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A new classification for semantic structures of one-step word problems is proposed in this 
paper. The classification is based on illustrations of word problem situations in Common Core 
State Standards (CCSSM, 2010) and related historical studies (e.g. Weaver, 1973, 1979, 1982), 
as well as conceptual elaborations of embodied and grounded nature in Lakoff et al. (2000). The 
classification identifies two main classes: action on/change of an initial quantity and 
coordination/comparison of two quantities, providing a unifying characteristic of basic 
operations of quantities. This classification is more comprehensive and differentiated than the 
classification of CCSSM (2010) and Polotskaia et al. (2021), as it emphasizes conceptual 
demands of children's mathematics, coherence and continuity of progressions, and consistency 
with thinking modes and/or problem-solving strategies.
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Introduction
Common Core State standards describe the situation types or the categories of word 

problems using two tables (CCSSM, 2010). The first table shows the distinct types of addition 
and subtraction situations: add to, take from, put together/take apart, and compare. The second 
table shows the distinct types of multiplication and division situations: equal groups of objects, 
arrays of objects, and comparison. 

Having a thorough grasp of various problem types is of utmost importance for teachers as it 
enables them to discern the different approaches and methods employed by students when 
tackling problems. On occasion, the positioning of the unknown element within a problem 
significantly influences the strategies utilized and the level of complexity experienced. 
Moreover, there is a widely held belief that students should comprehend problems and devise 
solutions that align with their own understanding, rather than strictly adhering to a predetermined
approach based on problem types. However, an alternative viewpoint can also suggest that if 
feasible, aligning problem types with thinking modes and strategies could enhance 
comprehension and empower students to effectively employ appropriate representations and 
modeling techniques. 

There is an expected progression in comprehending different types of situations. Initially, 
students learn and solve problems related to situations involving whole numbers, which later 
advances to word problems incorporating fractions, integers, and eventually all rational and real 
numbers. Additionally, teachers typically introduce addition and subtraction situations in earlier 
grades, while multiplication and division situations are introduced in later grades. Despite 
research studies, such as Carpenter et al. (1999) and others, confirming that young children are 
capable of solving multiplication, division, and multistep problems by directly modeling the 
action or structure, some teachers and researchers still tend to believe that additive reasoning 
always precedes multiplicative reasoning. Our argument revolves around the notion that in order 



to gain a comprehensive understanding of how the situation types in word problems contribute to
students' comprehension, problem-solving methods, and thinking strategies associated with these
situation types, it is imperative to illuminate the continuity in progressions and the shared 
characteristics of operations involving quantities grounded in human activity. These aspects have
played a crucial role in enabling students to develop skills like direct modeling, while also 
guiding teachers in implementing suitable teaching approaches for their students.

This study, therefore, introduces a new classification of word problem situations based on the
shared characteristics of operations involving quantities and the continuity of concepts across 
different levels of mathematics. To develop this classification, we analyze relevant studies on 
quantitative operations, word problem situation types, and embodied cognition. By examining 
various representations and the conversions utilized during operations involving quantities, we 
identify commonalities and ensure continuity in progression. The findings shed light on the 
current presentation of word problem situation types and propose a more consistent and 
continuous approach enriched by grounded and embodied cognition. This research opens 
avenues for future experiments, discussions, and reflections in this area.

The necessity of a new classification
The types of word problems are closely connected to the semantic structures of quantity 

operations. In his work, Schwartz (1996) extensively examined the semantic aspects of quantities
and their operations in mathematics. He proposed that the operations of quantities consist of two 
parts: numerical operations and operations on units of measurement, which extended the four 
basic operations of pure numbers. This idea highlighted the fact that multiplication and division 
operations of quantities could create new units of measurement, and were not merely repeated 
addition and subtraction. However, the addition and subtraction operations of quantities 
remained under the same umbrella category, similar to the traditional illustration of pure number 
operations or word problem types, whereas multiplication and division operations were classified
under a different category. Schwartz did not specify any shared characteristics between these two
categories in terms of quantity operations.

In the recent study of multiplicative structures, Polotskaia et al. (2021) have proposed a 
relational paradigm for understanding multiplicative structures, which includes three 
multiplicative relationships: multiplicative comparison, multiplicative composition, and cartesian
product, and their corresponding visual models. Their view challenges traditional approaches to 
teaching word problem solving, which emphasize mastering elementary arithmetic operations 
before applying them to problem-solving. They highlighted an increasing number of studies that 
investigate the relationship between mathematical structures and word problem solving, such as 
the works of Cai et al. (2005), Ng & Lee (2009), and Verschaffel et al. (2010). Additionally, they
contrasted two paradigms: the operational paradigm, which views arithmetic operations as the 
foundation for comprehending real-world scenarios that involve actions like adding, subtracting, 
comparing, and sharing, and the relational paradigm, which views relationships between three 
elements as the fundamental mathematical concepts, where two elements determine a unique 
third element as a function. The relational paradigm focuses on the idea of an operation as a 
function (Carraher et al., 2005) and enables various modes of thinking about arithmetic 
operations. Polotskaia et al. attempt to align multiplicative and additive structures using the 
relational paradigm and visual models. However, they still maintain a distinction between the 
two structures and propose three unique classes for multiplicative structure and its associated 
reasoning that do not apply to additive structure and its related reasoning.



Considering the fundamental but distinct roles of additive and multiplicative structures and 
their associated reasoning in teaching and learning mathematics, it is reasonable to investigate 
whether these structures share commonalities or similarities. Such an exploration could yield 
significant insights and may justify the development of a new classification scheme that 
highlights their shared features. This classification could pave the way for innovative discoveries
and advancements in teaching and learning of mathematics.

Development of a new classification
Expanding on the previous discussion, it is crucial to investigate the feasibility of uncovering

a common theme that is applicable to both additive and multiplicative structures in the context of
word problem situations or operations involving quantities. To identify such a theme, we are 
specifically focusing on the following two frameworks.
Grounded and Embodied Nature of Operations of Quantities

In their work, Lakoff and Núñez (2000) put forth a novel perspective regarding numerical 
operations, proposing that addition, subtraction, multiplication, and division are not separate 
entities but are instead rooted in our embodied experiences and perceptions of the physical 
world. They achieved this by utilizing semantic primitives and conceptual metaphors to map 
arithmetic operations onto source domains such as object collection, object construction, 
measuring stick, and motion along a path. These metaphors serve to illustrate the commonality 
across the four operations and challenge the traditional notion that addition and subtraction are 
fundamentally distinct from multiplication and division. Furthermore, the authors emphasize the 
strong connection between operations involving quantities and the same metaphoric source 
domains.

To exemplify the grounded and embodied nature of quantitative operations, let's examine the 
addition of two quantities. Imagine having two containers with different capacities, each holding 
varying amounts of water, and a third empty container large enough to hold the combined water. 
The action of pouring water between containers represents the source domain, while the addition 
operation signifies the target domain within this conceptual metaphor. Depending on the context 
and affordances present (as described by Gibson, 1979), we can pour smaller amounts into the 
larger container or merge the water from both containers to determine the total sum. Pouring 
smaller amounts into larger containers is typically easier for humans due to the enhanced 
visibility of changes and reduced risk of spillage. Through these everyday activities, we can 
deduce the fundamental principles that underlie quantitative operations.
Unary(ish) vs. Binary Operations of Quantities

In his lesser-known but significant studies, J.F. Weaver (1973, 1979, 1982) emphasized the 
importance of students comprehending both binary-operation and unary(ish)-operator meanings 
of symbolic number sentences in the context of addition and subtraction. However, there is a 
lack of research on how young children interpret these types of sentences. It is uncertain whether
binary and unary interpretations can develop simultaneously or if one needs to be learned before 
the other. Moreover, it is unclear when interference between the two interpretations may arise.

Although some questions remain unanswered, his studies have provided valuable insights 
into the operations of quantities, including not just addition and subtraction, but also 
multiplication and division. Based on this knowledge, we propose a new approach that is more 
logical and intuitive for understanding these operations. This approach is illustrated in Figure 3, 
and the symbolic representation shows that the operations of quantities can be viewed as 
functions. This shared semantic structure leads to the following features of the four basic 
operations of quantities, as demonstrated in Figure 1 and Figure 2.



 
Figure 1. Addition and Subtraction of Two Quantities

 
Figure 2. Multiplication and Division of Two Quantities

Even though we juxtapose addition and subtraction together, and multiplication and division 
together, the main classes of action on/change of an initial quantity and comparison/coordination 
of two quantities are consistence throughout any operations of quantities.

Figure 3. Two Operations of Quantities



Proposition of New Semantic Structure and Word Problem Situations
The proposed semantic structure and word problem situations in Figure 4 aim to provide a 

framework for classifying arithmetic word problems based on the types of actions or 
relationships involved. While some researchers, such as Carpenter et al. (1999), suggest that 
these classifications correspond to students' thinking about the problems, others, like Mulligan &
Mitchelmore (1997), argue that they are somewhat arbitrary and can be extended, collapsed, or 
refined depending on the investigation's purpose. Multiple versions of these classifications exist, 
reflecting their ongoing development and refinement. Although the semantic structures of word 
problems may not always accurately reflect students' thinking or solution strategies, they can still
be valuable tools for researchers seeking to understand and predict these thought processes, as 
well as for developing explicit models of knowledge structures and solution processes.

The common theme among the past and current classifications of semantic structure of the 
word problems is grouping of addition/subtraction, and multiplication/division based on the 
distinction between additive nature of thinking and multiplicative nature of thinking. However, 
those classifications hardly noticed a unifying nature of arithmetic operations regardless of the 
obvious types of operations or distinction between additive and multiplicative nature of thinking.

Figure 4. New Semantic Structure of Word Problem Situations

Discussion
In this section, we hope to show the usefulness of this new classification in several aspects of

research studies by exploring some key signifying examples. These are parts of a larger on-going
research project, and open to further studies and discussions.
Conceptual demands of children's mathematics

Our new classification provides a more explicit explanation of the conceptual demand in 
children's mathematics that was previously considered as their direct modeling or various 
strategies without understanding the reasons why children adopt those strategies or where they 
come from. Direct modeling involves modeling the action or relationships described in word 
problems, making the action or relationships depicted in word problems important clues to 
understanding why children take particular approaches. As a result, our new classification is 



particularly useful for analyzing these approaches. For instance, Carpenter et al. (1999) presented
the following problem situation to observe children's use of the partitive strategy, a form of 
direct modeling of partitive division.

Mr. Franke baked 20 cookies. He gave all the cookies to 4 friends, being careful to give the 
same number of cookies to each friend. How many cookies did each friend get?

Three different types of strategies were introduced as variations of Partitive strategy.

 Ellen counts out 20 counters. She placed the counters into 4 separate places one at a time. 
After she puts one counter in each spot, she starts over and adds another counter to each set, 
continuing this process until she has used up all the counters. Then she counts the counters in
one pile and says, "5...each would get 5 cookies."

Based on our new classification, Ellen's problem can be categorized as a division problem 
that involves the coordination of two quantities. One of the quantities is clearly the number of 
counters, while the other quantity is the number of places or spots, even though they are not 
explicitly visible. The coordination of these two quantities is presented through actions such as 
distributing, assigning, combining, coordinating two objects, and observing the relationship 
between them. This coordination is highlighted further in Rita's problem, as shown below.

First Rita counts out 20 counters. Then she selects 4 additional counters that are not part of 
the 20 to represent the 4 friends and puts them in separate places on the table. She deals the 
counters one by one to each of the 4 separate "friends" places on the table. When she has 
used up all 20 counters, she counts the number of counters in one of the groups, not counting 
the single counter that she first put out to identify the group and answers, "5." 

Teacher: Good. I see how you got the 5, but can you tell me why you didn't count this 
[indicates the counter that represented the group]?

Rita: That's one of the friends.

Rita's case makes it clear that the division operation involves two quantities as inputs, 
represented by counters for cookies and friends. This is an example of coordinated division with 
two operands. The other cases are different in that they do not require two quantities to start 
with.

Kang counts out 20 counters. He places 4 counters in one group, 4 in another group, 4 in 
another, and 4 in another until he sees that there are 4 groups. At this point he sees that he 
had not used up all the counters, so he adds 1 counter to each group. Then he counts the 
counters in one of the groups and answers, "5."

Kang's strategy appears to be a combination of the measurement strategy, which involves 
repeated subtraction, and the partitive strategy, which involves partitioning, as described by 
Carpenter et al. (1999). It is possible that Kang initially selected four counters out of 20 to 
distribute among his friends later, but kept track of them mentally rather than physically. This 
approach does not involve coordination, assignment, or distribution of two quantities. However, 
Kang eventually realized that he had created four equal groups or partitions, which he identified 
as another type of object or quantity, and then attempted to coordinate the remaining counters 
with these four groups. This case demonstrates Kang's shift in thinking from an action or change 
of an initial quantity mode with 20 counters to a coordination of two quantities mode involving 
the leftover counters and the four groups he created.



When dealing with questions that involve changing an initial quantity, division of a single 
quantity can be demonstrated through repeated subtraction or partitioning. For instance, starting 
with 20 counters, students can divide them into two equal groups of 10 counters each through 
partitioning. They can then further partition each of the 10-counter groups into two equal groups 
of 5 counters each. This is an example of division through repeated partitioning with only one 
quantity. No distribution to other objects/people is involved. To assume that the strategies 
employed by children to solve Partitive Division problems are variations of the Partitive strategy 
(Carpenter et al., 1999) would overlook important distinctions.

Based on this discussion, it can be inferred that the strategies devised by students are 
grounded in clear and intuitive principles, warranting their inclusion in a new classification. The 
conventional classification of partitive division and measurement division (quotative) primarily 
distinguishes these strategies based on the placement of unknowns within the multiplicative 
structure of mathematics, where the operator times the operand equals the product.
Coherence and continuity of progressions

The new classification places significant importance on the coherence and continuity of 
progressions in semantic structures of operations. Throughout the progressions from additive 
reasoning to multiplicative reasoning in both numerical and quantitative senses, two main classes
of actions are maintained: actions that involve changing an initial quantity, and actions that 
involve coordinating or comparing two quantities. These two classes have also been identified in 
visual representations of multiplication operation (Kwon et al., 2017, 2019). Specifically, the 
multiplication area model was reconstructed into two types: the length-to-area model and the 
area-to-area model, which are illustrated in Figure 5 below.

Figure 5. Multiplication Area Models with Multiplicative Word Problem Situations (Kwon
et al., 2019)



The semantic structures of multiplication rely on the differentiation between action 
on/change of an initial quantity and coordination of two quantities. This differentiation allows for
the extension of the multiplication operation and its area model to fractions and beyond, without 
any confusion. As shown in Figure 4 below, the area-to-area model illustrates the connection 
between whole number multiplication and fraction multiplication, ensuring the coherence and 
continuity of progressions in semantic structures of multiplication.

Figure 6. Whole Number Multiplication and Fraction Multiplication in Area-to-Area
Model (Kwon et al., 2017, 2019)

Coherence and continuity in operations extend to early algebra and algebra, encompassing 
both discrete and continuous models. Recent studies, such as those on the Davydov curriculum 
(e.g. Freiman, 2021; Mellone et al., 2021; Polotskaia et al., 2021; Coles, 2021, etc.), highlight the
importance of maintaining coherence and continuity in the progressions of quantitative 
operations across various representations. A rapid transition from discrete to continuous objects 
and associated quantitative operations can aid early understanding of algebra, where variables 
are typically seen as continuously varying.

According to the development of the new classification, the way two quantities are processed
is an essential component of quantity operations that extends beyond grade levels and into 
everyday human activities. This implies that the continuity between early and higher grades is 
not only related to objects, quantities, or raw materials, but also to the underlying concept that is 
deeply ingrained in the physical experiences of the body on how quantity operations are 
performed.

Conclusion and Suggestion
The primary objective of this paper is to introduce a new and unifying classification of 

semantic structures in word problems, departing from the conventional focus on differentiating 
additive and multiplicative structures. This inclusive classification offers a more comprehensive 
and nuanced approach compared to previous classifications such as CCSSM (2010) and 
Polotskaia et al. (2021). It places emphasis on the conceptual foundation of children's 
mathematics, prioritizing coherence and continuity in the progressions of arithmetic operations 
and aligning with various thinking modes and problem-solving strategies. This innovative 
classification paves the way for further research, including exploring the use of technology 
incorporating hand and touch in problem-solving, investigating discrepancies between word 
problem structure/context and models/representations, examining different modes of thinking in 
mathematical modeling, and delving into inventive teaching and learning approaches for word 
problem solving.
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