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A brief introduction to K-triviality

We use K to denote prefix-free (Kolmogorov) complexity.

Definition

An infinite binary sequence A € 2% is K-trivial if

(Fe)(Vn) K(An) < K(n) +c.

In other words, a K-trivial sequence has minimal initial segment
prefix-free complexity (up to a constant); its initial segments are no
more complex that those of the zero sequence.

Basic Facts

» Every computable sequence is K-trivial.
» [Chaitin 1970’s] Every K-trivial sequence is <t .

> [Solovay 1975] There is a non-computable K-trivial sequence.
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A brief introduction to K-triviality

The study of K-trivial sequences stalled until the early 2000’s, when
many equivalent characterizations were found.

Theorem (Nies 2005; Hirschfeldt, Nies, Stephan 2007)
Let A € 2¢. The following are equivalent:

1. Ais K-trivial: (3¢)(Vn) K(An) < K(n) + ¢,

2. Ais low for K: (3¢)(Vo) K4(0) > K(0) — ¢,

3. Ais low for randomness: every ML-random sequence is
ML-random relative to A,

4. A is a base for randomness: there is an X >7 A that is
ML-random relative to A.

» Each of these properties was introduced years before they were
all proved to be equivalent.

» Many other characterizations have now been given.



A brief introduction to K-triviality

Along with these characterizations came a greater understanding of
the class of K-trivial sequences:

More Facts
» Every K-trivial sequence is low (i.e., A" < ).
» The K-trivial sequences form an ideal in the Turing degrees:

they are closed downward under Turing reducibility and closed
under join.

» Each K-trivial sequence is computable from a K-trivial c.e. set.

More recent work on K-triviality has focused on the relationship
between the K-trivial sequences and the Martin-Lof random
sequences in the Turing degrees. In particular:

The ML-covering question (Stephan 2004)
If Ais K-trivial, is there a ML-random X > A such that X %7 0'?



ML-covering and variants

The ML-covering question (Stephan 2004)
If A is K-trivial, is there a ML-random X > A such that X %7 0'?

This was eventually answered in positively, and in fact, it was proved
that there is a Martin-Lof random X <7 (' that computes every

K-trivial sequence [pay, M. 2015] + [Bienvenu, Greenberg, Kugera, Nies, Turetsky 2015].
But consider another variant of the ML-covering question:

Question (M. and Nies 2006)
If A is K-trivial, is there a Martin-Lof random sequence X = X; & X
such that A is computable from both X; and X57

» If X = X; & X5 is ML-random, then at least one of X; and X5
fails to compute (', so this question is a strengthening of the
M[L-covering question.

» However, [Bienvenu, Greenberg, Kucera, Nies, Turetsky 2015
answered this question negatively.



1/2-bases

Definition
A sequence A € 2¥ is a 1/2-base if there is a ML-random sequence
X = X1 & X5 such that A is computable from both X; and Xs.

Facts
» Every 1/2-base is K-trivial.
Proof.
Assume that A is computable from both halves of the ML-random
sequence X = X7 @ Xs. Since X7 is ML-random relative to Xo, it is

also ML-relative relative to A <7 X5. Thus A <r X; is a base for
randomness. Therefore, A is K-trivial. O

» As was mentioned above, not every K-trivial is a 1/2-base.

» However, not all 1/2-bases are computable [Kucera 1986].

So the 1/2-bases form a proper subclass of the K-trivial sequences.



1/2-bases

Let Q be any left-c.e. ML-random (e.g., the halting probability of a
universal prefix-free machine).

Theorem (Greenberg, M., Nies)
Let A € 2¥. The following are equivalent:
. Ais a 1/2-base,

—_

2. A obeys the cost function c(m, s) = Qs — Oy,
3. A is computable from both Q1 and 5, where Q = Q1 & Qs,
4. [with Turetsky] A is K-trivial and computable from ;.
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It follows that the 1/2-bases form an ideal. (The downward
closure was clear, but not the closure under join.)

» We also proved that each 1/2-base is computable from a c.e.
1/2-base.

(1 < 4) implies that €y and Q2 compute the same c.e. sets.
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Generalizing to k/n-bases

Definition

Let k < n. A sequence A € 2¥ is a k/n-base if there is a Martin-Lof
random sequence Z = Z1 & - - - ® Z,, such that A is computable from
the join of any k of the n parts of Z.

Theorem (Greenberg, M., Nies)
Let A € 2¢. The following are equivalent;:

1.
2. A obeys ¢(m, s) = (Qs — Un)"'™,

3.

4. [with Turetsky] A is K-trivial and computable from some k/n

A is a k/n-base,

A is a k/n-base as witnessed by €2,

part of .

As before, the k/n-bases form an ideal in the Turing degrees that is
generated by its c.e. elements.



A dense hierarchy of ideals

We now see that the 1/2-bases are the same as the 2/4-bases. (One
direction is not at all obvious from the definition!)

In general, we can talk of p-bases for p € (0,1) rational. Let 5, be the
ideal of p-bases.

Facts
> If ¢ < p, then B, C B,.

» There is a smart p-base, i.e., a p-base A such that every
ML-random that computes A computes every p-base.

» A smart p-base cannot be a g-base for any ¢ < p, so
Uy<p By & Bp. It is also the case that B, C (1, By

> (\,>0 By is the ideal consisting of 1/w-bases: A is a 1/w-base if
there is a ML-random sequence Z = Zy @ Z; @ - - - such that
A < Z; for every i € w. [Greenberg and Turetsky] This ideal is
also generated by its c.e. members.

We will discuss the ideal J _, B, below.

p<l1



More generality, but no new ideals

Fact

Assume that A is a 3/6-base as witnessed by the ML-random
sequence Z = 21 @ Ly ® L3 ® Ly D Z5 ® Zg. In addition, assume that
A <1 Zy ® Z. Then A is a 3/7-base (as witnessed by a different
random sequence).

Furthermore, this is tight; if A is a 3/7-base, then there is such a Z.

» In general, arbitrary families of projections (along the coordinate
axes!) do not give us new subideals of the K-trivial sets.

» Proved using a generalization of the Loomis-Whitney inequality
from geometry. Gives an upper bound for the measure of a region
in terms of the measures of its projections.

» Using a linear program, we can find an optimal bound for a given

family of projections. This tells us for which p the family
characterizes the p-bases, as in the example above.
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Corollaries of the general result

Definition

Let k < n. A sequence A € 2¥ is a degenerate k/n-base if there is a
ML-random sequence Z witnessing that A is a k/n-base and such
that A is computable from the join of some k — 1 of the n parts of Z.

Degenerate k/n-bases are always p-bases for a smaller p:
Proposition

Let k k—1
et p=maxq ——, ——
P n+1'n—-1

only if it is a p-base.

}. A set is a degenerate k/n-base if and

Definition

Let k < n. A sequence A € 2¥ is a cyclic k/n-base if there is a
ML-random sequence Z such that A is computable from all n of the
“cyclic joins” of k of the n parts of Z.

Proposition. A set is a cyclic k/n-base if and only if it is a k/n-base.



Robust computability

We finish by discussing another proper subclass of the K-trivials,
from work of Hirschfeldt, Jockusch, Kuyper, and Schupp.

Definitions
> XAY = (X NY)U (Y \ X), i.e., the symmetric difference of the
sets X and Y.
XAY)n{0,...,n—1
» If lim I )0 {0, in = 1} = 0, then we say that YV is a

n—oo n
coarse description of X. In other words, Y is an imperfect copy

of X, where the imperfections have asymptotic density 0.

» A is robustly computable from X if A is computable from every
coarse description of X.

Theorem (Hirschfeldt, Jockusch, Kuyper, and Schupp)

If A is robustly computable from some ML-random sequence, then A
is K-trivial. In fact, A is an (n — 1)/n-base for some n.
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Robust computability

Theorem (Hirschfeldt, Jockusch, Kuyper, and Schupp)

There is a non-computable A that is robustly computable from €.
Not every K-trivial is robustly computable from some random.

So the sequences that are robustly computable from some random
form a proper subclass of the K-trivials (contained in Up <1 Bp).

Theorem (Greenberg, M., Nies)

Let A € 2¢. The following are equivalent:
1. A is robustly computable from some ML-random sequence,
2. Ais ap-base for some p <1 (ie., A€, Bp),
3. A is robustly computable from €.

So the sequences that are robustly computable from some random
form a proper subideal of the K-trivials, generated by its c.e. elements.



Subideals of the K-trivial degrees

o Ketrivial =~

<r every LR-hard random

Robustly computable from a random set
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Thank You!



