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Lowness for speed

A recurring theme in computability theory:

Low(N ) = set of oracles X such that relativizing the notion N to X leaves it
unchanged.

• N = halting set → Low(N ) = low

• N = ML-random → Low(N ) = K-trivials

• N = weakly 1-generic (or Kurtz random)→ Low(N ) = non-dnr + hyperimmune-free
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Lowness for speed

Allender proposed to study lowness
for
speed:

Definition (Allender)
X is low for speed (l.f.s) if every decidable set/language L that can be computed
with oracle X in time f can be computed without oracle in time poly(f).

(model of computation: Turing machine with a dedicated tape; the machine may
write n on this tape then query the oracle X as to whether n ∈ X).

Does such an A exist? Obviously yes: take A to be in PTIME-computable! (note:
X computable but EXPTIME-complete would not work, so lowness for speed is
not closed under ≡T).
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Lowness for speed

Much less obvious: is there a non-computable A that is l.f.s. ?

Theorem
(Bayer-Slaman)
There exists A non-computable and c.e. that is l.f.s.
Theorem
(Bayer-Slaman)
There exists A non-computable and c.e. that is l.f.s.

Proof is a priority argument. One constructs A to be sparse, so that at stage t
there are few candidates for A ↾ t, thus for a functional Φ one can try to simulate
all possible ΦA in parallel (+ some very nice twist to handle Friedberg-Muchnik
requirements).
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Lowness for speed

Three directions for the study of lowness for speed:

1. What are the c.e. sets in LFS?

2. What is the situation outside c.e. sets? How big is the set LFS in terms of
cardinality/category/measure? (category answered by Bayer and Slaman)

3. Closing under ≡T: what are the X such that equivalent to some low for
speed? (note: every degree contains a non low for speed). Are such X
closed downwards? under join?
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Within c.e. sets

Can we characterize the c.e. sets in LFS? Seems very hard, but one can get
partial results.

Theorem
(Bayer-Slaman)
If a c.e. set A is promptly simple, it is not l.f.s.
Theorem
(Bayer-Slaman)
If a c.e. set A is promptly simple, it is not l.f.s.

However,
Theorem
(Bayer-Slaman)
There is a non-prompt c.e. set A such that A is not l.f.s., nor any B ≡T A.
Theorem
(Bayer-Slaman)
There is a non-prompt c.e. set A such that A is not l.f.s., nor any B ≡T A.
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Within c.e. sets

Start by the obvious question: are there Turing-complete l.f.s. sets?

Theorem
(BD)
If A ≥T ∅ ′, then A is not l.f.s. (does not require A to be c.e.).
Theorem
(BD)
If A ≥T ∅ ′, then A is not l.f.s. (does not require A to be c.e.).
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Within c.e. sets

How does lowness for speed fit in the high/low hierarchy?

Theorem
(BD)

• There is a high c.e. set that is low for speed.

• A non-computable c.e. low set A cannot be low for speed(!)

• There is a non-computable low2 c.e. set that is low for speed.
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Outside the c.e. world

How common are low for speed sets? Can/should a generic be low for speed?
How about randoms?
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The strange case of generics

For generics... well... it’s complicated.

Theorem
(Bayer-Slaman)
Any 2-generic G is low for speed if
and
only
if P = NP.
Theorem
(Bayer-Slaman)
Any 2-generic G is low for speed if
and
only
if P = NP.

So we might not know for a while whether LFS is meager or co-meager.
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The strange case of generics

However, LFS contains an homeomorphic copy of the 1-generics. Consider a
doubly-exponentially sparse set S such as

S =
{

22n | n ∈ N
}

and define
SX =

{
22n | n ∈ X

}

A fairly direct proof gives us:

Theorem
(BD)
If G is 1-generic, then SG is low for speed.
Theorem
(BD)
If G is 1-generic, then SG is low for speed.
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The strange case of generics

This gives a simple proof of the existence of non-computable l.f.s. and has
further consequences:

• LFS has size 2ℵ0

• There is a low ∆0
2 set that is low for speed.

• Every non-computable c.e. set computes a l.f.s. set.

• Every 2-random computes a l.f.s. set.

• ....
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Randomness vs lowness for speed

Like for generics, one could expect a conditional behaviour of randoms w.r.t.
lowness for speed, for example a dependance on the answer to P = BPP. This
is not the case:

Theorem
(BD)
If A is Schnorr random, it is not l.f.s.
Theorem
(BD)
If A is Schnorr random, it is not l.f.s.

A Schnorr random can however be equivalent to a l.f.s. (take a l.f.s. of high
degree). However, unlike for generics (assuming P ̸= NP), the phenomenon
disappears for Martin-Löf randomness. In fact:

Theorem
(BD)
If A has DNC degree, it is not low for speed.
Theorem
(BD)
If A has DNC degree, it is not low for speed.

Proof inspired by Blum’s speedup theorem.
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Turing degrees and LFS

This last result also gives us that any A ≥T ∅ ′ is not equivalent to any l.f.s. set.
And from this:

Theorem
(BD)
The Turing degrees of LFS are not closed under join.
Theorem
(BD)
The Turing degrees of LFS are not closed under join.

Proof: Take a 2-generic G0 and consider G1 = G0∆∅ ′, also 2-generic. Both G0

and G1 are Turing equivalent to a l.f.s. set, but G0 ⊕ G1 ≥T ∅ ′ is not.
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Turing degrees and LFS

Some more results on the Turing degrees of l.f.s. sets.

Theorem
(BD)
The Turing degrees of LFS are not closed downwards.
Theorem
(BD)
The Turing degrees of LFS are not closed downwards.

Proof: extend the earlier result to show that a low c.e. degree does not contain
any l.f.s. set. Take a non-computable c.e. set X which is l.f.s. and apply Sack’s
splitting theorem to get a low c.e. Y with 0 <T Y <T X.

How lowness for speed interacts with minimality is not fully solved, but we know
at least:

Theorem
(BD)
There exists a minimal Turing degree which does not contain any l.f.s. set.
Theorem
(BD)
There exists a minimal Turing degree which does not contain any l.f.s. set.

(We do not know whether a l.f.s. set can be of minimal Turing degree)
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Thank you!
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