On low for speed sets

Laurent Bienvenu (CNRS & Université de Montpellier) Rod Downey (Victoria University of Wellington)

Oberwolfach Workshop "Computability Theory"

January 11, 2018

A recurring theme in computability theory:

 $Low(\mathcal{N}) = \text{set of oracles } X$ such that relativizing the notion \mathcal{N} to X leaves it unchanged.

- $\bullet \ \mathcal{N} = \text{halting set} \ \to \ \textit{Low}(\mathcal{N}) = \text{low}$
- $\mathcal{N} = \mathsf{ML} ext{-random} \ o \ \mathit{Low}(\mathcal{N}) = \mathsf{K} ext{-trivials}$
- $\mathcal{N} =$ weakly 1-generic (or Kurtz random) $\rightarrow Low(\mathcal{N}) =$ non-dnr + hyperimmune-free

Allender proposed to study lowness for speed:

Definition (Allender)

X is low for speed (l.f.s) if every *decidable* set/language L that can be computed with oracle X in time f can be computed without oracle in time poly(f).

(model of computation: Turing machine with a dedicated tape; the machine may write *n* on this tape then query the oracle *X* as to whether $n \in X$).

Allender proposed to study lowness for speed:

Definition (Allender)

X is low for speed (l.f.s) if every *decidable* set/language L that can be computed with oracle X in time f can be computed without oracle in time poly(f).

(model of computation: Turing machine with a dedicated tape; the machine may write *n* on this tape then query the oracle *X* as to whether $n \in X$).

Does such an A exist?

Allender proposed to study lowness for speed:

Definition (Allender)

X is low for speed (l.f.s) if every *decidable* set/language L that can be computed with oracle X in time f can be computed without oracle in time poly(f).

(model of computation: Turing machine with a dedicated tape; the machine may write *n* on this tape then query the oracle *X* as to whether $n \in X$).

Does such an *A* exist? Obviously yes: take *A* to be in PTIME-computable! (note: *X* computable but EXPTIME-complete would not work, so lowness for speed is **not** closed under \equiv_T).

Much less obvious: is there a non-computable A that is l.f.s. ?

Much less obvious: is there a non-computable A that is l.f.s. ?

Theorem (Bayer-Slaman)

There exists A non-computable and c.e. that is l.f.s.

Much less obvious: is there a non-computable A that is l.f.s. ?

Theorem (Bayer-Slaman)

There exists A non-computable and c.e. that is l.f.s.

Proof is a priority argument. One constructs *A* to be sparse, so that at stage *t* there are few candidates for $A \upharpoonright t$, thus for a functional Φ one can try to simulate all possible Φ^A in parallel (+ some very nice twist to handle Friedberg-Muchnik requirements).

Three directions for the study of lowness for speed:

1. What are the c.e. sets in LFS?

Three directions for the study of lowness for speed:

- 1. What are the c.e. sets in LFS?
- 2. What is the situation outside c.e. sets? How big is the set LFS in terms of cardinality/category/measure? (category answered by Bayer and Slaman)

Three directions for the study of lowness for speed:

- 1. What are the c.e. sets in LFS?
- 2. What is the situation outside c.e. sets? How big is the set LFS in terms of cardinality/category/measure? (category answered by Bayer and Slaman)
- Closing under ≡_T: what are the *X* such that equivalent to some low for speed? (note: every degree contains a non low for speed). Are such *X* closed downwards? under join?

Can we characterize the c.e. sets in LFS? Seems very hard, but one can get partial results.

Theorem (Bayer-Slaman)

If a c.e. set *A* is promptly simple, it is not l.f.s.

Can we characterize the c.e. sets in LFS? Seems very hard, but one can get partial results.

Theorem (Bayer-Slaman)

If a c.e. set *A* is promptly simple, it is not l.f.s.

However,

Theorem (Bayer-Slaman)

There is a non-prompt c.e. set A such that A is not l.f.s., nor any $B \equiv_T A$.

Start by the obvious question: are there Turing-complete l.f.s. sets?

Start by the obvious question: are there Turing-complete I.f.s. sets?

Theorem (BD) If $A \ge_T \emptyset'$, then A is not l.f.s. (does not require A to be c.e.). How does lowness for speed fit in the high/low hierarchy?

How does lowness for speed fit in the high/low hierarchy?

Theorem (BD)

- There is a high c.e. set that is low for speed.
- A non-computable c.e. low set A cannot be low for speed(!)
- There is a non-computable low₂ c.e. set that is low for speed.

How common are low for speed sets? Can/should a generic be low for speed? How about randoms?

For generics... well... it's complicated.

For generics... well... it's complicated.

Theorem (Bayer-Slaman) Any 2-generic *G* is low for speed **if and only if** P = NP. For generics... well... it's complicated.

Theorem (Bayer-Slaman) Any 2-generic G is low for speed **if and only if** P = NP.

So we might not know for a while whether LFS is meager or co-meager.

However, LFS contains an homeomorphic copy of the 1-generics. Consider a doubly-exponentially sparse set S such as

$$S = \left\{2^{2^n} \mid n \in \mathbb{N}
ight\}$$

and define

$$S_X = \left\{2^{2^n} \mid n \in X\right\}$$

However, LFS contains an homeomorphic copy of the 1-generics. Consider a doubly-exponentially sparse set S such as

$$\mathsf{S}=\left\{\mathsf{2}^{\mathsf{2}^n}\mid n\in\mathbb{N}
ight\}$$

and define

$$S_X = \left\{2^{2^n} \mid n \in X\right\}$$

A fairly direct proof gives us:

Theorem (BD) If *G* is 1-generic, then S_G is low for speed.

LFS has size 2^{ℵ₀}

- LFS has size 2^{ℵ₀}
- There is a low Δ_2^0 set that is low for speed.

- LFS has size 2^{ℵ₀}
- There is a low Δ_2^0 set that is low for speed.
- Every non-computable c.e. set computes a l.f.s. set.

- LFS has size 2^{ℵ₀}
- There is a low Δ_2^0 set that is low for speed.
- Every non-computable c.e. set *computes* a l.f.s. set.
- Every 2-random *computes* a l.f.s. set.

- LFS has size 2^{ℵ₀}
- There is a low Δ_2^0 set that is low for speed.
- Every non-computable c.e. set *computes* a l.f.s. set.
- Every 2-random computes a l.f.s. set.
-

Theorem (BD) If *A* is Schnorr random, it is not l.f.s.

Theorem (BD) If *A* is Schnorr random, it is not l.f.s.

A Schnorr random can however be *equivalent* to a l.f.s. (take a l.f.s. of high degree).

Theorem (BD) If *A* is Schnorr random, it is not l.f.s.

A Schnorr random can however be *equivalent* to a l.f.s. (take a l.f.s. of high degree). However, unlike for generics (assuming $P \neq NP$), the phenomenon disappears for Martin-Löf randomness. In fact:

Theorem (BD) If *A* is Schnorr random, it is not l.f.s.

A Schnorr random can however be *equivalent* to a l.f.s. (take a l.f.s. of high degree). However, unlike for generics (assuming $P \neq NP$), the phenomenon disappears for Martin-Löf randomness. In fact:

Theorem (BD) If *A* has DNC degree, it is not low for speed.

Proof inspired by Blum's speedup theorem.

This last result also gives us that any $A \ge_T \emptyset'$ is not equivalent to any l.f.s. set. And from this:

Theorem (BD) The Turing degrees of LFS are not closed under join. This last result also gives us that any $A \ge_T \emptyset'$ is not equivalent to any l.f.s. set. And from this:

Theorem (BD) The Turing degrees of LFS are not closed under join.

Proof: Take a 2-generic G_0 and consider $G_1 = G_0 \Delta \emptyset'$, also 2-generic. Both G_0 and G_1 are Turing equivalent to a l.f.s. set, but $G_0 \oplus G_1 \ge_T \emptyset'$ is not.

Turing degrees and LFS

Some more results on the Turing degrees of l.f.s. sets.

Turing degrees and LFS

Some more results on the Turing degrees of l.f.s. sets.

Theorem (BD) The Turing degrees of LFS are not closed downwards.

Proof: extend the earlier result to show that a low c.e. *degree* does not contain any l.f.s. set. Take a non-computable c.e. set *X* which is l.f.s. and apply Sack's splitting theorem to get a low c.e. *Y* with $0 <_T Y <_T X$.

Some more results on the Turing degrees of l.f.s. sets.

Theorem (BD) The Turing degrees of LFS are not closed downwards.

Proof: extend the earlier result to show that a low c.e. *degree* does not contain any l.f.s. set. Take a non-computable c.e. set *X* which is l.f.s. and apply Sack's splitting theorem to get a low c.e. *Y* with $0 <_T Y <_T X$.

How lowness for speed interacts with minimality is not fully solved, but we know at least:

Theorem (BD)

There exists a minimal Turing degree which does not contain any l.f.s. set.

(We do not know whether a l.f.s. set can be of minimal Turing degree)

Thank you!