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Proposition (Greenberg and M.)

There is a DNC function of minimal degree (Kumabe, Lewis). Can
such a function grow slowly?

Question 2

We would actually need this in a partially relativized form:

Question 2%

Question 2% implies that dimy (Minimal) = 1.
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Can we uniformly witness the non-minimality of

DNC; functions?

There are connections between what can be computed from a slow
growing DNC function and what can be computed uniformly from a
bounded DNC function:

So this:

Question 2

...is related to the uniform question for bounded DNC functions:

Question 3.k

It is not hard to see that DNCy functions are non-minimal, but no
uniform proof is known.
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For this, we would need to prove an appropriate (delayed) splitting
lemma. In purely combinatorial form:

Question 4

o A tree T is 2-bushy if every o € T has at least two immediate
extensions.

o T is eventually 2-bushy is this holds for sufficiently long strings o.

@ 17 is an arbitrary number (greater than 3).
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Are continuous functions either injective on a big set
or constant on a big(ish) set?

Question 4

It should be noted that:

Kumar, private communication




