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Basic Papers on Multiple Permitting

(DJS1990) Downey, Rod; Jockusch, Carl; Stob, Michael. Array
nonrecursive sets and multiple permitting arguments. Recursion
theory week (Oberwolfach, 1989), 141–173, Lecture Notes in Math.,
1432, Springer, Berlin, 1990.

(DGW2007) Downey, Rod; Greenberg, Noam; Weber, Rebecca.
Totally ω-computably enumerable degrees and bounding critical
triples. J. Math. Log. 7 (2007), 145–171.

The notions “array nonrecursive” (now called array noncomputable or
a.n.c. for short) and “not totally ω-c.e.” were introduced in order to
capture “multiple permitting” arguments.

In the first case the type of multiple permitting which is covered is
explicitly described in the paper. In the second case we give such a
description here.
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What is permitting?

Permitting is used in order to construct a c.e. set B meeting certain
requirements Re below a given c.e. set A.

Typically (in the simplest cases), in order to meet a requirement Re

we appoint a follower xe , wait for a certain event, and if this happens
we enumerate xe into B.

In case of a permitting construction, xe is enumerated into B only if
at the same stage a number y ≤ xe (or, more generally, a number
y < f (xe) where f is a computable function) enters A (“A (f -)per-
mits xe”). Moreover, while we wait for permitting, we start a new
attack on Re using a new follower.

This guarantees B ≤T A, in fact B ≤wtt A.

In this simple setting all noncomputable c.e. sets A eventually permit (i.e.,
permitting = noncomputable).
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What is multiple permitting?

In a multiple permitting argument there is not a single event we have
to wait for in order to enumerate xe but there might be a finite
sequence of such events - each forcing some action needed to be
permitted.

Moreover there is a computable bound g(xe) on the
potential number of events hence on the permittings required.

This bounding function g
I may not depend on the requirement Re

Then we say that A has to multiply permit.

I may depend on the requirement Re (or even on the strategy for
meeting Re), i.e., g = ge

Then we say that A has to uniformly multiply permit.

What are the (uniformly) multiply permitting c.e. sets?
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Array computable and totally ω-c.e. degrees

A function f (·) is g -c.e. if there is a computable approximation f (·, ·)
of f (·) such that (for all x)

|{s : f (x , s + 1) 6= f (x , s)}| ≤ g(x).

And f is ω-c.e. if f is g -c.e. for some computable function g .

(DJS1990) A c.e. degree a is array computable if there is a
computable function g such that any function f ≤T a is g -c.e.; and a
is array noncomputable (a.n.c.) otherwise.

(In DJS1990 the above is not the definition of a.n.c. but shown to be
equivalent to the definition given there.)

(DGW2007) A c.e. degree a is totally ω-c.e. if, for any function
f ≤T a there is a computable function g such that f is g -c.e.; and a
is not totally ω-c.e. otherwise.
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Multiple permitting vs. a.n.c. and not totally ω-c.e.

Array noncomputable = multiple permitting (DJS1990)

Not totally ω-c.e. = uniformly multiple permitting (?)

In order to show the first equivalence, we have to look at the original
definition of an array noncomputable set in DJS1990 which was designed
to capture this permitting notion.
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Array noncomputable sets: very strong arrays

A very strong array (v.s.a.) F = {Fn}n≥0 is a sequence of finite sets Fn such
that the following hold.

(a) There is a computable function f such that f (n) is the canonical index
of Fn,

(b) Fn ∩ Fm = ∅ if m 6= n, and
(c) 0 < |Fn| < |Fn+1| for all n ≥ 0.

A v.s.a. F = {Fn}n≥0 is total if in addition

(d)
⋃

n≥0 Fn = ω

holds.

REMARK. The above definition of a v.s.a. is taken from DH2010. In the
original definition (in DJS1990) very strong arrays are required to be total.

A (total) v.s.a. F = {Fn}n≥0 is a (total) very strong array of intervals
(v.s.a.i.) if Fn is an interval and maxFn < minFn+1 (n ≥ 0).
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Array noncomputable sets: definition

Let F = {Fn}n≥0 be a v.s.a.

I Sets A and B are F-similar if there are infinitely many n such that
A ∩ Fn = B ∩ Fn.

I A set A is F-array noncomputable (F-a.n.c) if A is c.e. and A is
F-similar to all c.e. sets.

A set A is array noncomputable (a.n.c.) if A is F-a.n.c. for some v.s.a. F .

A c.e. degree a is array noncomputable (a.n.c.) if it contains an a.n.c. set;
and a is array computable (a.c.) otherwise.

As shown in DJS1990, the a.n.c. degrees are closed upwards, contain all
non-low2-degrees and split the low and low2-low degrees. (In fact all of these are
true for the not totally ω-c.e. degrees too.)
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Array noncomputable sets and multiple permitting

Why do the a.n.c. sets capture multiple permitting?

The bound g(xe) on the required permittings defines the length of the
member Fn of the v.s.a. which has xe as its least element.

In order to force up to g(xe) permittings one uses a “trigger set” V :
whenever a further permitting is needed one enumerates a new element y
from Fn into V . If A copies V on Fn this will force y to enter A later
thereby granting the requested permitting.

Though a.n.c. sets capture multiple permittings, it is somewhat awkward to work
with this notion (due to the necessity of the trigger sets). Moreover, the a.n.c.
sets are not wtt-invariant (in fact not even ibT-invariant) though the intuitive
multiple permitting notion has this property. This led us to a closely related but
somewhat more intuitive notion.
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A formal notion of multiply permitting c.e. sets: definition

Definition (Ambos-Spies)

Let F = {Fn}n≥0 be a v.s.a., let f be a strictly increasing computable function,
let A be a c.e. set, and let {As}s≥0 be a computable enumeration of A.

A is F-permitting via f (and {As}s≥0) if, for any partial computable
function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1) (1)

holds.

A is F-permitting if A is F-permitting via some computable f .

A is multiply permitting if A is F-permitting for some v.s.a. F .

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 10 / 14



A formal notion of multiply permitting c.e. sets: definition

Definition (Ambos-Spies)

Let F = {Fn}n≥0 be a v.s.a., let f be a strictly increasing computable function,
let A be a c.e. set, and let {As}s≥0 be a computable enumeration of A.

A is F-permitting via f (and {As}s≥0) if, for any partial computable
function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1) (1)

holds.

A is F-permitting if A is F-permitting via some computable f .

A is multiply permitting if A is F-permitting for some v.s.a. F .

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 10 / 14



A formal notion of multiply permitting c.e. sets: definition

Definition (Ambos-Spies)

Let F = {Fn}n≥0 be a v.s.a., let f be a strictly increasing computable function,
let A be a c.e. set, and let {As}s≥0 be a computable enumeration of A.

A is F-permitting via f (and {As}s≥0) if, for any partial computable
function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1) (1)

holds.

A is F-permitting if A is F-permitting via some computable f .

A is multiply permitting if A is F-permitting for some v.s.a. F .

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 10 / 14



A formal notion of multiply permitting c.e. sets: definition

Definition (Ambos-Spies)

Let F = {Fn}n≥0 be a v.s.a., let f be a strictly increasing computable function,
let A be a c.e. set, and let {As}s≥0 be a computable enumeration of A.

A is F-permitting via f (and {As}s≥0) if, for any partial computable
function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1) (1)

holds.

A is F-permitting if A is F-permitting via some computable f .

A is multiply permitting if A is F-permitting for some v.s.a. F .

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 10 / 14



A formal notion of multiply permitting c.e. sets: definition

Definition (Ambos-Spies)

Let F = {Fn}n≥0 be a v.s.a., let f be a strictly increasing computable function,
let A be a c.e. set, and let {As}s≥0 be a computable enumeration of A.

A is F-permitting via f (and {As}s≥0) if, for any partial computable
function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1) (1)

holds.

A is F-permitting if A is F-permitting via some computable f .

A is multiply permitting if A is F-permitting for some v.s.a. F .

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 10 / 14



A formal notion of multiply permitting c.e. sets: definition

Definition (Ambos-Spies)

Let F = {Fn}n≥0 be a v.s.a., let f be a strictly increasing computable function,
let A be a c.e. set, and let {As}s≥0 be a computable enumeration of A.

A is F-permitting via f (and {As}s≥0) if, for any partial computable
function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1) (1)

holds.

A is F-permitting if A is F-permitting via some computable f .

A is multiply permitting if A is F-permitting for some v.s.a. F .

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 10 / 14



A formal notion of multiply permitting c.e. sets: facts

Theorem (Ambos-Spies)

(i) The wtt-degrees of the multiple permitting sets coincide with the
wtt-degrees of the a.n.c. sets.

(ii) The multiple permitting property is wtt-invariant, in fact closed upwards
under ≤wtt . Moreover, for any c.e. splitting A = A0 t A1 of a multiple
permitting set A, A0 or A1 is multiply permitting too.

(iii) If A is multiply permitting then A is F-permitting for all v.s.a. F (but, in
general, the corresponding permitting bound f = fF depends on F).

NB. The multiple permitting property is not T-invariant. Ambos-Spies and
Monath have shown that there are c.e. Turing degrees a such that all c.e. sets in
a are multiply permitting (hence wtt-equivalent to an a.n.c. set) but that such a
degree a cannot be high.
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A formal notion capturing uniform multiple permitting

Definition (Ambos-Spies and Losert)

A c.e. set A is uniformly multiply permitting (u.m.p.) if there is a computable
function f such that A is F-permitting via f for all v.s.a. F .

Some facts: The uniform multiple permitting property is wtt-invariant, in fact
closed upwards under ≤wtt . Moreover, for any c.e. splitting A = A0 t A1 of a
u.m.p. set A, A0 or A1 is u.m.p. too.
The u.m.p. is not Turing-invariant. Moreover, (in contrast to m.p.) any c.e.
Turing degree contains a c.e. set which is not u.m.p. (For this we show that
h-simple sets are not u.m.p.)

Theorem (Ambos-Spies and Losert)

A c.e. Turing degree is not totally ω-c.e. iff it contains a u.m.p. set.

So uniform multiple permitting (in the formal sense) characterizes the permitting
power of not totally ω-c.e. c.e. degrees.
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An application: bounding lattice embeddings into the c.e.
degrees

We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3 a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings into the c.e.
degrees
We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3 a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings into the c.e.
degrees
We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3 a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings into the c.e.
degrees
We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3 a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings into the c.e.
degrees
We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3 a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings into the c.e.
degrees
We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3

a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings into the c.e.
degrees
We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3 a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings into the c.e.
degrees
We look at the following question: If a (finite) lattice L can be embedded into the
partial ordering of the c.e. degrees (R,≤), can it be embedded in any nontrivial
principal ideal R(≤ a). If not, for what degrees a does such an embedding exist?

The finite lattice L is embeddable in R(≤ a) iff

L distributive a > 0

L = N5 a > 0

L = M3 a is not totally < ωω-c.e.
(Downey and Greenberg ta)

a critical triple a is not totally ω-c.e.
(Downey, Greenberg and Weber 2007)

(Here incomparable c.e. degrees a0, a1,b form a critical triple if a0 ∨ b = a1 ∨ b
and a0 ∧ a1 ≤ b.)

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 13 / 14



An application: bounding lattice embeddings (continued)

Theorem (Ambos-Spies and Losert)

If A is uniformly multiple permitting then the seven element meet-semidistributive
but not join-semidistributive lattice S7 can be embedded into R(≤ deg(A)).

Corollary (Ambos-Spies and Losert)

The lattice S7 can be embedded into R(≤ a) iff a is not totally ω-c.e.

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 14 / 14



An application: bounding lattice embeddings (continued)

Theorem (Ambos-Spies and Losert)

If A is uniformly multiple permitting then the seven element meet-semidistributive
but not join-semidistributive lattice S7 can be embedded into R(≤ deg(A)).

Corollary (Ambos-Spies and Losert)

The lattice S7 can be embedded into R(≤ a) iff a is not totally ω-c.e.

Klaus Ambos-Spies (Heidelberg University) Uniform multiple permitting Oberwolfach 2018 14 / 14


