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Summary

We survey recent applications of the classical notion of effective
inseparability to the study of:

computably enumerable (c.e.) equivalence relations (ceers)
Andrews, Lempp, Miller J. S., Ng, San Mauro and Sorbi [1]

c.e. pre-ordering relations and pre-ordered structures Andrews
and Sorbi [2]

c.e. Lindenbaum algebras of sentences Pianigiani and
Sorbi [13]

word problems of c.e. algebras Delle Rose, San Mauro and
Sorbi [7]



Effective Inseparabilty: Smullyan

Definition (Smullyan [18])

A disjoint pair (A,B) of sets of natural numbers is effectively
inseparable (or, simply, e.i.) if there exists a partial computable
function ψ(u, v) (called a productive function for the pair) such
that

(∀u, v)[A ⊆Wu &B ⊆Wv &Wu ∩Wv = ∅ ⇒
ψ(u, v) ↓ &ψ(u, v) /∈Wu ∪Wv ].

Remark
Each half of an e.i. pair of c.e. sets is creative.

Classical results on e.i. pairs of c.e. sets (restriction to c.e. sets)

Universality (or completeness) of e.i. pairs under 1-reducibility
on disjoint pairs, generalizing the Myhill Completeness
Theorem for creative sets.

All e.i. pairs are computably isomorphic (via a computable
permutation of ω), generalizing the Myhill Isomorphism
Theorem for creative sets.



Effective Inseparabilty: Applications to formal systems

Applications to formal systems Let T be any consistent c.e.
extension of Robinson’s system Q. Then

the pair (ThmT ,RefT ) is e.i. (T is e.i.), where:

ThmT = {α ∈ Sent : T ` α}
RefT = {α ∈ Sent : T ` ¬α}

Q is essentially undecidable

Proof.
It is enough to prove that Q is e.i. and then use: if (A,B), (C ,D)
are disjoint pairs, (A,B) e.i., and (A,B) ⊆ (C ,D) then (C ,D) is
e.i., and thus each of the two halves is undecidable).



Section 1

Effective inseparability and universality for
computably enumerable equivalence relations



Extension of e.i.-ness to eqrels: u.e.i. ceers and their universality

Definition
A nontrivial eqrel E on ω is uniformly effectively inseparable (u.e.i.)
if there is a computable function f (a, b) such that if a�Eb then
ϕf (a,b)(u, v) is productive for the pair of E -classes ([a]E , [b]E ).

Definition (Computable reducibility for binary relations)

Given eqrels R,S (or more generally two binary relations) on ω we
say that R is computably reducible to S (R ≤c S) if

(∀x , y)[x R y ⇔ f (x) S f (y)]
for some computable function f .

Definition (Universal ceers)

A ceer E is universal if R ≤c E for every ceer R.



Extension of e.i.-ness to eqrels: u.e.i. ceers and their universality, continued

Theorem (Universality of u.e.i. ceers Andrews-et-al. [1])

Every u.e.i. ceer is universal (via a 1-reduction).

Proof. By the Recursion Theorem. (Here and in some of the
subsequent proofs exploting effective inseparability, the proof can
be roughly described as using a decidable infinite list of indices
which we simultaneously control by the Recursion Theorem.)



Section 2

Universality and density for c.e. preordering relations and c.e.
preordered structures



Adding structure to a ceer

Can anything like this be done for c.e. preorders? For instance do
we have universality for any c.e. preordering ≤ so that its
associated equivalence relation (x ≡ y if x ≤ y and y ≤ x) is
u.e.i.?

This is not always so, but it is so if we add additional structure to
≤ and ≡.

Definition
A c.e. structure A is a nontrivial algebraic-relational structure for
which there exists a c.e. presentation, i.e. a structure Aω of the
same type as A but with universe ω and possessing uniformly
computable operations, uniformly c.e. relations, and a ceer =A

which is a congruence on Aω such that A is isomorphic with Aω

divided by =A (i.e. A ' Aω/=A
).

Remark When talking about a c.e. structure A in the following we
intend in fact a c.e. presentation Aω of the structure. See
Selivanov [15] for a great introduction to c.e. structures.



Adding structure to a ceer: continued

Lemma (Basic Lemma [2])

Let A be a c.e. algebra whose type contains two binary operations
+, ·, and two constants (presented by the numbers) 0, 1 such that
+ is associative, the pair of sets (0A, 1A) is e.i. (where
0A = {x : x =A 0}, and 1A = {x : x =A 1}) and, for every a,

0 + a =La + 0 =A a, a · 0 =A 0, a · 1 =A a.

Then =A is a uniformly finitely precomplete (u.f.p.) ceer.

But what does “u.f.p.” mean?



U.f.p. ceers and precomplete ceers: two major subclasses of the u.e.i. ceers

Definition (Montagna [10], Shavrukov [16])

An eqrel E is uniformly finitely precomplete (u.f.p.) if it is
nontrivial and has a u.f.p. totalizer, i.e. a (total) computable
function f (D, e, x) such that

ϕe(x) ↓ &ϕe(x) ∈ [D]E ⇒ ϕe(x) E f (D, e, x).

Examples of u.f.p. ceers: the ceer ↔T corresponding to provable
equivalence in any consistent c.e. extension of Q.

Definition (Russian literature, Ershov [8])

An eqrel E is precomplete if it is nontrivial and has a totalizer, i.e.
a (total) computable function f (e, x) such that

ϕe(x) ↓⇒ ϕe(x) E f (e, x).

Examples of precomplete ceers (Visser [19]): for evey n ≥ 1,
provable equivalence ↔T ,n in T restricted to the Σn sentences
where T is any consistent c.e. extension of I∆0 + Exp.



The world of u.e.i. ceers

u.f.p.

precomplete u.f.p.+computable

diagonal function

u.e.i.

universal ceers
Two distinct 's types Inclusions are proper, except for the open

problem: Is u.f.p.=u.e.i.?

A diagonal function for an eqrel E is a

function d : ω → ω such that d(x) /∈ [x ]E
for all x .

Remark

(Lachlan [9]) All precomplete ceers are strongly computably
isomorphic (given eqrels R,S , we say that R is strongly
computably isomorphic to S , R 's S , if there is a computable
permutation of ω which reduces R ≤c S).

(Bernardi and Montagna [4]) If R,S are u.f.p. ceers with a
computable diagonal function then R 's S . (For instance,
↔PA, for which a computable diagonal function being is
induced by the connective ¬.)



Extension of e.i.-ness to eqrels: an open problem

To characterize the inclusion of the u.f.p. ceers in the u.e.i. ceers:

Theorem (A characterization of u.e.i. ceers Andrews et al. [1])

A ceer E is u.e.i. iff it has a weakly u.f.p. totalizer, i.e. a u.f.p.
totalizer f (D, e, x) which is required to make ϕe(x) total modulo
E when ϕe(x) ∈ [D]E , only if the elements of D are pairwise
non-E-equivalent.

Problem
Is u.e.i. ceers= u.f.p. ceers?



Adding structure to a ceer: c.e. lattices

Remark
The usefulness of the Basic Lemma consists in the fact that from
effective inseparability of just the pair (0A, 1A) one can infer that
=A is not only u.e.i., but even u.f.p.. And . . . a lot can be done
exploiting u.f.p.-ness.

As a first application, we look at c.e. lattices L, with preordering
relation ≤L and equality =L.

Definition
A c.e. lattice L is said to be effectively inseparable (or simply e.i.)
if L is bounded, with, say, the numbers 0 and 1 presenting the least
element and the greatest element, respectively, and the pair of sets
(0L, 1L) is e.i.. Let us also say that a c.e. lattice L is u.e.i. or u.f.p.
if so is the ceer =L.

Theorem
If L is an e.i. lattice then L is u.f.p..

Proof. By the Basic Lemma. �



E.i. lattices: universality for c.e. pre-orders

Remark on terminology Henceforth, by any “e.i. structure” we
always assume that the structure be. c.e..

Definition
A c.e preorder � is universal, if R ≤c �, for every c.e. preorder R.

Theorem (Universality Theorem [2])

If L is an e.i. lattice then L is universal, i.e. the associated c.e.
pre-ordering relation ≤L is universal.

Proof.
The proof uses the Recursion Theorem and the fact that by the
Basic Lemma =L is u.f.p..

Remark
Distributivity is not needed!
But the full lattice structure is necessary. In fact:

Theorem ([2])

There exist an e.i. upper semi-lattice U such ≤U is not universal.



E.i. c.e. lattices and c.e. preorders: uniform density

Definition
If � is a preordering relation (with ≡ its associated equivalence
relation), then we say that � is uniformly dense, if there exists a
computable function f such that for every a, b if a ≺ b then

a ≺ f (a, b) ≺ b,

if a ≡ a′ and b ≡ b′ then f (a, b) ≡ f (a′, b′).

Theorem (Uniform Density Theorem [2])

If L is an e.i. lattice then L is uniformly dense, i.e. the associated
pre-ordering relation ≤L is uniformly dense.

Proof.
The proof uses the Recursion Theorem and u.f.p.-ness of =L.



Comparing with the already known case of e.i. Boolean algebras

Theorem (Montagna and S, [11] after Pour El and Kripke [14])

If B is an e.i. Boolean algebra then B is universal not only with
respect to all c.e. preordering relations (in the sense that ≤B is
universal) but, strengthening universality, it is also universal:

w.r.t. all c.e. Boolean algebras, i.e. for each such one B ′

there is a computable function which induces a
monomorphism of Boolean algebras from B ′ to B (or, rather,
from B ′=B′

to B=B
);

and (again in this stronger sense) w.r.t. all c.e. bounded
distributive lattices.

Theorem (Unique strongly computable isomorphism type for
e.i. Boolean algebras [14, 11])

All e.i. Boolean algebras are strongly computably isomorphic, i.e.
there is a computable permutation of ω yielding an isomorphism of
Boolean algebras.



Comparing with the already known case of e.i. Boolean algebras: continued

What is lost going from Boolean algebras to lattices:

Remark
We can not expect in general for e.i. (distributive) lattices
universality with respect to the full class of c.e. (distributive)
lattices.

In fact:

Theorem
There is an e.i. distributive lattice L such that in the corresponding
quotient lattice L/=L

one can embed (as a lattice) no infinite
Boolean algebra.

And of course we loose uniqueness of isomorphism type (even
without requiring computability), and so on.



Adding structure to a ceer. Local universality, and a case when u.f.p.=u.e.i.

Corollary (A case in which u.e.i.=u.f.p.)

For any c.e. lattice L, =L is u.e.i. if and only if =L is u.f.p..

Proof.
By uniformity of the proofs of the previous results.

Corollary (Local Universality Theorem)

Any u.e.i. lattice L (in particular any e.i. lattice L) is locally
universal, i.e. for every pair a <L b, the preordering relation ≤[a,b]L
is universal.

Proof.
Immediate, as [a, b]L is an e.i. lattice.



Section 3

C.e. Lindenbaum lattices of sentences and uniform
density



Applications to c.e. Lindenbaum lattices of sentences

Definition
A lattice of sentences is a c.e. lattice LC,T , where T is a (classical
or intuitionistic) formal system of arithmetic; the universe C is a
c.e. set of sentences identified with ω, with operations induced by
the propositional connectives ∨ and ∧, closed under these
operations, with pre-ordering relation ≤LC,T induced by →T :
α ≤LC,T β if T ` α→ β,
and
α <LC,T β if T ` α→ β but T 6` β → α;
and equality =LC,T induced by ↔T :
α =LC,T β if T ` α↔ β.

Example (Motivating Example)

T is any classical consistent c.e. extension of Q (or R), and
C = Σn-sentences, for some n ≥ 1, or C=all sentences.



Applications to c.e. Lindenbaum lattices of sentences

By the Universality Theorems and the Uniform Density Theorem,
one can show that a c.e. lattice of sentences LC,T is locally
universal and uniformly dense by simply showing that the pair
(0LC,T , 1LC,T ) is e.i. (where, via coding, 0LC consists of the
sentences of C refuted by T , and 1LC consists of the sentences of C
proved by T ).
So it possible to derive, using only computability-theoretic
methods, results on density and uniform density relative to well
known lattices of sentences.

See the paper by Shavrukov and Visser [17] for a beautiful
overview of this topic, and its relevance to proof theory and logic.

In the following survey, we write in red previously unnoticed items.



Local universality and uniform density for lattices of sentences LC,T

Reviewing the literature concerning known cases

By work of Shavrukov and Visser [17] and Montagna and S. [11]
the lattice LC,T is known already to be locally universal or/and
uniformly dense if

1 LC,T is an e.i. Boolean algebra: for instance if T is a
consistent c.e. extension of Q, and
C = ∆n, with n ≥ 2,
or C=all sentences. We have local universality [11] and
uniform density [17].

2 =LC,T is a precomplete ceer: for instance if T is a consistent
c.e. extension of I∆0 + exp and
C = Σn with n ≥ 1. Uniform density comes from [17]. We are
not aware of any recognition of local universality, which easily
follows from the Local Universality Theorem.

(By [11], LΣn,T is universal with respect to all c.e. distributive
lattices (even the bounded ones, if n ≥ 2.))



Local universality and uniform density (based on our theorems via Basic Lemma)

3 T consistent c.e. extension of Buss’s weak system of
arithmetic S1

2 ,
and C = ∃Σb

1. In this case LC,T is locally universal, and
(solving a problem in [17]) uniformly dense.

Remark
Language of S1

2 : language of of Q, plus the shift right function
b1

2xc, length |x |, the smash function x]y (intended interpretation:

x]y = 2|x |·|y |).

Σb
1 is the smallest class of formulas containing the formulas in

which all possibly existing quantifiers are sharply bounded, i.e.
bounded by the length of a term, and is closed under sharply
bounded quantification, the connectives ∨,∧ and bounded
existential quantification. Then ∃Σb

1 is comprised of the formulas
which arise from allowing a single unbounded existential quantifier
over a Σb

1 formula.



Local universality and uniform density (based on our theorems via Basic Lemma)

4 T intuitionistic consistent c.e. extension of iQ and
C any c.e. set of sentences closed under ∨ and ∧, containing
∃∆0 or at least the sentences of the form

∃y¬(τ0(x , y)→ ¬∀z¬(z < y ∧ τ1(x , z))
where τi is roughly equality of two “polynomials”;

for instance C = Φn with n ≥ 3, or C = Θn with n ≥ 2: these
classes refer to Burr’s hierarchies of formulas.
In this case LC,T is locally universal and uniformly dense.

Φ0 := ∆0

Φ1 := Σ1

Φ2 := Π2

for n ≥ 2, let Φn+1 be inductively defined by
Φn ⊆ Φn+1

if ϕ ∈ Φn, ψ ∈ Φn+1 then ϕ→ ψ ∈ Φn+1

if ϕ ∈ Φn+1 then (∀x)ϕ ∈ Φn+1

if ϕ,ψ ∈ Φn+1 then ϕ ∧ ψ,ϕ ∨ ψ ∈ Φn+1

if ϕ ∈ Φn−1 then (∃x)ϕ ∈ Φn+1.

Θ0 = ∆0

Θ1 = Σ1

For n ≥ 1
Θn ⊆ Θn+1

Θn+1 is closed under ∧,∨, ∃, ∀
if ϕ ∈ Θn and ψ ∈ Θn+1 then

ϕ→ ψ ∈ Θn+1.



Section 4

Word problems of c.e. algebras



Complexity of te word problems of c.e. algebras

Definition
The word problem of a c.e. algebra A is the ceer =A presenting
equality in A.

Thus in a f.p. group G = 〈X ;R〉 the word problem is the ceer
which identifies two terms t1, t2 of the free group on X if
t1t
−1
2 ∈ Ncl(R). (Notice slight difference with the classical notion.)

Research Plan.
Given a ceer E , find c.e. structures A such that E can be
“realized” as the word problem of A, meaning one of the following:
E ≡c=A, or E '=A, or even E 's=A, (where ≡c stands for
≤c & ≥c , and ' is computable isomorphism on ceers, i.e. a
reduction whose range intersects all equivalence classes).

Theorem (Delle Rose, San Mauro and S. [7])

Every ceer is ' to some c.e. semigroup. But there exist ceers E
such that E 6≡c=S for every f.p. (or even finitely generated c.e.)
semigroup S.



C.e. algebras with word problem strongly computably isomorphic to ↔PA

Fact
↔PA's=B , where B is any e.i. Boolean algebra.

Proof. By the strongly computable isomorphism of all e.i. Boolean
algebras; or more simply, by the fact that the two ceers are both
u.f.p. with a computable diagonal function, and thus lie in the
same strongly computable isomorphism type.

Remark
More examples of c.e. algebras A so that ↔PA's=A can be found
by building A satisfying the hypotheses of the Basic Lemma, and
so that =A has a computable diagonal function.

For instance:

Theorem ([7])

There is a non commutative c.e. ring R such that ↔PA's=R .

Proof. Build a c.e. ring R with desired properties so that (0R , 1R)
is an e.i. pair of sets.



Applications to word problems of c.e. algebras: continued

Problem
Do there exist f.p. groups G such that ↔PA's=G?

Theorem (Nies and S. [12])

There exists a f.p. group G such that =G is u.e.i..

Remark Had we built G so that =G is u.f.p. then we would be OK.
But unfortunately, this is not so, and the Basic Lemma does not
apply to c.e. groups, so we do not know if =G is u.f.p..

By next theorem it would be enough to build a f.p. group G such
that =G u.e.i., and possessing a computable strong diagonal
function where a function d is a strong diagonal function for an
eqrel E if d(D) /∈ [D]E , for every finite set D.

Theorem ([3], unpublished)

If E is a u.e.i. ceer with a computable strong diagonal function
then E is u.f.p. (and thus E 's↔PA).



Thanks for your patience and attention



Bibliography I

U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. San Mauro,
and A. Sorbi.
Universal computably enumerable equivalence relations.
J. Symbolic Logic, 79(1):60–88, March 2014.

U. Andrews and A. Sorbi.
Effective inseparability, lattices, and pre-ordering relations.
Review of Symbolic Logic, pages 1–28, 2019.
in press.

U. Andrews and A. Sorbi.
On u.f.p. ceers.
unpublished.



Bibliography II

C. Bernardi and F. Montagna.
Equivalence relations induced by extensional formulae:
Classifications by means of a new fixed point property.
Fund. Math., 124:221–232, 1984.

C. Bernardi and A. Sorbi.
Classifying positive equivalence relations.
J. Symbolic Logic, 48(3):529–538, 1983.

J. P. Cleave.
Creative functions.
Z. Math. Logik Grundlagen Math., 7:205–212, 1961.

V. Delle Rose, L. San Mauro, and A. Sorbi.
Word problems and ceers.
MLQ Math. Log. Q., 66(3):341–354, 2020.
https://doi.org/10.1002/malq.202000021.



Bibliography III

Yu. L. Ershov.
Theory of Numberings.
Nauka, Moscow, 1977.
(Russian).

A. H. Lachlan.
A note on positive equivalence relations.
Z. Math. Logik Grundlag. Math., 33:43–46, 1987.

F. Montagna.
Relative precomplete numerations and arithmetic.
J. Philosphical Logic, 11(4):419–430, 1982.

F. Montagna and A. Sorbi.
Universal recursion theoretic properties of r.e. preordered
structures.
J. Symbolic Logic, 50(2):397–406, 1985.



Bibliography IV

A. Nies and A. Sorbi.
Calibrating word problems of groups via the complexity of
equivalence relations.
Mathematical Structures in Computer Science, pages 1–15,
2018.

D. Pianigiani and A. Sorbi.
A note on uniform density in weak arithmetical theories.
Arch. Math. Logic, 2020.
https://doi.org/10.1007/s00153-020-00741-8.

M. B. Pour-El and S. Kripke.
Deduction preserving “Recursive Isomorphisms” between
theories.
Fund. Math., 61:141–163, 1967.



Bibliography V

V. Selivanov.
Positive structures.
In S. B. Cooper and S. S. Goncharov, editors, Computability
and Models, pages 321–350. Springer, New York, 2003.

V. Yu. Shavrukov.
Remarks on uniformly finitely precomplete positive
equivalences.
Math. Log. Quart., 42:67–82, 1996.

V. Yu. Shavrukov and A. Visser.
Uniform density in Lindenbaum algebras.
Notre Dame J. Form. Log., 55(4):569–582, 2014.



Bibliography VI

R. Smullyan.
Theory of Formal Systems.
Princeton University Press, Princeton, New Jersey, 1961.
Annals of Mathematical Studies Vol 47.

A. Visser.
Numerations, λ-calculus & arithmetic.
In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 259–284. Academic Press, London, 1980.


