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1. Introduction: The basic model and repeated trials

• Experiments

• Repeated trials and intuitive probability

• Numerical observations and “random variables”

• The distribution of a random variable

• The law of large numbers and expectations
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Experiments

Probability models experiments in which repeated trials typically re-
sult in different outcomes.

As a part of mathematics, Kolmolgorov’s axioms [3] for experiments
determine probability in the same sense that Euclid’s axioms deter-
mine geometry.

As a means of understanding the “real world,” probability identifies
surprising regularities in highly irregular phenomena.
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Anticipated regularity

If we roll a die 100 times we anticipate that about a sixth of the time
the roll is 5.

If that doesn’t happen, we suspect that something is wrong with the
die or the way it was rolled.
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Probabilities of events

Events are statements about the outcome of the experiment: {the roll is 6},
{the rat died}, {the television set is defective}

The anticipated regularity is that

P (A) ≈ #times A occurs
#of trials

This presumption is called the relative frequency interpretation of
probability.
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“Definition” of probability

The probability of an event A should be

P (A) = lim
n→∞

#times A occurs in first n trials
n

The mathematical problem: Make sense out of this.

The real world relationship: Probabilities are predictions about the
future.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 7

Random variables

In performing an experiment numerical measurements or observa-
tions are made. Call these random variables since they vary randomly.

Give the quantity a name: X

{X = a} and {a < X < b} are statements about the outcome of the
experiment, that is, are events
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The distribution of a random variable

If Xk is the value of X observed on the kth trial, then we should have

P{X = a} = lim
n→∞

#{k ≤ n : Xk = a}
n

If X has only finitely many possible values, then∑
a∈R(X)

P{X = a} = 1.

This collection of probabilities determine the distribution of X .
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Distribution function

More generally,

P{X ≤ x} = lim
n→∞

1

n

n∑
k=1

1(−∞,x](Xk)

FX(x) ≡ P{X ≤ x} is the distribution function for X .
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The law of averages

If R(X) = {a1, . . . , am} is finite, then

lim
n→∞

X1 + · · ·+Xn

n
= lim

n→∞

m∑
l=1

al
#{k ≤ n : Xk = al}

n
=

m∑
l=1

alP{X = al}
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More generally, if R(X) ⊂ [c, d], −∞ < c < d <∞, then∑
l

xlP{xl < X ≤ xl+1} = lim
n→∞

m∑
l=1

xl
#{k ≤ n : xl < Xk ≤ xl+1}

n

≤ lim
n→∞

X1 + · · ·+Xn

n

≤ lim
n→∞

m∑
l=1

xl+1
#{k ≤ n : xl < Xk ≤ xl+1}

n

=
∑

l

xl+1P{xl < X ≤ xl+1}

=
∑

l

xl+1(FX(xl+1)− FX(xl))

→
∫ d

c

xdFX(x)
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The expectation as a Stieltjes integral

If R(X) ⊂ [c, d], define

E[X] =

∫ d

c

xdFX(x).

If the relative frequency interpretation is valid, then

lim
n→∞

X1 + · · ·+Xn

n
= E[X].
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A random variable without an expectation

Example 1.1 Suppose

P{X ≤ x} =
x

1 + x
, x ≥ 0.

Then

lim
n→∞

X1 + · · ·+Xn

n
≥

m∑
l=0

lP{l < X ≤ l + 1}

=
m∑

l=0

l(
l + 1

l + 2
− l

l + 1
)

=
m∑

l=0

l

(l + 2)(l + 1)
→∞ as m→∞
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2. The Kolmogorov axioms

• The sample space and events

• Probability measures

• Random variables
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The Kolmogorov axioms: The sample space

The possible outcomes of the experiment form a set Ω called the sam-
ple space.

Each event (statement about the outcome) can be identified with the
subset of the sample space for which the statement is true.
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The Kolmogorov axioms: The collection of events

If

A = {ω ∈ Ω : statement I is true for ω}
B = {ω ∈ Ω : statement II is true for ω}

Then

A ∩B = {ω ∈ Ω : statement I and statement II are true for ω}
A ∪B = {ω ∈ Ω : statement I or statement II is true for ω}

Ac = {ω ∈ Ω : statement I is not true for ω}

Let F be the collection of events. Then A,B ∈ F should imply that
A ∩B, A ∪B, and Ac are all in F . F is an algebra of subsets of Ω.

In fact, we assume that F is a σ-algebra (closed under countable
unions and complements).
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The Kolmogorov axioms: The probability measure

Each event A ∈ F is assigned a probability P (A) ≥ 0.

From the relative frequency interpretation, we must have

P (A ∪B) = P (A) + P (B)

for disjoint events A and B and by induction, if A1, . . . , Am are dis-
joint

P (∪m
k=1Ak) =

m∑
k=1

P (Ak) finite additivity

In fact, we assume countable additivity: IfA1, A2, . . . are disjoint events,
then

P (∪∞k=1Ak) =
∞∑

k=1

P (Ak).

P (Ω) = 1.
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A probability space is a measure space

A measure space (M,M, µ) consists of a set M , a σ-algebra of subsets
M, and a nonnegative function µ defined onM that satisfies µ(∅) = 0
and countable additivity.

A probability space is a measure space (Ω,F , P ) satsifying P (Ω) = 1.
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Random variables

If X is a random variable, then we must know the value of X if we
know that outcome ω ∈ Ω of the experiment. Consequently, X is a
function defined on Ω.

The statement {X ≤ c} must be an event, so

{X ≤ c} = {ω : X(ω) ≤ c} ∈ F .

In other words, X is a measurable function on (Ω,F , P ).
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Distributions

Definition 2.1 The Borel subsets B(R) is the smallest σ-algebra of sub-
sets of R containing (−∞, c] for all c ∈ R.

See Problem 1.

If X is a random variable, then {B : {X ∈ B} ∈ F} is a σ-algebra
containing B(R). See Problem 2.

Definition 2.2 The distribution of a R-valued random variable X is the
Borel measure defined by µX(B) = P{X ∈ B}, B ∈ B(R).

µX is called the measure induced by the function X .
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3. Modeling information

• Information and σ-algebras

• Information from observing random variables
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Information and σ-algebras

If I know whether or not ω ∈ A, then I know whether or not ω ∈ Ac.

If in addition, I know whether or not ω ∈ B, then I know whether or
not ω ∈ A ∪B and whether or not ω ∈ A ∩B.

Consequently, we will assume that “available information” corre-
sponds to a σ-algebra of events.
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Information obtained by observing random variables

For example, ifX is a random variable, σ(X) will denote the smallest
σ-algebra containing {X ≤ c}, c ∈ R. σ(X) is called the σ-algebra
generated by X .

Lemma 3.1 Let X be a random variable. Then

σ(X) = {{X ∈ B} : B ∈ B(R)}.

If X1, . . . , Xm are random variables, then σ(X1, . . . , Xm) denotes the
smallest σ-algebra containing {Xi ≤ c}, c ∈ R, i = 1, . . . ,m.

Lemma 3.2 Let X1, . . . , Xm be random variables. Then

σ(X1, . . . , Xm) = {{(X1, . . . , Xm) ∈ B} : B ∈ B(Rm)}

where B(Rm) is the Borel σ-algebra in Rm.
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Compositions

Let f : Rm → R and Y = f(X1, . . . , Xm). Let f−1(B) = {x ∈ Rm :
f(x) ∈ B}. Then

{Y ∈ B} = {(X1, . . . , Xm) ∈ f−1(B)}

Definition 3.3 f : Rm → R is Borel measurable if and only if f−1(B) ∈
B(Rm) for each B ∈ B(R).

Note that {B ⊂ R : f−1(B) ∈ B(Rm)} is a σ-algebra.

Lemma 3.4 IfX1, . . . , Xm are random variables and f is Borel measurable,
then Y = f(X1, . . . , Xm) is a random variable.

Note that every continuous function f : Rm → R is Borel measurable.
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4. Measure and integration

• Closure properties of the collection of random variables

• Almost sure convergence

• Some properties of measures

• Integrals and expectations

• Convergence theorems

• When are two measures equal: The Dynkin-class theorem

• Distributions and expectations

• Markov and Chebychev inequalities

• Convergence of series
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Closure properties of collection random variables

Lemma 4.1 Suppose {Xn} areD-measurable, [−∞,∞]-valued random vari-
ables. Then

sup
n
Xn, inf

n
Xn, lim sup

n→∞
Xn, lim inf

n→∞
Xn

are D-measurable, [−∞,∞]-valued random variables

Proof. Let Y = supnXn. Then {Y ≤ c} = ∩n{Xn ≤ c} ∈ D. Let
Z = infnXn. Then {Z ≥ c} = ∩n{Xn ≥ c} ∈ D.

Note that lim infn→∞Xn = supn infm≥nXm. �
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Almost sure convergence

Definition 4.2 A sequence of random variables {Xn} converges almost
surely (a.s.) if P{lim supn→∞Xn = lim infn→∞Xn} = 1.

We write Z = limn→∞Xn a.s. if

P{Z = lim sup
n→∞

Xn = lim inf
n→∞

Xn} = 1
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Properties of measures

Let (Ω,F , P ) be a probability space.

If A,B ∈ F and A ⊂ B, then P (A) ≤ P (B). (B = A ∪ (Ac ∩B))

If {Ak} ⊂ F , then

P (∪∞k=1Ak) ≤
∞∑

k=1

P (Ak)

Define B1 = A1, Bk = Ak∩ (A1∪· · ·∪Ak−1)
c ⊂ Ak, and note that {Bk}

are disjoint and ∪∞k=1Bk = ∪∞k=1Ak

IfA1 ⊂ A2 ⊂ A3 ⊂ · · ·, then P (∪∞k=1Ak) = limn→∞ P (An) =
∑∞

k=1 P (Ak∩
Ac

k−1)

If A1 ⊃ A2 ⊃ A3 ⊃ · · ·, then P (∩∞k=1Ak) = limn→∞ P (An) = P (A1) −∑∞
k=1 P (Ac

k ∩ Ak−1)



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 29

Expectations and integration

Simple functions/Discrete random variables

Suppose X assumes finitely many values {a1, . . . , am}. Then

E[X] =
m∑

k=1

akP{X = ak}

If

X =
m∑

k=1

ak1Ak
,

then ∫
Ω
XdP =

m∑
k=1

akP (Ak)
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Nonnegative random variables
If P{0 ≤ X <∞} = 1, then

E[X] = lim
n→∞

∞∑
k=0

k

2n
P{ k

2n
< X ≤ k + 1

2n
} = lim

n→∞

∞∑
k=0

k + 1

2n
P{ k

2n
< X ≤ k + 1

2n
}

If P{0 ≤ X ≤ ∞} = 1, then
∫

ΩXdP is defined by∫
Ω
XdP = sup{

∫
Ω
Y dP : Y ≤ X, Y simple}

If P{X = ∞} > 0, then
∫

ΩXdP = ∞. If P{0 ≤ X <∞} = 1,

lim
n→∞

∞∑
k=0

k

2n
P{ k

2n
< X ≤ k + 1

2n
} ≤

∫
Ω
XdP

≤ lim
n→∞

∞∑
k=0

k + 1

2n
P{ k

2n
< X ≤ k + 1

2n
}
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General expecation/integral

Let X+ = X ∨ 0 and X− = (−X) ∨ 0. If

E[|X|] = E[X+] + E[X−] <∞,

then ∫
Ω
XdP = E[X] ≡ E[X+]− E[X−]

Properties

Linearity: E[aX + bY ] = aE[X] + bE[Y ]

Monotonicity: P{X ≤ Y } = 1 implies E[X] ≤ E[Y ]
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Approximation

Lemma 4.3 Let X ≥ 0. Then limc→∞E[X ∧ c] = E[X].

Proof. By monotonicity, limc→∞E[X ∧ c] ≤ E[X]. If Y is a simple
random variable and Y ≤ X , then for c ≥ maxω Y (ω), Y ≤ X ∧ c and
E[X ∧ c] ≥ E[Y ]. Consequently,

lim
c→∞

E[X ∧ c] ≥ sup
{Y simple:Y≤X}

E[Y ] = E[X]

�
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The monotone convergence theorem

Theorem 4.4 Let 0 ≤ X1 ≤ X2 ≤ · · · be random variables and define
X = limn→∞Xn. Then limn→∞E[Xn] = E[X].

Proof.For ε > 0, let An = {Xn ≤ X − ε}. Then A1 ⊃ A2 ⊃ · · · and
∩An = ∅. For c > 0, X ∧ c ≤ 1Ac

n
(Xn ∧ c+ ε) + c1An

, so

E[X ∧ c] ≤ ε+ E[Xn ∧ c] + cP (An).

Consequently,

E[X] = lim
c→∞

E[X ∧ c] = lim
c→∞

lim
n→∞

E[Xn ∧ c] ≤ lim
n→∞

E[Xn]

�
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Fatou’s lemma

Lemma 4.5 Let Xn ≥ 0. Then

lim inf
n→∞

E[Xn] ≥ E[lim inf
n→∞

Xn]

Proof.

lim inf
n→∞

E[Xn] ≥ lim
n→∞

E[ inf
m≥n

Xm]

= E[ lim
n→∞

inf
m≥n

Xn]

= E[lim inf
n→∞

Xn]

�
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Dominated converence theorem

Theorem 4.6 Suppose |Xn| ≤ Yn, limn→∞Xn = X a.s., limn→∞ Yn = Y

a.s., and limn→∞E[Yn] = E[Y ] <∞. Then limn→∞E[Xn] = E[X].

Proof.
lim inf E[Yn +Xn] ≥ E[Y +X],

so lim inf E[Xn] ≥ E[X]. Similarly,

lim inf E[Yn −Xn] ≥ E[Y −X],

so lim supE[Xn] = − lim inf E[−Xn] ≤ E[X]. �
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The Dynkin-class theorem

A collectionD of subsets of Ω is a Dynkin class if Ω ∈ D, A,B ∈ D and
A ⊂ B imply B − A ∈ D, and {An} ⊂ D with A1 ⊂ A2 ⊂ · · · implies
∪nAn ∈ D.

Theorem 4.7 Let S be a collection of subsets of Ω such that A,B ∈ S
implies A ∩B ∈ S . If D is a Dynkin class with S ⊂ D, then σ(S) ⊂ D.

σ(S) denotes the smallest σ-algebra containing S.

Example 4.8 IfQ1 andQ2 are probability measures on Ω, then {B : Q1(B) =
Q2(B)} is a Dynkin class.
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Proof. Let D(S) be the smallest Dynkin-class containing S.

If A,B ∈ S, then Ac = Ω− A, Bc = Ω− B, and Ac ∪ Bc = Ω− A ∩ B
are in D(S).

Consequently, Ac∪Bc−Ac = A∩Bc, Ac∪B = Ω−A∩Bc, Ac∩Bc =
Ac ∪B −B, and A ∪B = Ω− Ac ∩Bc are in D(S).

For A ∈ S, {B : A ∪ B ∈ D(S)} is a Dynkin class containing S, and
hence D(S).

Consequently, for A ∈ D(S), {B : A ∪ B ∈ D(S)} is a Dynkin class
containing S and hence D(S).

It follows that A,B ∈ D(S) implies A ∪ B ∈ D(S). But if D(S) is
closed under finite unions it is closed under countable unions. �
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Equality of two measures

Lemma 4.9 Let µ and ν be measures on (M,M). Let S ⊂ M be closed
under finite intersections. Suppose that µ(M) = ν(M) and µ(B) = ν(B)
for each B ∈ S. Then µ(B) = ν(B) for each B ∈ σ(S).

Proof. Since µ(M) = ν(M), {B : µ(B) = ν(B)} is a Dynkin-class
containing S and hence contains σ(S). �

For example: M = Rd, S = {
∏d

i=1(−∞, ci] : ci ∈ R}. If

P{X1 ≤ c1, . . . , Xd ≤ cd} = P{Y1 ≤ c1, . . . , Yd ≤ cd}, c1, . . . , cd ∈ R,

then

P{(X1, . . . , Xd) ∈ B} = P{(Y1, . . . , Yd) ∈ B}, B ∈ B(Rd).
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The distribution and expectation of a random variable
We defined

µX(B) = P{X ∈ B}, B ∈ B(R).

If X is simple,
X =

∑
ak1{X=ak},

then∫
Ω
XdP = E[X] =

∑
k

akP{X = ak} =
∑

akµX{ak} =

∫
R
xµX(dx)

and for positive X ,

E[X] =

∫
Ω
XdP = lim

n→∞

∫
Ω

∑
l

l

n
1{ l

n<X≤ l+1
n }dP

= lim
n→∞

∑
l

l

n
µX(

l

n
,
l + 1

n
] =

∫
R
xµX(dx).
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Expectation of a function of a random varialble

Lemma 4.10 Assume that g : R → [0,∞) is a Borel measurable function,
and let Y = g(X). Then

E[Y ] =

∫
Ω
Y dP =

∫
R
g(x)µX(dx) (4.1)

More generally, Y is integrable with respect to P if and only if g is inte-
grable with respect to µX and (4.1) holds.
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Proof. Let Yn =
∑

l
n1{ l

n<Y≤ l+1
n } and gn =

∑
l

l
n1g−1(( l

n , l+1
n ]). Then

E[Yn] =
∑

l

l

n
P{ l

n
< Y ≤ l + 1

n
}

=
∑

l

l

n
P{X ∈ g−1((

l

n
,
l + 1

n
])}

=
∑

l

l

n
µX(g−1((

l

n
,
l + 1

n
]))

=

∫
R
gn(x)µX(dx),

and the lemma follows by the monotone convergence theorem.

The last assertion follow by the fact that Y + = g+(X) and Y − =
g−(X). �
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Lebesgue measure

Lebesgue measure L is the measure on (R,B(R)) satisfying L(a, b] =
b− a. Note that uniqueness follows by the Dynkin class theorem.

If g is Riemann integrable, then∫
R
g(x)L(dx) =

∫
R
g(x)dx,

so one usually writes
∫

R g(x)dx rather than
∫

R g(x)L(dx). Note that
there are many functions that are Lebesgue integrable but not Rie-
mann integrable.
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Distributions with a (Lebesgue) density

A random variable X has a Lebesgue density fX if

P{X ∈ B} = µX(B) =

∫
R
1B(x)fX(x)dx ≡

∫
B

fX(x)dx.

By an argument similar to the proof of Lemma 4.10,

E[g(X)] =

∫
R
g(x)fX(x)dx.
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Markov inequality

Lemma 4.11 Let Y be a nonnegative random variable. Then for c > 0,

P{Y ≥ c} ≤ E[Y ]

c
.

Proof. Observing that
c1{Y≥c} ≤ Y,

the inequality follows by monotonicity. �
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Chebychev inequality

IfX is integrable and Y = X−E[X], thenE[Y ] = 0. (Y isX “centered
at its expectation.”) The variance of X is defined by

V ar(X) = E[(X − E[X])2] = E[X2]− E[X]2.

Then

P{|X − E[X]| ≥ ε} = P{(X − E[X])2 ≥ ε2} ≤ V ar(X)

ε2
.
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Convergence of series

A series
∑∞

k=1 ak converges if limn→∞
∑n

k=1 ak exists and is finite.

A series converges absolutely if limn→∞
∑n

k=1 |ak| <∞.

Lemma 4.12 If a series converges absolutely, it converges.
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Series of random variables

Let X1, X2, . . . be random variables. The series
∑∞

k=1Xk converges al-
most surely, if

P{ω : lim
n→∞

n∑
k=1

Xk(ω) exists and is finite} = 1.

The series converges absolutely almost surely, if

P{ω :
∞∑

k=1

|Xk(ω)| <∞} = 1.

Lemma 4.13 If a series of random variables converges absolutely almost
surely, it converges almost surely.

If
∑∞

k=1E[|Xk|] <∞, then
∑∞

k=1Xk converges absolutely almost surely.
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Proof.

If
∑∞

k=1 |Xk(ω)| = limn→∞
∑n

k=1 |Xk(ω)| <∞, then n < m,

|
m∑

k=1

Xk(ω)−
n∑

k=1

Xk(ω)| ≤
∞∑

k=n+1

|Xk(ω)| =
∞∑

k=1

|Xk(ω)| −
n∑

k=1

|Xk(ω)|

By the monotone convergence theorem

E[
∞∑

k=1

|Xk|] = lim
n→∞

E[
n∑

k=1

|Xk|] =
∞∑

k=1

E[|Xk|] <∞,

which implies
∑∞

k=1 |Xk| <∞ almost surely. �
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5. Discrete and combinatorial probability

• Discrete probability spaces

• Probability spaces with equally likely outcomes

• Elementary combinatorics

• Binomial distribution
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Discrete probability spaces

If Ω is countable and {ω} ∈ F for each ω ∈ Ω, then F is the collection
of all subsets of Ω and for each A ⊂ Ω,

P (A) =
∑
ω∈A

P{ω}.

Similarly, if X ≥ 0,

E[X] =
∑
ω∈Ω

X(ω)P{ω}
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Probability spaces with equally likely outcomes
If Ω is finite and all elements in Ω are “equally likely,” that is, P{ω} =
P{ω′} for ω, ω′ ∈ Ω, then for A ⊂ Ω,

P (A) =
#A

#Ω
.

Calculating probabilities becomes a counting problem.
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Ordered sampling without replacement

An urn U contains n balls. m balls are selected randomly one at a
time without replacement:

Ωo = {(a1, . . . , am) : ai ∈ U, ai 6= aj}

Then
#Ωo = n(n− 1) · · · (n−m+ 1) =

n!

(n−m)!
.
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Unordered samples

A urn U contains n balls. m are selected randomly.

Ωu = (α ⊂ U : #α = m}

Each α = {a1, . . . , am} ∈ Ωu can be ordered in m! different ways, so

#Ωo = #Ωu ×m!.

Therefore,

#Ωu =
n!

(n−m)!m!
=

(
n

m

)
.
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Numbered balls

Suppose the balls are numbered 1 through n. Assuming ordered
sampling, let Xk be the number on the kth ball drawn, k = 1, . . . ,m.

Ω = {(a1, . . . , am) : ai ∈ {1, . . . , n}, ai 6= aj for i 6= j}

#Ω = n!
(n−m)!

Xk(a1, . . . , am) = ak.

E[Xk] =
1

n

n∑
l=1

l =
n+ 1

2
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Flip a fair coin 6 times

Ω = {(a1, . . . , a6) : ai ∈ {H,T}} #Ω = 26

Xk(a1, . . . , a6) =

{
1 kth flip is heads
0 kth flip is tails

Xk(a1, . . . , a6) =

{
1 if ak = H

0 if ak = T

Let

S6 =
6∑

k=1

Xk

P{S6 = l} =
#{S6 = l}

#Ω
=

(
6

l

)
1

26
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Lopsided coins

We want to model n flips of a coin for which the probability of heads
is p. Let

Ω = {a1 · · · an : ai = H or T}.
Let Sn(a1 · · · an) be the number of indices i such that ai = H , and
define

P (a1 · · · an) = pSn(1− p)n−Sn.

Note that with this definition of P , Sn has a binomial distribution

P{Sn = k} =

(
n

k

)
pk(1− p)n−k.
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Moments
Sn is binomially distributed with parameters n and p if

P{Sn = k} =

(
n

k

)
pk(1− p)n−k.

Then
E[Sn] = np

and for m < n,

E[Sn(Sn − 1) · · · (Sn −m)] = n(n− 1) · · · (n−m)pm+1.

Consequently,

E[S2
n] = n(n− 1)p2 + np, V ar(Sn) = np(1− p)
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6. Product measures and repeated trials

• Product spaces

• Product measure

• Tonelli’s theorem

• Fubini’s theorem

• Infinite product measures

• Relative frequency
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Product spaces

Let (M1,M1, µ1) and (M2,M2, µ2) be measure spaces. Define

M1 ×M2 = {(z1, z2) : z1 ∈M1, z2 ∈M2}

For example: R× R = R2

Let
M1 ×M2 = σ{A1 × A2 : A1 ∈M1, A2 ∈M2}

For example: B(R)× B(R) = B(R2).
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Measurability of section

Lemma 6.1 If A ∈M1 ×M2 and z1 ∈M1, then

Az1
= {z2 : (z1, z2) ∈ A} ∈ M2.

Proof. Let Γz1
= {A ∈M1×M2 : Az1

∈M2}. Note that A1×A2 ∈ Γz1

for A1 ∈M1 and A2 ∈M2. Check that Γz1
is a σ-algebra. �
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A measurability lemma

Lemma 6.2 If A ∈M1 ×M2, then

fA(z1) =

∫
M2

1A(z1, z2)µ2(dz2)

is measurable.

Proof. Check that the collection of A satisfying the conclusion of
the lemma is a Dynkin class containing A1 × A2, for A1 ∈ M1 and
A2 ∈M2. �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 62

Product measure

Lemma 6.3 For A ∈M1 ×M2, define

µ1 × µ2(A) =

∫
M1

∫
M2

1A(z1, z2)µ2(dz2)µ1(dz1). (6.1)

Then µ1 × µ2 is a measure satisfying

µ1 × µ2(A1 × A2) = µ1(A1)µ2(A2), A1 ∈M1, A2 ∈M2. (6.2)

There is a most one measure on M1 ×M2 satisfying (6.2), so∫
M1

∫
M2

1A(z1, z2)µ2(dz2)µ1(dz1) =

∫
M2

∫
M1

1A(z1, z2)µ1(dz1)µ2(dz2).

(6.3)

Proof. µ1 × µ2 is countably additive by the linearity of the integral
and the monotone convergence theorem.

Uniqueness follows by Lemma 4.9. �
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Tonelli’s theorem

Theorem 6.4 If f is nonnegative M1 ×M2-measurable function, then∫
M1

∫
M2

f(z1, z2)µ2(dz2)µ1(dz1) =

∫
M2

∫
M1

f(z1, z2)µ1(dz1)µ2(dz2)

=

∫
M1×M2

f(z1, z2)µ1 × µ2(dz1 × dz2)

Proof. The result holds for simple functions by (6.3) and the defini-
tion of µ1×µ2, and in general, by the monotone convergence theorem.
�
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Example

Let (Ω,F , P ) be a probability space, and let ([0,∞),B[0,∞), dx), be
the measure space corresponding to Lebesgue measure on the half
line. Then if P{X ≥ 0} = 1,

E[X] =

∫
Ω

∫ ∞

0
1[0,X(ω))(x)dxP (dω) =

∫ ∞

0
P{X > x}dx
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Fubini’s theorem

Theorem 6.5 If f is M1 ×M2-measurable and∫
M1

∫
M2

|f(z1, z2)|µ2(dz2)µ1(dz1) <∞,

then f is µ1 × µ2 integrable and∫
M1

∫
M2

f(z1, z2)µ2(dz2)µ1(dz1) =

∫
M2

∫
M1

f(z1, z2)µ1(dz1)µ2(dz2)

=

∫
M1×M2

f(z1, z2)µ1 × µ2(dz1 × dz2)
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Infinite product spaces

The extension to (M1×· · ·×Mm,M1×· · ·×Mm, µ1×· · ·×µm) is imme-
diate. The extension to infinite product spaces is needed to capture
the idea of an infinite sequence of repeated trials of an experiment.
Let (Ωi,Fi, Pi), i = 1, 2, . . . be probability spaces (possibly all copies
of the same probability space). Let

Ω = Ω1 × Ω2 × · · · = {(ω1, ω2, . . .) : ωi ∈ Ωi, i = 1, 2, . . .}

and

F = F1×F2×· · · = σ(A1×· · ·×Am×Ωm+1×Ωm+2×· · · : Ai ∈ Fi,m = 1, 2, . . .).

We want a probability measure satisfying

P (A1 × · · · × Am × Ωm+1 × Ωm+2 × · · ·) =
m∏

i=1

Pi(Ai). (6.4)
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Construction of P

For A ∈ F , let

Qn(A, ωn+1, ωn+2, . . .) =

∫
1A(ω1, ω2, . . .)P1(dω1) · · ·Pn(dωn).

The necessary measurability follows as above. Let Fm = σ(A1×· · ·×
Am × Ωm+1 × Ωm+2 × · · · : Ai ∈ Fi, i = 1, . . . ,m). Then clearly

P (A) ≡ lim
n→∞

Qn(A, ωn+1, ωn+2, . . .)

exists for each A ∈ ∪mFm. It follows, as in Problems 5 and 6 that P is
a countably additive set function on ∪mFm.
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Caratheodary extension theorem

Theorem 6.6 Let M be a set, and let A be an algebra of subsets of M . If
µ is a σ-finite measure (countably additive set function) on A, then there
exists a unique extension of µ to a measure on σ(A).

Consequently, P defined above extends to a measure on ∨mFm. The
uniqueness of P satisfying (6.4) follows by the Dynkin class theorem.
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Expectation of the product of component (independent)
random variables

Lemma 6.7 SupposeXk is integrable andXk(ω) = Yk(ωk) for k = 1, 2, . . ..
Then

E[
m∏

k=1

Xk] =
m∏

k=1

∫
Ωk

YkdPk =
m∏

k=1

E[Xk]
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Relative frequency

For a probability space (Ω,F , P ), let (Ω∞,F∞, P∞) denote the infinite
product space with each factor given by (Ω,F , P ). Fix A ∈ F , and let

Sn(ω1, ω2, . . .) =
n∑

k=1

1A(ωk).

Then Sn is binomially distributed with parameters n and p = P (A).

E[Sn] = nP (A)

and

P∞{|n−1Sn − P (A)| ≥ ε} ≤ E[(Sn − nP (A))2]

n2ε2
=
P (A)(1− P (A))

nε2
,
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Almost sure convergence of relative frequency

Letting Xk(ω) = 1A(ωk), by the Markov inequality

P∞{|n−1Sn − P (A)| ≥ ε} ≤ E[(Sn − nP (A))4]

n4ε4

=
E[(Xk − P (A))4]

n3ε4
+

3(n− 1)E[(Xk − P (A))2]2

n3ε4
.

and ∑
n

P∞{|n−1Sn − P (A)| ≥ ε} <∞.

Therefore

P∞{lim sup
n→∞

|n−1Sn − P (A)| > ε} ≤
∞∑

n=m

P∞{|n−1Sn − P (A)| ≥ ε} → 0
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7. Independence

• Independence of σ-algebras and random variables

• Independence of generated σ-algebras

• Bernoulli sequences and the law of large numbers

• Tail events and the Kolmogorov zero-one law
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Independence

Definition 7.1 σ-algebras Di ⊂ F , i = 1, . . . ,m, are independent if and
only if

P (D1 ∩ · · · ∩Dm) =
m∏

i=1

P (Di), Di ∈ Di

Random variableX1, . . . , Xm are independent if and only if σ(X1), . . . , σ(Xm)
are independent.

An infinite collection of σ-algebras/random variables is independent if every
finite subcollection is independent.

Lemma 7.2 IfD1, . . . ,Dm are independent σ-algebras,Xk isDk-measurable,
k = 1, . . . ,m, then X1, . . . , Xm are independent.
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Independence of generated σ-algebras
For a collection of σ-algebras {Gα, α ∈ A}, let ∨α∈AGα denote the
smallest σ-algebra containing ∪α∈AGα.

Lemma 7.3 Suppose {Dα, α ∈ A} are independent. Let A1,A2 ⊂ A and
A1 ∩ A2 = ∅. Then ∨α∈A1

Dα and ∨α∈A2
Dα are independent. (But see

Problem 7.)

Proof.Let

Si = {A1 ∩ · · · ∩ Am : Ak ∈ Dαk
, α1, . . . , αm ∈ Ai, αk 6= αl for k 6= m}

Let A ∈ S1, and let GA
2 be the collection of B ∈ F such that P (A ∩

B) = P (A)P (B). Then GA
2 is a Dynkin class containing S2 and hence

containing ∨α∈A2
Dα. Similarly, let B ∈ ∨α∈A2

Dα, and let GB
1 bet the

collection of A ∈ F such that P (A ∩ B) = P (A)P (B). Again, GB
1 is a

Dynkin class containing S1 and hence ∨α∈A1
Dα. �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 75

Consequences of independence

Lemma 7.4 IfX1, . . . , Xm are independent, g1 : Rk → R and g2 : Rm−k →
R are Borel measurable, Y1 = g1(X1, . . . , Xk), and Y2 = g2(Xk+1, . . . , Xm),
then Y1 and Y2 are independent.

Lemma 7.5 IfX1, . . . , Xm are independent and integrable, thenE[
∏m

k=1Xk] =∏m
k=1E[Xk].

Proof. Check first for simple random variables and then approxi-
mate. �
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Bernoulli trials

Definition 7.6 A sequence of random variables {Xi} is Bernoulli if the
random variables are independent and P{Xi = 1} = 1 − P{Xi = 0} = p

for some 0 ≤ p ≤ 1.

If {Xi} is Bernoulli, then

Sn =
n∑

i=1

Xi

is binomially distributed and

lim
n→∞

1

n

n∑
i=1

Xi = p a.s.
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Law of large numbers for bounded random variables

Theorem 7.7 Let {Yi} be independent and identically distributed random
variables with P{|Y | ≤ c} = 1 for some 0 < c <∞. Then limn→∞

1
n

∑n
i=1 Yi =

E[Y ] a.s.

Proof.(See the “law of averages.”) For each m,∑
l

l

m

1

n

n∑
i=1

1{ l
m<Yi≤ l+1

m } ≤ 1

n

n∑
i=1

Yi

≤
∑

l

l + 1

m

1

n

n∑
i=1

1{ l
m<Yi≤ l+1

m }

→
∑

l

l + 1

m
P{ l

m
< Y ≤ l + 1

m
}

�
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Tail events and the Kolmogorov zero-one law

Lemma 7.8 Let D1,D2, . . . be independent σ-algebras, and define

T = ∩m ∨n≥m Dn,

where ∨n≥mDn denotes the smallest σ-algebra containing ∪n≥mDn. If A ∈
T , then P (A) = 0 or P (A) = 1.

Proof. Note that for m > k, ∨n≥mDn is independent of ∨l≤kDl. Con-
sequently, for all k, ∨l≤kDl is independent of T which implies

P (A ∩B) = P (A)P (B) A ∈ ∪∞k=1 ∨l≤k Dl, B ∈ T .

But the collection of A satisfying this identity is a monotone class
containing ∪∞k=1 ∨l≤k Dl and hence contains σ(∪∞k=1 ∨l≤k Dl) ⊃ T .
Therefore P (B) = P (B ∩ B) = P (B)2, which imples P (B) = 0 or
1. �
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Borel-Cantelli lemma

Let A1, A2, . . . be events and define

B = ∩m∪n≥mAn = {ω : ω ∈ An for infinitely many n} ≡ {An occurs i.o.}

Note that

P (B) ≤
∞∑

n=m

P (An). (7.5)

Lemma 7.9 If
∑∞

n=1 P (An) <∞, then P{An occurs i.o.} = 0.

IfA1, A2, . . . are independent and
∑∞

n=1 P (An) = ∞, then P{An occurs i.o.} =
1.

See Problem 9.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 80

Proof.

The first part follows by (7.5).

Noting that Bc = ∪m ∩n≥m Ac
n,

P (Bc) ≤
∑
m

P (∩n≥mA
c
n) =

∑
m

∏
n≥m

P (Ac
n) ≤

∑
m

e−
∑∞

n=m P (An) = 0.

�
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8. Lp spaces

• Metric spaces

• A metric on the space of random variables

• Normed linear spaces

• Lp spaces

• Projections in L2
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Metric spaces

d : S × S → [0,∞) is a metric on S if and only if

• d(x, y) = d(y, x), x, y ∈ S

• d(x, y) = 0 if and only if x = y

• d(x, y) ≤ d(x, z) + d(z, y), x, y, z ∈ S, (triangle inequality)

If d is a metric then d ∧ 1 is a metric.

Examples

• Rm d(x, y) = |x− y|

• C[0, 1] d(x, y) = sup0≤t≤1 |x(t)− y(t)|
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Convergence

Let (S, d) be a metric space.

Definition 8.1 A sequence {xn} ⊂ S converges if there exists x ∈ S

such that limn→∞ d(xn, x) = 0. x is called the limit of {xn} and we write
limn→∞ xn = x.

Lemma 8.2 A sequence {xn} ⊂ S has at most one limit.

Proof. Suppose limn→∞ xn = x and limn→∞ xn = y. Then

d(x, y) ≤ d(x, xn) + d(y, xn) → 0.

Consequently, d(x, y) = 0 and x = y. �
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Open and closed sets

Let (S, d) be a metric space. For ε > 0 and x ∈ S, let Bε(x) = {y ∈ S :
d(x, y) < ε}. Bε(x) is called the open ball of radius ε centered at x.

Definition 8.3 A set G ⊂ S is open if and only if for each x ∈ G, there
exists ε > 0 such that Bε(x) ⊂ G. A set F ⊂ S is closed if and only if F c

is open. The closure H̄ of a set H ⊂ S is the smallest closed set containing
H .

Lemma 8.4 A set F ⊂ S is closed if and only if for each convergent {xn} ⊂
F , limn→∞ xn ∈ F .

If H ⊂ S, then H̄ = {x : ∃{xn} ⊂ H, limn→∞ xn = x}.
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Completeness

Definition 8.5 A sequence {xn} ⊂ S is Cauchy if and only if

lim
n,m→∞

d(xn, xm) = 0,

that is, for each ε > 0, there exists nε such that

sup
n,m≥nε

d(xn, xm) ≤ ε.

Definition 8.6 A metric space (S, d) is complete if and only if every Cauchy
sequence has a limit.

Recall that the space of real numbers can be defined to be the com-
pletion of the rational numbers under the usual metric.
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Completeness is a metric property

Two metrics generate the same topology if the collection of open sets is
the same for both metrics. In particular, the collection of convergent
sequences is the same.

Completeness depends on the metric, not the topology: For example

r(x, y) = | x

1 + |x|
− y

1 + |y|
|

is a metric giving the usual topology on the real line, but R is not
complete under this metric.
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Separability

Definition 8.7 A set D ⊂ S is dense in S if for every x ∈ S, there exists
{xn} ⊂ D such that limn→∞ xn = x.

S is separable if there is a countable set D ⊂ S that is dense in S.

Lemma 8.8 S is separable if and only if there is {xn} ⊂ S such that for
each ε > 0, S ⊂ ∪∞n=1Bε(xn).

Note that Q is dense in R, so R is separable.
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Continuity of a metric

Lemma 8.9 If limn→∞ xn = x and limn→∞ yn = y, then limn→∞ d(xn, yn) =
d(x, y).

Proof. By the triangle inequality

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(y, yn)

and
d(xn, yn) ≤ d(x, xn) + d(x, y) + d(y, yn)

�
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Equivalence relations

Definition 8.10 Let S be a set, and E ⊂ S × S. If (a, b) ∈ E, write a ∼ b.
E is an equivalence relation on S if

• Reflexivity: a ∼ a

• Symmetry: If a ∼ b then b ∼ a

• Transitivity: If a ∼ b and b ∼ c then a ∼ c.

G ⊂ S is an equivalence class if a, b ∈ G implies a ∼ b and a ∈ G and
b ∼ a implies b ∈ G.

Lemma 8.11 If G1 and G2 are equivalence classes, then either G1 = G2 or
G1 ∩G2 = ∅.

Each a ∈ S is in some equivalence class.
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Equivalence classes of random variables

Let (Ω,F , P ) be a probability space. Let S be the collection of ran-
dom variables on (Ω,F , P ). Then X ∼ Y if and only if X = Y a.s.
defines an equivalence relation on S. L0 will denote the collection of
equivalence classes of random variables.

In practice, we will write X for the random variable and for the
equivalence class of all random variables equivalent to X . For ex-
ample, we will talk about X being the almost sure limit of {Xn} even
though any other random variable satisfying Y = X a.s. would also
be the almost sure limit of {Xn}.
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Convergence in probability

Definition 8.12 A sequence of random variables {Xn} converges in prob-
ability to X (Xn

P→ X) if and only if for each ε > 0,

lim
n→∞

P{|X −Xn| > ε} = 0.

Define
d(X, Y ) = E[1 ∧ |X − Y |].

Lemma 8.13 d is a metric on L0 and limn→∞ d(Xn, X) = 0 if and only if
Xn

P→ X .
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Proof. Note that 1 ∧ |x− y| defines a metric on R, so

E[1 ∧ |X − Y |] ≤ E[1 ∧ |X − Z|] + E[1 ∧ |Z − Y |].

Since for 0 < ε ≤ 1,

P{|X −Xn| > ε} ≤ d(X,Xn)

ε
,

limn→∞ d(Xn, X) = 0 implies if Xn
P→ X . Observing that

1 ∧ |X −Xn| ≤ 1{|X−Xn|>ε} + ε,

Xn
P→ X implies

lim supE[1 ∧ |X −Xn|] ≤ ε.

�
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Linear spaces

Definition 8.14 A set L is a (real) linear space if there is a notion of ad-
dition + : L×L→ L and scalar multiplication · : R×L→ L satisfying

• For all u, v, w ∈ L, u+ (v + w) = (u+ v) + w

• For all v, w ∈ L, v + w = w + v.

• There exists an element 0 ∈ L such that v + 0 = v for all v ∈ L.

• For all v ∈ L, there exists w ∈ L (−v) such that v + w = 0.

• For all a ∈ R and v, w ∈ L, a(v + w) = av + aw.

• For all a, b ∈ R and v ∈ L, (a+ b)v = av + bv.

• For all a, b ∈ R and v ∈ R, a(bv) = (ab)v.

• For all v ∈ L, 1v = v.
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Norms

Definition 8.15 If L is a linear space, then ‖ · ‖ : L → [0,∞) defines a
norm on L if

• ‖u‖ = 0 if and only if u = 0.

• For a ∈ R and u ∈ L, ‖au‖ = |a|‖u‖.

• For u, v ∈ L, ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Note that d(u, v) = ‖u− v‖ defines a metric on L.
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Lp spaces

Fix (Ω,F , P ). For p ≥ 1, letLp be the collection of (equivalence classes
of) random variables satisfying E[|X|p] <∞.

Lemma 8.16 Lp is a linear space.

Proof. Note that |a+ b|p ≤ 2p−1(|a|p + |b|p). �
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A geometric inequality

Let p, q ≥ 1 satisfy p−1 + q−1 = 1, and note that 1
p−1 = p

p−1 − 1 = q − 1.

If f(x) = xp−1, then f−1(y) = y
1

p−1 = yq−1, and hence for a, b ≥ 0,

ab ≤
∫ a

0
xp−1dx+

∫ b

0
yq−1dy =

1

p
ap +

1

q
bq.

Consequently, if E[|X|p] = E[|Y |q] = 1, then

E[|XY |] ≤ 1.
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Hölder inequality

Lemma 8.17 Let p > 1 and 1
p + 1

q = 1. Suppose X ∈ Lp and Y ∈ Lq, then

E[XY ] ≤ E[|XY |] ≤ E[|X|p]1/pE[|Y |q]1/q

Proof. Define

X̃ =
X

E[|X|p]1/p
Ỹ =

Y

E[|Y |q]1/q
.

Then
E[|X̃Ỹ |] ≤ 1

and the lemma follows. �
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Minkowski inequality

Lemma 8.18 Suppose X, Y ∈ Lp, p ≥ 1. Then

E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p

Proof. Since |X + Y | ≤ |X|+ |Y | and p−1
p + 1

p = 1,

E[|X + Y |p] ≤ E[|X||X + Y |p−1] + E[|Y ||X + Y |p−1]

≤ E[|X|p]1/pE[|X + Y |p]
p−1

p + E[|X|p]1/pE[|X + Y |p]
p−1

p .

�
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The Lp norm

For p ≥ 1, define
‖X‖p = E[|X|p]1/p.

Then, by the Minkowski inequality, ‖X‖p is a norm on Lp. Note that
the Hölder inequality becomes

E[XY ] ≤ ‖X‖p‖Y ‖q.
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The L∞ norm

Define
‖X‖∞ = inf{c > 0 : P{|X| ≥ c} = 0},

and let L∞ be the collection of (equivalence classes) of random vari-
ables X such that ‖X‖∞ <∞.

‖ · ‖∞ is a norm and

E[XY ] ≤ ‖X‖∞‖Y ‖1.
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Completeness

Lemma 8.19 Suppose {Xn} is a Cauchy sequence in Lp. Then there exists
X ∈ Lp such that limn→∞ ‖X −Xn‖p = 0.

Proof. Select nk such that n,m ≥ nk implies ‖Xn − Xm‖p ≤ 2−k.
Assume that nk+1 ≥ nk. Then∑

k

E[|Xnk+1
−Xnk

|] ≤
∑

k

‖Xnk+1
−Xnk

‖p <∞,

so the series
∑

k(Xnk+1
−Xnk

) converges a.s. to a random variable X .
Fatou’s lemma implies X ∈ Lp and that

E[|X −Xnl
|p] ≤ lim

k→∞
E[|Xnk

−Xnl
|p] ≤ 2−pl.

Therefore

lim
n→∞

‖X −Xn‖p ≤ lim sup
n→∞

(‖X −Xnk
‖p + ‖Xnk

−Xn‖p) ≤ 2−k.

�
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Best L2 approximation

Lemma 8.20 LetM be a closed linear subspace ofL2, and letX ∈ L2. Then
there exists a unique Y ∈M such thatE[(X−Y )2] = infZ∈M E[(X−Z)2].

Proof. Let ρ = infZ∈M E[(X−Z)2], and let Yn ∈M satisfy limn→∞E[(X−
Yn)

2] = ρ. Then noting that

E[(Yn−Ym)2] = E[(X −Yn)
2] +E[(X −Ym)2]− 2E[(X −Yn)(X −Ym)]

we have

4ρ ≤ E[(2X − (Yn + Ym))2]

= E[(X − Yn)
2] + E[(X − Ym)2] + 2E[(X − Yn)(X − Ym)]

= 2E[(X − Yn)
2] + 2E[(X − Ym)2]− E[(Yn − Ym)2],

and it follows that {Yn} is Cauchy inL2. By completeness, there exists
Y such that Y = limn→∞ Yn, and ρ = E[(X − Y )2].

Note that uniqueness also follows from the inequality. �
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Orthogonality
The case p = 2 (which implies q = 2) has special properties. The first
being the idea of orthogonality.

Definition 8.21 Let X, Y ∈ L2. Then X and Y are orthogonal (X ⊥ Y )
if and only if E[XY ] = 0.

Lemma 8.22 LetM be a closed linear subspace ofL2, and letX ∈ L2. Then
the best approximation constructed in Lemma 8.20 is the unique Y ∈ M

such that (X − Y ) ⊥ Z for every Z ∈M .
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Proof. Suppose Z ∈M . Then

E[(X − Y )2] ≤ E[(X − (Y + aZ))2]

= E[(X − Y )2]− 2aE[Z(X − Y )] + a2E[Z2].

Since a may be either positive or negative, we must have

E[Z(X − Y )] = 0.

Uniqueness follows from the fact thatE[Z(X−Y1)] = 0 andE[Z(X−
Y2)] = 0 for all Z ∈M implies

E[(Y1 − Y2)
2] = E[(Y1 − Y2)(X − Y2)]− E[(Y1 − Y2)(X − Y1)] = 0.

�
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Projections in L2

Lemma 8.23 Let M be a closed linear subspace of L2, and for X ∈ L2,
denote the Y from Lemma 8.20 by PMX . Then PM is a linear operator on
L2, that is,

PM(a1X1 + a2X2) = a1PMX1 + a2PMX2.

Proof. Since

E[Z(a1X1 + a2X2 − (a1PMX1 + a2PMX2)]

= a1E[Z(X1 − PMX1)] + a2E[Z(X2 − PMX2)]

the conclusion follows by the uniqueness in Lemma 8.22. �
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Best linear approximation

Let Y ∈ L2 and M = {aY + b : a, b ∈ R}, and let X ∈ L2. Then

PMX = aXY + bX

where

bX = E[X − aXY ] aX =
E[XY ]− E[X]E[Y ]

E[Y 2]− E[Y ]2
=
Cov(X, Y )

V ar(Y )

Compute
inf
a,b
E[(X − (aY + b))2]
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9. Conditional expectations

• Definition

• Relation to elementary definitions

• Properties of conditional expectation

• Jensen’s inequality

• Definition of E[X|D] for arbitrary nonnegative random variables

• Convergence theorems

• Conditional probability

• Regular conditional probabilities/distributions
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Best approximation using available information

LetD ⊂ F be a sub-σ-algebra representing the available information.
Let X be a random variable, not necessarily D-measurable. We want
to approximate X using the available information.
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Definition of conditional expectation

Let D ⊂ F be a sub-σ-algebra, and let L2(D) be the linear space of
D-measurable random variables in L2. Define

E[X|D] = PL2(D)X.

Then by orthogonality (Lemma 8.22),

E[X1D] = E[E[X|D]1D], D ∈ D.

We extend the defintion to L1.

Definition 9.1 Let X ∈ L1. Then E[X|D] is the unique D-measurable
random variable satisfying

E[X1D] = E[E[X|D]1D], D ∈ D.
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Monotonicity

Lemma 9.2 Let X1, X2 ∈ L1, X1 ≥ X2 a.s., and suppose Y1 = E[X1|D]
and Y2 = E[X2|D]. Then Y1 ≥ Y2 a.s.

Proof. Let D = {Y2 > Y1}. Then

0 ≤ E[(X1 −X2)1D] = E[(Y1 − Y2)1D] ≤ 0.

�
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Existence for L1

Lemma 9.3 Let X ∈ L1, X ≥ 0. Then

E[X|D] = lim
c→∞

E[X ∧ c|D] (9.1)

Proof. Note that the right side of (9.1) (call it Y ) isD-measurable and
for D ∈ D,

E[X1D] = lim
c→∞

E[(X ∧ c)1D] = lim
c→∞

E[E[X ∧ c|D]1D] = E[Y 1D],

where the first and last equalities hold by the monotone convergence
theorem and the middle equality holds by definition. �
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Verifying that a random variable is a conditional expec-
tation

To show that Y = E[X|D], one must verify

1. Y is D-measurable

2.
E[Y 1D] = E[X1D], D ∈ D. (9.2)

Assuming that X, Y ∈ L1, if S ⊂ D is closed under intersections,
Ω ∈ S, and σ(S) = D, then to verify (9.2), it is enough to show that
E[Y 1D] = E[X1D] for D ∈ S .
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Relation to elementary definitions

Suppose that {Dk} ⊂ F is a partition of Ω and D = σ{Dk}. Then

E[X|D] =
∑

k

E[X1Dk
]

P (Dk)
1Dk

.

Suppose the (X, Y ) have a joint density fXY (x, y). Define

g(y) =

∫∞
−∞ xfXY (x, y)dx

fY (y)
.

Then
E[X|Y ] ≡ E[X|σ(Y )] = g(Y ).
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Properties of conditional expectation

• Linearity: Assume that X, Y ∈ L1.

E[aX + bY |D] = aE[X|D] + bE[Y |D]

• Monotonicity/positivity: If X, Y ∈ L1 and X ≥ Y a.s., then

E[X|D] ≥ E[Y |D]

• Iteration: If D1 ⊂ D2 and X ∈ L1, then

E[X|D1] = E[E[X|D2]|D1] (9.3)

• Factoring: If X,XY ∈ L1 and Y is D-measurable, then

E[XY |D] = Y E[X|D].

In particular, if Y is D-measurable, E[Y |D] = Y .
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• Independence: If H is independent of σ(G, σ(X)), then

E[X|σ(G,H)] = E[X|G]

G ∈ G, H ∈ H,

E[E[X|G]1G∩H ] = E[E[X|G]1G1H ]

= E[E[X|G]1G]E[1H ]

= E[X1G]E[1H ]

= E[X1G1H ]

In particular, if X is independent of H,

E[X|H] = E[X].
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Jensen’s inequality

Lemma 9.4 If ϕ : R → R is convex and X,ϕ(X) ∈ L1, then

E[ϕ(X)|D] ≥ ϕ(E[X|D]).

Proof. Let
ϕ+(x) = lim

h→0+

ϕ(x+ h)− ϕ(x)

h
.

Then
ϕ(x)− ϕ(y) ≥ ϕ+(y)(x− y).

Consequently,

E[ϕ(X)− ϕ(E[X|D])|D] ≥ E[ϕ+(E[X|D])(X − E[X|D])|D]

= ϕ+(E[X|D])E[X − E[X|D]|D]

= 0

�
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Definition of E[X|D] for arbitrary nonnegative random
variables

Let X ≥ 0 a.s. Then
Y ≡ lim

c→∞
E[X ∧ c|D]

is D-measurable and satisfied

E[Y 1D] = E[X1D]

(allowing ∞ = ∞). Consequently, we can extend the definition of
conditional expectation to all nonnegative random variables.
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Monotone convergence theorem

Lemma 9.5 Let 0 ≤ X1 ≤ X2 ≤ · · ·. Then

lim
n→∞

E[Xn|D] = E[ lim
n→∞

Xn|D] a.s.

Proof. Let Y = limn→∞E[Xn|D]. Then Y is D-measurable and for
D ∈ D,

E[Y 1D] = lim
n→∞

E[E[Xn|D]1D] = lim
n→∞

E[Xn1D] = E[( lim
n→∞

Xn)1D].

�
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Functions of independent random variables

Lemma 9.6 Suppose X is independent of D and Y is D-measurable, If ϕ :
R2 → [0,∞) and g(y) =

∫
R ϕ(x, y)µX(dx) then

E[ϕ(X, Y )|D] = g(Y ), (9.4)

and hence, (9.4) holds for all ϕ such that E[|ϕ(X, Y )|] <∞.

Proof. Let A,B ∈ B(R). Then setting g(y) = µX(A)1B(y),

E[1A(X)1B(Y )|D] = µX(A)1B(Y ).

Let C ∈ B(R2) and gC(y) =
∫

R 1C(x, y)µX(dx). The collection of C
such that

E[1C(X, Y )|D] = gC(Y )

is a Dynkin class and consequently, contains all of B(R2). By linearity,
(9.4) holds for all simple functions and extends to all nonnegative ϕ
be the monotone convergence theorem. �
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Functions of known and unknown random variables

Lemma 9.7 Let X be a random variable and D ⊂ F a sub-σ-algebra. Let
Ξ be the collection of ϕ : R2 → [0,∞] such that ϕ is Borel measurable and
there exists B(R)×D-measurable ψ : R× Ω → [0,∞] satisfying

E[ϕ(X, Y )|D](ω) = ψ(Y (ω), ω) (almost surely), (9.5)

for all D-measurable random variables, Y . Then Ξ is closed under positive
linear combinations and under convergence of increasing sequences.

Since Ξ contains all functions of the form γ1(x)γ2(y), for Borel measurable
γi : R → [0,∞], Ξ is the collection of all Borel measurable ϕ : R2 → [0,∞].
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Proof. Linearity follows from the linearity of the conditional expec-
tation.

Suppose {ϕn} ⊂ Ξ and ϕ1 ≤ ϕ2 ≤ · · ·, and let ϕ = limn→∞ ϕn. Then
by the monotonicity of the conditional expectation, the correspond-
ing ψn must satisfy ψn(Y (ω), ω) ≥ ψn−1(Y (ω), ω) almost surely for
each D-measurable Y . Consequently, ψ̂n = ψ1 ∨ · · · ∨ ψn must satisfy
ψ̂n(Y (ω), ω) = ψn(Y (ω), ω) almost surely for each D-measurable Y ,
and hence

E[ϕn(X, Y )|D](ω) = ψ̂n(Y (ω), ω) a.s.

for each D-measurable Y . Defining ψ(x, y) = limn→∞ ψ̂n(x, y), (9.5)
holds. �
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Fatou’s lemma

Lemma 9.8 Suppose Xn ≥ 0 a.s. Then

lim inf
n→∞

E[Xn|D] ≥ E[lim inf
n→∞

Xn|D] a.s.

Proof. Since
E[Xn|D] ≥ E[ inf

m≥n
Xm|D],

the lemma follows by the monotone convergence theorem. �
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Dominated convergence theorem

Lemma 9.9 Suppose |Xn| ≤ Yn, limn→∞Xn = X a.s., limn→∞ Yn = Y

a.s. with E[Y ] <∞, and limn→∞E[Yn|D] = E[Y |D] a.s. Then

lim
n→∞

E[Xn|D] = E[X|D] a.s.

Proof. The proof is the same as for expectations. For example

lim inf E[Yn −Xn|D] ≥ E[lim inf
n→∞

(Yn −Xn)|D]

= E[Y −X|D],

so
lim sup

n→∞
E[Xn|D] ≤ E[X|D].

�
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Conditional probability
Conditional probability is simply defined as

P (A|D) = E[1A|D]

and if {Ak} are disjoint, the monotone convergence theorem implies

P (∪∞k=1Ak|D) = E[1∪Ak
|D] =

∞∑
k=1

E[1Ak
|D] =

∞∑
k=1

P (Ak|D).

BUT, we need to remember that conditional expectations are only
unique in the equivalence class sense, so the above identy only as-
serts that P (∪∞k=1Ak|D) and

∑∞
k=1 P (Ak|D) are equal almost surely.

That does not guarantee tha A → P (A|D)(ω) is a probability mea-
sure for any fixed ω ∈ Ω.
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Random measures

Definition 9.10 Let (S,S) be a measurable space, and let M(S) be the
space of σ-finite measures on (S,S). Let Ξ be the smallest σ-algebra of sub-
sets of M(S) containing sets of the form GA,c = {µ ∈ M(S) : µ(A) ≤ c},
A ∈ S, c ∈ R. A random measure ξ on (S,S) is a measurable map-
ping form (Ω,F , P ) to (M(S),Ξ). ξ is a random probability measure if
ξ(S) ≡ 1

Note that since {ξ(A) ≤ c} = ξ−1(GA,c), ξ(A) is a random variable for
each A ∈ S.
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Regular conditional probabilities/distributions

Definition 9.11 Let D ⊂ F be a sub-σ-algebra of F . A regular condi-
tional probability given D is a random probability measure ξ on (Ω,F)
such that ξ(A) = P (A|D) for each A ∈ F .

Definition 9.12 Let (S, d) be a complete, separable metric space, and let
Z be an S-valued random variable. (Z is a measurable mapping from
(Ω,F , P ) to (S,B(S)).) Then ξ is a regular conditional distribution for
Z given D if ξ is a random probability measure on (S,B(S)) and ξ(B) =
P (Z ∈ B|D), B ∈ B(S).



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 127

Existence of regular conditional distributions

Lemma 9.13 Let (S, d) be a complete, separable metric space, let Z be an
S-valued random variable, and let D ⊂ F be a sub-σ-algebra. Then there
exists a regular conditional distribution for Z given D.
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Proof. If S = R, the construction is simple. By monotonicity, and the
countability of the rationals, we can construcut F (x, ω), x ∈ Q, such
that x ∈ Q → F (x, ω) ∈ [0, 1] is nondecreasing for each ω ∈ Ω and
F (x) = P{Z ≤ x|D}, x ∈ Q. Then for x ∈ R, define

F̄ (x, ω) = inf
y>x.y∈Q

F (y, ω) = lim
y∈Q→x+

F (x, ω).

Then the monotone convergence theorem implies

F̄ (x) = P{Z ≤ x|D}

and for each ω, F̄ (·, ω) is a cumulative distribution function. Defining
ξ((−∞, x], ω) = F̄ (x, ω), ξ extends to a random probability measure
on (R,B(R)). Finally, note that the collection of B ∈ B(R) such that
ξ(B) = P{Z ∈ B|D} is a Dynkin class so contains B(R). �
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10. Change of measure

• Absolute continuity and the Radon Nikodym theorem

• Applications of absolute continuity

• Bayes formula
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Absolute continuity and the Radon-Nikodym theorem

Definition 10.1 Let P and Q be probability measures on (Ω,F). Then
P is absolutely continuous with respect to Q (P << Q) if and only if
Q(A) = 0 implies P (A) = 0.

Theorem 10.2 If P << Q, then there exists a random variable L ≥ 0 such
that

P (A) = EQ[1AL] =

∫
A

LdQ, A ∈ F .

Consequently, Z is P -integrable if and only if ZL is Q-integrable, and

EP [Z] = EQ[ZL].

Standard notation: dP
dQ = L.
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Maximum likelihood estimation

Suppose for each α ∈ A,

Pα(Γ) =

∫
Γ
LαdQ

and
Lα = H(α,X1, X2, . . . Xn)

for random variables X1, . . . , Xn. The maximum likelihood estimate
α̂ for the “true” parameter α0 ∈ A based on observations of the ran-
dom variables X1, . . . , Xn is the value of α that maximizes

H(α,X1, X2, . . . Xn).
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Sufficiency

If dPα = LαdQ where

Lα(X, Y ) = Hα(X)G(X, Y ),

then X is a sufficient statistic for α. Without loss of generality, we
can assume EQ[G(X, Y )] = 1 and hence dQ̂ = G(X, Y )dQ defines a
probability measure.

Example 10.3 If (X1, . . . , Xn) are iidN(µ, σ2) under P(µ,σ) andQ = P(0,1),
then

L(µ,σ) =
1

σn
exp

{
−1− σ2

2σ2

n∑
i=1

X2
i +

µ

σ2

n∑
i=1

Xi −
µ2

σ2

}
so (
∑n

i=1X
2
i ,
∑n

i Xi) is a sufficient statistic for (µ, σ).
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Parameter estimates and sufficiency

Theorem 10.4 If θ̂(X, Y ) is an estimator of θ(α) and ϕ is convex, then

EPα[ϕ(θ(α)− θ̂(X, Y ))] ≥ EPα[ϕ(θ(α)− EQ̂[θ̂(X, Y )|X])]

Proof.

EPα[ϕ(θ(α)− θ̂(X, Y ))] = EQ̂[ϕ(θ(α)− θ̂(X,Y ))Hα(X)]

= EQ̂[EQ̂[ϕ(θ(α)− θ̂(X, Y ))|X]Hα(X)]

≥ EQ̂[ϕ(θ(α)− EQ̂[θ̂(X, Y )|X])Hα(X)]

= EPα[ϕ(θ(α)− EQ̂[θ̂(X,Y )|X])]

�
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Other applications

Finance: Asset pricing models depend on finding a change of mea-
sure under which the price process becomes a martingale.

Stochastic Control: For a controlled diffusion process

X(t) = X(0) +

∫ t

0
σ(X(s))dW (s) +

∫ t

0
b(X(s), u(s))ds

where the control only enters the drift coefficient, the controlled process
can be obtained from an uncontrolled process satisfying via a change
of measure.
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Bayes Formula

Lemma 10.5 (Bayes Formula) If dP = LdQ, then

EP [Z|D] =
EQ[ZL|D]

EQ[L|D].
(10.1)

Proof. Clearly the right side of (10.1) is D-measurable. Let D ∈ D.
Then∫

D

EQ[ZL|D]

EQ[L|D].
dP =

∫
D

EQ[ZL|D]

EQ[L|D]
LdQ

=

∫
D

EQ[ZL|D]

EQ[L|D]
EQ[L|D]dQ

=

∫
D

EQ[ZL|D]dQ =

∫
D

ZLdQ =

∫
D

ZdP

which verifies the identity. �
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Example

For general random variables, suppose X and Y are independent on
(Ω,F , Q). Let L = H(X, Y ) ≥ 0, and E[H(X, Y )] = 1. Define

νY (Γ) = Q{Y ∈ Γ}
dP = H(X, Y )dQ.

Bayes formula becomes

EP [g(Y )|X] =
EQ[g(Y )H(X, Y )|X]

EQ[H(X, Y )|X]
=

∫
g(y)H(X, y)νY (dy)∫
H(X, y)νY (dy)
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11. Filtrations and martingales

• Discrete time stochastic processes

• Filtrations and adapted processes

• Markov chains

• Martingales

• Stopping times

• Optional sampling theorem

• Doob’s inequalities

• Martingales and finance
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Discrete time stochastic processes

Let (E, r) be a complete, separable metric space. A sequence of E-
valued random variables {Xn, n = 0, 1, . . .} will be called a discrete
time stochastic process with state space E.
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Filtrations and adapted processes

Definition 11.1 A filtration is a sequence of σ-algebras {Fn, n = 0, 1, 2, . . .}
satisfying Fn ⊂ F , and Fn ⊂ Fn+1, n = 0, 1, . . ..

A stochastic process {Xn} is adapted to a filtration {Fn} if Xn is Fn-
measurable for each n = 0, 1, . . ..

If {Xn} is a stochastic process, then the natural filtration {FX
n } for X is

the filtration given by FX
n = σ(X0, . . . , Xn).
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Markov chains

Definition 11.2 A stochastic process {Xn} adapted to a filtration {Fn} is
{Fn}-Markov if E[f(Xn+1)|Fn] = E[f(Xn+1)|Xn] for each n = 0, 1, . . .
and each f ∈ B(E). (B(E) denotes the bounded, Borel measurable func-
tions on E.)

Lemma 11.3 Let Y be an E-valued random variable and Z ∈ L1. Then
there exists a Borel measurable function g, such that

E[Z|Y ] = g(Y ) a.s.

Lemma 11.4 If {Xn} is {Fn}-Markov, then for each k ≥ 1, n ≥ 0, and
f ∈ B(E), E[f(Xn+k)|Fn] = E[f(Xn+k)|Xn].
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Proof. Proceeding by induction, the assertion is true for k = 1. Sup-
pose it holds for k0. Then there exists g ∈ B(E) such that

E[f(Xn+k0+1)|Fn] = E[E[f(Xn+k0+1)|Fn+k0
]|Fn]

= E[E[f(Xn+k0+1)|Xn+k0
]|Fn]

= E[g(Xn+k0
)|Fn]

= E[g(Xn+k0
)|Xn].

�
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Martingales

Definition 11.5 A R-valued stochastic process {Mn} ⊂ L1 adapted to a
filtration {Fn} is a {Fn}-martingale if E[Mn+1|Fn] = Mn for each n =
0, 1, . . ..

Lemma 11.6 If {Mn} is a {Fn}-martingale, then E[Mn+k|Fn] = Mn,
n = 0, 1, . . ., k ≥ 1.
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Stopping times

Definition 11.7 A random variable τ with values in {0, 1, . . . ,∞} is a
{Fn}-stopping time if {τ = k} ∈ Fk for each k = 0, 1, . . .. A stopping
time is finite, if P{τ <∞} = 1.

Lemma 11.8 If τ is a {Fn}-stopping time, then {τ = ∞} ∈ ∨kFk.

Lemma 11.9 A random variable τ with values in {0, 1, . . . ,∞} is a {Fn}-
stopping time if and only if {τ ≤ k} ∈ Fk for each k = 0, 1, . . ..

Proof. If τ is a stopping time, then {τ ≤ k} = ∪k
l=0{τ = l} ∈ Fk. If

{τ ≤ k} ∈ Fk, k ∈ N, then {τ = k} = {τ ≤ k} ∩ {τ > k − 1} ∈ Fk. �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 144

Hitting times

Lemma 11.10 Let {Xn} be anE-valued stochastic process adapted to {Fn}.
Let B ∈ B(E), and define τB = min{n : Xn ∈ B} with τB = ∞ if
{n,Xn ∈ B} is empty. Then τB is a {Fn}-stopping time.

Proof. Note that {τB = k} = {Xk ∈ B} ∩ ∩k−1
l=0 {Xl ∈ Bc}. �
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Closure properties of the collection of stopping times

Lemma 11.11 Suppose that τ, τ1, τ2, . . . are {Fn}-stopping times, and that
c ∈ N = {0, 1, . . .}. Then

• maxk τk and mink τk {Fn}-stopping times.

• τ ∧ c and τ ∨ c are {Fn}-stopping times.

• τ + c is a {Fn}-stopping time.

• If {Xn} is {Fn}-adapted with state space E and B ∈ B(E), then γ =
min{τ + n : n ≥ 0, Xτ+n ∈ B} is a {Fn}-stopping time.

Proof. For example, {maxk τk ≤ n} = ∩k{τk ≤ n} ∈ Fn, and

{γ = m} = ∪m
l=0{τ = l} ∩ {Xm ∈ B} ∩ ∩m−1

k=l {Xk ∈ Bc} ∈ Fm

�
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Stopped processes

Lemma 11.12 Suppose {Xn} is {Fn}-adapted and τ is a {Fn}-stopping
time. Then {Xτ∧n} is {Fn}-adapted.

Proof. We have

{Xτ∧n ∈ B} = (∪n−1
l=0 {τ = l}∩{Xl ∈ B})∪({τ ≥ n}∩{Xn ∈ B}) ∈ Fn.

�
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Information available at time τ

Definition 11.13

Fτ = {A ∈ F : A ∩ {τ = n} ∈ Fn, n = 0, 1, . . .}
= {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, n = 0, 1, . . .}

Lemma 11.14 Fτ is a σ-algebra.
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Stopped processes

Lemma 11.15 If {Xn} is {Fn}-adapted, then for each m ∈ N, Xm∧τ is
Fτ -measurable.

If Fn = FX
n , n ∈ N and τ is finite for all ω ∈ Ω, then FX

τ = σ(Xm∧τ ,m ∈
N).

Proof.Note that so {Xm∧τ ∈ B} ∈ Fτ , since

{Xm∧τ ∈ B} ∩ {τ = n} = {Xm∧n ∈ B} ∩ {τ = n} ∈ Fn, (11.1)

If {Fn} = {FX
n }, then by (11.1), σ(Xm∧τ ,m ∈ N) ⊂ FX

τ . If A ∈ FX
τ ,

then A ∩ {τ = n} ∈ FX
n , so

A ∩ {τ = n} = {(X0, . . . , Xn) ∈ Bn} = {(X0, X1∧τ , . . . , Xn∧τ) ∈ Bn}

and A = ∪n{(X0, X1∧τ , . . . , Xn∧τ) ∈ Bn} ∈ σ(Xm∧τ ,m ∈ N). �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 149

Monotonicity of information

Lemma 11.16 If τ and σ are {Fn}-stopping times and σ ≤ τ for all ω ∈ Ω,
then Fσ ⊂ Fτ .

Proof. If A ∈ Fσ, then

A ∩ {τ ≤ n} = A ∩ {σ ≤ n} ∩ {τ ≤ n} ∈ Fn,

so A ∈ Fτ . �
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Conditional expectations given Fτ

Lemma 11.17 Let Z ∈ L1, and let τ be a finite {Fn}-stopping time. Then

E[Z|Fτ ] =
∞∑

n=0

E[Z|Fn]1{τ=n}.

Proof. Problem 12 �
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Sub- and supermartingales

Definition 11.18 Let {Xn} ⊂ L1 be a stochastic process adapted to {Fn}.
Then {Xn} is a submartingale if and only if

E[Xn+1|Fn] ≥ Xn, n = 0, 1, . . .

and {Xn} is a supermartingale if and only if

E[Xn+1|Fn] ≤ Xn, n = 0, 1, . . .
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Martingales and Jensen’s inequality

Lemma 11.19 If ϕ is convex and X is a martingale with E[|ϕ(Xn)|] <∞,
then Yn = ϕ(Xn) is a submartingale.

Ifϕ is convex and nondecreasing andX is a submartingale, withE[|ϕ(Xn)|] <
∞, then Yn = ϕ(Xn) is a submartingale.
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Stopped submartingales

Lemma 11.20 Suppose that X is a {Fn}-submartingale and τ is a {Fn}-
stopping time. Then

E[Xτ∧n|Fn−1] ≥ Xτ∧(n−1),

and hence {Xτ∧n} is a {Fn}-submartingale.

Proof.

E[Xτ∧n|Fn−1] = E[Xn1{τ>n−1}|Fn−1] + E[Xτ∧(n−1)1{τ≤n−1}|Fn−1]

≥ Xn−11{τ>n−1} +Xτ∧(n−1)1{τ≤n−1}

= Xτ∧(n−1)

�

By iteration, for m ≤ n E[Xτ∧n|Fm] ≥ Xτ∧m.
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Optional sampling theorem

Theorem 11.21 Let X be a {Fn}-submartingale and τ1 and τ2 be {Fn}-
stopping times. Then

E[Xτ2∧n|Fτ1
] ≥ Xτ1∧τ2∧n

Proof.

E[Xτ2∧n|Fτ1
] =

∞∑
m=0

E[Xτ2∧n|Fm]1{τ1=m}

≥ Xτ2∧n1{τ1>n} +
n∑

m=0

Xτ2∧m1{τ1=m}

= Xτ1∧τ2∧n

�



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 155

Corollary 11.22 If in addition, τ2 <∞ a.s., E[|Xτ2
|] <∞, and

lim
n→∞

E[|Xn|1{τ2≥n}] = 0,

then
E[Xτ2

|Fτ1
] ≥ Xτ1∧τ2
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Doob’s inequalities

Theorem 11.23 Let {Xn} be a nonnegative submartingale. Then

P{max
m≤n

Xm ≥ x} ≤ E[Xn]

x

Proof. Let τ = min{m : Xm ≥ x}. Then

E[Xn] ≥ E[Xn∧τ ] ≥ xP{τ ≤ n}.

�
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Kolmogorov inequality

Lemma 11.24 Let {ξi} be independent random variables with E[ξi] = 0
and V ar(ξi) <∞. Then

P{sup
m≤n

|
m∑

i=1

ξi| ≥ r} ≤ 1

r2

n∑
i=1

E[ξ2
i ]

Proof. Since Mn =
∑n

i=1 ξi is a martingale, M 2
n is a submartingale,

and E[M 2
n] =

∑n
i=1E[ξ2

i ]. �
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Doob’s inequalities

Theorem 11.25 Let {Xn} be a nonnegative submartingale. Then for p >
1,

E[max
m≤n

Xp
m] ≤

(
p

p− 1

)p

E[Xp
n]

Corollary 11.26 If M is a square integrable martingale, then

E[max
m≤n

M 2
m] ≤ 4E[M 2

n].
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Proof. Let τz = min{n : Xn ≥ z} and Z = maxm≤nXm. Then

E[Xp
n∧τz

] ≤ E[Xp
n]

zP{Z ≥ z} ≤ E[Xτz
1{τz≤n] ≤ E[Xn1{τz≤n}]

and

E[ϕ(Z ∧ β)] =

∫ β

0
ϕ′(z)P{Z ≥ z}dz

≤
∫ β

0

ϕ′(z)

z
E[Xn1{Z≥z}]dz = E[Xnψ(Z ∧ β)],

where ψ(z) =
∫ z

0 x
−1ϕ′(x)dx. If ϕ(z) = zp and 1

p + 1
q = 1, q = p

p−1 , then
ψ(z) = p

p−1z
p−1 and

E[Xnψ(Z∧β)] =
p

p− 1
E[Xn(Z∧β)p−1] ≤ p

p− 1
E[Xp

n]
1/pE[(Z∧β)p]1−1/p.
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Stopping condition for a martingale

Lemma 11.27 Let {Xn} be adapted to {Fn}. Then {Xn} is an {Fn}-
martingale if and only if

E[Xτ∧n] = E[X0]

for every {Fn}-stopping time τ and each n = 0, 1, . . ..

Proof. Problem 14. �
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Martingale differences

Definition 11.28 {ξn} are martingale differences for {Fn} if for each n,
ξn is Fn-measurable and E[ξn|Fn−1] = 0.

�

Lemma 11.29 Let {ξn} be martingale differences and {Yn} be adapted, with
ξn, Yn ∈ L2, n = 0, 1, . . .. Then

Mn =
n∑

k=1

Yk−1ξk

is a martingale.
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Model of a market

Consider financial activity over a time interval [0, T ] modeled by a
probability space (Ω,F , P ).

Assume that there is a “fair casino” or market which is complete in
the sense that at time 0, for each event A ∈ F , a price Q(A) ≥ 0 is
fixed for a bet or a contract that pays one dollar at time T if and only
if A occurs.

Assume that the market is frictionless in that an investor can either
buy or sell the contract at the same price and that it is liquid in that
there is always a buyer or seller available. Also assume that Q(Ω) <
∞.

An investor can construct a portfolio by buying or selling a variety of
contracts (possibly countably many) in arbitrary multiples.
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No arbitrage condition

If ai is the “quantity” of a contract for Ai (ai < 0 corresponds to
selling the contract), then the payoff at time T is∑

i

ai1Ai
.

Require
∑

i |ai|Q(Ai) < ∞ (only a finite amount of money changes
hands) so that the initial cost of the portfolio is (unambiguously)∑

i

aiQ(Ai).

The market has no arbitrage if no combination (buying and selling) of
countably many policies with a net cost of zero results in a positive
profit at no risk.
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That is, if
∑
|ai|Q(Ai) <∞,∑

i

aiQ(Ai) = 0, and
∑

i

ai1Ai
≥ 0 a.s.,

then ∑
i

ai1Ai
= 0 a.s.
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Consequences of the no arbitrage condition

Lemma 11.30 Assume that there is no arbitrage. If P (A) = 0, thenQ(A) =
0. If Q(A) = 0, then P (A) = 0.

Proof. Suppose P (A) = 0 and Q(A) > 0. Buy one unit of Ω and sell
Q(Ω)/Q(A) units of A.

Cost = Q(Ω)− Q(Ω)

Q(A)
Q(A) = 0

Payoff = 1− Q(Ω)

Q(A)
1A = 1 a.s.

which contradicts the no arbitrage assumption.

Now suppose Q(A) = 0. Buy one unit of A. The cost of the portfolio
is Q(A) = 0 and the payoff is 1A ≥ 0. So by the no arbitrage assump-
tion, 1A = 0 a.s., that is, P (A) = 0. �
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Price monotonicity

Lemma 11.31 If there is no arbitrage and A ⊂ B, then Q(A) ≤ Q(B),
with strict inequality if P (A) < P (B).

Proof. Suppose P (B) > 0 (otherwise Q(A) = Q(B) = 0) and Q(B) ≤
Q(A). Buy one unit of B and sell Q(B)/Q(A) units of A.

Cost = Q(B)− Q(B)

Q(A)
Q(A) = 0

Payoff = 1B −
Q(B)

Q(A)
1A = 1B−A + (1− Q(B)

Q(A)
)1A ≥ 0,

Payoff = 0 a.s. implies Q(B) = Q(A) and P (B − A) = 0. �
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Q must be a measure

Theorem 11.32 If there is no arbitrage, Q must be a measure on F .

Proof. A1, A2, . . . disjoint and A = ∪∞i=1Ai. Assume P (Ai) > 0 for
some i. (Otherwise, Q(A) = Q(Ai) = 0.)

Let ρ ≡
∑

iQ(Ai), and buy one unit of A and sell Q(A)/ρ units of Ai

for each i.
Cost = Q(A)− Q(A)

ρ

∑
i

Q(Ai) = 0

Payoff = 1A −
Q(A)

ρ

∑
i

1Ai
= (1− Q(A)

ρ
)1A.

If Q(A) ≤ ρ, then Q(A) = ρ.

If Q(A) ≥ ρ, sell one unit of A and buy Q(A)/ρ units of Ai. �
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Theorem 11.33 If there is no arbitrage, Q << P and P << Q. (P and Q
are equivalent measures.)

Proof. The result follows from Lemma 11.30. �
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Pricing general payoffs

If X and Y are random variables satisfying X ≤ Y a.s., then no arbi-
trage should mean

Q(X) ≤ Q(Y ).

It follows that for any Q-integrable X , the price of X is

Q(X) =

∫
XdQ

By the Radon-Nikodym theorm, dQ = LdP , for some nonnegative,
integrable random variable L, and

Q(X) = EP [XL]
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Assets that can be traded at intermediate times

{Fn} represents the information available at time n.

Bn is the price at time n of a bond that is worth $1 at time T (e.g.
Bn = 1

(1+r)T−n ), that is, at any time 0 ≤ n ≤ T , Bn is the price of a
contract that pays exactly $1 at time T .

Note that B0 = Q(Ω)

Define Q̂(A) = Q(A)/B0.
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Martingale properties of tradable assets

Let Xn be the price at time n of another tradable asset, that is, Xn is
the buying or selling price at time n of an asset that will be worth XT

at time T . {Xn} must be {Fn}-adapted.

For any stopping time τ ≤ T , we can buy one unit of the asset at
time 0, sell the asset at time τ and use the money received (Xτ ) to
buy Xτ/Bτ units of the bond. Since the payoff for this strategy is
Xτ/Bτ (the value of the bonds at time T ), we must have

X0 =

∫
Xτ

Bτ
dQ =

∫
B0Xτ

Bτ
dQ̂.

Theorem 11.34 If X is the price of a tradable asset, then X/B is a martin-
gale on (Ω,F , Q̂).
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Equivalent martingale measures
Consider a simple model on (Ω,F , P ) of a financial market consisting
of one tradable asset (stock) {Xn, 0 ≤ n ≤ T}, a bond {Bn, 0 ≤ n ≤
T}, and information filtration Fn = σ(Xk, Bk, 0 ≤ k ≤ n). Assume
thatX0 andB0 are almost surely constant and that the market is com-
plete in the sense that every payoff of the formZ = F (B0, X0, . . . , BT , XT )
for some bounded function F has a price at which it can be bought
or sold at time zero. Then if there is no arbitrage, there must by a
probability measure Q that is equivalent to P such that the price of
Z is given by

B0E
Q[F (B0, X0, . . . , BT , XT )]

and X/B is a martingale on (Ω,F , Q). (Note that we have dropped
the hat on Q̂ to simplify notation)
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Self-financing trading strategies

A trading strategy is an adapted process {(αn, βn)}, where αn gives
the number of shares of the stock owned at time n and βn, the number
of units of the bond. The trading strategy is self-financing if

αn−1Xn + βn−1Bn = αnXn + βnBn, n > 0.

Note that if αn−1 shares of stock are owned at time n − 1 and βn−1

units of the bond, then at time n, the value of the portfolio is αn−1Xn+
βn−1Bn, and “self-financing” simply means that money may be trans-
fered from the stock to the bond or vice versus, but no money is taken
out and no money is added.
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Binomial model

Assume that Bn = (1 + r)−(T−n), 0 < P{Xn+1 = (1 + u)Xn} < 1, and

P{Xn+1 = (1− d)Xn} = 1− P{Xn+1 = (1 + u)Xn},

for some−d < r < u, so that we can writeXn+1 = (1+ξn+1)Xn, where
R(ξn+1) = {−d, u}. Since EQ[Xn+1(1 + r)T−(n+1)|Fn] = Xn(1 + r)T−n,

EQ[Xn+1|Fn] = Xn(1 + r), EQ[ξn+1|Fn] = r,

and hence
Q{ξn+1 = u|Fn} =

r + d

u+ d
,

so that under Q, the {ξn} are iid with

Q{ξn = u} = 1−Q{ξn = −d} =
r + d

u+ d
.

In particular, there is only one possible choice of Q defined on FT .
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Hedging

Theorem 11.35 For the binomial model, for each Z = F (X0, . . . , XT ),
there exists a self-financing trading strategy such that

αT−1XT + βT−1 = F (X0, . . . , XT ). (11.2)

Proof. Note that the self-financing requirement becomes

αn−1Xn + βn−1(1 + r)−(T−n) = αnXn + βn(1 + r)−(T−n), n > 0,

and (11.2) and the martingale property for X/B would imply

EQ[F (X0, . . . , XT )|FT−1] = αT−1(1 + r)XT−1 + βT−1

= (1 + r)(αT−2XT−1 + βT−2BT−1)

EQ[F (X0, . . . , XT )|Fn] = (1 + r)T−n(αnXn + βnBn)

= (1 + r)T−n(αn−1Xn + βn−1Bn).
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Let
Hn(X0, . . . , Xn) = EQ[F (X0, . . . , XT )|Fn]

We can solve

αT−1XT−1(1 + u) + βT−1 = F (X0, . . . , XT−1, XT−1(1 + u))

αT−1XT−1(1− d) + βT−1 = F (X0, . . . , XT−1, XT−1(1− d))

and

(1 + r)T−n(αn−1Xn−1(1 + u) + βn−1Bn) = Hn(X0, . . . , Xn−1, Xn−1(1 + u))

(1 + r)T−n(αn−1Xn−1(1− d) + βn−1Bn) = Hn(X0, . . . , Xn−1, Xn−1(1− d))

Note that the solution will be adapted and

Hn(X0, . . . , Xn) = (1 + r)T−n(αn−1Xn + βn−1Bn)
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Since

Hn(X0, . . . , Xn)

= EQ[Hn+1(X0, . . . , Xn+1)|Fn]

=
r + d

u+ d
Hn+1(X0, . . . , Xn, Xn(1 + u))

+
u− r

u+ d
Hn+1(X0, . . . , Xn, Xn(1− d))

=
r + d

u+ d
(1 + r)T−n−1(αnXn(1 + u) + βnBn+1)

+
u− r

u+ d
(1 + r)T−n−1(αnXn(1− d) + βnBn+1)

= (1 + r)T−n(αnXn + βnBn),

the solution is self-financing. �

Corollary 11.36 For the binomial model, if all self-financing strategies are
allowed, then the market is complete.
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12. Martingale convergence

• Properties of convergent sequences

• Upcrossing inequality

• Martingale convergence theorem

• Uniform integrability

• Reverse martingales

• Martingales with bounded increments

• Extended Borel-Cantelli lemma

• Radon-Nikodym theorem

• Law of large numbers for martingales



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 179

Properties of convergent sequences

Lemma 12.1 Let {xn} ⊂ R. Suppose that for each a < b, the sequence
crosses the interval [a, b] only finitely often. Then either limn→∞ xn = ∞,
limn→∞ xn = −∞, or limn→∞ xn = x for some x ∈ R. (Note that it is
sufficient to consider rational a and b.)

Proof. For each a < b, either lim supn→∞ xn ≤ b or lim infn→∞ xn ≥
a. Suppose there exists b0 ∈ R such that lim supn→∞ xn ≤ b0, and
let b̄ = inf{b : lim supn→∞ xn ≤ b}. If b̄ = −∞, then limn→∞ xn =
−∞. Otherwise, for each ε > 0, lim infn→∞ xn ≥ b̄ − ε, and hence,
limn→∞ xn = b̄. �
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(sub)-martingale transforms

Let {Hn} and {Xn} be {Fn}-adapted, and define

H ·Xn =
n∑

k=1

Hk−1(Xk −Xk−1).

Lemma 12.2 If X is a submartingale (supermartingale) and H is a non-
negative, adapted sequence, then H · X is a submartingale (supermartin-
gale)

Proof.

E[H ·Xn+1|Fn] = H ·Xn + E[Hn(Xn+1 −Xn)|Fn]

= H ·Xn +HnE[Xn+1 −Xn|Fn]

≥ H ·Xn

�
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Upcrossing inequality

For a ≤ b, let Un(a, b) be the number of times the sequence {Xk}
crosses from below a to above b by time n.

Lemma 12.3 Let {Xn} be a submartingale. Then for a < b,

E[(Xn − a)+]

b− a
≥ E[Un(a, b)]
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Proof. Define

σ1 = min{n : Xn ≤ a}
τi = min{n > σi : Xn ≥ b}

σi+1 = min{n > τi : Xn ≤ a}
and

Hk =
∑

i

1{τi≤k<σi+1}.

Then H · Xn =
∑

i(Xn∧σi+1
− Xn∧τi

) and Un(a, b) = max{i : τi ≤ n}.
Then since if τi <∞, Xτi

≥ b and if σi <∞, Xσi
≤ a,

−H ·Xn ≥ (b− a)Un(a, b)−
∑

i

(Xn∧σi+1
− a)1{τi≤n<τi+1}

≥ (b− a)Un(a, b)− (Xn − a)+

and hence
0 ≥ (b− a)E[Un(a, b)]− E[(Xn − a)+]

�
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Martingale convergence theorem

Theorem 12.4 Let {Xn} be a submartingale with supnE[X+
n ] <∞. Then

limn→∞Xn exists a.s.

Corollary 12.5 If {Xn} is a nonnegative supermartingale, then X∞ =
limn→∞Xn exists a.s. and E[X0] ≥ E[X∞]
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Proof. For each a < b,

E[ lim
n→∞

Un(a, b)] ≤ sup
n

E[(Xn − a)+]

b− a
≤ supnE[X+

n ] + |a|
b− a

<∞.

Therefore, with probability one, U∞(a, b) < ∞ for all rational a, b.
Consequently, there exists Ω0 ⊂ Ω with P (Ω0) = 1 such that for ω ∈
Ω0, either limn→∞Xn(ω) = ∞, limn→∞Xn(ω) = −∞, or limn→∞Xn(ω) =
X∞(ω) for some X∞(ω) ∈ R.

Since E[Xn] ≥ E[X0],

E[|Xn|] = 2E[X+
n ]− E[Xn] ≤ 2E[X+

n ]− E[X0].

Consequently,

E[lim inf
n→∞

|Xn|] ≤ lim inf
n→∞

E[|Xn|] <∞,

so P{limn→∞ |Xn| = ∞} = 0 and limn→∞Xn ∈ R with probability
one. �
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Examples
Xn =

∏n
k=1 ξk ξk iid with ξk ≥ 0 a.s. and E[ξk] = 1. {Xn} is a nonneg-

ative martingale. Hence, limn→∞Xn exists. What is it?

Sn = 1 +
∑n

k=1 ηk, ηk iid, integer-valued, nontrivial, with E[ηk] = 0,
ηk ≥ −1 a.s.

Let τ = inf{n : Sn = 0}. Then forXn = Sn∧τ , limn→∞Xn must be zero.
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Properties of integrable random variables

Lemma 12.6 If X is integrable, then for ε > 0 there exists a K > 0 such
that ∫

{|X|>K}
|X|dP < ε.

Proof. limK→∞ |X|1{|X|>K} = 0 a.s. �

Lemma 12.7 If X is integrable, then for ε > 0 there exists a δ > 0 such
that P (F ) < δ implies

∫
F |X|dP < ε.

Proof.Let Fn = {|X| ≥ n}. Then nP (Fn) ≤ E[|X|1Fn
] → 0. Select n so

that E[|X|1Fn
] ≤ ε/2, and let δ = ε

2n . Then P (F ) < δ implies∫
F

|X|dP ≤
∫

Fn∩F

|X|dP +

∫
F c

n∩F

|X|dP <
ε

2
+ nδ = ε

�
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Uniform integrability

Theorem 12.8 Let {Xα} be a collection of integrable random variables.
The following are equivalent:

a) supE[|Xα|] <∞ and for ε > 0 there exists δ > 0 such that P (F ) < δ

implies supα

∫
F |Xα|dP < ε.

b) limK→∞ supαE[|Xα|1{|Xα|>K}] = 0.

c) limK→∞ supαE[|Xα| − |Xα| ∧K] = 0

d) There exists a (strictly) convex functionϕ on [0,∞) with limr→∞
ϕ(r)

r =
∞ such that supαE[ϕ(|Xα|)] <∞.
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Proof. a) implies b) follows by

P{|Xα| > K} ≤ E[|Xα|]
K

b) implies d): Let N1 = 0, and for k > 1, select Nk such that
∞∑

k=1

k sup
α
E[1{|Xα|>Nk}|Xα|] <∞

Define ϕ(0) = 0 and

ϕ′(x) = k, Nk ≤ x < Nk+1.

Recall that E[ϕ(|X|)] =
∫∞

0 ϕ′(x)P{|X| > x}dx, so

E[ϕ(|Xα|)] =
∞∑

k=1

k

∫ Nk+1

Nk

P{|Xα| > x}dx ≤
∞∑

k=1

k sup
α
E[1{|Xα|>Nk}|Xα|].
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To obtain strictly convex ϕ̃, define

ϕ̃′(x) = k − 1

Nk+1 −Nk
(Nk+1 − x) ≤ ϕ′(x).

d) implies b): Assume for simplicity that ϕ(0) = 0 and ϕ is increasing.
Then r−1ϕ(r) is increasing and |Xα|−1ϕ(|Xα|)1{|Xα|>K} ≥ K−1ϕ(K),
so E[1{|Xα|>K}|Xα|] ≤ K

ϕ(K)E[ϕ(|Xα|)]

b) implies a):
∫

F |Xα|dP ≤ P (F )K + E[1{|Xα|>K}|Xα|].

To see that (b) is equivalent to (c), observe that

E[|Xα| − |Xα| ∧K] ≤ E[|Xα|1{|Xα|>K}] ≤ 2E[|Xα| − |Xα| ∧
K

2
]

�
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Uniformly integrable families

• For X integrable, Γ = {E[X|D] : D ⊂ F}

• For X1, X2, . . . integrable and identically distributed

Γ = {X1 + · · ·+Xn

n
: n = 1, 2, . . .}

• For Y ≥ 0 integrable, Γ = {X : |X| ≤ Y }.
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Uniform integrability and L1 convergence

Theorem 12.9 Xn → X in L1 iff Xn → X in probability and {Xn} is
uniformly integrable.

Proof. If Xn → X in L1, then

lim
n→∞

E[|Xn| − |Xn| ∧K] = E[|X| − |X| ∧K]

and Condition (c) of Theorem 12.8 follows from the fact that

lim
K→∞

E[|X| − |X| ∧K] = lim
K→∞

E[|Xn| − |Xn| ∧K] = 0.

Conversely, let fK(x) = ((−K) ∨ x) ∧K, and note that |x− fK(x)| =
|x| −K ∧ |x|. Since

|Xn −X| ≤ |Xn − fK(Xn)|+ |fK(Xn)− fK(X)|+ |X − fK(X)|,

lim sup
n→∞

E[|Xn −X|] ≤ 2 sup
n
E[|Xn − fK(Xn)|]

K→∞→ 0.

�
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Convergence of conditional expectations

Theorem 12.10 Let {Fn} be a filtration and Z ∈ L1. ThenMn = E[Z|Fn]
is a {Fn}-martingale and limn→∞Mn exists a.s. and in L1. If Z is ∨nFn-
measurable, then Z = limn→∞Mn.

Proof. Since E[|Mn|] ≤ E[|Z|], almost sure convergence follows by
the martingale convergence theorem and L1-convergence from the
uniform integrability of {Mn}.

Suppose Z is ∨nFn-measurable, and let Y = limn→∞Mn. Then Y is
∨nFn-measurable, and for A ∈ ∪nFn,

E[1AZ] = lim
n→∞

E[1AMn] = E[1AY ].

Therefore E[1AZ] = E[1AY ] for all A ∈ ∨nFn. Taking A = {Y > Z}
and {Y < Z} gives the last statement of the theorem. �
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Null sets and complete probability spaces

Let (Ω,F , P ) be a probability space. The collection of null sets N is
the collection of all events A ∈ F such that P (A) = 0. (Ω,F , P ) is
complete, if A ∈ N and B ⊂ A implies B ∈ N ⊂ F .

Lemma 12.11 Let (Ω,F , P ) be a probability space and let

F̄ = {A ⊂ Ω : ∃B ∈ F , C ∈ N 3 A4B ⊂ C}.

Then F̄ is a σ-algebra and P extends to a measure P̄ on F̄ . (Ω, F̄ , P̄ ) is
called the completion of (Ω,F , P ).

If (Ω,F , P ) is complete and D ⊂ F is a σ-algebra, then the comple-
tion of D is D̄ = σ(D ∪N ).
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Extension of Kolmogorov zero-one law

Corollary 12.12 Let {Dn} and G be independent σ-algebras, and let

T = ∩nG ∨ ∨m≥nDm.

Then T̄ = Ḡ, where T̄ is the completion of T and Ḡ is the completion of G.

Proof. Clearly, G ⊂ T . Let Fn = G ∨ ∨n
k=1Dk. Then for A ∈ T , by

Problem 11,
E[1A|Fn] = E[1A|G].

But 1A = limn→∞E[1A|Fn] a.s., so A ∈ Ḡ. �
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Reverse martingale convergence theorem

Theorem 12.13 Let {Gn} be σ-algebras in F satisfying Gn ⊃ Gn+1 and let
Z ∈ L1. Then limn→∞E[Z|Gn] exists a.s. and in L1.

Proof. Let Y N
k = E[Z|GN−k], 0 ≤ k ≤ N . Then {Y N

k } is a martingale,
and the upcrossing inequality for {Y N

k } gives a “downcrossing” in-
equality for {E[Z|Gn]}. �
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A proof of the law of large numbers

Let {ξi} be iid random variables with E[|ξi|] <∞. Define

Xn =
1

n

n∑
i=1

ξi

and Gn = σ(Xn, ξn+1, ξn+2, . . .). Then Gn ⊃ Gn+1 and

E[ξ1|Gn] = Xn

is a reverse martingale, so Xn converges a.s. and in L1. By the Kol-
mogorov zero-one law, the limit must be a constant and hence E[ξi]
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Asymptotic behavior of a martingale with bounded in-
crements

Theorem 12.14 Let {Mn} be a martingale and suppose that

E[sup
n
|Mn+1 −Mn|] <∞

Let H1 = {limn→∞Mn exists} and

H2 = {lim sup
n→∞

Mn = ∞, lim inf
n→∞

Mn = −∞}.

Then P (H1 ∪H2) = 1.
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Proof. Let H+
2 = {lim supn→∞Mn = ∞} and H−

2 = {lim infn→∞Mn =
−∞}. For c > 0, let τc = inf{n : Mn > c}. Then {M τc

n } is a martingale
satisfying

E[|M τc

k |] ≤ 2E[sup
n
|Mn+1 −Mn|] + 2c− E[M τc

k ].

Consequently, Yc = limn→∞M
τc
n exists almost surely. Then H1 =

∪c{Yc < c} and H+
2 ⊃ ∩c{Yc ≥ c}. Consequently, P (H1 ∪ H+

2 ) = 1.
Similarly, P (H1 ∪H−

2 ) = 1, and hence P (H1 ∪ (H+
2 ∩H−

2 )) = 1. �
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Extended Borel-Cantelli lemma

Recalling the Borel-Cantelli lemma, we have the following corollary:

Corollary 12.15 For n = 1, 2, . . ., let An ∈ Fn. Then

G1 ≡ {
∞∑

n=1

1An
= ∞} = {

∞∑
n=1

P (An|Fn−1) = ∞} ≡ G2 a.s.

Proof.

Mn =
n∑

i=1

(1Ai
− P (Ai|Fi−1))

is a martingale satisfying supn |Mn+1 −Mn| ≤ 1. Consequently, with
H1 and H2 defined as in Theorem 12.14, P (H1 ∪H2) = 1.

Clearly, H2 ⊂ G1 and H2 ⊂ G2. For ω ∈ H1, limn→∞Mn(ω) exists, so
either both

∑∞
n=1 1An

<∞ and
∑∞

n=1 P (An|Fn−1) <∞ or ω ∈ G1 and
ω ∈ G2. �
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Jensen’s inequality revisited

Lemma 12.16 If ϕ is strictly convex and increasing on [0,∞) and X ≥ 0,
then

E[ϕ(X)|D] = ϕ(E[X|D]) <∞ a.s.

implies that X = E[X|D] a.s.

Proof. Strict convexity implies that for x 6= y,

ϕ(x)− ϕ(y) > ϕ+(y)(x− y).

Consequently,

E[ϕ(X)− ϕ(E[X|D])− ϕ+(E[X|D])(X − E[X|D])|D] = 0

implies X = E[X|D] a.s. �
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Radon-Nikodym theorem

Theorem 12.17 Let ν and µ be finite measures on (S,S). Suppose that for
each ε > 0, there exists a δε > 0 such that µ(A) < δε implies ν(A) < ε.
Then there exists a nonnegative S-measurable function g such that

ν(A) =

∫
A

gdµ, A ∈ S.

Proof. Without loss of generality, assume that µ is a probability mea-
sure. For a partition {Bk} ⊂ S, define

X{Bk} =
∑

k

ν(Bk)

µ(Bk)
1Bk

,

which will be a random variable on the probability space (S,S, µ).
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ThenE[X{Bk}] = ν(S) <∞,

µ{X{Bk} ≥ K} ≤ ν(S)

K

and for K > ν(S)
δε

,∫
{X{Bk}≥K}

X{Bk}dµ = ν(X{Bk} ≥ K) < ε.

It follows that {X{Bk}} is uniformly integrable. Therefore there is a
strictly convex, increasing function ϕ such that

sup
{Bk}

E[ϕ(X{Bk})] <∞

Let D{Bk} ⊂ S be the σ-algebra generated by {Bk}. If {Cl} is a refine-
ment of {Bk}, then

E[X{Cl}|D{Bk}] = X{Bk}.
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Let {An} ⊂ S, and let Fn = σ(A1, . . . , An). Then there exists a finite
partition {Bn

k} such that Fn = σ({Bn
k}). Let

Mn = X{Bn
k } =

∑
k

ν(Bn
k )

µ(Bn
k )

1Bn
k
.

Then {Mn} is a {Fn}-martingale, and Mn →M {An} a.s. and in L1.

Let
γ = sup

{An}⊂S
E[ϕ(M {An}] = lim

m→∞
E[ϕ(M {Am

n })].

Let {Ân} = ∪m{Am
n }. Then

E[M {Ân}|σ({Am
n })] = M {Am

n }

and E[ϕ(M {Ân})] = γ.
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For each A ∈ S , we must have E[ϕ(M {Ân}∪{A})] = γ, and hence

E[ϕ(M {Ân}∪{A})− ϕ(M {Ân})− ϕ+(M {Ân})(M {Ân}∪{A} −M {Ân})] = 0,

which implies M {Ân}∪{A} = M {Ân} a.s. and

ν(A) = E[1AM
{Ân}∪{A}] = E[1AM

{Ân}] =

∫
A

M {Ân}dµ.

�
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Kronecker’s lemma

Lemma 12.18 Let {An} and {Yn} be sequences of random variables where
A0 > 0 and An+1 ≥ An, n = 0, 1, 2, . . .. Define Rn =

∑n
k=1

1
Ak−1

(Yk −
Yk−1). and suppose that limn→∞An = ∞ and that limn→∞Rn exists a.s.
Then, limn→∞

Yn

An
= 0 a.s.

Proof.

AnRn =
n∑

k=1

(AkRk − Ak−1Rk−1) =
n∑

k=1

Rk−1(Ak − Ak−1) +
n∑

k=1

Ak(Rk −Rk−1)

= Yn − Y0 +
n∑

k=1

Rk−1(Ak − Ak−1) +
n∑

k=1

1

Ak−1

(Yk − Yk−1)(Ak − Ak−1)

and

Yn

An

=
Y0

An

+Rn −
1

An

n∑
k=1

Rk−1(Ak − Ak−1)−
1

An

n∑
k=1

1

Ak−1

(Yk − Yk−1)(Ak − Ak−1)

�
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Law of large numbers for martingales

Lemma 12.19 Suppose {An} is as in Lemma 12.18 and is adapted to {Fn},
and suppose {Mn} is a {Fn}-martingale such that for each {Fn}-stopping
time τ , E[A−2

τ−1(Mτ −Mτ−1)
21{τ<∞}] <∞. If

∞∑
k=1

1

A2
k−1

(Mk −Mk−1)
2 <∞ a.s.,

then limn→∞
Mn

An
= 0 a.s.
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Proof. Without loss of generality, we can assume that An ≥ 1. Let

τc = min{n :
n∑

k=1

1

A2
k−1

(Mk −Mk−1)
2 ≥ c}.

Then
∞∑

k=1

1

A2
k−1

(Mk∧τc
−M(k−1)∧τc

)2 ≤ c+
1

A2
τc−1

(Mτc
−Mτc−1)

21{τc<∞}.

Defining Rc
n =

∑n
k=1

1
Ak−1

(Mk∧τc
−M(k−1)∧τc

), supnE[(Rc
n)

2] < ∞, and

hence, {Rc
n} converges a.s. Consequently, by Lemma 12.18, limn→∞

Mn∧τc

An
=

0 a.s. Since

{ lim
n→∞

Mn

An
= 0} ⊃ ∪c({ lim

n→∞

Mn∧τc

An
= 0} ∩ {τc = ∞}),

P{limn→∞
Mn

An
= 0} = 1. �
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Three series theorem

Theorem 12.20 Let {ξn} be {Fn}-adapted and define ηn = ξn1{|ξn|≤b}. If
∞∑

n=1

P{|ξn+1| > b|Fn} <∞ a.s.,

∞∑
n=1

E[ηn+1|Fn] converges a.s.,

and
∞∑

k=1

E[(ηk − E[ηk|Fk−1])
2|Fk−1] <∞,

then
∑∞

n=1 ξn converges a.s.
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Proof. Let τc = inf{n :
∑n

k=1E[(ηk − E[ηk|Fk−1])
2|Fk−1] > c}, and

note that {τc = n} ∈ Fn−1. Then Mn =
∑n

k=1(ηk − E[ηk|Fk−1]) is a
martingale with bounded increments as is Mn∧τc

. Since

E[(Mn∧τc
)2] =

n∑
k=1

E[E[(ηk − E[ηk|Fk−1])
21{τc≥k}] ≤ c+ 4b2,

limn→∞Mn∧τc
exists a.s. Since limc→∞ P{τc = ∞} = 1, limn→∞Mn ex-

ists a.s. Since the extended Borel-Cantelli lemma implies
∑∞

n=1 1{|ξn|>b} <

∞ a.s.,
∑∞

n=1 ξn converges a.s. �
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Geometric convergence

Lemma 12.21 Let {Mn} be a martingale with |Mn+1 −Mn| ≤ c a.s. for
each n and M0 = 0. Then for each ε > 0, there exist C and η such that

P{1

n
|Mn| ≥ ε} ≤ Ce−nη.
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Proof. Let ϕ̂(x) = e−x + ex and ϕ(x) = ex − 1 − x. Then, setting
Xk = Mk −Mk−1

E[ϕ̂(aMn)] = 2 +
n∑

k=1

E[ϕ̂(aMk)− ϕ̂(aMk−1)]

= 2 +
n∑

k=1

E[exp{aMk−1}ϕ(aXk) + exp{−aMk−1}ϕ(−aXk)]

≤ 2 +
n∑

k=1

ϕ(ac)E[ϕ̂(aMk−1)],

and hence
E[ϕ̂(aMn)] ≤ 2enϕ(ac).

Consequently,

P{sup
k≤n

1

n
|Mk| ≥ ε} ≤ E[ϕ̂(aMn)]

ϕ̂(anε)
≤ 2en(ϕ(ac)−aε).

Then η = supa(aε− ϕ(ac)) > 0, and the lemma follows. �
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Truncation

In the usual formulations of the law of large numbers, An = n or
equivalently, An = n+ 1, so we would like to know

E[τ−2(Mτ −Mτ−1)
21{τ<∞}] <∞ (12.1)

and
∞∑

k=1

1

k2 (Mk −Mk−1)
2 <∞ a.s.

Define ρk(x) = ((−k) ∨ x) ∧ k and

ξn = ρn(Mn −Mn−1)− E[ρn(Mn −Mn−1)|Fn−1].

Then M̂n =
∑n

k=1 ξn is a martingale satisfying (12.1).
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13. Characteristic functions and Gaussian distributions

• Definition of characteristic function

• Inversion formula

• Characteristic functions in Rd

• Characteristic functions and independence

• Examples

• Existence of a density

• Gaussian distributions

• Conditions for independence
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Characteristic functions

Definition 13.1 Let X be a R-valued random variable. Then the charac-
teristic function for X is

ϕX(θ) = E[eiθX ] =

∫
R
eiθxµX(dx).

The characteristic function is the Fourier transform of µX .

Lemma 13.2 ϕX is uniformly continuous.

Proof.

|ϕX(θ + h)− ϕX(θ)| ≤ E[|ei(θ+h)X − eiθX |] = E[|eihX − 1|]
�

Lemma 13.3 If X and Y are independent and Z = X + Y , then ϕZ =
ϕXϕY .
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Inversion formula

Theorem 13.4

lim
T→∞

1

2π

∫ T

−T

e−iθa − e−iθb

iθ
ϕX(θ)dθ =

1

2
µX{a}+ µX(a, b) +

1

2
µX{b}
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Proof. ∫ T

−T

sin θz

θ
dθ = sgn(z)2

∫ T |z|

0

sinu

u
du ≡ R(z, T )

∫ T

−T

e−iθa − e−iθb

iθ
ϕX(θ)dθ =

∫
R

∫ T

−T

eiθ(x−a) − eiθ(x−b)

iθ
dθµX(dx)

=

∫
R

∫ T

−T

sin θ(x− a)− sin θ(x− b)

θ
dθµX(dx)

=

∫
R
(R(x− a, T )−R(x− b, T ))µX(dx)

The theorem follows from the fact that

lim
T→∞

(R(x− a, T )−R(x− b, T )) =


2π a < x < b

π x ∈ {a, b}
0 otherwise

�
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Characteristic functions for Rd

Let X be a Rd-valued random variable and for θ ∈ Rd, define

ϕX(θ) = E[eiθ·X ].

Define

Ia,b(x) =


1 a < x < b
1
2 x ∈ {a, b}
0 otherwise

Corollary 13.5

lim
T→∞

1

(2π)d

∫
[−T,T ]d

d∏
l=1

e−iθlal − e−iθlbl

iθl
ϕX(θ)dθ =

∫ d∏
l=1

Ial,bl
(xl)µX(dx)
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Independence

Lemma 13.6 X1, . . . , Xd are independent if and only if

E[ei
∑d

k=1 θkXk] =
d∏

k=1

ϕXk
(θk)

Proof. Let X̃k, k = 1, . . . , d be independent with µX̃k
= µXk

. Then The
characteristic function of X = (X1, . . . , Xd) ∈ Rd is the same as the
characteristic function of X̃ = (X̃1, . . . , X̃d) so the distributions are
the same. �
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Examples

• Poisson

ϕX(θ) =
∞∑

k=0

eiθke−λλ
k

k!
= exp{λ(eiθ − 1)}

• Normal

ϕX(θ) =

∫ ∞

−∞
eiθx 1√

2πσ2
e−

(x−µ)2

2σ2 dx = exp{iθµ− θ2σ2

2
}

• Uniform

ϕX(θ) =

∫ b

a

eiθx 1

b− a
dx =

eiθb − eiθa

iθ(b− a)

• Binomial

ϕX(θ) =
n∑

k=0

eiθk

(
n

k

)
pk(1− p)n−k = (peiθ + (1− p))n
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• Exponential

ϕX(θ) =

∫ ∞

0
eiθxλe−λxdx =

λ

λ− iθ
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Sufficient conditions for existence of density

Lemma 13.7 L1 characteristic function: If
∫
|ϕX(θ)|dθ < ∞, then X has

a continuous density

fX(x) =
1

2π

∫
R
e−iθxϕX(θ)dθ

Proof. ∫ T

−T

e−iθa − e−iθb

iθ
ϕX(θ)dθ =

∫ b

a

∫ T

−T

e−iθxϕX(θ)dθdx

�
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Computation of moments

Lemma 13.8 If m ∈ N+ and E[|X|m] <∞, then

E[Xm] = (−i)m dm

dθm
ϕX(θ)|θ=0.
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Gaussian distributions

Definition 13.9 X = (X1, . . . , Xd) is jointly Gaussian if and only if a ·
X =

∑d
k=1 akXk is Gaussian for each a ∈ Rd.

Lemma 13.10 Let X = (X1, . . . , Xd), Xk ∈ L2, and define µk = E[Xk],
σkl = Cov(Xk, Xl), and Σ = ((σkl)). Then X is Gaussian if and only if

ϕX(θ) = exp{iµ · θ − 1

2
θTΣθ}. (13.1)

Proof. Suppose (13.1) holds, and let Z =
∑d

k=1 akXk. Then ϕZ(θ) =
exp{iθµ · a− 1

2θ
2aTΣa}, so Z is Gaussian.

IfX is Gaussian, then θ·X is Gaussian with mean µ·θ and V ar(θ·X) =
θTΣθ, so (13.1) follows. �
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Independence of jointly Gaussian random variables

Lemma 13.11 Let X = (X1, . . . , Xd) be Gaussian. Then the Xk are inde-
pendent if and only if Cov(Xk, Xl) = 0 for all k 6= l.

Proof. Of course independence implies the covariances are zero. If
the covariances are zero, then

ϕX(θ) = exp{iµ · θ − 1

2

d∑
k=1

θ2
kσkk} =

d∏
k=1

eiµkθk− 1
2θ2

kσkk,

and independence follows by Lemma 13.6. �
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Linear transformations

Lemma 13.12 Suppose that X is Gaussian in Rd and that A is a m × d

matrix. Then Y = AX is Gaussian in Rm.

Proof. Since
∑m

j=1 bjYj =
∑d

k=1
∑m

j=1 bjajkXk, and linear combination
of the {Yj} has a Gaussian distribution. �
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Representation as a linear combination of independent
Gaussians

Let (X1, X2) be Gaussian and define Y1 = X1 and Y2 = X2−Cov(X1,X2)
V ar(X1)

X1.
Then Cov(Y1, Y2) = 0 and hence Y1 and Y2 are independent. Note that
X2 = Y2 + Cov(X1,X2)

V ar(X1)
Y1.

More generally, for (X1, . . . , Xd) Gaussian, define Y1 = X1 and recur-
sively, define Yk = Xk +

∑k−1
l=1 bklXl so that

Cov(Yk, Xm) = Cov(Xk, Xm)+
k−1∑
l=1

bklCov(Xl, Xm) = 0, m = 1, . . . , k−1.

Then, Yk is independent of X1, . . . , Xk−1 and hence of Y1, . . . , Yk−1.
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Conditional expectations

Lemma 13.13 Let (X1, . . . , Xd) be Gaussian. Then there exist constants
c0, c1, . . . , cd−1 such that

E[Xd|X1, . . . , Xd−1] = c0 +
d−1∑
k=1

ckXk. (13.2)

Proof. By the previous discussion, it is possible to define

Yd = Xd −
d−1∑
k=1

ckXk

so that Cov(Yd, Xk) = 0, k = 1, . . . , d − 1. Then Yd is independent of
(X1, . . . , Xd−1) and (13.2) holds with c0 = E[Yd].

�
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14. Convergence in distribution

• Definitions

• Separating and convergence determining sets

• First proof of the central limit theorem

• Tightness and Helly’s theorem

• Convergence based on characteristic functions

• Continuous mapping theorem

• Convergence in Rd
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Convergence in distribution: Classical definition in R

Definition 14.1 A sequence of R-valued random variables {Xn} converges
in distribution to a random variable X (denoted Xn ⇒ X) if and only if

lim
n→∞

FXn
(x) = FX(x)

at each point of continuity x of FX .

Lemma 14.2 FX(x)− FX(x−) = P{X = x}, so P{X = x} = 0 implies
that x is a point of continuity of FX . FX has at most countably many
discontinuities.

Lemma 14.3 If FXn
(x) → FX(x) for x in a dense set, then Xn ⇒ X .
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Weak convergence of measures

Definition 14.4 Let (E, r) be a complete, separable metric space. A se-
quence of probability measures {µn} ⊂ P(E) converges weakly to µ ∈
P(E) (denoted µn ⇒ µ) if and only if∫

E

gdµn →
∫

E

gdµ, for every g ∈ Cb(E).

In particular, µXn
⇒ µX if and only if

E[g(Xn)] → E[g(X)], for every g ∈ Cb(E).

We then say Xn converges in distribution to X .
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Equivalence of definitions in R

Lemma 14.5 If E = R, then Xn ⇒ X if and only if µXn
⇒ µX .

Proof. For ε > 0 and z ∈ R, let

f ′z(x) = −ε−11(z,z+ε)(x), fz(z) = 1.

Then
1(−∞,z](x) ≤ fz(x) ≤ 1(−∞,z+ε](x).

Then µXn
⇒ µX implies

lim sup
n→∞

FXn
(z) ≤ FX(z + ε) ≤ lim inf

n→∞
FXn

(z + 2ε),

so lim supn→∞ FXn
(z) ≤ FX(z) and lim infn→∞ FXn

(z) ≥ FX(z−).
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Conversely, if g ∈ C1
c (R),

E[g(Xn)] = g(0) +

∫
[0,∞)

∫ y

0
g′(x)dxµXn

(dy)−
∫

(−∞,0)

∫ 0

y

g′(x)dxµXn
(dy)

= g(0) +

∫
[0,∞)

g′(x)µXn
[x,∞)dx−

∫
(−∞,0)

g′(x)µXn
(−∞, x]dx

�
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Separating and convergence determining sets

Definition 14.6 A collection of functions H ⊂ Cb(E) is separating if∫
E

fdµ =

∫
E

fdν, for every f ∈ H,

implies µ = ν.

A collection of functions H ⊂ Cb(E) is convergence determining if

lim
n→∞

∫
E

fdµn =

∫
E

fdµ, for every f ∈ H,

implies µn ⇒ µ.
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Cc is convergence determining

Lemma 14.7 Cc(R), the space of continuous functions with compact sup-
port, is convergence determine.

Proof. Assume limn→∞E[f(Xn)] = E[f(X)] for all f ∈ Cc(R). Let
fK(x) ∈ Cc(R) satisfy 0 ≤ fK(x) ≤ 1, fK(x) = 1, |x| ≤ K, and
fK(x) = 0, |x| ≥ K + 1. Then E[fK(Xn)] → E[fK(X)] implies

lim sup
n→∞

P{|Xn| ≥ K + 1} ≤ P{|X| ≥ K},

and for g ∈ Cb(R),

lim sup
n→∞

|E[g(Xn)]− E[g(Xn)fK(Xn)]| ≤ ‖g‖E[1− fK(X)].

Since limK→∞E[1− fK(X)] = 0, by Problem 19,

lim
n→∞

E[g(Xn)] = lim
K→∞

lim
n→∞

E[g(Xn)fK(Xn)] = lim
K→∞

E[g(X)fK(X)] = E[g(X)]

�
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C∞
c is convergence determining

Let

ρ(x) =

{
c exp{− 1

(x+1)(1−x)} −1 < x < 1

0 otherwise

where c is selected so that
∫

R ρ(x)dx = 1. Then ρ is in C∞
c and for

f ∈ Cc(R),

fε(x) =

∫
R
f(y)ε−1ρ(ε−1(x− y))dy,

fε ∈ C∞
c (R) and limε→∞ supx |f(x)− fε(x)| = 0.

Note that Cu(R), the collection of uniformly continuous functions is
also convergence determining since it contains Cc(R).
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The central limit theorem: First proof

Theorem 14.8 Let X1, X2, . . . be iid with E[Xk] = µ and V ar(Xk) =
σ2 <∞, and define

Zn =

∑n
k=1Xk − nµ√

nσ
=

√
n

σ
(
1

n

n∑
k=1

Xk − µ) =
1√
n

n∑
k=1

Xk − µ

σ
.

Then Zn ⇒ Z, where

P{Z ≤ z} = Φ(z) ≡
∫ z

−∞

1√
2π
e−

x2

2 dx.

Remark 14.9 If X satisfies E[X] = µ and V ar(X) = σ2 < ∞, then Y =
X−µ

σ has expectation 0 and variance 1. Note that the conversion ofX to Y is
essentially a change of units. (Think conversion of Fahrenheit to Celsius.) Y
is the standardized version of X . Distributions of standardized random
variables have the same location (balance point) 0 and the same degree of
“spread” as measured by their standard deviations.
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Sums of independent Gaussian random variables are
Gaussian

Lemma 14.10 If X1, X2, . . . are independent Gaussian random variables
with E[Xk] = 0 and V ar(Xk) = σ2, then for each n ≥ 1,

1√
n

n∑
k=1

Xk

is Gaussian with expectation zero and variance σ2.
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Proof. Without loss of generality, we can assume that E[Xk] = 0
and V ar(Xk) = 1. Let ξ1, ξ2, . . . be iid Gaussian (normal) random
variables with E[ξk] = 0 and V ar(ξk) = 1. For 0 ≤ m ≤ n, define

Z(m)
n =

m∑
k=1

Xk +
n∑

k=m+1

ξk, Ẑ(m)
n =

m−1∑
k=1

Xk +
n∑

k=m+1

ξk

Then for f ∈ C∞
c (R),

f(
1√
n
Z(n)

n )− f(
1√
n
Z(0)

n ) =
n∑

m=1

(f(
1√
n
Z(m)

n )− f(
1√
n
Z(m−1)

n ))

=
n∑

m=1

(
f ′(

1√
n
Ẑ(m)

n )
1√
n

(Xm − ξm) +
1

2
f ′′(

1√
n
Ẑ(m)

n )
1

n
(X2

m − ξ2
m)

+R(
1√
n
Ẑ(m)

n ,
1√
n
Xm)−R(

1√
n
Ẑ(m)

n ,
1√
n
ξm)
)
,

where

R(z, h) =

∫ z+h

z

∫ y

z

(f ′′(u)− f ′′(z))dudy
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and
|R(z, h)| ≤ 1

2
h2 sup

|u−v|≤h

|f ′′(u)− f ′′(v)|.

Consequently,

|E[f(
1√
n
Z(n)

n )]− E[f(
1√
n
Z(0)

n )]|

≤ E[X2
1 sup
|u−v|≤ 1√

n
|X1|

|f ′′(u)− f ′′(v)|]

+E[ξ2
1 sup
|u−v|≤ 1√

n
|ξ1|
|f ′′(u)− f ′′(v)|] → 0

by the dominated convergence theorem. �
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Helly’s theorem

Theorem 14.11 Let {Xn} be a sequence of R-valued random variables Sup-
pose that for each ε > 0, there exists a Kε > 0 such that

sup
n
FXn

(−Kε)+1−FXn
(Kε) = sup

n
(P{Xn ≤ −Kε}+P{Xn > Kε}) < ε.

Then there exists a subsequence {nm} and a random variable X such that
Xnm

⇒ X .

Proof. Select a subsequence of {FXn
} such that FXnm

(y) converges for
each rational y. Call the limit F 0(y) and define

FX(x) = inf
y∈Q,y>x

F 0(y) ≥ sup
y∈Q,y<x

F 0(y)

Then FX is a cdf, and by monotonicity, FXnm
(x) → FX(x) for each

continuity point x. �
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Tightness

Definition 14.12 A sequence of random variables {Xn} is tight, if for each
ε > 0 there exists Kε > 0 such that P{|Xn| > Kε} ≤ ε.

If {Xn} is tight, then Helly’s states that there exists a subsequence
that converges in distribution. Note that the original sequence con-
verges if there is only one possible limit distribution.

Lemma 14.13 Supposeψ ≥ 0 and limr→∞ ψ(r) = ∞. If supnE[ψ(Xn)] <
∞, then {Xn} is tight.
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Lévy’s convergence theorem

Theorem 14.14 If limϕXn
(θ) = g(θ) for every θ and g is continuous at 0,

then g is the characteristic function for a random variable X and Xn ⇒ X .

Proof.Assume tightness. Then convergence follows from the inver-
sion formula.

Proof of tightness:

δ−1
∫ δ

0 (2− ϕXn
(θ)− ϕXn

(−θ)) dθ = δ−1
∫ δ

−δ

∫
R(1− eiθx)µXn

(dx)dθ

=
∫

R δ
−1
∫ δ

−δ(1− eiθx)dθµXn
(dx)

=
∫

R 2(1− sin δx
δx )µ(dx)

≥ µXn
{x : |x| > 2δ−1}

�
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The central limit theorem: Second proof

Proof. Let Zn be as before. Then assuming E[Xk] = 0 and V ar(Xk) =
1,

ϕZn
(θ) = E[eiθ 1√

n
X ]n = ϕX(

1√
n
θ)n

= (E[ei 1√
n
θX − 1− i

θ√
n
X +

θ2

2n
X2] + 1− θ2

2n
)n.

Claim:

lim
n→∞

nE[ei 1√
n
θX − 1− i

θ√
n
X +

θ2

2n
X2]

= − lim
n→∞

E[X2
∫ θ

0

∫ v

0
(ei 1√

n
uX − 1)dudv = 0,

so ϕZn
(θ) → e−

1
2θ2

and Zn converges in distribution to a standard nor-
mal random variable. �
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Triangular arrays

Definition 14.15 A collection of random variables {Xnk, 1 ≤ k ≤ Nn, n =
1, 2, . . .} is refered to as a triangular array. The triangular array is a null
array (or uniformly asymptotically negligible) if

lim
n→∞

sup
k
E[|Xnk| ∧ 1] = 0
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Lindeberg conditions

Theorem 14.16 Let {Xnk, 1 ≤ k ≤ Nn, n = 1, 2, . . .} be a triangular
array of independent, mean zero random variables, and let Z be standard
normal. Suppose that limn→∞

∑
k E[X2

nk] → 1. Then∑
k

Xnk ⇒ Z and sup
k
E[X2

nk] → 0

if and only if for each ε > 0,

lim
n→∞

∑
k

E[X2
nk1{|Xnk|>ε] = 0.
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Proof. Let {ξnk} be independent Gaussian (normal) random vari-
ables with E[ξnk] = 0 and V ar(ξnk) = V ar(Xnk). For 0 ≤ m ≤ mn,
define

Z(m)
n =

m∑
k=1

Xnk +

mn∑
k=m+1

ξnk, Ẑ(m)
n =

m−1∑
k=1

Xnk +

mn∑
k=m+1

ξnk

Then for f ∈ C∞
c (R),

f(Z(n)
n )− f(Z(0)

n ) =
mn∑

m=1

(f(Z(m)
n )− f(Z(m−1)

n ))

=
mn∑

m=1

(
f ′(Ẑ(m)

n )(Xnm − ξnm) +
1

2
f ′′(Ẑ(m)

n )(X2
nm − ξ2

nm)

+R(Ẑ(m)
n , Xnm)−R(Ẑ(m)

n , ξnm)
)
,
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Consequently,

|E[f(Z(n)
n )]− E[f(Z(0)

n )]|

≤
mn∑

m=1

E[X2
nm sup

|u−v|≤|Xnm|
|f ′′(u)− f ′′(v)|]

+

mn∑
m=1

E[ξ2
nm sup

|u−v|≤|ξnm|
|f ′′(u)− f ′′(v)|]

≤ 2‖f ′′‖
mn∑

m=1

E[X2
nm1{|Xnm|>ε}]

+

mn∑
m=1

E[X2
nm] sup

|u−v|≤ε

|f ′′(u)− f ′′(v)|

+

mn∑
m=1

E[ξ2
nm sup

|u−v|≤|ξnm|
|f ′′(u)− f ′′(v)|] → 0.

For the converse, see Theorem 5.15 in Kallenberg. �
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Types of convergence
Consider

a) Xn → X almost surely

b) Xn → X in probability

c) Xn ⇒ X (Xn converges to X is distribution)

Lemma 14.17 Xn → X in probability if and only if E[|Xn−X| ∧ 1] → 0.

Lemma 14.18 Almost sure convergence implies convergence in probabil-
ity. Convergence in probability implies convergence in distribution.
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Proof. If Xn → X almost surely, the E[|Xn − X| ∧ 1] → 0 by the
bounded convergence theorem.

If g ∈ C∞
c (R), then |g(x)−g(y)| ≤ (‖g′‖|x−y|)∧(2‖g‖). Consequently,

if Xn → X in probability,

|E[g(Xn)]− E[g(X)]| ≤ (2‖g‖) ∨ ‖g′‖E[|Xn −X| ∧ 1] → 0.

�
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Skorohod representation theorem

Theorem 14.19 If Xn ⇒ X , then there exists a probability space and ran-
dom variable X̃n, X̃ such that µX̃n

= µXn
, µX̃ = µX , and X̃n → X̃ almost

surely.

Proof. Define

Gn(y) = inf{x : P{Xn ≤ x} ≥ y}, G(y) = inf{x : P{X ≤ x} ≥ y}.

Let ξ by uniform [0, 1]. Then G(ξ) ≤ x if and only if P{X ≤ x} ≥ ξ,
so

P{G(ξ) ≤ x} = P{P{X ≤ x} ≥ ξ} = P{X ≤ x}.
FXn

(x) → FX(x) for all but countably many x implies Gn(y) → G(y)
for all but countably many y. �
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Continuous mapping theorem

Theorem 14.20 LetH : R → R, and letCH = {x : H is continuous at x}.
If Xn ⇒ X and P{X ∈ CH} = 1, then H(Xn) ⇒ H(X).

Proof. The result follows immediately from the Skorohod represen-
tation theorem. �
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Convergence in distribution in Rd

Definition 14.21 {µn} ⊂ P(Rd) is tight if and only if for each ε > 0 there
exists a Kε > 0 such that supn µn(BKε

(0)c) ≤ ε.

Definition 14.22 {Xn} in Rd is tight if and only if for each ε > 0 there
exists a Kε > 0 such that supn P{|Xn| > Kε} ≤ ε.

Lemma 14.23 Let Xn = (Xn
1 , . . . , X

n
d ). Then {Xn} is tight if and only if

{Xn
k } is tight for each k.

Proof. Note that

P{|Xn| ≥ K} ≤
d∑

k=1

P{|Xn
k | ≥ d−1K}

�
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Tightness implies relative compactness

Lemma 14.24 If {Xn} ⊂ Rd is tight, then there exists a subsequence {nk}
and a random variable X such that Xnk ⇒ X .

Proof. Since {Xn} is tight, for ε > 0, there exists a K > 0 such that

|ϕXn(θ1)− ϕXn(θ2)| = K|θ1 − θ2|P{|X| ≤ K}+ 2P{|X| > K}
≤ K|θ1 − θ2|+ 2ε,

which implies that {ϕXn(θ)} is uniformly equicontinuous. Selecting a
subsequence along which ϕXn(θ) converges for every θ with rational
components, and by the equicontinuity, for every θ. Equicontinuity
also implies that the limit is continuous, so the limit is the character-
istic function of a probability distribution. �
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Convergence determining sets in Rd

Lemma 14.25 Cc(Rd) is convergence determining.

Proof. Assume limn→∞E[f(Xn)] = E[f(X)] for all f ∈ Cc(Rd). Let
fK(x) ∈ Cc(Rd) satisfy 0 ≤ fK(x) ≤ 1, fK(x) = 1, |x| ≤ K, and
fK(x) = 0, |x| ≥ K + 1. Then E[fK(Xn)] → E[fK(X)] implies

lim sup
n→∞

P{|Xn| ≥ K + 1} ≤ P{|X| ≥ K},

and for g ∈ Cb(Rd),

lim sup
n→∞

|E[g(Xn)]− E[g(Xn)fK(Xn)]| ≤ ‖g‖E[1− fK(X)].

Since limK→∞E[1− fK(X)] = 0, by Problem 19,

lim
n→∞

E[g(Xn)] = lim
K→∞

lim
n→∞

E[g(Xn)fK(Xn)] = lim
K→∞

E[g(X)fK(X)] = E[g(X)]

�
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Convergence by approximation

Lemma 14.26 Suppose that for each ε > 0, there exists Xn,ε such that

P{|Xn −Xn,ε| > ε} ≤ ε,

and thatXn,ε ⇒ Xε. Then there existX such thatXε ε→0⇒ X andXn ⇒ X .

Proof. Since |eiθ·x − eiθ·y| ≤ |θ||x− y|,

|ϕXn(θ)− ϕXn,ε(θ)| ≤ |θ|ε(1− ε) + 2ε.

By Problem 19,
lim
n→∞

ϕXn(θ) = lim
ε→∞

ϕXn,ε(θ)

�
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Convergence in distribution of independent random vari-
ables

Lemma 14.27 For each n, suppose that {Xn
1 , . . . , X

n
d } are independent,

and assume thatXn
k ⇒ Xk, k = 1, . . . , d. Then (Xn

1 , . . . , X
n
d ) ⇒ (X1, . . . , Xd),

where X1, . . . , Xd are independent.
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Continuous mapping theorem

Theorem 14.28 Suppose {Xn} in Rd satisfies Xn ⇒ X and F : Rd → Rm

is continuous. Then F (Xn) ⇒ F (X).

Proof. Let g ∈ Cb(Rm). Then g ◦ F ∈ Cb(Rd) and E[g(F (Xn))] →
E[g(F (X))]. �
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Convergence in R∞

R∞ is a metric space with metric

d(x, y) =
∑

k

2−k|x(k) − y(k)| ∧ 1

Note that xn → x in R∞ if and only if x(k)
n → x(k) for each k.

Lemma 14.29 Xn ⇒ X in R∞ if and only if (X(1)
n , . . . , X

(d)
n ) ⇒ (X(1), . . . , X(d))

for each d.
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15. Poisson convergence and Poisson processes

• Poisson approximation of the binomial distribution

• The Chen-Stein method

• Poisson processes

• Marked Poisson processes

• Poisson random measures

• Compound Poisson distributions
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Poisson approximation of the binomial distribution

Theorem 15.1 Let Sn be binomially distributed with parameters n and pn,
and suppose that limn→∞ npn = λ. Then {Sn} converges in distribution to
a Poisson random variable with parameter λ.

Proof. Check that

lim
n→∞

P{Sn = k} = lim
n→∞

(
n

k

)
pk

n(1− pn)
n−k = e−λλ

k

k!

or note that

E[eiθSn] = ((1− pn) + pne
iθ)n → eλ(eiθ−1).

�
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A characterization of the Poisson distribution

Lemma 15.2 A nonnegative, integer-valued random variable Z is Poisson
distributed with parameter λ if and only if

E[λg(Z + 1)− Zg(Z)] = 0 (15.1)

for all bounded g.

Proof. Let gk(j) = δjk. Then (15.1) implies

λP{Z = k − 1} − kP{Z = k} = 0

and hence

P{Z = k} =
λk

k!
P{Z = 0}.

�
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The Chen-Stein equation

Let Zλ denote a Poisson distributed random variable with E[Zλ] = λ.

Lemma 15.3 Let h be bounded and E[h(Zλ)] = 0. Then there exists a
bounded function g such that

λg(k + 1)− kg(k) = h(k), k ∈ N.

Proof. Let g(0) = 0 and define recursively

g(k + 1) =
1

λ
(h(k) + kg(k)).

γ(k) = λkg(k)
(k−1)! . Then

γ(k + 1) = γ(k) +
λkh(k)

k!
=

k∑
l=0

λl

l!
h(l) = −

∞∑
l=k+1

λl

l!
h(l)
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and

g(k + 1) =
k!

λk+1

k∑
l=0

λl

l!
h(l) = − k!

λk+1

∞∑
l=k+1

λl

l!
h(l),

and hence, for k + 2 > λ

|g(k + 1)| ≤ ‖h‖
∞∑

j=0

λj

(k + 1 + j)!/k!
≤ ‖h‖

(k + 1)

k + 2

k + 2− λ

�
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Poisson error estimates

Lemma 15.4 LetW be a nonnegative, integer-valued random variable. Then

P{W ∈ A} − P{Zλ ∈ A} = E[λgλ,A(W + 1)−Wgλ,A(W )]

where gλ,A is the solution of

λgλ,A(k + 1)− kgλ,A(k) = 1A(k)− P{Zλ ∈ A}
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Sums of independent indicators

Let {Xi} be independent with P{Xi = 1} = 1 − P{Xi = 0} = pi, and define
W =

∑
i, and Wk = W −Xk. Then

E[Wg(W )] =
∑

i

E[Xig(Wi + 1)] =
∑

i

piE[g(Wi + 1)]

and setting λ =
∑

i pi,

E[λg(W + 1)−Wg(W )] =
∑

i

piE[g(W + 1)− g(Wi + 1)]

=
∑

i

piE[Xi(g(Wi + 2)− g(Wi + 1)]

=
∑

i

p2
iE[(g(Wi + 2)− g(Wi + 1)]

and hence

|P{W ∈ A} − P{Zλ ∈ A}|
≤
∑

i

p2
i max(sup

k≥1
(gλ,A(k + 1)− gλ,A(k)), sup

k≥1
(gλ,Ac(k + 1)− gλ,Ac(k))).
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Estimate on g

Lemma 15.5 For every A ⊂ N,

sup
k≥1

(gλ,A(k + 1)− gλ,A(k)) ≤ 1− e−λ

λ

Proof. See Lemma 1.1.1 of [1]. �
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Bernoulli processes

For each n = 1, 2, . . ., let {ξn
k} be a sequence of Bernoulli trials with

P{ξn
k = 1} = pn, and assume that npn → λ. Define

Nn(t) =
∑[nt]

k=1 ξ
n
k

τn
l = inf{t : Nn(t) = l}
γn

l = τn
l − τn

l−1.

.

Lemma 15.6 For t0 = 0 < t1 < · · · < tm, then Nn(tk) − Nn(tk−1),
k = 1, . . . ,m, are independent and converge in distribution to independent
Poisson random variables.
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Interarrival times

Lemma 15.7 {γn
l } are independent and identically distributed.

Proof. To simplify notation, let n = 1. Define Fk = σ(ξi, i ≤ k).
Compute

P{γl+1 > m|Fτl
} =

∑
k

E[1{ξτl+1=···=ξτl+m=0}|Fk]1{τl=k}

=
∑

k

E[1{ξk+1=···=ξk+m=0}|Fk]1{τl=k}

= (1− p1)
m

�
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Convergence of the interarrival times

Lemma 15.8 (γn
1 , γ

n
2 , . . .) ⇒ (γ1, γ2, . . .) where the γk are independent ex-

ponentials.

Proof. By Lemmas 14.27 and 14.29, it is enough to show the conver-
gence of {γn

k} for each k. Note that

P{γn
k > s} = P{nγn

k > [ns]} = (1− pn)
[ns] → e−λs.

�
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Continuous time stochastic processes

Definition 15.9 A family of σ-algebras {Ft} = {Ft, t ≥ 0} is a filtration,
if s < t implies Fs ⊂ Ft.

A stochastic process X = {X(t), t ≥ 0} is adapted to {Ft} if X(t) is
Ft-measurable for each t ≥ 0.

A nonnegative random variable τ is a {Ft}-stopping time if {τ ≤ t} ∈ Ft

for each t ≥ 0.

A stochastic process X is a {Ft}-martingale (submartingale, super-
martingale) if X is {Ft}-adapted and

E[X(s)|Ft] = (≥,≤)X(t), ∀t < s.

A stochastic process is cadlag (continue à droite limite à gauche), if for
each (or almost every) ω ∈ Ω, t → X(t, ω) is right continuous and has a
left limit at each t > 0.
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The Poisson process

The convergence in distribution of the increments and interarrival
times suggest convergence (in some sense) of the Bernoulli process
to a process N with independent, Poisson distributed increments.
Convergence of the interarrival times suggests defining

N(t) = max{l :
l∑

k=1

γk ≤ t},

so that N is a cadlag, piecewise constant process.

Defined this way, the Poisson process is an example of a renewal process.

Setting FN
t = σ(N(s) : s ≤ t), the jump times

τl = inf{t : N(t) ≥ l}

are {FN
t }-stopping times.
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Relationship between N and {τl}

Note that

P{τl > t} = P{N(t) < l} =
l−1∑
k=0

e−λt (λt)
k

k!

and differentiating

fτl
(t) =

λltl−1

(l − 1)!
e−λt.
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Martingale properties

If N is a Poisson process with parameter λ, then

M(t) = N(t)− λt

is a martingale.

Theorem 15.10 (Watanabe) If N is a counting process and

M(t) = N(t)− λt

is a martingale, N is a Poisson process with parameter λ.
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Proof.

E[eiθ(N(t+r)−N(t))|FN
t ]

= 1 +
n−1∑
k=0

E[(eiθ(N(sk+1)−N(sk) − 1− (eiθ − 1)(N(sk+1)−N(sk))e
iθ(N(sk)−N(t))|FN

t ]

+
n−1∑
k=0

λ(sk+1 − sk)(e
iθ − 1)E[eiθ(N(sk)−N(t))|FN

t ]

The first term converges to zero by the dominated convergence the-
orem, so we have

E[eiθ(N(t+r)−N(t))|FN
t ] = 1 + λ(eiθ − 1)

∫ r

0
E[eiθ(N(t+s)−N(t))|FN

t ]ds

and E[eiθ(N(t+r)−N(t))|FN
t ] = eλ(eiθ−1)t. Since {eiθx : θ ∈ R} is separat-

ing, N(t+ r)−N(t) is independent of FN
t . �
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Thinning Poisson processes

Theorem 15.11 Let N be a Poisson process with parameter λ, and let {ξk}
be a Bernoulli sequence with P{ξk = 1} = 1− P{ξk = 0} = p. Define

N1(t) =

N(t)∑
k=1

ξk, N2(t) =

N(t)∑
k=1

(1− ξk).

Then N1 and N2 are independent Poisson processes with parameter λp and
λ(1− p) respectively.
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Proof. Consider

E[ei(θ1N1(t)+θ2N2(t))] = E[exp{i
N(t)∑
k=1

((θ1 − θ2)ξk + θ2)}]

= E[(eiθ1p+ eiθ2(1− p))N(t)]

= exp{λ((eiθ1p+ eiθ2(1− p))− 1)

= eλp(eiθ1−1)eλ(1−p)(eiθ2−1).

By a similar argument, for 0 = t0 < · · · < tm, N1(tk) − N1(tk−1),
N2(tk)−N2(tk−1), k = 1, . . . ,m are independent Poisson distributed.

σ(Ni) = σ(Ni(s), s ≥ 0) = ∨nσ(Ni(2
−n), Ni(2× 2−n), Ni(3× 2−n . . .),

so independence of σ(N1(2
−n), N1(2× 2−n), N1(3× 2−n . . .)

and σ(N2(2
−n), N2(2 × 2−n), N2(3 × 2−n . . .) implies independence of

σ(N1) and σ(N2). �
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Sums of independent Poisson processes

Lemma 15.12 If Nk, k = 1, 2, . . . are independent Poisson processes with
parameters λk satisfying λ =

∑
k λk < ∞, then N =

∑
k Nk is a Poisson

process with parameter λ.
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Marked Poisson processes

Let N be a Poisson process with parameter λ, and let {ηk} be inde-
pendent and identically distributed Rd-valued random variable.

Assign ηk to the kth arrival time for N . ηk is sometimes refered to as
the mark associated with the kth arrival time.

Note that for A ∈ B(Rd)

N(A, t) = #{k : τk ≤ t, ηk ∈ A} =

N(t)∑
k=1

1A(ηk)

is a Poisson process with parameter λµη(A), and that for disjoint
A1, A2, . . ., N(Ai, ·) are independent.
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Space-time Poisson random measures

Theorem 15.13 Let ν be a σ-finite measure on Rd. Then there exists a
stochastic process {N(A, t) : A ∈ B(Rd), t ≥ 0}, such that for each A

satisfying ν(A) < ∞, N(A, ·) is a Poisson process with parameter ν(A)
and for A1, A2, . . . disjoint with ν(Ai) <∞, N(Ai·) are independent.
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Proof. Let {Dm} be disjoint with ∪mDm = Rd and ν(Dm) < ∞, let
{Nm} be independent Poisson processes with parameters ν(Dm), and
let {ηm

k } be independent random variables with

P{ηm
k ∈ A} =

ν(A ∩Dm)

ν(Dm)
.

Then for each A ∈ B(Rd) with ν(A) <∞, set

N(A, t) =
∑
m

Nm(t)∑
k=1

1A(ηm
k ) =

∑
m

Nm(t)∑
k=1

1A∩Dm
(ηm

k ).

Note that
∑Nm(t)

k=1 1A∩Dm
(ηm

k ) is a Poisson process with parameter ν(Dm)×
ν(A∩Dm)

ν(Dm) = ν(A ∩Dm). �
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Poisson approximation to multinomial

Theorem 15.14 Let {ηn
k} be independent with values in {0, 1, . . . ,m}, and

let pn
kl = P{ηn

kl = l}. Suppose that supk P{ηn
kl > 0} → 0 and

∑
k P{ηn

kl =
l} → λl for l > 0. Define Nn

l = #{k : ηn
kl = l}, l = 1, . . . ,m. Then

(Nn
1 , . . . , N

n
m) ⇒ (N1, . . . , Nm), where {Nl} are independent Poisson dis-

tributed random variables with E[Nl] = λl.
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Compound Poisson distributions

Let ν be a finite measure on R and let N be the Poisson random mea-
sure satisfying N(A) Poisson distributed with parameter ν(A). Then
writing

N =

N(R)∑
k=1

δXk

whereN(R) is Poisson distributed with parameter ν(R) and the {Xk}
are independent with distribution µ(A) = ν(A)

ν(R) ,

Y =

∫
R
xN(dx) =

N(R)∑
k=1

Xk

has distribution satisfying

ϕY (θ) = E[ϕX(θ)N(R)] = e
∫

R(eiθx−1)ν(dx) (15.2)
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16. Infinitely divisible distributions

• Other conditions for normal convergence

• More general limits

• Infinitely divisible distributions

• Stable distributions



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 284

Conditions for normal convergence

Theorem 16.1 Let {ξnk} be a null array (uniformly asymptotically negli-
gible). Then Zn =

∑
k ξnk converges in distribution to Gaussian random

variable Z with E[Z} = µ and V ar(Z) = σ2 if and only if the following
conditions hold:

a) For each ε > 0,
∑

k P{|ξnk| > ε} → 0.

b)
∑

k E[ξnk1{|ξnk|≤1}] → µ.

c)
∑

k V ar(ξnk1{|ξnk|≤1}) → σ2.
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Proof. Let Ẑn =
∑

k ξnk1{|ξnk|≤1}. Then

P{Zn 6= Ẑn} ≤
∑

k

P{|ξnk| > 1} → 0,

so it is enough to show Ẑn ⇒ Z. Let

ζnk = ξnk1{|ξnk|≤1} − E[ξnk1{|ξnk|≤1}].

Then noting that ηn = maxk |E[ξnk1{|ξnk|≤1}]| → 0,∑
k

E[ζ2
nk1{|ζnk|>ε}] ≤ (1 + ηn)

2
∑

k

P{|ξnk| > ε− ηn} → 0,

Theorem 14.16 implies Ẑn ⇒ Z. �
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The iid case

Theorem 16.2 Let ξk be iid and let an → ∞. Define µn = E[ξ1{|ξ|≤an}].
Suppose that for each ε > 0,

lim
n→∞

nP{|ξ| > anε} = 0

and that
lim
n→∞

n

a2
n

(E[ξ21{|ξ|≤an}]− µ2
n) = σ2.

Then ∑n
k=1 ξk − nµn

an
⇒ Z

where Z is normal with E[Z] = 0 and V ar(Z) = σ2.
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An example of normal convergence with infinite vari-
ance

Example 16.3 Let

fξ(x) =

{
2x−3 x ≥ 1

0 otherwise.

Then
n

a2
n

E[ξ21{|ξ|≤an}] = 2
n

a2
n

log n→ 2, µn = 2(1− a−1
n ) → 2,

and taking an =
√
n log n,

nP{|ξ| > anε} = n
1

(anε)2 → 0.

Consequently, for Z normal with mean zero and variance 2,∑n
k=1 ξk − 2n(1− a−1

n )

an
⇒ Z.
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More general limits

Let {ξnk} be a null array, but suppose that Condition (a) of Theorem
16.1 fails. In particular, suppose

lim
n→∞

∑
k

P{ξnk > z} = H+(z), lim
n→∞

∑
k

P{ξnk ≤ −z} = H−(z)

for all but countably many z > 0. (Let D be the exceptional set.)

For ai, bi /∈ D and 0 < ai < bi or ai < bi < 0, define Nn(ai, bi] = #{k :
ξnk ∈ (ai, bi]}. Then

(Nn(a1, b1], Nn(a2, b2], . . .) ⇒ (N(a1, b1], N(a2, b2], . . .) (16.1)

where N(a, b] is Poisson distributed with expectation H+(a)−H+(b)
if 0 < a < b and expectation H−(b) − H−(a) if a < b < 0 and
N(a1, b1], . . . , N(am, bm] are independent if (a1, b1], . . . , (am, bm] are dis-
joint. (See Theorem 15.14.)
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Compound Poisson part

Lemma 16.4 Assume that for all but countably many z > 0,

lim
n→∞

∑
k

P{ξnk > z} = H+(z), lim
n→∞

∑
k

P{ξnk ≤ −z} = H−(z),

(16.2)
and let CH be the collection of z such that H+ and H− are continuous at z.
Let ν be the measure on R satisfying ν{0} = 0 and ν(z,∞) = H+(z) and
ν(−∞,−z) = H−(z) for all z ∈ CH . Then for each ε > 0, ε ∈ CH ,

Y ε
n =

∑
k

ξnk1{|ξnk|>ε} ⇒ Y ε (16.3)

where Y ε is compound Poisson with distribution determined by ν restricted
to (−∞,−ε)| ∪ (ε,∞), that is

ϕY ε(θ) = e
∫
[−ε,ε]c

(eiθx−1)ν(dx) (16.4)
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Proof. Let
N ε

n(a, b] = #{k : ξnk ∈ (a, b] ∩ [−ε, ε]c}.
Then∑

ajN
ε
n(aj, aj+1] ≤

∑
k

ξnk1{|ξnk|>ε} ≤
∑

aj+1N
ε
n(aj, aj+1].

Assuming that aj ∈ CH , by (16.1)

E[eiθ
∑

j ajN
ε
n(aj ,aj+1]] →

∏
ϕN ε(aj ,aj+1](ajθ) = e

∑
j νε(aj ,aj+1](e

iθaj−1).

Taking a limit as max(aj+1−aj) → 0 gives the rightside of (16.4). The
convergence in (16.3) follows by Problem 24. �
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Gaussian part

Lemma 16.5 Suppose

lim
ε→0

lim
n→∞

∑
k

V ar(ξnk1{|ξnk|≤ε}) = σ2, (16.5)

then there exist εn → 0 such that∑
k

ξnk1{|ξnk|≤εn} −
∑

k

E[ξnk1{|ξnk|≤εn}] ⇒ Z,

where Z is normal with E[Z] = 0 and V ar(Z) = σ2.
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General limit theorem

Theorem 16.6 Suppose that {ξnk} is a null array satisfying (16.2) and
(16.5). Then for τ ∈ CH ,

Zn =
∑

k

(ξnk − E[ξnk1{|ξnk|≤τ}])

converges in distribution to a random variable Z with

ϕZ(θ) = exp{−σ
2

2
θ2 +

∫
R
(eiθz − 1− 1[−τ,τ ](z)ziθ)ν(dz)}
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Proof. Let

Zn =
∑

k

ξnk1{|ξnk|≤ε} −
∑

k

E[ξnk1{|ξnk|≤ε}]

+
∑

k

(ξnk1{|ξnk|>ε} − E[ξnk1{ε<|ξnk|≤τ}])

= Zε
n + Y ε

n − Aε
n

Then
Aε

n =
∑

k

E[ξnk1{ε<|ξnk|≤τ}] →
∫

[−τ,−ε)∪(ε,τ ]
zν(dz)

and

E[eiθ(Y ε
n−Aε

n)] → exp{
∫

[−ε,ε]c
(eiθz − 1− 1[−τ,τ ](z)ziθ)ν(dz)}.

In addition,

|E[eiθZn]− E[eiθZε
n]E[eiθ(Y ε

n−Aε
n)]|
≤
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�
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Infinitely divisible distributions

Lemma 16.7 Let σ2, τ > 0, a ∈ R, and ν a measure on R− {0} satisfying∫
R |z|

2 ∧ 1ν(dz) <∞. Then

ϕZ(θ) = exp{σ
2

2
θ2 + iaθ +

∫
R
(eiθz − 1− iθz1[−τ,τ ](z))ν(dz)} (16.6)

is the characteristic function of a random variable satisfying

Z = σZ0 + a+

∫
[−τ,τ ]

zξ̃(dz) +

∫
[−τ,τ ]c

zξ(dz)

whereZ0 is standard normal, ξ is a Poisson random measure withE[ξ(A)] =
ν(A) independent of Z0, and ξ̃ = ξ − ν. The first integral is defined by∫

[−τ,τ ]
zξ̃(dz) = lim

n→∞
(

∫
[−τ,−εn]

zξ̃(dz) +

∫
[δn,τ ]

zξ̃(dz)) (16.7)

for any sequences εn, δn that decrease to zero.
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Proof. Note that

M+
n =

∫
[δn,τ ]

zξ̃(dz)), M−
n =

∫
[−τ,−εn]

zξ̃(dz)

are martingales satisfying

E[(M+
n )2] =

∫
[δn,τ ]

z2ν(dz)), E[(M−
n )2] =

∫
[−τ,−εn]

z2ν(dz)),

and the limit in (16.7) exists by the martingale convergence theorem.
The form of the characteristic function then follows by (15.2). �
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Property of infinite divisibility

Lemma 16.8 Let ϕZ be given by (16.6), and define

ϕZn
(θ) = exp{σ

2

n2
θ2 + i

a

n
θ+

1

n

∫
R
(eiθz−1− iθz1[−τ,τ ](z))ν(dz)}. (16.8)

Then (16.8) defines a characteristic functions and if Z(k)
n are iid with that

distribution, then
n∑

k=1

Z(k)
n

has the same distribution as Z.
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Regular variation

Lemma 16.9 Let U be a positive, monotone function on (0,∞). Suppose
that

lim
t→∞

U(tx)

U(t)
= ψ(x) ≤ ∞

for x in a dense set of points D. Then

ψ(x) = xρ,

for some −∞ ≤ ρ ≤ ∞.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 299

Proof. Since
U(tx1x2)

U(t)
=
U(tx1x2)

U(tx1)

U(tx1)

U(t)
,

if ψ(x1) and ψ(x2) are finite and positive, then so is

ψ(x1x2) = ψ(x1)ψ(x2). (16.9)

If ψ(x1) = ∞, then ψ(xn
1) = ∞ and ψ(x−n

1 ) = 0 for all n = 1, 2, . . .. By
monotonicity, either ψ(x) = x∞ or x−∞. If 0 < ψ(x) < ∞, for some
x ∈ D, then by monotonicity 0 < ψ(x) <∞ for all x ∈ D. Extending
ψ to a right continuous function, (16.9) holds for all x1, x2. Setting
γ(y) = logψ(ey), we have γ(y1 + y2) = γ(y1) + γ(y2), monotonicity
implies γ(y) = ρy for some ρ, and hence, ψ(x) = xρ for some ρ. �
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Renormalized sums of iid random variables

Let X1, X2, . . . be iid with cdf F , and consider

Zn =
1

an

n∑
k=1

(Xk − bn),

where 0 < an →∞ and bn ∈ R. Setting

ξnk =
Xk − bn
an

,∑
k

P{ξnk > z} = n(1− F (anz + bn))

and ∑
k

P{ξnk ≤ −z} = nF (−anz + bn)
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A convergence lemma

Lemma 16.10 Suppose that F is a cdf and that for a dense set D of z > 0,

lim
n→∞

n(1−F (anz+bn)) = V +(z) ≥ 0, lim
n→∞

nF (−anz+bn)) = V −(z) ≥ 0

where V +(z), V −(z) < ∞, limz→∞ V
+(z) = limz→∞ V

−(z) = 0, and
there exists ε > 0 such that for

µε
n =

∫ anε+bn

−anε+bn

(z − bn)dF (z),

lim sup
n→∞

na−2
n

∫ anε+bn

−anε+bn

(z − bn − µε
n)

2dF (z) <∞.

Then limn→∞ a
−1
n bn = 0, and if V +(z) > 0 for some z > 0, V +(z) =

λ+z−α, 0 < α < 2, and similarly for V −.
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Proof. For z > 0, we must have

lim
n→∞

anz + bn = ∞, lim
n→∞

−anz + bn = −∞

which implies lim sup |a−1
n bn| ≤ z. Since z can be arbitrarily small,

limn→∞ a
−1
n bn = 0.

If V +(z) > 0, then there exists ẑ > 0 such that V +(ẑ − δ) > V +(ẑ + δ)
for all δ > 0. For each z ∈ D, z < ẑ, we must have lim sup an+1

an
z < ẑ+δ,

δ > 0. Consequently, limn→∞
an+1

an
= 1. Let N(t) = n, if an ≤ t < an+1.

Then

lim
t→∞

1− F (xt)

1− F (x̂t)
= lim

t→∞

1− F (aN(t)(x
t

aN(t)
− bN(t)

aN (t)) + bN(t))

1− F (aN(t)(x̂
t

aN(t)
− bN (t)

aN (t)) + bN(t))
=
V +(x)

V +(x̂)

for each x, x̂ that are points of continuity of the right continuous ex-
tension of V +. It follows that V +(x) = α−1λ+x−α for some −α = ρ <

0.
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To see the α < 2, assume for simplicity that F is symmetric so that
bn = µε

n = 0 and V + = V −. Then by Fatou’s lemma,

lim sup
n→∞

na−2
n

∫ anε

−anε

z2dF (z) = lim sup 4n

∫ ε

0
u(F (anε)− F (anu))du

≥ 4

∫ ε

0
u(V +(u)− V +(ε))du

= 4

∫ ε

0
uλ+(u−α − ε−α)du,

and we must have α < 2. �
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Stable distributions

Let

ϕZ(θ) = exp{iaθ +

∫ ∞

0
(eiθz − 1− iθz1[−τ,τ ](z))

λ+

zα+1dz

+

∫ 0

−∞
(eiθz − 1− iθz1[−τ,τ ](z))

λ−

|z|α+1dz}

Then Z is stable in the sense that if Z1 and Z2 are independent copies
of Z, then there exist a, b such that

Ẑ =
Z1 + Z2 − b

c

has the same distribution as Z.
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ϕẐ(θ) = exp{ib
c
θ + iaθ + 2

∫ ∞

0
(eiθc−1z − 1− iθc−1z1[−τ,τ ](z))

λ+

zα+1dz

+2

∫ 0

−∞
(eiθc−1z − 1− iθc−1z1[−τ,τ ](z))

λ−

|z|α+1dz}

= exp{ib
c
θ + iaθ + 2

∫ ∞

0
(eiθz − 1− iθz1[−τ,τ ](cz))

λ+

cα+1zα+1cdz

+2

∫ 0

−∞
(eiθz − 1− iθz1[−τ,τ ](cz))

λ−

cα+1|z|α+1cdz}

so cα = 2 (c = 2
1
α ) and

b

c
=

∫ ∞

0
z(1[−τ,τ ](cz))− 1[−τ,τ ](z))

λ+

zα+1dz

+

∫ 0

−∞
z(1[−τ,τ ](cz)− 1[−τ,τ ](z))

λ−

|z|α+1dz
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17. Martingale central limit theorem

• A convergence lemma

• Martingale central limit theorem

• Martingales associated with Markov chains

• Central limit theorem for Markov chains



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 307

A convergence lemma

The proof of the martingale central limit theorem given here follows
Sethuraman [4].

Lemma 17.1 Suppose

1. Un → a in probability

2. {Tn} and {|TnUn|} are uniformly integrable

3. E[Tn] → 1

Then E[TnUn] → a.

Proof. The sum of uniformly integrable random variables is uni-
formly integrable and Tn(Un − a) → 0 in probability, so
E[TnUn] = E[Tn(Un − a)] + E[aTn] → a. �
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Martingale central limit theorem

Definition 17.2 {ξk} is a martingale difference array with respect to {Fk}
if {ξk} is {Fk} adapted and E[ξk+1|Fk] = 0 for each k = 0, 1, . . ..

Theorem 17.3 For each n let {Fn
k } be a filtration and {ξn

k} be a martin-
gale difference array with respect to {Fn

k }, that is, Xn
k =

∑k
j=1 ξ

n
j is an

{Fn
k }-martingale. Suppose that E[maxj |ξn

j |] → 0 and
∑

j(ξ
n
j )2 → σ2 in

probability. Then
Zn =

∑
j

ξn
j ⇒ Z

where Z is N(0, σ2).
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Proof. Assume that σ2 = 1. Let ηn
1 = ξn

1 and ηn
j = ξn

j 1{
∑

1≤i<j(ξ
n
i )2≤2}.

Then {ηn
j } is also a martingale difference array, and P{

∑
j η

n
j 6=

∑
j ξ

n
j } →

0.

Since

log(1 + ix) =
∞∑

k=1

(−1)k−1

k
(ix)k = ix+

x2

2
+

∞∑
k=3

(−1)k−1

k
(ix)k,

setting

r(x) =
∞∑
l=2

(−1)l

2l
x2l − i

∞∑
l=1

(−1)l

2l + 1
x2l+1,

exp{ix} = (1 + ix) exp{−x
2

2
+ r(x)}

where |r(x)| ≤ C|x|3 for |x| ≤ .5.
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Let Tn =
∏

j(1+iθηn
j ) and Un = exp{−θ2

2

∑
j(η

n
j )2+

∑
j r(θη

n
j )}Clearly,

{TnUn} is uniformly integrable, E[Tn] = 1, and Un → e−θ2/2. We also
claim that {Tn} is uniformly integrable.

|Tn| =
√∏

j

(1 + θ2(ηn
j )2) ≤

√
e2θ2(1 + θ2 max

j
|ξn

j |2).

Consequently, by Lemma 17.1,

E[eiθ
∑

j ηn
j ] = E[TnUn] → e−

θ2

2 .

�
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Markov chains

Let
Xk+1 = F (Xk, Zk+1, β0)

where the {Zk} are iid and X0 is independent of the {Zk}

Lemma 17.4 {Xk} is a Markov chain.
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Martingales associated with Markov chains

Let µZ be the distribution of Zk and define

H(x, β) =

∫
F (x, z, β)µZ(dz) (17.1)

Then

Mn =
n∑

k=1

Xk −H(Xk−1, β0)

is a martingale. Define

Pβf(x) =

∫
f(F (x, z, β))µZ(dz)

Then

M f
n =

n∑
k=1

f(Xk)− Pβ0
f(Xk−1)

is a martingale and by Lemma 12.19, limn→∞
1
nM

f
n = 0 a.s.
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Stationary distributions

π is a stationary distribution for a Markov chain if µX0
= π implies

µXk
= π for all k = 1, 2, . . .

Lemma 17.5 π is a stationary distribution for the Markov chain if and only
if ∫

fdπ =

∫
Pβ0

fdπ
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Ergodicity for Markov chains

Definition 17.6 A Markov chain is ergodic if and only if there is a unique
stationary distribution for the chain.

If {Xk} is ergodic and µX0
= π, then

1

n

n∑
k=1

f(Xk) →
∫
fdπ a.s. and in L1

for all f satisfying
∫
|f |dπ <∞. (This will be proved next semester.)
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Let
Qβh(y) =

∫
h(F (y, z, β), y)µZ(dz)

Then

M̃h
n =

n∑
k=1

h(Xk, Xk−1)−Qβ0
h(Xk−1)

is a martingale. If the chain is ergodic and µX0
= π, then for h satis-

fying
∫
Qβ0

|h|(x)π(dx) <∞

lim
n→∞

1

n

n∑
k=1

h(Xk, Xk−1) =

∫
Qβ0

h(x)π(dx) a.s.
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Central limit theorem for Markov chains

Theorem 17.7 Let {Xk} be a stationary, ergodic Markov chain. Then for
f satisfying

∫
f 2dπ <∞

1√
n
M f

n ⇒ Y f

where Y f is normal with mean zero and variance
∫
f 2dπ −

∫
(Pβ0

f)2dπ.

Proof.

1

n

n∑
k=1

(f(Xk)− Pβ0
f(Xk−1))

2 →
∫
f 2dπ −

∫
(Pβ0

f)2dπ,

and the theorem follows. �
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A parameter estimation problem

Recalling the definition of H (17.1),

E[
n∑

k=1

Xk −H(Xk−1, β0)] = 0

and
n∑

k=1

Xk −H(Xk−1, β) = 0

is an unbiased estimating equation for β0. A solution β̂n is called a mar-
tingale estimator for β0.
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Asymptotic normality

Mn =
n∑

k=1

H(Xk−1, β̂n)−H(Xk−1, β0)

=
n∑

k=1

H ′(Xk−1, β0)(β̂n − β0) +
n∑

k=1

1

2
H ′′(Xk−1, β̃n)(β̂n − β0)

2

and

1√
n
Mn =

(
1

n

n∑
k=1

H ′(Xk−1, β0)

)
√
n(β̂n − β0) +

1

n3/2 (·) (
√
n(β̂n − β0))

2

Therefore, assuming
∫
x2π(dx) <∞ and

∫
H ′(x, β0)π(dx) 6= 0,

√
n(β̂n − β0) ⇒

Y∫
H ′(x, β0)π(dx)

Y normal with E[Y ] = 0 and V ar(Y ) =
∫
x2π(dx)−

∫
H(x, β0)

2π(dx).
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18. Brownian motion

• Random variables in C[0, 1]

• Convergence in distribution in C[0, 1]

• Construction of Brownian motion by Donsker invariance

• Markov property

• Transition density and heat semigroup

• Strong Markov property

• Sample path properties

• Lévy characterization
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The space C[0, 1]

Define
d(x, y) = sup

s≤1
|x(s)− y(s)| ∧ 1

Lemma 18.1 (C[0, 1], d) is a complete, separable metric space.

Proof. If {xn} is Cauchy, there exists a subsequence such that
d(xnk

, xnk+1
) ≤ 2−k. Defining x(t) = limn→∞ xn(t),

|x(t)− xnk
(t)| ≤ 2−k+1

and hence x ∈ C[0, 1] and limn→∞ d(xn, x) = 0.
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To check separability, for x ∈ C[0, 1], let xn be the linear interpolation
of the points (k

n ,
bx( k

n )nc
n ), so

xn(t) =
bx(k

n)nc
n

+ n(t− k

n
)
bx(k+1

n )nc − bx(k
n)nc

n
,

k

n
≤ t ≤ k + 1

n
.

Then

|xn(t)−x(t)| ≤ |x(bntc
n

)−x(t)|+|x(bntc
n

)−
bx(bntc

n )nc
n

|+
|bx(k+1

n )nc − bx(k
n)nc|

n
,

and limn→∞ sup0≤t≤1 |xn(t)− x(t)| = 0. �
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Borel subsets of C[0, 1]

Let πtx = x(t), 0 ≤ t ≤ 1. and define S = σ(πt, 0 ≤ t ≤ 1), that is,
the smallest σ-algebra such that all the mappings πt : C[0, 1] → R are
measurable.

Lemma 18.2 S = B(C[0, 1]).

Proof. Since πt is continuous, S ⊂ B(C[0, 1]). Since for 0 < ε < 1,

B̄ε(y) = {x|d(x, y) ≤ ε} = ∩t∈Q∩[0,1]{x : |x(t)− y(t)| ≤ ε} ∈ S,

and since each open set is a countable union of balls, B(C[0, 1]) ⊂ S.
�
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A convergence determining set

Lemma 18.3 Let (S, d) be a complete, separable metric space, and letCu(S)
denote the space of bounded, uniformly continuous functions on S. Then
Cu(S) is convergence determining.

Proof. For g ∈ C̄(S), define

gl(x) = inf
y

(g(y) + ld(x, y)), gl(x) = sup
y

(g(y)− ld(x, y))

and note that gl(x) ≤ g(x) ≤ gl(x) and

lim
l→∞

gl(x) = lim
l→∞

gl(x) = g(x).

Then

gl(x1)− gl(x2) ≥ inf
y
l(d(x1, y)− d(x2y) ≥ −ld(x1, x2),

and it follows that |gl(x1) − gl(x2)| ≤ ld(x1, x2), so gl ∈ Cu(S). Simi-
larly, gl ∈ Cu(S).
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Suppose limn→∞E[f(Xn)] = E[f(X)] for each f ∈ Cu(S). Then for
each l,

E[gl(X)] = lim
n→∞

E[gl(Xn)] ≤ lim inf
n→∞

E[g(Xn)] ≤ lim sup
n→∞

E[g(Xn)]

≤ lim
n→∞

E[gl(Xn)] = E[gl(X)].

But liml→∞E[gl(X)] = liml→∞E[gl(X)] = E[g(X)], so

lim
n→∞

E[g(Xn)] = E[g(X)].

�
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Tightness of probability measures

Lemma 18.4 Let (S, d) be a complete, separable metric space. If µ ∈ P(S),
then for each ε > 0 there exists a compact Kε ⊂ S such that µ(Kε) ≥ 1− ε.

Proof. Let {xi} be dense in S, and let ε > 0. Then for each k, there
exists Nk such that

µ(∪Nk

i=1B2−k(xi)) ≥ 1− ε2−k.

Setting Gk,ε = ∪Nk

i=1B2−k(xi), define Kε to be the closure of ∩k≥1Gk,ε.
Then

µ(Kε) ≥ 1− µ(∪kG
c
k,ε) ≥ 1− ε.

�
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Prohorov’s theorem

Theorem 18.5 {µXα
, α ∈ A} ⊂ P(S) is relatively compact in the weak

topology if and only if for each ε > 0, there exists a compact Kε ⊂ S such
that

inf
α∈A

P{Xα ∈ Kε} ≥ 1− ε. tightness

Corollary 18.6 Suppose that for each k, {Xk
α} is relatively compact in con-

vergence in distribution in (Sk, dk). Then {(X1
α, X

2
α, · · ·)} is relatively com-

pact in (
∏
Sk, d),

d(x, y) =
∑

k

2−kdk(xk, yk) ∧ 1.
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Convergence based on approximation

Lemma 18.7 Let {Xn} be a sequence of S-valued random variables. Sup-
pose that for each ε > 0, there exists {Xε

n} such that E[d(Xn, X
ε
n) ∧ 1] ≤ ε

and Xε
n ⇒ Xε. Then {Xε} converges in distribution to a random varible

X as ε→ 0 and Xn ⇒ X .

Proof. Let Xk
n = X2−k

n . Then {(X1
n, X

2
n, . . .)} is relatively compact in

S∞ and any limit point (X1, X2, . . .) will satisfy E[d(X l, X l+1) ∧ 1] ≤
2−l + 2l+1. Consequently,

X = X1 +
∞∑
l=1

(X l+1 −X l)

exists.
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Let g ∈ Cu(S), and let w(δ) = supd(x,y)≤δ |g(x) − g(y)|. Then for 0 <

ε < 1,

|E[g(Xε
n)]− E[g(Xn)]| ≤ E[w(d(Xn, X

ε
n))]

≤ w(
√
ε) + 2‖g‖∞

√
ε.

It follows that

lim
n→∞

E[g(Xn)] = lim
ε→0

lim
n→∞

E[g(Xε
n)] = E[g(X)].

�
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Convergence in distribution in C[0, 1]

Let Pkx be the linear interpolation of (x(0), x(2−k), . . . , x((2k−1)2−k), x(1)),
that is,

Pkx(t) = x(l2−k)+2k(t−l2−k)(x((l+1)2−k)−x(l2−k)), l2−k ≤ t ≤ (l+1)2−k.

Theorem 18.8 Let {Xn} be C[0, 1]-valued random variables. Then Xn ⇒
X if and only if (Xn(t1), . . . , Xn(tm)) ⇒ (X(t1), . . . , X(tm)), for all t1, . . . , tm ∈
[0, 1] (the finite dimensional distributions converge), and

lim
k→∞

sup
n
E[d(Xn, PkXn)] = 0.

Proof. The theorem is an immediate consequence of Lemma 18.7. �
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Kolmogorov criterion

Lemma 18.9 Suppose thatX takes values inC[0, 1], and there existC, β >
0 and θ > 1 such that

E[|X(t)−X(s)|β ∧ 1] ≤ C|t− s|θ, 0 ≤ t, s ≤ 1.

Then

E[d(X,PkX)] ≤ 2C1/β 2−k θ−1
β

1− 2−
θ−1

β

Proof. If l2−k ≤ t ≤ (l + 1)2−k, then

|X(t)−X(l2−k)| ≤
∞∑

m=k

|X(2−(m+1)bt2m+1c)−X(2−mbt2mc)|

and

|X(t)−X((l + 1)2−k)| ≤
∞∑

m=k

|X(2−(m+1)dt2m+1e)−X(2−mdt2me)|,
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and

|X(t)− PkX(t)| ≤ |X(t)−X(l2−k)|+ |X(t)−X((l + 1)2−k)|.

Let
ηm =

∑
l<2m

|X((l + 1)2−m)−X(l2−m)|β ∧ 1.

Then

|X(t)− PkX(t)| ∧ 1 ≤ 2
∞∑

m=k

η1/β
m ,

and hence

E[d(X,PkX)] ≤ 2
∞∑

m=k

E[ηm]1/β ≤ 2
∞∑

m=k

(2mC2−mθ)1/β = 2C1/β
∞∑

m=k

2−m θ−1
β .

�
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Construction of Brownian motion by Donsker invari-
ance

ξ1, ξ2, . . . iid E[ξ] = 0, V ar(ξ) = 1

Xn(t) =
1√
n

bntc∑
i=1

ξi +
√
n(t− bntc

n
)ξbntc+1.

Then Xn ⇒ W , standard Browian motion.

W is continuous

W has independent increments

E[W (t)] = 0, V ar(W (t)) = t, Cov(W (t),W (s)) = t ∧ s

W is a martingale.
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Proof. For simplicity, assume that E[ξ4
k] <∞. Then, assuming t−s >

n−1,

E[(Xn(t)−Xn(s))
4]

= E[(
√
n(
dnse
n

− s)ξbnsc+1 +
1√
n

bntc∑
k=bnsc+2

ξk +
√
n(t− bntc

n
)ξbntc+1)

4]

≤ C1((
bntc − bnsc+ 1

n
)2 +

1

n

bntc − bnsc+ 1

n
)

≤ C2|t− s|2.

For 0 < t− s ≤ n−1,

E[(Xn(t)−Xn(s))
4] ≤ C(t− s)4n2 ≤ C(t− s)2.

�
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Markov property

X(t) = X(0) +W (t), X(0) independent of W .

T (t)f(x) ≡ E[f(x+W (t))] =

∫ ∞

−∞
f(y)

1√
2πt

e−
(y−x)2

2t dy

E[f(X(t+s))|FX
t ] = E[f(X(t)+W (t+s)−W (t))|FX

t ] = T (s)f(X(t))

and for 0 < s1 < s2

E[f1(X(t+ s1))f2(X(t+ s2))|FX
t ]

= E[f1(X(t+ s1))T (s2 − s1)f2(X(t+ s1))|FX
t ]

= T (s1)[f1T (s2 − s1)f2](X(t))

Theorem 18.10 If Px(B) = P{x+W (·) ∈ B}, B ∈ B(C[0,∞)), then

E[1B(X(t+ ·))|Ft] = PX(t)(B)



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 335

Transition density

The transition density is

p(t, x, y) =
1√
2πt

e−
(y−x)2

2t

which satisfies the Chapman-Kolmogorov equation

p(t+ s, x, y) =

∫
R
p(t, x, z)p(s, z, y)dz

Note that
∂

∂t
T (t)f(x) =

1

2

d2

dx2T (t)f(x)
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Right continuous filtration

E[f(X(t+ s))|FX
t+] = lim

h→0
E[f(X(t+ s))|FX

t+h]

= lim
h→0

T (s− h)f(X(t+ h)) = T (s)f(X(t))

Lemma 18.11 IfZ is bounded and measurable with respect to σ(X(0),W (s), s ≥
0), then

E[Z|FX
t ] = E[Z|FX

t+] a.s.

Proof. Consider

E[
∏

i

fi(X(ti))|FX
t+] = E[

∏
i

fi(X(ti))|FX
t ]

and apply the Dynkin-class theorem. �
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Corollary 18.12 Let F̄X
t be the completion of FX

t . Then F̄X
t = F̄X

t+.

Proof. If C ∈ FX
t+, then E[1C |FX

t ] = 1C a.s. Consequently, setting

Co = {E[1C |FX
t ] = 1} P (Co4C) = 0

�
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Approximation of stopping times by discrete stopping
times

Lemma 18.13 Every stopping time is the limit of a decreasing sequence of
discrete stopping times.

Proof. If τ is a {FX
t }-stopping time, define

τn =

{ ∑∞
k=1

k
2n1[(k−1)2−n,k2−n)(τ), τ <∞

∞ τ = ∞.

Then
{τn ≤ t} = {τn ≤

[2nt]

2n
} = {τ < [2nt]

2n
} ∈ FX

t .

�
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Strong Markov Property

Theorem 18.14 Let τ be a {FX
t }-stopping time with P{τ < ∞} = 1.

Then
E[f(X(τ + t))|Fτ ] = T (t)f(X(τ), (18.1)

and more generally, if Px(B) = P{x+W (·) ∈ B}, B ∈ B(C[0,∞)), then

E[1B(X(τ + ·))|Fτ ] = PX(τ)(B)
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Proof. Prove first for discrete stopping times and take limits. Let τn
be as above. Then

E[f(X(τn + t))|Fτn
] =

∑
k

E[f(X(τn + t))|Fk2−n]1{τn=k2−n}

=
∑

k

E[f(X(k2−n + t))|Fk2−n]1{τn=k2−n}

=
∑

k

T (t)f(k2−n)1{τn=k2−n}

= T (t)f(X(τn).

Assume that f is continuous so that T (t)f is continuous. Then

E[f(X(τn + t))|Fτ ] = E[T (t)f(X(τn))|Fτ ]

and passing to the limit gives (18.1). The extension to all bounded,
measurable f follows by Corollary 21.4. �
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Lemma 18.15 If γ ≥ 0 is Fτ -measurable, then

E[f(X(τ + γ))|Fτ ] = T (γ)f(X(τ)).

Proof. First, assume that γ is discrete. Then

E[f(X(τ + γ))|Fτ ] =
∑

r∈R(γ)

E[f(X(τ + γ))|Fτ ]1{γ=r}

=
∑

r∈R(γ)

E[f(X(τ + r))|Fτ ]1{γ=r}

=
∑

r∈R(γ)

T (r)f(X(τ))1{γ=r}

= T (γ)f(X(τ)).

Assuming that f is continuous, general γ can be approximated by
discrete γ. �
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Reflection principle

Lemma 18.16

P{sup
s≤t

W (s) > c} = 2P{W (t) > c}

Proof. Let τ = t ∧ inf{s : W (s) ≥ c}, and γ = (t − τ). Then setting
f = 1(c,∞),

E[f(W (τ + γ))|Fτ ] = T (γ)f(W (τ)) =
1

2
1{τ<t}

and hence, P{τ < t} = 2P{W (t) > c}. �
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Extension of martingale results to continuous time

IfX is a {Ft}-submartingale (supermartingale, martingale), then Y n
k =

X(k2−n) is {Fn
k }-submartingale (supermartingale, martingale), where

Fn
k = Fk2−n. Consequently, each discrete-time result should have a

continuous-time analog, at least if we assume X is right continuous.
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Optional sampling theorem

Theorem 18.17 Let X be a right-continuous {Ft}-submartingale and τ1
and τ2 be {Ft}-stopping times. Then

E[X(τ2 ∧ c)|Fτ1
] ≥ X(τ1 ∧ τ2 ∧ c)

Proof. For i = 1, 2, let τn
i be a decreasing sequence of discrete stop-

ping times converging to τi. Then, since X ∨ d is a submartingale, by
the discrete-time optional sampling theorem

E[X(τn
2 ∧ c) ∨ d|Fτn

1
] ≥ X(τn

1 ∧ τn
2 ∧ c) ∨ d.

Noting that {X(τn
2 ∧ c) ∨ d} is uniformly integrable, conditioning on

Fτ1
and passing to the limit, we have

E[X(τ2 ∧ c) ∨ d|Fτ1
] ≥ X(τ1 ∧ τ2 ∧ c) ∨ d.

Letting d→ −∞, the theorem follows. �
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Exit distribution for W

Let a, b > 0 and τ = inf{t : W (t) /∈ (−a, b)}. Since

{τ ≤ t} = ∩n ∪s∈[0,t]∩Q {W (s) /∈ (−a+ n−1, b− n−1)},

τ is a {FW
t }-stopping time. Since limt→∞ P{W (t) ∈ (−a, b)} = 0,

τ <∞ a.s. For each c > 0,

E[W (τ ∧ c)] = 0

Letting c→∞, by the bounded convergence theorem

E[W (τ)] = −aP{W (τ) = −a}+ bP{W (τ) = b} = 0,

and
P{W (τ) = b} =

a

a+ b
.
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Doob’s inequalities

Theorem 18.18 Let X be a nonnegative, right-continuous submartingale.
Then for p > 1,

E[sup
s≤t

X(s)p] ≤
(

p

p− 1

)p

E[X(t)p]

Corollary 18.19 If M is a right-continuous square integrable martingale,
then

E[sup
s≤t

M(s)2] ≤ 4E[M(t)2].
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Proof. By Theorem 11.25,

E[max
k≤2n

X(k2−nt)p] ≤
(

p

p− 1

)p

E[X(t)p],

and the result follows by the monotone convergence theorem. �
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Samplepath properties

Finite, nonzero quadratic variation

lim
∑

(W (ti+1)−W (ti))
2 = t.

Brownian paths are nowhere differentiable.
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Law of the Iterated Logarithm

lim sup
t→∞

W (t)√
2t log log t

= 1

Ŵ (t) = tW (1/t) is Brownian motion. V ar(Ŵ (t)) = t2 1
t = t Therefore

lim sup
t→0

W (1/t)√
2t−1 log log 1/t

= lim sup
t→0

Ŵ (t)√
2t log log 1/t

= 1

Consequently,

lim sup
h→0

W (t+ h)−W (t)√
2h log log 1/h

= 1

See [2], Theorem 13.18.
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The tail of the normal distribution

Lemma 18.20∫ ∞

a

e−
x2

2 dx < a−1e−
a2

2 =

∫ ∞

a

(1 + x−2)e−
x2

2 dx

< (1 + a−2)

∫ ∞

a

e−
x2

2 dx

Proof. Differentiate
d

da
a−1e−

a2

2 = −(a−2 + 1)e−
a2

2 .

�
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Modulus of continuity

Theorem 18.21 Let h(t) =
√

2t log 1/t. Then

P{lim
ε→0

sup
t1,t2∈[0,1],|t1−t2|≤ε

|W (t1)−W (t2)|
h(|t1 − t2|)

= 1} = 1

Proof.

P{max
k≤2n

(W (k2−n)−W ((k − 1)2−n)) ≤ (1− δ)h(2−n)} = (1− I)2n

< e−2nI

for

I =

∫ ∞

(1−δ)
√

2 log 2n

1√
2π
e−x2/2dx > C

1√
n
e−(1−δ)2 log 2n

>
C√
n

2−(1−δ)2n

so 2nI > 2nδ for n sufficiently large and Borel-Cantelli implies

P{lim sup
n→∞

max
k≤2n

(W (k2−n)−W ((k − 1)2−n))/h(2−n) ≥ 1} = 1.
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For δ > 0 and ε > 1+δ
1−δ − 1

P{ max
0<k≤2nδ,0≤i≤2n−2nδ

|W ((i+ k)2−n)−W (i2−n)|
h(k2−n)

≥ (1 + ε)}

≤
∑

2(1− Φ((1 + ε)
√

2 log(2n/k)))

≤ C
∑ 1

(1 + ε)
√

2 log(2n/k))
e−2(1+ε)2 log(2n/k))

≤ C
1√
n

2n(1+δ)2−2n(1−δ)(1+ε)2

and the right side is a term in a convergent series. Consequently, for
almost every ω, there exists N(ω) such that n ≥ N(ω) and 0 < k ≤
2nδ, 0 ≤ i ≤ 2n − 2nδ implies

|W ((i+ k)2−n)−W (i2−n)| ≤ (1 + ε)h(k2−n)
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If |t1 − t2| ≤ 2−(N(ω)+1)(1−δ),

|W (t1)−W (t2)| ≤ |W ([2N(ω)t1]2
−N(ω))−W ([2N(ω)t2]2

−N(ω))|
+
∑

n≥N(ω)

|W ([2nt1]2
−n)−W ([2n+1t1]2

−(n+1))|

+
∑

n≥N(ω)

|W ([2nt2]2
−n)−W ([2n+1t2]2

−(n+1))|

so

|W (t1)−W (t2)| ≤ 2(1 + ε)
∞∑

n=N(ω)+1

h(2−n)

+(1 + ε)h(|[2N(ω)t1]− [2N(ω)t2]|2−N(ω))

�
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Lévy characterization

Theorem 18.22 Let M be a continuous martingale such that M 2(t)− t is
also a martingale. Then M is a standard Brownian motion

Proof.

E[eiθ(M(t+r)−M(t))|Ft]

= 1 +
n−1∑
k=0

E[(eiθ(M(sk+1)−M(sk) − 1− iθ(M(sk+1)−M(sk))

+
1

2
θ2(M(sk+1)−M(sk))

2)eiθ(M(sk)−M(t))|Ft]

−1

2
θ2

n−1∑
k=0

(sk+1 − sk)E[eiθ(M(sk)−M(t))|Ft]

The first term converges to zero by the dominated convergence the-
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orem, so we have

E[eiθ(M(t+r)−M(t))|Ft] = 1− 1

2
θ2
∫ r

0
E[eiθ(M(t+s)−M(t))|Ft]ds

and E[eiθ(M(t+r)−M(t))|Ft] = e−
θ2r
2 . �
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19. Problems

1. Let M be a set and {Mα, α ∈ A} be a collection of σ-algebras of subsets of M .
Show that ∩α∈AMα is a σ-algebra.

2. Let (Ω,F , P ) be a probability space, and let X be a real-valued function de-
fined on Ω. Show that {B ⊂ R : {X ∈ B} ∈ F} is a σ-algebra.

3. Note that if θ1, θ2 ∈ {0, 1}, then max{θ1, θ2} = θ1 + θ2 − θ1θ2. Find a sim-
ilar formula for max{θ1, . . . , θm} and prove that it holds for all choices of
θ1, . . . , θm ∈ {0, 1}. Noting that

max{1A1 , . . . , 1Am} = 1∪m
i=1Ai

,

use the identity to prove the inclusion-exclusion principle (that is, express
P (∪m

i=1Ai) in terms of P (Ai1 ∩ · · · ∩ Ail).

4. Six couples are seated randomly at a round table. (All 12! placements are
equally likely.) What is the probability that at least one couple is seated next
to each other?

5. Let {an
k} be nonnegative numbers satisfying

lim
n→∞

an
k = ak
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for each k. Suppose that for each K ⊂ {1, 2, . . .},

νK = lim
n→∞

∑
k∈K

an
k

exists and is finite. Show that

νK =
∑
k∈K

ak.

6. Let (M,M) be a measurable space, and let µ1, µ2, . . . be probability measures
on M. Suppose that

µ(A) = lim
n→∞

µn(A)

for each A ∈M. Show that µ is a measure on M.

7. Find σ-algebras D1, D2, D3 such that D1 is independent of D3, D2 is indepen-
dent of D3, and D1 is independent of D2, but D1 ∨ D2 is not independent of
D3.

8. Let (S, d) be a metric space. Show that d ∧ 1 is a metric on S giving the same
topology as d and that (S, d) is complete if and only if (S, d ∧ 1) is complete.

9. Give an example of a sequence of events {An} such that
∑

n P (An) = ∞ but
P (B) = 0 for B = ∩n ∪m≥n Am.
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10. Give and example of a nonnegative random variableX and a σ-algebraD ⊂ F
such that E[X] = ∞ but E[X|D] <∞ a.s.

11. Let D, G, and H be sub-σ-algebras of F . Suppose G and H are independent,
D ⊂ G, X is an integrable, G-measurable random variable, and Y is an inte-
grable, H-measurable random variable.

(a) Show that
E[X|D ∨ H] = E[X|D] ,

where D ∨H is the smallest σ-algebra containing both D and H.
(b) Show that

E[XY |D] = E[Y ]E[X|D] .

(c) Show by example, that if we only assume H is independent of D (not G),
then the indentity in Part 11b need not hold.

12. Let Z ∈ L1, and let τ be a finite {Fn}-stopping time. Show that

E[Z|Fτ ] =
∞∑

n=0

E[Z|Fn]1{τ=n}.
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13. Let X1, X2, . . . and Y1, Y2, . . . be independent uniform [0, 1] random variables,
and define Fn = σ(Xi, Yi : i ≤ n). Let

τ = min{n : Yn ≤ Xn}.

Show that τ is a {Fn}-stopping time, and compute the distribution function

P{Xτ ≤ x}.

14. Let {Xn} be adapted to {Fn}. Show that {Xn} is an {Fn}-martingale if and
only if

E[Xτ∧n] = E[X0]

for every {Fn}-stopping time τ and each n = 0, 1, . . ..

15. Let X1 and X2 be independent and Poisson distributed with parameters λ1

and λ2 respectively. (P{Xi = k} = e−λi
λk

i

k!
, k = 0, 1, . . .) Let Y = X1 + X2.

Compute the conditional distribution of X1 given Y , that is, compute P{X1 =
i|Y } ≡ E[1{X1=i}|Y ].

16. A family of functions H ⊂ B(R) is separating if for finite measures µ and
ν,
∫
fdµ =

∫
fdν, for all f ∈ H , implies µ = ν. For example, C∞

c (R) and
{f : f(x) = eiθx, θ ∈ R} are separating families. Let X and Y be random
variables and D ⊂ F . Let H be a separating family.
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(a) Show that E[f(X)|D] = E[f(X)] for all f ∈ H implies X is independent
of D.

(b) Show that E[f(X)|Y ] = f(Y ) for all f ∈ H implies X = Y a.s.

17. Let {Xn} be {Fn}-adapted, and let B,C ∈ B(R). Define

An = {Xm ∈ B, some m > n},

and suppose that there exists δ > 0 such that

P (An|Fn) ≥ δ1C(Xn) a.s.

Show that

{Xn ∈ C i.o.} ≡ ∩n ∪m>n {Xm ∈ C} ⊂ {Xn ∈ B i.o.}.

18. Let X1, X2, . . . be random variables. Show that there exist positive constants
ck > 0 such that

∑∞
k=1 ckXk converges a.s.

19. Let {an} ⊂ R. Suppose that for each ε > 0, there exists a sequence {aε
n} such

that |an−aε
n| ≤ ε and aε = limn→∞ a

ε
n exists. Show that a = limε→0 a

ε exists and
that a = limn→∞ an.
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20. Let X1, X2, . . . be iid on (Ω,F , Q) and suppose that µXk
(dx) = γ(x)dx for some

strictly positive Lebesgue density γ. Define X0 = 0 and for ρ ∈ R, let

Lρ
n =

n∏
k=1

γ(Xk − ρXk−1)

γ(Xk)
.

(a) Show that {Lρ
n} is a martingale on (Ω,F , Q).

(b) Let FN = σ(X1, . . . , XN) and define Pρ on FN by dPρ = Lρ
NdQ. Define

Y ρ
k = Xk − ρXk−1. What is the joint distribution of {Y ρ

k , 1 ≤ k ≤ N} on
(Ω,FN , Pρ)?

21. (a) Let {Mn} be a {Fn}-martingale. Assume that {Mn} is {Gn}-adapted and
that Gn ⊂ Fn, n = 0, 1, . . .. Show that {Mn} is a {Gn}-martingale.

(b) Let {Un} and {Vn} be {Fn}-adapted and suppose that

Un −
n−1∑
k=0

Vk

is a {Fn}-martingale. Let {Gn} be a filtration with Gn ⊂ Fn, n = 0, 1, . . ..
Show that

E[Un|Gn]−
n−1∑
k=0

E[Vk|Gk] (19.1)
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is a {Gn}-martingale. (Note that we are not assuming that {Un} and {Vn}
are {Gn}-adapted.)

22. Let r > 0, and let {ξ1, . . . , ξm} be independent, uniform [0, r] random variables.
Let ρ > 1, and define

X(k)
n = ρnξk

and Nn = #{k : X
(k)
n ≤ r}. Let Fn = F0 ≡ σ(ξ1, . . . , ξm). For g ∈ Cb[0,∞)

satisfying g(x) = 1 for x ≥ r, define

Un =
m∏

k=1

g(X(k)
n ), Vn =

m∏
k=1

g(X
(k)
n+1)−

m∏
k=1

g(X(k)
n ).

Then (trivially) {Un} and {Vn} are {Fn}-adapted and

Un −
n−1∑
k=0

Vk = U0

is a {Fn}-martingale. Let Gn = σ(Nk, k ≤ n). Compute the martingale given
by (19.1).

23. Let X1 ≥ X2 ≥ · · · ≥ 0 and E[X1] < ∞. Let {Fn} be a filtration. ({Xn} is not
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necessarilty adapted to {Fn}.) Show that with probability one

lim
n→∞

E[Xn|Fn] = lim
n→∞

E[ lim
k→∞

Xk|Fn] = lim
k→∞

lim
n→∞

E[Xk|Fn].

(If you have not already completed Problem 17, you may want to apply the
result of this problem.)
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24. Suppose that Y ε
n ≤ Xn ≤ Zε

n, Y ε
n ⇒ Y ε and Zε

n ⇒ Zε as n → ∞, and Y ε ⇒ X
and Zε ⇒ X as ε→∞. Show that Xn ⇒ X .

25. For each n, let {Xn
k } be a sequence of random variables with R(Xn

k ) = {0, 1}.
Assume {Xn

k } is adapted to {Fn
k } and define Zn

k = E[Xn
k+1|Fn

k ]. Suppose that
λ > 0,

∑
k Z

n
k → λ in probability, and E[maxk Z

n
k ] → 0. Show that

∑
k X

n
k ⇒ Y

where Y is Poisson distributed with parameter λ.
Hint: There is, no doubt, more than one way to solve this problem; however,
you may wish to consider the fact that Xn

k ∈ {0, 1} implies

eiθXn
k = 1 +Xn

k (eiθ − 1) =
1 +Xn

k (eiθ − 1)

1 + Zn
k−1(e

iθ − 1)
(1 + Zn

k−1(e
iθ − 1))
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20. Exercises

1. Let X be a R-valued function defined on Ω. Show that {{X ∈ B} : B ∈ B(R)}
is a σ-algebra.

2. Let D1 ⊂ D2, and X ∈ L2. Suppose that E[E[X|D1]
2] = E[E[X|D2]

2]. Show
that E[X|D1] = E[X|D2] a.s.
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Glossary

Borel sets. For a metric space (E, r), the collection of Borel sets is the smallest σ-
algebra containing the open sets.

Complete metric space. We say that a metric space (E, r) is complete if every
Cauchy sequence in it converges.

Complete σ-probability space. A probability space (Ω,F , P ) is complete, if F con-
tains all subsets of sets of probability zero.

Conditional expectation. Let D ⊂ F and E[|X|] < ∞. Then E[X|D] is the, essen-
tially unique, D-measurable random variable satisfying∫

D

XdP =

∫
D

E[X|D]dP, ∀D ∈ D.

Consistent. Assume we have an arbitrary state space (E,B) and an index set I .
For each nonempty subset J ⊂ I we denote by EJ the product set

∏
t∈J E, and we

define BJ to be the product-σ-algebra ⊗t∈JB. Obviously, if J ⊂ H ⊂ I then there is
a projection map

pH
J : EH → EJ .
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If for every two such subsets J and H we have

PJ = pH
J (PH)

then the family (PJ)∅6=J⊂H is called consistent.

Metric space (E, r) is a metric space if E is a set and r : E × E → [0,∞) satisfies

a) r(x, y) = 0 if and only if x = y.

b) r(x, y) = r(y, x), x, y ∈ E
c) r(x, y) ≤ r(x, z) + r(z, y) (triangle inequality)

Separable. A metric space (E, r) is called separable if it contains a countable dense
subset; that is, a set with a countable number of elements whose closure is the
entire space. Standard example: R, whose countable dense subset is Q.

Separating set A collection of function M ⊂ C̄(S) is separating is µ, ν ∈Mf (S) and∫
gdν =

∫
gdµ, g ∈M , implies that µ = ν.

σ-finite A measure µ on (M,M) is σ-finite if there existAi ∈M such that ∪iAi = M
and µ(Ai) <∞ for each i.

Uniform equicontinuity A collection of functions {hα, α ∈ A} is uniformly equicon-
tinuous if for each ε > 0, there exists a δ > 0 such that |x − y| ≤ δ implies
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supα∈A |hα(x)− hα(y)| ≤ ε.
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21. Technical lemmas

• Product limits

• Open sets in separable metric spaces

• Closure of collections of functions
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Product limits

Lemma 21.1 For |x| ≤ 1
5
, e−x−x2 ≤ 1 − x. Consequently, if limn→∞

∑
k akn = c and

limn→∞
∑

k(akn)2 = 0, then

lim
n→∞

∏
k

(1− akn) = e−c.

Proof. Let h(x) = 1 − x − e−x−x2 , and note that h(0) = h′(0) = 0 and for |x| ≤ 1
5
,

h′′(0) ≥ 0. Since limn→∞
∑

k(akn)2 = 0, for n sufficiently large, maxk akn ≤ 1
5

and
hence

e−c = lim
n→∞

exp{−
∑

k

akn −
∑

k

(akn)2} ≤ lim
n→∞

∏
k

(1− akn)

≤ lim
n→∞

exp{−
∑

k

akn} = e−c

�
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Open sets in separable metric spaces

Lemma 21.2 If (S, d) is a separable metric space, then each open set is a countable union
of open balls.

Proof. Let {xi} be a countable dense subset of S and letG be open. If xi ∈ G, define
εi = inf{d(xi, y) : y ∈ Gc}. Then

G = ∪i:xi∈GBεi
(xi).

�
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Closure of collections of functions

Theorem 21.3 Let H be a linear space of bounded functions on S that contains constants,
and let S be a collection of subsets of S that is closed under intersections. Suppose 1A ∈ H
for each A ∈ S and that H is closed under convergence of uniformly bounded increasing
sequences. Then H contains all bounded, σ(S)-measurable functions.

Proof. {C ⊂ S : 1C ∈ H} is a Dynkin class containing S and hence σ(S). Conse-
quently, H contains all σ(S)-measurable simple functions and, by approximation
by increasing sequences of simple functions, all σ(S)-measurable functions. �
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Corollary 21.4 LetH be a linear space of bounded functions on S that contains constants.
Suppose that H is closed under uniform convergence, and under convergence of uniformly
bounded increasing sequences. Suppose H0 ⊂ H is closed under multiplication. Then H
contains all bounded, σ(H0)-measurable functions.

Proof. If p(z1, . . . , zm) is a polynomial and f1, . . . , fm ∈ H0, then p(f1, . . . , fm) ∈ H .
Since any continuous function h on a product of intervals can be approximated
uniformly by polynomials, it follows that h(f1, . . . , fm) ∈ H . In particular, gn =∏m

i=1[(1 ∧ fi − ai) ∨ 0]1/n ∈ H . Since gn increases to 1{f1>a1,...,fm>am}, the indicator
is in H and hence, by Theorem 21.3, H contains all bounded, σ(H0)-measurable
functions. �
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