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Introduction

There is a known Stone-type duality between the categories of poc-sets and median algebras [2] induced by the two-element
Boolean algebra 2 € Bool, which carries both structures in a compatible way. We show that this duality gives rise to a
dual pair of codensity monads (see Theorem 1). Our example follows a pattern which is common in the literature, namely,
that the endofunctor parts of these codensity monads are given by a form of double dualization. For instance, the linear
double dual construction is the codensity monad induced by the inclusion of finite-dimensional k-vector spaces into Vect;
[4]. It happens that the ultrafilter monad, which is the codensity monad of the inclusion iget : FinSet — Set [3], can be
viewed as a form of double dualization as well. This poster will emphasize the analogy between poc-sets/median algebras
and Boolean algebras/sets by developing these examples in parallel. Along the way, other interesting relationships between
these categories will be pointed out. In particular, we ultimately construct the double dualization codensity monads as the
induced monads of a contravariant adjunction, which itself arises from a two-variable tensor-hom adjunction (see Lemma 2).
This gives a formula for Booleanization, and strengthens the analogy between poc-sets/median algebras and vector spaces.
A necessary condition implicit in the construction of the tensor product is the fact that Boolean algebras are exactly those sets
with compatible structures of a poc-set and median algebra. That is to say, the structure maps of a poc-set are morphisms
of median algebras exactly when the original poc-set is a Boolean algebra (Lemma 1). Following this line of reasoning, we
prove that the category of finite poc-sets (resp. finite median algebras) is an essentially algebraic theory for the category
of median algebras (resp. poc-sets) in the sense that the category of finitely continuous functors FinPoc — Set can be
identified with Med (and vice versa). This last result (Theorem 2) is related to Isbell duality. If you are curious to know more,
feel free to inquire about the current draft of the manuscript.

Poc-sets and Median Algebras

Poc-sets and median algebras are simultaneous generalizations of both power sets and trees. For the purposes of this
poster, the connections with Boolean algebras (a generalization of power sets) are more important. However, we note that
median algebras derive their name from the example of R (viewed as a tree) wherein the (usual) median of three real numbers
coincides with the ternary ‘median operation’

Med :=the category of median algebras. Definition: Given a Boolean algebra B € Bool, its

Definition: A median algebra is a pair (M, m) Boolean majority function, denoted mgpoo1, has

where M € Set and m : M? — M is a ternary type B® — B, and is given by the following self-dual

operation on M satisfying: Vw,z,y,ze€ M EXpression:

(M) m(z,z,y) == MBool(,y,2) = (x Ay)v(zAz)Vv(yAaz)

(M.ii) m(z,y,z) = m(y,z,z) = m(x, z,y) =@vyalzvz)alyva)

(M.iii) m(z,w,m(y,w, z)) = m(m(z,w,y),w, z). There is a commutative diagram of forgetful functors:
, Med

Poc =the category of poc-sets. yMed Unted

Definition: A partially ordered set (P, —) € Poset \

with an order-reversing involution —: P — P is a

poc-set provided: Bool Set

(Pi) d4dl1leP st. VpeP 1— p; and Ufh /[Il:oc

(Pii) Vpe P p— —p implies p=1. Poc

Morphisms of poc-sets are monotone functions that where UMed . B+ (b’, 'm--Bool) e Med.

commute with the given involutions.

The presence of these forgetful functors gives Hom(—, 2) four potential interpretations. We characterize each of these so-
called dualization functors in the table below. Functors occupying the same row of the table are mutual right adjoints.

U Boolean Ultrafilters Power Sets P
(o]0
UBool(B) ={S < B|a),b), &
/\l B 1( ) { ‘ l). ) C)} PX = {SQX} m
~ . . . . op ~/
Bool™ ﬂ:_ Set a)pe S &p—q implies ge S The subsets of a set can be given Set :ﬂ— Bool
-~ 7 bypeSiff —p¢ S the structure of a Boolean algebra. ~
BOOI(—,Q) ¢) p,ge S implies pArqge S (PX. . X, (=), n,u,C) € Bool Set(_’g)
Upoe Poc-set Ultrafilters Halfspaces H
op /_N\} Upoe(P) ={S < P|a) kb)) HM = {Halfspaces of M} dop/—N\L
Poc = Med The median of three poc-ultrafilters T Ve Med i Me = Poc
U is given by post-composition with the D? nition: . o oPase splaccﬁ? =Me ?d " \_/
Boolean majority function on 2 subalgebra s.t. S¢:= M\S is a subalgebra.
Poc(—,2) AR ' Med(—,2)

Next, we discuss the functors whose right adjoints are the forgetful functors in the diamond above, and record useful descrip-
tions of their actions on finite objects. We extend these formulas as a corollary of Lemma 2.

Free Objects

® The class of median algebras forms a variety in the sense
of universal algebra. Therefore, the forgetful functor Unjeq
is monadic. In particular, it has a left adjoint Fnjeq-

The diagram below illustrates two separate
dual pairs of adjunctions. Each functor has
been given the same color as its dual.

® The forgetful functor Upge is not monadic, however, the FinMed
construction of Fpee is straightforward from the universal

property; UpocFpocX has 2| X| + 2 elements.
UMed

Booleanization N

Left adjoints FMed 4 yMed anq pPoe  yPoc
exist, and are easy to compute for finite objects.

If C € {Bool, Med, Poc, Set}, then Homg¢(—, 2)
restricts to an anti-equivalence on the subcategory FinBool FinSet
of finite objects. Thus FinSet°” ~ FinBool and

FinMed®? ~ FinPoc.
FPoc
FPOC
vl ‘ b J" J'J l ) » A W ' . ‘ r . ‘L o’ { y
UPoc UPoc

FinPoc

FMed

Fpoc(X) = Med(UMed(Set (X, 2)),2)
FMed(X) = Poc(UP°¢(Set(X, 2)),2)

The duality between bounded distributive lattices
and posets behaves similarly [6].

Birkhoff and Kiss identify median algebras arising from bounded distributive lattices as those with a pair of elements such
that the median operation becomes the identity when partially applied to those elements [1]. Our first lemma is a modest
extension of this fact to allow for the identification of Boolean algebras (i.e., complemented distributive lattices) within Med.
The lemma follows a motivating example, which requires we first introduce a certain functor.

A Representable Functor The Representing Object
N Arr
Poc T Set T / + N
(P.L,—,—) = {(p,q) € P’ | p—q} Poc 1[% Set 1 :
\_/ LPOC [2] - T T
The arrows functor sends a poc-set B 0 o1
to its underlying poset (P, —) viewed Poc(Lpoc(2); —) \ /
as a subset of (UpeceP)?. +
A Model Example: Set =2 | Lemma 1 (K. - Mine)
o [

Our first result states that a set which is

simultaneously a poc-set and median algebra is a
‘ Boolean algebra if and only if the two structures
are compatible in the sense that 1) the arrows of
the poc-set form a median algebra; and 2) — is an
° endomorphism of B as a median algebra.

In this case, the set of arrows inherits the
structure of a median algebra either as a ® ¢ é
subalgebra of (2, mBool) X (2, MBool), OF
equivalently as the dual of Lpgc[2].

Arr(2) = Poc(Lpoc(2],2) € Med

“ the canonical inclusion
{(O,O); (Oal)a (1a 1)} c2x2 € Med 1 AI‘I’(Q) — D2 x D

If (B,m)eMed & (B,l,—, —)c¢€ Poc,
then (B, L,— 1, —, Am, Vi, —) € Bool iff

Arr(B) € Med and — : (B,m) — (B, m)
is a morphism in Med, i.e., —om = m o —~.

3

is a morphism in Med.

and in general,
where 2z A,y =m(z,Ll,y) and

Arr(P) ~ Poc(Med(Arr(2),2),P) VY(P,1L,—,—) € Poc. rvmy=mz,— Ly) VYr,ye B
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nition: A triple of bifunctors /' : CxD — B, G :C®P xB — D, H : D°®° x B — C equipped with natural

isomorphisms C(C, H(D, B)) = B(F(C, D), B) = D(D,G(C, B)) defines a two-variable adjunction [5].
We show that there is a two-variable adjunction with B := Bool, C := Med, D := Poc, H .= Poc(—, —), and G = Med(—, —).

The

construction of the third bifunctor can be understood by analogy with the construction of tensor products in Vect;, which

is the corresponding bifunctor of another famous two-variable adjunction.

Currying Set(X,Set(Y, 7)) =~ Set(X x VY, 7Z) =~ Set(Y,Set(X, 7))

Tensor-Hom Vect, (U, Vect,(V,W)) =~ Vect, (U ® V,W) =~ Vect;.(V, Vect (U, W))

A Tensor Product of Poc-sets and Median Algebras

Lemma 2

3 a bifunctor ® : Med x Poc — Bool, and natural isomorphisms

(K - Mine) Med(M,Poc(P, B)) =~ Bool(M ® P, B) =~ Poc(P,Med(M, B)).

Remark: The general definition of two-variable adjunction involves three categories, yet in many of the examples from

natu
auth
Que

re, two or more of the categories coincide. Lemma 2 above is the only example of a two-variable adjunction that the
ors are aware of that takes advantage of the full generality afforded by the definition.
stion: What other examples of two-variable adjunctions involve three distinct categories?

Proof Sketch: Corollary 1: The Dualization Adjunction
By the universal property of the tensor product, there is a bijection between In particular, taking B = 2 we find that Med(—,2)
Boolean homomorphisms and bicompatible maps: and Poc(—,2) are mutual right adjoints. The induced

monads are a dual pair of double dualization monads.
Med(M,Poc(P,2)) ~ Poc(P,Med(M, 2))

(I) VeeM pw—f (37 ,p) is a morphism in Poc Specializing further to the case where both M and
(IT) Yvpe P = — f(x,p) is a morphism in Med P are free, we see that P is its own right adjoint,.

Bool(M ® P, B) ~ Bicomp(M x P,B) = {f: M x P — B | (I) & (1)}

Corollary 2: Booleanization

Curryin
/ ek \ Let 1 := {«} € Set be a singleton.

Med(M,Poc(P, B)) ~ Bicomp(M x P, B) ~ Poc(P,Med(M, B)). | By the universal property of ®,
— &® Fvieql - (Med . Bgol —> Med,
It remains to give a construction of the tensor product. Let and similarly — @ Fpecl < UF°C,

FBoo1 : Set —> Bool be the free Boolean algebra functor (i.e., PP),
then the tensor product of (M, m) € Med and (P, L, -, —) € Poc is FMed ~ 0 1 ® —

FPoc ~ — ® Fpyel

M® P ~ Fgoot(M x P)/ ~
where ~ is the congruence generated by Note:

(m(z,y,2).p) ~ mBool((x,p), (y,p). (2.p)) -1
(z.p) A (2,9) ~ (2,p) VP —q - N |
(2, =p) ~ (2,p)° - o |
(z,1) ~ & 1

A similar construction can be used to build a tensor product of sets and Boolean algebras for which X ® B is isomorphc to
the X -fold copower of B, so Set(.X, Bool(B, B')) = Bool(X ® B, B") = Bool(B, Set(X, B)) is a two-variable adjunction.

The

Theorem 1 - A Dual Pair of Codensity Monads

codensity monad of a functor R : C — D is, by definition, the right Kan extension of R along itself. In the presence of

a left adjoint L, the codensity monad RanyR agrees with the adjunction-induced monad. However, if C is the subcategory
of finitely presented objects in D, and R is the associated inclusion, then some basic size considerations suggest that
an adjunction L 4 R is unlikely to exist. Nevertheless, R may still induce a codensity monad, and in fact, this much is
guaranteed whenever C is essentially small and D has limits of a particular form. In the table below, we review relevant
examples of codensity monads (and their algebras) induced by inclusions, then state our contributions to this list. We also
say a few words about the proof and note that, up to a point, all examples listed below can be treated similarly.

Proof Strategy

. Codensity Monad Al Let D e {Med, Poc, Set, Vect,}, X € D, and F € C = FinD.
ebras 3 3 3 kfs 3
Inclusion S Then the evaluation map evp : F — Homge» (Homge (F, 2), 2)
(endofunctor part) is an isomorphism. We follow the proof given for vector spaces in
is C CH torff [4], but define our integration operations using the pushforward:
t ompact Hausdor : 0o
FinSet ——— Set Bool(Set(—,2),2) o fans given ;1€ X°° = Hom(Hom(X,2),2) and g € Hom(X, F)
. 1Vect, N L Linearly compact .
FinVect;, ¢ » Vect, Vect,(Vecti(—. k). k) T J gdp = evFl (g (1))
. X
L ] L J
. ° . goo ev_l
. ) . X0 s oo E__ L, F
_ Coniect o » g ()| » Jx 9dp
Theorem 1 (K. - Mine) onjecture
; : : The properties required of these integration operators then
| ) ] ) ind s a dual pair of The objects in the image of the foll f Iv. This o ¢ the double dual of X
The dual pair of inclusions induces a dual pair o double dualization functors on Poe ollow formally. This gives a map from the double dual o
_ codensity monads: and Med are compact. Hausdorft, 1.:0 the Coden81.ty m.onad of the approprlate inclusion. The map
. c ic v C and totally disconnected topological in the other direction Nat(Hom(X,ip(—)),U) — X°°, where
FinC ! Hom@o (HOl’l’lC (—’ Q)j 2) spaces (i.e., Stone spaces). We U : C —> Set is forgetful, sends a natural transformation to
conjecture that the categories of its component at the dualizing object (2 or k). This requires
Where, Ce {Med, POC}, where. Poc® := Med & 'ﬂ-lgt‘-hl“(}-‘% for fll@ C_Odf‘ﬂﬁit}’ 1}10113-(13 special considerations for each separate category; to show that
Med® — P of the inclusions ic are equivalent to the component is an element of the double dual, one invokes
€ = IocC. StonePoc and StoneMed. . N ]
naturality on special maps.

The

Theorem 2 - Isbell Duality

connection to Isbell duality begins with the observation that the structure maps for 2 (either as a poc-set or median

algebra) are morphisms in the opposite category. For instance, we saw in Lemma 1 that Arr(2) € Med. On the other hand,
its Boolean majority function is the unique non-principal poc-ultrafilter in 23. Let Ax be the diagonal map on X and T,
7 € {1, 2}, denote the j"-projection map, then

Isbe

R dE » 0
1 s D The diagram to the left is a pullback
/ - square in Med. Commutativity says
Ag xids MBool 0 < —0 in the poc-set (2,0, —, —), while
P3 (0,1) {(idg,—)>  universality says that 0 is the unique
element less than its own negation.
The triangle above is a commutative g _ ~ In other words, the universal property
diagram in Poc. It expresses the fact Arr( 2) ¢ sy D x D verifies (P.ii) for the initial poc-set.
that mpoeor satisfies axiom (M.1i).

Il duality refers to a duality between presheaves and copresheaves on a category. In this case, we restrict to the

subcategories of finitely continuous functors. We write |C, D};.. for the category of finitely continuous functors C — D.

Theorem 2 (K. - Mine)
|FinPoc, Set|;.. ~ Med, and [FinMed, Set|;.. ~ Poc.

Remark: The Isbell perspective leads to an alternate proof of Theorem 1.

The
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