On low for speed sets

Laurent Bienvenu (CNRS & Université de Montpellier)
Rod Downey (Victoria University of Wellington)

Oberwolfach Workshop “Computability Theory”

January 11, 2018
Lowness for speed

A recurring theme in computability theory:

\(\text{Low}(\mathcal{N}) \) = set of oracles \(X \) such that relativizing the notion \(\mathcal{N} \) to \(X \) leaves it unchanged.

- \(\mathcal{N} = \text{halting set} \rightarrow \text{Low}(\mathcal{N}) = \text{low} \)
- \(\mathcal{N} = \text{ML-random} \rightarrow \text{Low}(\mathcal{N}) = \text{K-trivials} \)
- \(\mathcal{N} = \text{weakly 1-generic (or Kurtz random)} \rightarrow \text{Low}(\mathcal{N}) = \text{non-dnr + hyperimmune-free} \)
Lowness for speed

Allender proposed to study **lowness for speed**:

Definition (Allender)

X is low for speed (l.f.s) if every *decidable* set/language L that can be computed with oracle X in time f can be computed without oracle in time $\text{poly}(f)$.

(model of computation: Turing machine with a dedicated tape; the machine may write n on this tape then query the oracle X as to whether $n \in X$).
Lowness for speed

Allender proposed to study **lowness for speed:**

Definition (Allender)

X is low for speed (l.f.s) if every *decidable* set/language L that can be computed with oracle X in time f can be computed without oracle in time $\text{poly}(f)$.

(model of computation: Turing machine with a dedicated tape; the machine may write n on this tape then query the oracle X as to whether $n \in X$).

Does such an A exist?
Lowness for speed

Allender proposed to study **lowness for speed**:

Definition (Allender)

X is low for speed (l.f.s) if every *decidable* set/language L that can be computed with oracle X in time f can be computed without oracle in time $\text{poly}(f)$.

(model of computation: Turing machine with a dedicated tape; the machine may write n on this tape then query the oracle X as to whether $n \in X$).

Does such an A exist? Obviously yes: take A to be in PTIME-computable! (note: X computable but EXPTIME-complete would not work, so lowness for speed is **not** closed under \equiv_T).
Lowness for speed

Much less obvious: is there a non-computable A that is l.f.s.?
Lowness for speed

Much less obvious: is there a non-computable A that is l.f.s.?

Theorem (Bayer-Slaman)
There exists A non-computable and c.e. that is l.f.s.
Lowness for speed

Much less obvious: is there a non-computable A that is l.f.s.?

Theorem (Bayer-Slaman)

There exists A non-computable and c.e. that is l.f.s.

Proof is a priority argument. One constructs A to be sparse, so that at stage t there are few candidates for $A | t$, thus for a functional Φ one can try to simulate all possible Φ^A in parallel (+ some very nice twist to handle Friedberg-Muchnik requirements).
Lowness for speed

Three directions for the study of lowness for speed:

1. What are the c.e. sets in LFS?
Three directions for the study of lowness for speed:

1. What are the c.e. sets in LFS?

2. What is the situation outside c.e. sets? How big is the set LFS in terms of cardinality/category/measure? (category answered by Bayer and Slaman)
Lowness for speed

Three directions for the study of lowness for speed:

1. What are the c.e. sets in LFS?
2. What is the situation outside c.e. sets? How big is the set LFS in terms of cardinality/category/measure? (category answered by Bayer and Slaman)
3. Closing under \equiv_T: what are the X such that equivalent to some low for speed? (note: every degree contains a non low for speed). Are such X closed downwards? under join?
Within c.e. sets

Can we characterize the c.e. sets in LFS? Seems very hard, but one can get partial results.

Theorem (Bayer-Slaman)
If a c.e. set A is promptly simple, it is not l.f.s.
Within c.e. sets

Can we characterize the c.e. sets in LFS? Seems very hard, but one can get partial results.

Theorem (Bayer-Slaman)
If a c.e. set \(A \) is promptly simple, it is not l.f.s.

However,

Theorem (Bayer-Slaman)
There is a non-prompt c.e. set \(A \) such that \(A \) is not l.f.s., nor any \(B \equiv_T A \).
Within c.e. sets

Start by the obvious question: are there Turing-complete l.f.s. sets?
Within c.e. sets

Start by the obvious question: are there Turing-complete l.f.s. sets?

Theorem (BD)
If $A \geq_T \emptyset'$, then A is not l.f.s. (does not require A to be c.e.).
Within c.e. sets

How does lowness for speed fit in the high/low hierarchy?
Within c.e. sets

How does lowness for speed fit in the high/low hierarchy?

Theorem (BD)

- There is a high c.e. set that is low for speed.
- A non-computable c.e. low set A cannot be low for speed(!)
- There is a non-computable low$_2$ c.e. set that is low for speed.
Outside the c.e. world

How common are low for speed sets? Can/should a generic be low for speed? How about randoms?
The strange case of generics

For generics... well... it’s complicated.
The strange case of generics

For generics... well... it’s complicated.

Theorem (Bayer-Slaman)
Any 2-generic G is low for speed if **and only if** $P = NP$.
The strange case of generics

For generics... well... it’s complicated.

Theorem (Bayer-Slaman)
Any 2-generic G is low for speed **if and only if** $P = NP$.

So we might not know for a while whether LFS is meager or co-meager.
The strange case of generics

However, LFS contains an homeomorphic copy of the 1-generics. Consider a doubly-exponentially sparse set S such as

$$S = \{2^{2^n} \mid n \in \mathbb{N}\}$$

and define

$$S_X = \{2^{2^n} \mid n \in X\}$$
The strange case of generics

However, LFS contains an homeomorphic copy of the 1-generics. Consider a doubly-exponentially sparse set S such as

$$S = \{2^{2^n} \mid n \in \mathbb{N}\}$$

and define

$$S_X = \{2^{2^n} \mid n \in X\}$$

A fairly direct proof gives us:

Theorem (BD)

If G is 1-generic, then S_G is low for speed.
The strange case of generics

This gives a simple proof of the existence of non-computable l.f.s. and has further consequences:
The strange case of generics

This gives a simple proof of the existence of non-computable l.f.s. and has further consequences:

- LFS has size 2^{\aleph_0}
The strange case of generics

This gives a simple proof of the existence of non-computable l.f.s. and has further consequences:

- LFS has size 2^{\aleph_0}
- There is a low Δ_2^0 set that is low for speed.
The strange case of generics

This gives a simple proof of the existence of non-computable l.f.s. and has further consequences:

- LFS has size 2^{\aleph_0}
- There is a low Δ^0_2 set that is low for speed.
- Every non-computable c.e. set *computes* a l.f.s. set.
The strange case of generics

This gives a simple proof of the existence of non-computable l.f.s. and has further consequences:

- LFS has size 2^{\aleph_0}
- There is a low Δ^0_2 set that is low for speed.
- Every non-computable c.e. set computes a l.f.s. set.
- Every 2-random computes a l.f.s. set.
The strange case of generics

This gives a simple proof of the existence of non-computable l.f.s. and has further consequences:

- LFS has size 2^{\aleph_0}
- There is a low Δ^0_2 set that is low for speed.
- Every non-computable c.e. set *computes* a l.f.s. set.
- Every 2-random *computes* a l.f.s. set.
-
Randomness vs lowness for speed

Like for generics, one could expect a conditional behaviour of randoms w.r.t. lowness for speed, for example a dependance on the answer to $P = BPP$. This is not the case:

Theorem (BD)
If A is Schnorr random, it is not l.f.s.

A Schnorr random can however be equivalent to a l.f.s. (take a l.f.s. of high degree).

However, unlike for generics (assuming $P \neq NP$), the phenomenon disappears for Martin-Löf randomness. In fact:

Theorem (BD)
If A has DNC degree, it is not low for speed.

Proof inspired by Blum's speedup theorem.
Randomness vs lowness for speed

Like for generics, one could expect a conditional behaviour of randoms w.r.t. lowness for speed, for example a dependance on the answer to $P = BPP$. This is not the case:

Theorem (BD)
If A is Schnorr random, it is not l.f.s.
Randomness vs lowness for speed

Like for generics, one could expect a conditional behaviour of randoms w.r.t. lowness for speed, for example a dependence on the answer to $P = BPP$. This is not the case:

Theorem (BD)
If A is Schnorr random, it is not l.f.s.

A Schnorr random can however be equivalent to a l.f.s. (take a l.f.s. of high degree).
Like for generics, one could expect a conditional behaviour of randoms w.r.t. lowness for speed, for example a dependance on the answer to P = BPP. This is not the case:

Theorem (BD)
If A is Schnorr random, it is not l.f.s.

A Schnorr random can however be *equivalent* to a l.f.s. (take a l.f.s. of high degree). However, unlike for generics (assuming P ≠ NP), the phenomenon disappears for Martin-Löf randomness. In fact:
Randomness vs lowness for speed

Like for generics, one could expect a conditional behaviour of randoms w.r.t. lowness for speed, for example a dependance on the answer to $P = BPP$. This is not the case:

Theorem (BD)
If A is Schnorr random, it is not l.f.s.

A Schnorr random can however be *equivalent* to a l.f.s. (take a l.f.s. of high degree). However, unlike for generics (assuming $P \neq NP$), the phenomenon disappears for Martin-Löf randomness. In fact:

Theorem (BD)
If A has DNC degree, it is not low for speed.

Proof inspired by Blum’s speedup theorem.
This last result also gives us that any $A \geq_T \emptyset'$ is not equivalent to any l.f.s. set. And from this:

Theorem (BD)
The Turing degrees of LFS are not closed under join.
This last result also gives us that any $A \geq_T \emptyset'$ is not equivalent to any l.f.s. set. And from this:

Theorem (BD)
The Turing degrees of LFS are not closed under join.

Proof: Take a 2-generic G_0 and consider $G_1 = G_0 \Delta \emptyset'$, also 2-generic. Both G_0 and G_1 are Turing equivalent to a l.f.s. set, but $G_0 \oplus G_1 \geq_T \emptyset'$ is not.
Turing degrees and LFS

Some more results on the Turing degrees of l.f.s. sets.

Theorem (BD)
The Turing degrees of LFS are not closed downwards.

Proof: extend the earlier result to show that a low c.e. degree does not contain any l.f.s. set. Take a non-computable c.e. set X which is l.f.s. and apply Sack's splitting theorem to get a low c.e. Y with $0 < T_Y < T_X$.

How lowness for speed interacts with minimality is not fully solved, but we know at least:

Theorem (BD)
There exists a minimal Turing degree which does not contain any l.f.s. set.

(We do not know whether a l.f.s. set can be of minimal Turing degree)
Some more results on the Turing degrees of l.f.s. sets.

Theorem (BD)
The Turing degrees of LFS are not closed downwards.

Proof: extend the earlier result to show that a low c.e. degree does not contain any l.f.s. set. Take a non-computable c.e. set X which is l.f.s. and apply Sack’s splitting theorem to get a low c.e. Y with $0 <_T Y <_T X$. How lowness for speed interacts with minimality is not fully solved, but we know at least:

Theorem (BD)
There exists a minimal Turing degree which does not contain any l.f.s. set. (We do not know whether a l.f.s. set can be of minimal Turing degree)
Some more results on the Turing degrees of l.f.s. sets.

Theorem (BD)
The Turing degrees of LFS are not closed downwards.

Proof: extend the earlier result to show that a low c.e. *degree* does not contain any l.f.s. set. Take a non-computable c.e. set X which is l.f.s. and apply Sack’s splitting theorem to get a low c.e. Y with $0 <_T Y <_T X$.

How lowness for speed interacts with minimality is not fully solved, but we know at least:

Theorem (BD)
There exists a minimal Turing degree which does not contain any l.f.s. set.

(We do not know whether a l.f.s. set can be of minimal Turing degree)
Thank you!