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Particle representations for continuum models

• de Finetti theorem

• Limit theorems for de Finetti measures

• McKean Vlasov limit

• Fluid models for internet protocols

• Stock price set by infinitely many competing traders

• Hydrodynamic limit for symmetric simple exclusion process

• Consistency of numerical schemes for filtering equations

• Sampling from a large population
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de Finetti’s theorem

ξ1, ξ2, . . . is exchangeable if

P{ξ1 ∈ Γ1, . . . , ξm ∈ Γm} = P{ξs1
∈ Γ1, . . . , ξsm

∈ Γm}

(s1, . . . , sm) any permutation of (1, . . . ,m).

Theorem 1 (de Finetti) Let ξ1, ξ2, . . . be exchangeable. Then there
exists a random probability measure Φ such that for every bounded,
measurable g,

lim
N→∞

g(ξ1) + · · ·+ g(ξN)

N
=

∫
g(x)Φ(dx) a.s.

so limN→∞
1
N

∑N
i=1 δξi

= Φ.

In addition

E[
m∏

i=1

gi(ξi)|Φ] =
m∏

i=1

〈Φ, gi〉 =
m∏

i=1

∫
gidΦ.
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Basic convergence lemma

Lemma 2 For n = 1, 2, . . ., let {ξn
1 , . . . , ξn

Nn
} be exchangeable in S (al-

lowing) Nn = ∞.) Let Ξn be the empirical measure,

Ξn =
1

Nn

Nn∑
i=1

δξn
i
.

Assume Nn →∞, and for each m = 1, 2, . . ., {ξn
1 , . . . , ξn

m} ⇒ {ξ1, . . . , ξm}
in Sm.

Then {ξi} is exchangeable and setting ξn
i = s0 ∈ S for i > Nn,

{Ξn, ξn
1 , ξn

2 . . .} ⇒ {Ξ, ξ1, ξ2, . . .} in P(S)×S∞, where Ξ is the deFinetti
measure for {ξi}.

If for each m, {ξn
1 , . . . , ξn

m} → {ξ1, . . . , ξm} in probability in Sm, then
Ξn → Ξ in probability in P(S).
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Convergence lemma for processes

Lemma 3 Let Xn = (Xn
1 , . . . , Xn

Nn
) be exchangeable families of DE[0,∞)-

valued random variables such that Nn ⇒∞ and Xn ⇒ X in DE[0,∞)∞.
Define

Ξn = 1
Nn

∑Nn

i=1 δXn
i
∈ P(DE[0,∞))

Ξ = limm→∞
1
m

∑m
i= δXi

Vn(t) = 1
Nn

∑Nn

i=1 δXn
i (t) ∈ P(E)

V (t) = limm→∞
1
m

∑m
i=1 δXi(t)

Then

a) For t1, . . . , tl /∈ {t : E[Ξ{x : x(t) 6= x(t−)}] > 0}

(Ξn, Vn(t1), . . . , Vn(tl)) ⇒ (Ξ, V (t1), . . . , V (tl)).

b) If Xn ⇒ X in DE∞[0,∞), then Vn ⇒ V in DP(E)[0,∞).
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Remarks

a) The set DΞ = {t : E[Ξ{x : x(t) 6= x(t−)}] > 0} is at most countable.

b) If for i 6= j, with probability one, Xi and Xj have no simultaneous
discontinuities, then DΞ = ∅ and convergence of Xn to X in DE[0,∞)∞

implies convergence in DE∞[0,∞).
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Classical McKean-Vlasov limit

For i = 1, . . . , n

Xn
i (t) = Xn

i (0) +

∫ t

0
σ(Xn

i (s), V n(s))dWi(s) +

∫ t

0
b(Xn

i (s), V n(s))ds

where V n(t) = 1
n

∑n
i=1 δXn

i (t)

Example: Xn
i (t) = Xn

i (0) + Wi(t) +
1

n

n∑
j=1

∫ t

0
b(Xn

i (s)−Xn
j (s))ds

Any limit point must satisfy

Xi(t) = Xi(0) +

∫ t

0
σ(Xi(s), V (s))dWi(s) +

∫ t

0
b(Xi(s), V (s))ds

which has a unique solution under Lipschitz conditions.
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Conditions for uniqueness

Theorem 4 Assume that {Xi(0)} and {Wi} are independent. If

|σ(x, ν)− σ(y, µ)|+ |b(x, ν)− b(y, µ)| ≤ C(|x− y|+ ρ1(µ, ν))

for the Wasserstein metric

ρ1(µ, ν) = sup
f :|f(x)−f(y)|≤|x−y|

|
∫

fdν −
∫

fdµ|,

then the system

Xi(t) = Xi(0) +

∫ t

0
σ(Xi(s), V (s))dWi(s) +

∫ t

0
b(Xi(s), V (s))ds

with V (t) = limm→∞
1
m

∑m
i=1 δXi(t) has a unique solution.

Corollary 5 (Propagation of chaos) V is measurable with respect
to the tail σ-algebra for {(Xi(0), Wi)} and hence must be deterministic.
Consequently, the Xi are independent.
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Limiting PDE

ϕ(Xi(t)) = ϕ(Xi(0)) +

∫ t

0
∇ϕ(Xi(s))

Tσ(Xi(s), V (s))dWi(s)

+

∫ t

0
L(V (s))f(Xi(s))ds

where

L(v)ϕ(x) =
1

2

∑
aij(x, v)

∂2

∂xi∂xj
ϕ(x) +

∑
bi(x, v)

∂

∂xi
ϕ(x)

a(x, v) = σ(x, v)σT (x, v)

Since 〈V (t), ϕ〉 = limn→∞
1
n

∑n
i=1 ϕ(Xi(t)), V satisfies

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0
〈V (s), L(V (s))ϕ〉ds

Under the Lipschitz conditions, V n ⇒ V .
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A stochastic partial differential equation

Suppose

Xi(t) = Xi(0) +

∫ t

0
σ(Xi(s), V (s))dWi(s) +

∫ t

0
b(Xi(s), V (s))ds

+

∫ t

0
α(Xi(s), V (s))dW (s)

where α is Lipschitz. Then uniqueness holds and the solution is adapted
to the filtration generated by the common Brownian motion W . V is
a solution of the SPDE

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0
〈V (s), L(V (s))ϕ〉ds

+

∫ t

0
〈V (s),∇ϕ(·)Tα(·, V (s))〉dW (s)
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A Markov mapping theorem

By a Markov mapping argument, uniqueness for the particle system
implies uniqueness for the SPDE.

• Use Itô’s formula to derive the generator for a martingale problem
for the infinite system.

• Observe that uniqueness for the infinite system implies uniqueness
for the corresponding martingale problem.

• Apply the fact that E[f(X1(t), . . . , Xm(t))|FV
t ] = 〈V m(t), f〉 (µm

denotes the m-fold product of µ) to derive a martingale problem
for V .

• Show that every solution of the SPDE is a solution of the martingale
problem for V .

• Apply the Markov mapping theorem to conclude that every solution
of the SPDE has a representation as the deFinetti measure of a
solution of the infinite system.
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A brief introduction to transmission protocols

Files sent over the internet are typically broken into smaller packets.
The packets must be reassembled in the correct order by the receiving
computer. The sending computer must be assured that all packets have
been correctly received. Consequently, the receiving computer sends an
acknowledgement of each packet received.

Packet losses are typically due to congestion in the network. A trans-
mission control protocol (TCP) controls the rate at which packets are
sent based on the losses it perceives. The rate is determined by a win-
dow size, that is, the maximum number of unacknowledged packets the
sending computer can have in “flight.” If congestion is low and no
packet losses are experienced, the window size will increase. If conges-
tion is high and packet losses occur, the window size will decrease.
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Modeling congestion control mechanisms (cf. McDon-
ald, Reynier, Bacelli)

Idealize model: N sources (computers) feeding a single queue (router).

QN(t) normalized queue length (the number of packets in the queue
divided by N) at time t

FN(QN(t)) probability a packet sent to the queue at time t is re-
jected/dropped; FN(q) = 1 for q > q0, q0 the normalized buffer size.

Wi(t) window size for source i at time t

Di(t) number of “dropped” packets generated by source i

Ai(t) number of packets generated by source i accepted by the queue

Ti delay after a packet is processed before the source receives an ac-
knowledgement

d time until a source concludes that an unacknowledged packet has
been dropped
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Number of packets “in flight”

γN(t) the arrival time in the queue of the most recently served packet.

Ai(γN(t − Ti)) number of acknowledgements received by source i by
time t

Xi(t) = Ai(t)− Ai(γN(t− Ti)) + Di(t)−Di(t− d)

Rate at which new packets are sent

λ(Wi(t)−Xi(t))
+
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Stochastic equations for the model

Y a
i , Y d

i , i = 1, 2, . . . independent unit Poisson processes, sN(t) = [Nt]
N

Ai(t) = Y a
i (

∫ t

0
λ(Wi(s)−Xi(s))

+(1− FN(QN(s)))ds)

Di(t) = Y d
i (

∫ t

0
λ(Wi(s)−Xi(s))

+FN(QN(s))ds)

Wi(t) = Wi(0) +

∫ t

0

1

Wi(s−)
dAi(γN(s− Ti))−

∫ t

0

1

2
Wi(s−)dDi(s− d)

QN(t) = QN(0) +
1

N

N∑
i=1

Ai(t)−
∫ t

0
1{QN (s−)>0}dsN(s)

= QN(0) +
1

N

N∑
i=1

Ai(t)− sN(t) + IN(t)
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Many source limit

FN = F + HN , where F is continuous, HN is nondecreasing, and there
exists εN → 0 such that HN(q) = 0 for q < q0−εN and HN(q) = 1−F (q)
for q ≥ q0.

Let

KN(t) =

∫ t

0
HN(QN(s))ds

ΛN(t) =

∫ t

0

1

N

N∑
i=1

λ(Wi(s)−Xi(s))
+dKN(s),

Ãi(t) = Ỹ a
i (

∫ t

0
λ(Wi(s)−Xi(s))

+(1− FN(QN(s)))ds),

where Ỹ a
i (u) = Y a

i (u)− u.
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Limit of the queue length

QN(t) = QN(0) +
1

N

N∑
i=1

Ãi(t) +

∫ t

0

1

N

N∑
i=1

λ(Wi(s)−Xi(s))
+(1− F (QN(s)))ds

−
∫ t

0

1

N

N∑
i=1

λ(Wi(s)−Xi(s))
+dKN(s)− sN(t) +

∫ t

0

1{QN (s−)=0}dsN(s).

γN is determined by

QN(t) =
1

N

N∑
i=1

Ai(t)−
1

N

N∑
i=1

Ai(γN(t)).

QN is asymptotically continuous and |γN − γ̃N | → 0, where γ̃N is the
solution of

QN(t) =

∫ t

γ̃N (t)

1

N

N∑
i=1

λ(Wi(s)−Xi(s))
+(1−F (QN(s)))ds−ΛN(t)+ΛN(γN(t)).

In particular, γN is asymptotically continuous.
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Existence of limit

Relative compactness of the individual counting processes follows from
the fact that they cannot have asymptotically coalescing jumps which in
turn follows from the boundedness of λ and the asymptotic countinuity
of γN .

Joint relative compactness in the Skorohod (J1) topology follows from
the fact that with probability one no two of the limiting processes will
have simultaneous jumps.

V W,X
t the de Finetti measure for {(Wi(t), Xi(t))}

r(t) =

∫
(w − x)+V W,X

t (dw, dx),
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Limiting model

Ai(t) = Y a
i (

∫ t

0
λ(Wi(s)−Xi(s))

+(1− F (Q(s))− K̇(s))ds)

Di(t) = Y d
i (

∫ t

0
λ(Wi(s)−Xi(s))

+(F (Q(s)) + K̇(s))ds)

Wi(t) = Wi(0) +

∫ t

0

1

Wi(s−)
dAi(γ(s− Ti))−

∫ t

0

1

2
Wi(s−)dDi(s− d)

Q(t) = Q(0) +

∫ t

0
λr(s)(1− F (Q(s)))ds− t− Λ(t) + I(t)

I increases only when Q = 0, Λ increases only when Q = q0.

K(t) =

∫ t

0

1

λr(s)
dΛ(s),

γ is determined by

Q(t) =

∫ t

γ(t)
λr(s)(1− F (Q(s)))ds− Λ(t) + Λ(γ(t)),
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Competing traders (cf. Yoonjung Lee)

N traders (N even) and N/2 shares of stock.

S(t) price of a share of stock at time t

Individual trader’s (log) valuation:

Xi(t) = Xi(0) + σ1Wi(t) + σ2W (t) + µt +

∫ t

0
ν(S(s)−Xi(s))ds

θi(t) is 1 if the ith trader owns the stock and −1 if the ith trader does
not own the stock.

θi(t) = θi(0)(−1)Ki(t)

Ki(t) = Yi(

∫ t

0
λ{θi(s)(S(s)−Xi(s))}+ds).
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Price setting by market maker

QN number of shares owned by the market maker

QN(t) = N −
∑

i

θ+
i (t) = −1

2

N∑
i=1

θi(t)

S(t) = S(0)−
∫ t

0
β

1

N
QN(s)ds
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Equation for QN

Let V +
N (t) = 1

N

∑N
i=1 1{θi=1}δXi(t) and V −

N (t) = 1
N

∑N
i=1 1{θi=−1}δXi(t).

1

N
QN(t) =

1

N
QN(0) +

1

N

N∑
i=1

∫ t

0
θi(s)λ{θi(s)(S(s)−Xi(s))}+ds

+
1

N

N∑
i=1

∫ t

0
θi(r−)dỸi(

∫ r

0
λ{θi(s)(S(s)−Xi(s))}+ds)

=
1

N
QN(0) +

1

N

N∑
i=1

∫ t

0
θi(r−)dỸi(

∫ r

0
λ{θi(s)(S(s)−Xi(s))}+ds)

+

∫ t

0
λ

∫
(S(s)− x)+V +

N (s, dx)ds−
∫ t

0
λ

∫
(x− S(s))+V −

N (s, dx)ds
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Limiting model

Xi(t) = Xi(0) + σ1Wi(t) + σ2W (t) + µt +

∫ t

0
ν(S(s)−Xi(s))ds

θi(t) = θi(0)(−1)Ki(t)

Ki(t) = Yi(

∫ t

0
λ{θi(s)(S(s)−Xi(s))}+ds)

and V +(t) = limn→∞
1
n

∑n
i=1 1{θi(t)=1}δXi(t) and similarly for V −.

Q(t) = Q(0) +

∫ t

0
λ

∫
(S(s)− x)+V +(s, dx)ds

−
∫ t

0
λ

∫
(x− S(s))+V −(s, dx)ds

S(t) = S(0)−
∫ t

0
βQ(s)ds
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Equations for V + and V −

ϕ(Xi(t), θi(t)) = ϕ(Xi(0), θi(0)) + σ1

∫ t

0

ϕ′(Xi(s), θi(s))dWi(s)

+σ2

∫ t

0

ϕ′(Xi(s), θi(s))dW (s)

+

∫ t

0

1

2
(σ2

1 + σ2
2)ϕ

′′(Xi(s), θi(s))ds

+

∫ t

0

(µ + ν(S(s)−Xi(s)))ϕ
′(Xi(s), θi(s))ds

+

∫ t

0

(ϕ(Xi(s),−θi(s−))− ϕ(Xi(s), θi(s−))dKi(s)

Suppose ϕ(x,−1) = 0, ϕ(x, 1) = ϕ(x). Then

〈V +(t), ϕ〉 = 〈V (0)+, ϕ〉+ σ2

∫ t

0

〈V +(s), ϕ′〉dW (s) +

∫ t

0

〈V +(s), L(S(s))ϕ〉ds

+

∫ t

0

λ(〈V −(s), (· − S(s))+ϕ(·)〉 − 〈V +(s), (S(s)− ·)+ϕ(·)〉ds
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A “simplified” SPDE

Let λ, β →∞. Then

Xi(t) = Xi(0) + σ1Wi(t) + σ2W (t) + µt +

∫ t

0
ν(S(s)−Xi(s))ds

〈V (t), ϕ〉 = 〈V (0), ϕ〉+ σ2

∫ t

0
〈V (s), ϕ′〉dW (s) +

∫ t

0
〈V (s), L(S(s))ϕ〉ds

with

L(s)ϕ(x) =
1

2
(σ2

1 + σ2
2)ϕ

′′(x) + (µ + ν(S(s)− x))ϕ′(x)

and S(t) is the median of V (t).
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Symmetric simple exclusion model

Xn
i particle location on En = 1

nZ mod 1 (at most one particle per
location)

Xn
i → Xn

i + k
n at rate n2λ(|k|) unless new location is already occupied

(note symmetry)

Equivalent formulation

Swap contents of l
n and k

n at rate n2λ(|k − l|)

Xn
i (t) = Xn

i (0) +
1

n

∑
l 6=k

∫ t

0
(l − k)1{Xn

i (s−)=k}dYkl(n
2λ(|k − l|)s)

= Xn
i (0) +

1

n

∑
l 6=k

∫ t

0
(l − k)1{Xn

i (s−)=k}dỸkl(n
2λ(|k − l|)s)

Ykl = Ylk independent unit Poisson processes and Ỹkl(u) = Ykl(u)− u.
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Convergence

[Xn
i ]t =

1

n2

∑
l 6=k

∫ t

0
(l − k)21{Xn

i (s−)=k}dYkl(n
2λ(|k − l|)s)

=
1

n2

∑
l 6=k

∫ t

0
(l − k)21{Xn

i (s−)=k}dỸkl(n
2λ(|k − l|)s) + σ2t

Then [Xn
i ]t → σ2t, σ2 =

∑
k k2λ(|k|), and by the martingale central

limit theorem, Xn
i ⇒ Xi where Xi(t) = Xi(0) + σWi(t).

[Xn
i , Xn

j ]t = − 1

n2

∑
l 6=k

∫ t

0
(l − k)21{Xn

i (s−)=k,Xn
j (s−)=l}dYkl(n

2λ(|k − l|)s)

converges to zero which implies the Wi are independent.

Therefore Vn ⇒ V , where V (t, Γ) =
∫

Γ v(t, x)dx and

vt =
1

2
σ2∆v
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Filtering (cf. Fujisaki, Kallianpur, Kunita)

X(t) = X(0) +

∫ t

0
σ(X(s))dB(s) +

∫ t

0
b(X(s))ds +

∫ t

0
α(X(s))dW (s)

= X(0) +

∫ t

0
σ(X(s))dB(s) +

∫ t

0
(b(X(s))− α(X(s))h(X(s)))ds

+

∫ t

0
α(X(s))dY (s)

Y (t) =

∫ t

0
h(X(s))ds + W (t).
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Kallianpur Striebel formula

Let

L(t) = exp{
∫ t

0
h(X(s))dY (s)− 1

2

∫ t

0
h2(X(s))ds}

so

L(t) = 1 +

∫ t

0
L(s)h(X(s))dY (s)

Assume that under Q, B and Y are independent {Ft}-Brownian mo-
tions. If dP = L(t)dQ on Ft, then under P , B and W are independent
Brownian motions.

EP [f(X(t))|FY
t ] =

EQ[f(X(t))L(t)|FY
t ]

EQ[L(t)|FY
t ]

=
φ(f, t)

φ(1, t)
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Convergence lemma

Lemma 6 Suppose X1, X2, . . . are iid and Y is independent of {Xi}.
Let Zi = H(Xi, Y ). Then {Zi} is exchangeable and

lim
n→∞

1

n

n∑
i=1

H(Xi, Y ) = E[Z1|Y ]
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Particle representation

φ(f, t) = lim
n→∞

1

n

n∑
i=1

f(Xi(t))Li(t)

where

Xi(t) = X(0) +

∫ t

0
σ(Xi(s))dBi(s) +

∫ t

0
(b(Xi(s))− α(Xi(s))h(Xi(s)))ds

+

∫ t

0
α(Xi(s))dY (s)

Li(t) = 1 +

∫ t

0
Li(s)h(Xi(s))dY (s).
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Filtering equation

f(Xi(t))Li(t) = f(Xi(0)) +

∫ t

0
Li(s)σ(Xi(s))f

′(Xi(s))dBi(s)

+

∫ t

0
Af(Xi(s))Li(s)ds

+

∫ t

0
(f ′(Xi(s)) + f(Xi(s))h(Xi(s)))Li(s)dY (s)

where

Af(x) =
1

2
(σ2(x) + α2(x))f ′′(x) + b(x)f ′(x).

Then

φ(f, t) = φ(f, 0) +

∫ t

0
φ(Af, s)ds +

∫
φ(f ′ + fh, s)dY (s)
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Finite state, discrete time approximation

Xε
i (t + ε) = Xε

i (t) + Hε
1(X

ε
i (t), ξ

1
i,[t/ε]) + Hε

2(X
ε
i (t), ξ

2
i,[t/ε], Y (t + ε)− Y (t))

= Hε
0(X

ε
i (t), ξ

1
i,[t/ε], ξ

2
i,[t/ε], Y (t + ε)− Y (t))

where ∫ 1

0
Hε

1(x, u)du = (b(x)− α(x))ε + o(ε)∫ t

0
Hε

1(x, u)2du = σ2(x)ε + o(ε)

∫ t

0
|Hε

1(x, u)|3du = o(ε),

∫ 1

0
Hε

2(x, u, ∆y)du = α(x)∆y + o(ε)∫ 1

0
|Hε

2(x, u, ∆y)− α(x)∆y|2du = o(ε).
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Particle representation for approximation

Let Lε
i satisfy Lε

i(0) = 1 and

Lε
i(t + ε) = Lε

i(t)(1 + h(Xε
i (t))(Y (t + ε)− Y (t))),

so

f(Xε
i (t + ε))Lε

i(t + ε) = f(Hε
0(X

ε
i (t), ξ

1
i,[t/ε], ξ

2
i,[t/ε], Y (t + ε)− Y (t)))

(1 + h(Xε
i (t))(Y (t + ε)− Y (t)))Lε

i(t)
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The algorithm

Define

T εf(x, ∆y) =

∫ 1

0

∫ 1

0
f(x + Hε

1(x, u1) + Hε
2(x, u2, ∆y))du1du2

so

φε(f, t + ε) = φε(T εf(·, Y (t + ε)− Y (t)), t)

+φε(T εf(·, Y (t + ε)− Y (t))h, t)(Y (t + ε)− Y (t))

Taking f = 1{z}, define pε
x,z(∆y) = T εf(x, ∆y). Then

φε(x, t + ε) =
∑
x′

φε(x′, t)px′x(Y (t + ε)− Y (t))

+
∑
x′

φε(x′, t)px′x(Y (t + ε)− Y (t))h(x′)(Y (t + ε)− Y (t))
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Sampling from a population model

Model I

(X1(t), . . . , XN(t)) “types” of N individuals in a population at time t

At rate λ, a pair of individuals is selected at random, one is killed and
replaced by a copy of the other

In between birth/death events, individuals may change type (mutate)
independently of the other individuals in the population

Model II

Same as Model I except that when the pair is selected the higher num-
bered individual is killed and replaced by a copy of the lower numbered
individual
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Lookdown process
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Equivalence of models

Theorem 7 Let XI be a realizataion of model I and XII be a realization
of model II with

V I(0) =
1

N

N∑
i=1

δXI
i (0) =

1

N

N∑
i=1

δXII
i (0) = V II(0)

If {XII
i (0)} is exchangeable, then for each t > 0, {XII

i (t)} and V I and
V II have the same distribution.
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Stochastic equations

Xi(t) = Xi(0) +

∫
[0,1]×[0,t]

(H(Xi(s−), z)−Xi(s−))ξi(dz × ds)

+
∑

1≤j<i

∫ t

0
(Xj(s−)−Xi(s−))dLij(s)

ξi independent Poisson random measures with mean measure θm×m

on [0, 1]× [0,∞)

Lij independent Poisson processes with intensity λ



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 39

Generator

Bf(r) = θ
∫ 1

0 (f(H(r, z))− f(r))dz

Af(x) =
∞∑
i=1

Bif(x) +
∑
j<i

λ(f(ηi(x|xj))− f(x))

f(X1(t), . . . , Xm(t))−
∫ t

0

m∑
i=1

Bif(X1(s), . . . , Xm(s))ds

+
∑

1≤j<i≤m

∫ t

0
λ(f(ηi(X(s)|Xj(s))− f(X1(s), . . . , Xm(s))ds
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Fleming-Viot process

Theorem 8 If {Xi(0)} is exchangeable, then for each t > 0, {Xi(t)}
is exchangeable, and

E[f(X1(t), . . . Xm(t))|FV
t ] = 〈f, V (t)m〉.

It follows that

〈f, V (t)m〉 −
∫ t

0

m∑
i=1

〈Bif, V (s)m〉ds

+

∫ t

0

∑
1≤j<i≤m

(〈Φijf, V (s)m−1〉 − 〈f, V (s)m〉)ds

is a {FV
t }-martingale, where Φijf is the function of m − 1 variables

obtained by setting xi = xj.
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Abstract

Many stochastic and deterministic models are derived as continuum
limits of discrete stochastic systems as the size of the systems tends to
infinity. Discrete “particles” are each assigned a small mass and the
limiting “mass distribution,” typically characterized as a solution of a
deterministic or stochastic partial differential equation, gives the de-
sired model. A number of examples will be described in which keeping
the discrete particles in the limit provides a useful tool for justifying the
limit and analyzing the limiting model. Examples include derivation of
fluid models for internet protocols, many-server queueing approxima-
tions, models of stock prices set by infinitely many competing traders,
and consistency of numerical schemes for filtering equations.


