Mathias generic sets

Damir D. Dzhafarov University of Notre Dame

joint work with Peter A. Cholak and Jeffry L. Hirst

9 February, 2012

Mathias generics

Definition.

1. A (computable Mathias) pre-condition is a pair (D, E) such that D is a finite set, E is a computable set, and max $D < \min E$.

2. A (computable Mathias) condition is a pre-condition (D, E) such that E is infinite.

3. A pre-condition (D', E') extends (D, E), written $(D', E') \leq (D, E)$, if $D \subseteq D' \subseteq D \cup E$ and $E' \subseteq E$.

4. A set S satisfies a pre-condition (D, E) if $D \subseteq S \subseteq D \cup E$.

Mathias generics

A set S meets a set C of conditions if it satisfies some condition in C.

A set S avoids a set C of conditions if it meets the set of conditions having no extension in C.

Definition.

1. A $\sum_{n=1}^{0}$ set of conditions is a $\sum_{n=1}^{0}$ -definable set of pre-conditions, each of which is a condition.

2. A set *G* is Mathias *n*-generic if it meets or avoids every $\sum_{n=1}^{0} \sum_{n=1}^{1} \sum_{n=1}^{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n}$

3. A set *G* is weakly Mathias *n*-generic if it meets every dense Σ_n^0 set of conditions.

Indices of pre-conditions

An index for a pre-condition (D, E) is a pair $(d, e) \in \omega^2$ such that d is the canonical index of D and $E = \{x \in \omega : \varphi_e(x) \downarrow = 1\}$.

The set of all (indices for) pre-conditions is Π_1^0 -definable.

Remark. There exists a computable set of (indices for) pre-conditions containing an index for every pre-condition.

We work entirely over this set from now on.

Indices of conditions

The set of all (indices for) conditions is Π_2^0 -definable.

Definition. A set *G* is Mathias strongly *n*-generic if it meets or avoids every $\sum_{n=0}^{0}$ -definable set of pre-conditions.

Proposition (Cholak, Dzhafarov, Hirst). For $n \ge 3$, a set is strongly *n*-generic if and only if it is *n*-generic. For n < 3, a set is strongly *n*-generic if and only if it is 3-generic.

Without further comment, *n* below will always be a number \geq 3.

Familiar properties

Every *n*-generic set is weakly *n*-generic, is (n-1)-generic.

There exist *n*-generics $G \leq_T \emptyset^{(n)}$.

Every weakly *n*-generic set is hyperimmune relative to $\emptyset^{(n-1)}$.

Corollary. Not every *n*-generic set is weakly (n + 1)-generic.

Corollary. The *n*-generic sets form a null class.

The degree of any *n*-generic forms a minimal pair with $\mathbf{0}^{(n-1)}$.

Less familiar properties

If G is weakly *n*-generic then G is cohesive, i.e., for every c.e. set W, either $G \subseteq^* W$ or $G \subseteq^* \overline{W}$.

Corollary. If $G = G_0 \oplus G_1$ is *n*-generic, then either $G_0 =^* \emptyset$ or $G_1 =^* \emptyset$. (In particular, van Lambalgen's theorem fails.)

Corollary. No Mathias n-generic can be even Cohen 1-generic.

Corollary. The class of Mathias generic sets is not comeager.

If G is weakly *n*-generic then $G' \geq_T \emptyset''$.

Corollary. No Cohen 2-generic can compute a Mathias 3-generic.

The forcing relation

Let $\varphi(X)$ be a Σ_0^0 formula of second-order arithmetic in one free set variable X, written in disjunctive normal form.

Let $P_{\varphi,i}$ be the set of all $n \in \omega$ such that $\underline{n} \in X$ appears as a conjunct of the *i*th disjunct.

Let $N_{\varphi,i}$ be the set of all $n \in \omega$ such that $\underline{n} \notin X$ appears as a conjunct of the *i*th disjunct.

Definition.

A condition (D, E) forces $\varphi(G)$, written $(D, E) \Vdash \varphi(G)$, if there is an *i* such that $P_{\varphi,i} \subseteq D$ and $N_{\varphi,i} \subseteq \overline{D \cup E}$.

For general $\varphi(X)$, define $(D, E) \Vdash \varphi(G)$ inductively according to the standard definition of (strong) forcing.

The forcing relation

Lemma (Cholak, Dzhafarov, Hirst). Let $\varphi(X)$ be a formula of second-order arithmetic in one free set variable X.

If φ is Σ_0^0 , then the relation $(D, E) \Vdash \varphi(G)$ is computable. If φ is Π_1^0 , Σ_1^0 , or Σ_2^0 , then so is the relation $(D, E) \Vdash \varphi(G)$. If φ is Π_n^0 for some $n \ge 2$, then the relation $(D, E) \Vdash \varphi(G)$ is Π_{n+1}^0 . If φ is Σ_n^0 for some $n \ge 3$, then the relation $(D, E) \Vdash \varphi(G)$ is Σ_{n+1}^0 .

Proposition (Cholak, Dzhafarov, Hirst). Let *G* be *n*-generic, and let $\varphi(X)$ be a Σ_m^0 formula for some $m \le n$, or the negation of such a formula. If *G* satisfies a condition that forces $\varphi(G)$, then $\varphi(G)$ holds.

Jump properties

Theorem (Cholak, Dzhafarov, Hirst). If *G* is *n*-generic, then $G^{(n-1)} \equiv_T G' \oplus \emptyset^{(n)}$.

Proof sketch. One direction follows immediately from $G' \ge \emptyset''$.

For the other, fix any $\sum_{n=1}^{0}$ formula $\varphi(X)$ and consider

$$C = \{(D, E) \text{ condition} : (D, E) \Vdash \varphi(G)\} \in \Sigma_n^0$$

$$\mathcal{D} = \{ (D, E) \text{ condition} : (D, E) \Vdash \neg \varphi(G) \} \in \Pi^0_n.$$

G meets C iff it avoids D, one must happen, and $G' \oplus \emptyset^{(n)}$ knows which.

Corollary. The Π_{n+1}^0 and Σ_{n+1}^0 bounds in the definition of \Vdash cannot be lowered even to Δ_{n+1}^0 . So an *n*-generic set only decides Σ_{n-1}^0 formulas.

Jump properties

Theorem (Cholak, Dzhafarov, Hirst). If G is *n*-generic, then $\deg(G) \in \mathbf{GH}_1$, i.e., $G' \equiv_T (G \oplus \emptyset')'$.

Proof sketch. For $i \in \omega$, a condition (D, E) forcing the formula $i \in (G \oplus \emptyset')'$ is Σ_2^0 . Forcing the negation requires universally quantifying over all extensions of (D, E), and so appears Π_3^0 . But in fact it suffices to quantify over finite extensions, which makes this relation Π_2^0 . Now since $G' \geq_T G' \oplus \emptyset''$, proceed as in the previous theorem.

Corollary. Every Mathias *n*-generic has $\overline{\mathbf{GL}}_1$ degree. Hence, no Mathias *n*-generic has Cohen 1-generic degree, but every Mathias *n*-generic computes a Cohen 1-generic.

Theorem (Kurtz). If $A >_{\mathcal{T}} \emptyset^{(n-1)}$ is hyperimmune relative to $\emptyset^{(n-1)}$ then $A \equiv_{\mathcal{T}} B^{(n-1)}$ for some weakly Cohen *n*-generic set *G*.

Theorem (Cholak, Dzhafarov, Hirst). If $A >_T \emptyset^{(n-1)}$ is hyperimmune relative to $\emptyset^{(n-1)}$ then $A \equiv_T G^{(n-2)}$ for some weakly Mathias *n*-generic set *G*.

Corollary. Not every weakly *n*-generic set is *n*-generic.

Fix $A >_T \emptyset^{(n-1)}$ is hyperimmune relative to $\emptyset^{(n-1)}$. We want to build a weakly Mathias *n*-generic *G* such that $A \equiv_T G^{(n-2)}$.

We A-computably build a series of conditions $(\emptyset, \omega) = (D_0, E_0) \ge (D_1, E_1) \ge \cdots$, and take $G = \bigcup_s D_s$.

Ensuring that G is weakly *n*-generic uses the hyperimmunity of A relative to $\emptyset^{(n-1)}$. This is just as in Kurtz's proof, but the escaping function must be chosen a bit more carefully.

We force the jump along the way, which is easy since $A \ge_T \emptyset^{(n)} \ge_T \emptyset'$. This ensures that $G^{(n-2)} \equiv_T G' \oplus \emptyset^{(n-1)} \le_T A$.

In Kurtz's proof, where one constructs a sequence of finite strings, the bit A(n) is coded at a certain stages by appending a long block of 1s.

We cannot code the same way: if we are at, say, (D_s, E_s) , the reservoir E_s may be very sparse.

Instead, fix a sequence of disjoint co-immune sets $B_0, B_1, \ldots \leq_T \emptyset^{(n-1)}$ ahead of time. These can serve as coding markers. Since each E_s is computable, it must intersect each B_i infinitely often. So, instead of appending *e* many 1s, we append the least element of $B_e \cap E_s$.

Since G will be weakly *n*-generic, $G^{(n-2)}$ will compute $\emptyset^{(n-1)}$ and hence also the sequence of B_i , so $G^{(n-2)}$ will be able to do the decoding.

Theorem (Cholak, Dzhafarov, Hirst). If *G* is Mathias *n*-generic and $B \leq_T \emptyset^{(n-1)}$ is bi-immune, then $G \oplus B$ computes a Cohen *n*-generic.

Proof. Given a c.e. set of strings V, let C be set of all conditions (D, E) such that $D \cap B$, regarded as an element of $2^{\min E}$, belongs to V.

Then \mathcal{C} is Σ_3^0 . If G meets \mathcal{C} , then $G \cap B$ meets V.

If *G* avoids *C*, then $G \cap B$ must avoid *V*. Indeed, suppose *G* avoids *C* via (D, E). Since *B* and \overline{B} are co-immune, they intersect *E* infinitely often, and so if $D \cap B$ had an extension τ in *V*, we could make a finite extension (D', E') of (D, E) so that $D' \cap B = \tau$.

Proposition (Cholak, Dzhafarov, Hirst). No Mathias *n*-generic *m*-computes a Cohen *m*-generic.

Questions

Does every Mathias *n*-generic compute a Cohen *n*-generic?

Is there a form of van Lambalgen's theorem for Mathias generics?

What is the reverse mathematical content of the principle asserting the existence, for every X, of an *n*-generic set for X-computable Mathias forcing? It is Π_1^1 conservative over RCA₀, how about over B Σ_2^0 ?

Shore has asked whether there are any interesting degrees realizing properties of the form $\mathbf{d}^{j} = (\mathbf{d}^{k} \vee \mathbf{0}^{l})^{m}$. The Cohen and Mathias generics realize two such properties. Do generics for other forcing notions realize other properties?

Thank you for your attention.