
Four Related Questions



How common are minimal degrees?

Question 1

What is the (classical) Hausdorff dimension of the set of minimal
Turing degrees?

Notes
No 1-random has minimal degree, so the measure of the minimal
degrees is zero.

Even better, the degrees that compute a minimal degree have
measure zero (Paris).

In particular, no 2-random computes a minimal degree
(Barmpalias, Day and Lewis improving on work of Kurtz).

The packing dimensions of the set of minimal Turing degrees is 1
(Downey, Greenberg).
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How common are minimal degrees?

Question 1

What is the (classical) Hausdorff dimension of the set of minimal
Turing degrees?

How might we answer this?

If for every oracle X, there is a real of minimal degree and effective
Hausdorff dimension 1 relative to X, then dimH(Minimal) = 1.

Proposition (Greenberg and M.)

There is a computable order function h : ω→ ωr {0, 1} such that
every h-bounded DNC function computes a real of effective
Hausdorff dimension 1.
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Can minimal DNC functions grow slowly?

Proposition (Greenberg and M.)

There is a computable order function h : ω→ ωr {0, 1} such that
every h-bounded DNC function computes a real of effective
Hausdorff dimension 1.

There is a DNC function of minimal degree (Kumabe, Lewis). Can
such a function grow slowly?

Question 2

Is there an h-bounded DNC function of minimal degree?

We would actually need this in a partially relativized form:

Question 2X

For an oracle X, is there an h-bounded function that is DNC relative
to X and has minimal degree?

Question 2X implies that dimH(Minimal) = 1.
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Can minimal DNC functions grow slowly?

There are connections between what can be computed from a slow
growing DNC function and what can be computed uniformly from a
bounded DNC function:

Facts (Greenberg and M.)

There is a uniform way to compute a real of Hausdorff
dimension 1 from a DNCk function.

There is a computable order function h such that every
h-bounded DNC function computes a real of Hausdorff
dimension 1.

Also:

(Downey, Greenberg, Jockusch, Milans) There is no uniform way
to compute a Kurtz random from a DNC3 function.

(Greenberg, M.; Khan, M.) For any computable order function h,
there is an h-bounded DNC that computes no Kurtz random.
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Can we uniformly witness the non-minimality of
DNC3 functions?

There are connections between what can be computed from a slow
growing DNC function and what can be computed uniformly from a
bounded DNC function:

So this:

Question 2

Is there an h-bounded DNC function of minimal degree?

. . . is related to the uniform question for bounded DNC functions:

Question 3.k

Fix k > 3. Is there a functional Γ such that ∅ <T Γ
f <T f for every

DNCk function f : ω→ k?

It is not hard to see that DNCk functions are non-minimal, but no
uniform proof is known.
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Are continuous functions either injective on a big set
or constant on a big(ish) set?

We might want to modify Kumabe, Lewis to answer Questions 2.

For this, we would need to prove an appropriate (delayed) splitting
lemma. In purely combinatorial form:

Question 4

If f : 17ω → 2ω is continuous, is f either
1 injective on a 2-bushy tree, or
2 constant on an eventually 2-bushy tree.

A tree T is 2-bushy if every σ ∈ T has at least two immediate
extensions.

T is eventually 2-bushy is this holds for sufficiently long strings σ.

17 is an arbitrary number (greater than 3).
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Are continuous functions either injective on a big set
or constant on a big(ish) set?

Question 4

If f : 17ω → 2ω is continuous, is f either
1 injective on a 2-bushy tree, or
2 constant on an eventually 2-bushy tree.

It should be noted that:

Kumar, private communication

There is a continuous f : [0, 1] → R such that
1 f is non-injective on every positive measure set, and
2 f is non-constant on every positive measure set.
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