theorem (M. and Khoussainov)

1. The index sets of **profinite** and of **connected compact** Polish groups are Arithmetical.

2. The topological isomorphism problems for **profinite abelian groups** and for **connected compact abelian groups** are Σ^1_1-complete.

We can list all partial computable Polish groups: G_0, G_1, G_2, \ldots

- $\{i : G_i \text{ is a connected topological group}\}$ is Arithmetical.
- $\{(i, j) : G_i \cong G_j \text{ and } G_i, G_j \text{ are connected}\}$ is Σ^1_1-complete.

The result is uniform. It follows connected and profinite (abelian) groups are **unclassifiable**.
Theorem (M. and Khoussainov)

1. The index sets of **profinite** and of **connected compact** Polish groups are Arithmetical.

2. The topological isomorphism problems for **profinite abelian groups** and for **connected compact abelian groups** are Σ^1_1-complete.

The main tools of the proof include:

- Computable Polish space theory.
- **Computable (countable) abelian group theory** (e.g., the old result of Dobrica on bases, a result of Downey and Montalban, etc.).
- Pontryagin duality.
Theorem (M. and Khoussainov)

1. The index sets of **profinite** and of **connected compact** Polish groups are Arithmetical.

2. The topological isomorphism problems for **profinite abelian groups** and for **connected compact abelian** groups are Σ^1_1-complete.

The main tools of the proof include:

- Computable Polish space theory.
- **Computable (countable) abelian group theory** (e.g., the old result of Dobrica on bases, a result of Downey and Montalban, etc.).
- **Pontryagin duality**.
(If there is time.)

Definition

Let \mathbb{T} be the unit circle group. The **dual group** of a topological group G is

$$\hat{G} = \{ \chi \mid \chi \text{ is a continuous group homomorphism from } G \text{ to } \mathbb{T} \}.$$

Theorem (Pontryagin)

Let G be either discrete or compact abelian group. Then:

- $\hat{\hat{G}} \cong G$, and
- G is compact iff G is discrete.
- G is **torsion** iff \hat{G} is **profinite**.

(The Duality does not agree with computability too well.)
(If there is time.)

Definition

Let \mathbb{T} be the unit circle group. The **dual group** of a topological group G is

$$\hat{G} = \{ \chi \mid \chi \text{ is a continuous group homomorphism from } G \text{ to } \mathbb{T} \}.$$

Theorem (Pontryagin)

Let G be either discrete or compact abelian group. Then:

- $\hat{\hat{G}} \cong G$, and
- G is compact iff G is discrete.
- G is **torsion** iff \hat{G} is **profinite**.

(The Duality does not agree with computability too well.)
Definition (Smith, after Nerode)

A profinite group is *recursive* if it is the limit of a computable surjective inverse system of finite groups.

(\hat{G} stands for the Pontryagin dual of G.)

Theorem (Khoussainov and M.)

Let G be a countable torsion abelian group. Then

- G is computable iff \hat{G} is a recursive profinite group;
- G is computably categorical iff \hat{G} is computably categorical (as a recursive profinite group).

Corollary (follows from M. and Ng)

The index set of c.c. recursive profinite groups is Π^0_4-complete.

eq. structures \rightarrow (discrete) abelian groups \rightarrow Polish groups.
Definition (Smith, after Nerode)
A profinite group is *recursive* if it is the limit of a computable surjective inverse system of finite groups.

(\(\hat{G}\) stands for the Pontryagin dual of \(G\).)

Theorem (Khoussainov and M.)
Let \(G\) be a countable torsion abelian group. Then
- \(G\) is computable iff \(\hat{G}\) is a recursive profinite group;
- \(G\) is computably categorical iff \(\hat{G}\) is computably categorical (as a recursive profinite group).

Corollary (follows from M. and Ng)
The index set of c.c. recursive profinite groups is \(\Pi^0_4\)-complete.

eq. structures \(\rightarrow\) (discrete) abelian groups \(\rightarrow\) Polish groups.
Definition (Smith, after Nerode)

A profinite group is \textit{recursive} if it is the limit of a computable surjective inverse system of finite groups.

(\hat{G} stands for the Pontryagin dual of G.)

Theorem (Khoussainov and M.)

Let G be a countable torsion abelian group. Then

- G is computable iff \hat{G} is a recursive profinite group;
- G is computably categorical iff \hat{G} is computably categorical (as a recursive profinite group).

Corollary (follows from M. and Ng)

The index set of c.c. recursive profinite groups is Π^0_4-complete.

eq. structures \rightarrow (discrete) abelian groups \rightarrow Polish groups.
Thanks!