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1 Introduction

When one considers questions like:
When are two n-manifolds homeomorphic?
When are two groups isomorphic?
When are two knots equivalent?
When is a knot trivial?
the question usually arises: Decidable? Solvable?

Church Turing Thesis. All intuitive notions of (effective, algorithmic)
computability are equivalent to computability by a Turing machine.

(A Turing machine operates according to a finite set of rules.)

Definition. A function f : N → N is computable if and only if there exists
an algorithm which takes an arbitrary n ∈ N and produces f(n), i.e. there
exists a Turing machineM such that given input n ∈ N,M halts with output
f(n).

Definition. A ⊂ N is listable (recursively enumerable) if there exists an
algorithm which lists the elements of A: a1, a2, . . . (possibly repeating)–i.e.
there exists a computable f : N→ N with Im(f) = A.

Definition. A ⊂ N is decidable (recursive) if there exists an algorithm to
decide whether or not an arbitrary n ∈ N belongs to A.
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So, A is decidable ⇐⇒ A and N − A are listable ⇐⇒ the characteristic
function of A is computable.

EXAMPLES:
(1) The set of primes is decidable.
(2) Any finite set A ⊂ N is decidable.
These definitions carry over to A ⊂ Nn or Zn. More generally, let S be

any (countable) set of objects, each decidable by a finite amount of numerical
data, i.e. an element of Zn.
{ Finite presentations 〈X : R〉 of groups }
{ Finite simplicial complexes }:
vertices ←→ {1, 2, . . . , n} = V
1-simplices ←→ {(i1, i2), . . .} ⊂ V × V
. . .

Say S is listable if corresponding set in Zn is. If S is listable, A ⊂ S is
decidable if A and S − A are listable.

Basic fact: There exists S ⊂ N which is listable but not decidable (Fol-
lows from the undecidability of the halting problem for Turing machines,
which follows from “Russell’s Paradox”). This leads to the undecidability,
unsolvability, of many questions.

EXAMPLES:
(1) Let P = 〈X : R〉 be a finite presentation of a group G. Let W =

{words in X}. W is listable. Let T = {w ∈ W : w = 1 ∈ G} ⊂ W . The
Word Problem for P is: Is T ⊂ W decidable?

Note: (i) The answer depends only on G (exercise).
(ii) T is listable.
There exist finite groups with unsolvable word problem (Novikov; Boone:1955).
(2) Let S = { Finite presentations of groups }. Then S is listable

(Therefore S × S is listable). The Isomorphism Problem for finitely pre-
sented groups is: Is there an algorithm to decide for arbitrary P1, P2 ∈ S,
whether or not the correspinding groups G(P1), G(P2) are isomorphic, i.e.
is {(P1, P2) ∈ S × S : G(P1) ∼= G(P2)} ⊂ S × S decidable? The answer is
NO (Question: Is it listable?)

(3) S as in (2). Let T = {P ∈ S : G(P ) = 1} ⊂ S Is T decidable?
Answer: NO. (T is listable (exercise)).

(4) A (closed) PL n-manifold M is |K|, K finite simplicial complex such
that for all vertices v of K, the simplicial neighborhood (star) of v in |K| is
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simplicially isomorphic to the cone on (some subdivision of ∂∆n), where ∆n

is the standard n-simplex.
Two such M1 = |K1| and M2 = |K2| are PL-homeomorphic if and only if

K1 and K2 have simplicially isomorphic subdivisions.
[ Fact: Any topological n-manifold, n ≤ 3, is homeomorphic to a PL

manifold, unique up to PL homeomorphism (n = 2 Rado:1924)(n = 3
Moise:1952). ]

The set of closed PL n-manifolds is listable (exercise).

So, we can ask: Is the (PL) homeomorphism problem for PL manifolds
decidable?

n ≤ 2: YES. For n = 2: M1
∼= M2 iff H1(M1) ∼= H1(M2) and H1(finite

complex) is computable.
n ≥ 4: NO (Markov:1958). Markov’s proof uses the fact that for every

finitely presented group G, there exists a PL n-manifold (n ≥ 4) M with
π1(M) ∼= G.

n = 3: UNKNOWN.
(1) Harder than n = 2 (Lots of 3-manifolds). (2) Easier than n ≥ 4,

e.g. not every finitely presented group G is the fundamental group of a
3-manifold. For example: 〈a, b : a−1ba = b2〉 is not π1(3-manifold).

There are many partial results, e.g.

Theorem (Haken; Waldhausen; Jaco-Shalen; Johanson; Hennion: 1979).
There is an algorithm to decide whether or not two given Haken manifolds
are homeomorphic.

“Hence,” there is an algorithm to decide whether or not two knots are
equivalent.

In particular:

Theorem (Haken: 1962). There is an algorithm to decide whether or not a
given knot is trivial.

Theorem (Waldhausen: 1968). If G = π1(M), M a Haken 3-manifold, then
the word problem for G is solvable.

Theorem (Rubinstein: 1994). There is an algorithm to decide whether or
not a given 3-manifold is homeomorphic to S3.
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Tietze Transformations:

(I) 〈X : R〉 7−→ 〈X : R, r〉 where r is a consequence of R, i.e. r ∈ N(R) ⊂
F (X)

(II) 〈X : R〉 7−→ 〈X, y : R, y = w(x)〉

Theorem (Tietze: 1908). Two finite presentations present isomorphic groups
iff there is a sequence of moves taking one presentation to the other.

Proof. (⇐): clear.
(⇒). Suppose 〈X : R〉, 〈Y : S〉 present the same group G with

X = {x1, . . . , xm}, Y = {y1, . . . , yn}. Since X generates G, yj = wj(x), 1 ≤
j ≤ n, and since Y generates G, xi = vi(y), 1 ≤ i ≤ m.
〈X : R〉 7−→II′s 〈X, Y : R, yj = wj(x)〉.
The relations S hold in G, and are therefore consequences of these, so:
〈X, Y : R, yj = wj(x)〉 7−→I′s 〈X, Y : R, S, yj = wj(x)〉
and since the relations xi = vi(y) hold in G, we have:
〈X, Y : R, S, yj = wj(x)〉 7−→I′s 〈X, Y : R, S, yj = wj(x), xi = vi(y)〉.
Now, by symmetry, there exists a sequence of I−1s and II−1s which yield

〈Y : S〉.

�
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2 Normal Surfaces: The Kneser and Haken

Finiteness theorems

I. Normal Surfaces
LetM be a closed connected 3-manifold with a fixed triangulation T . Let

T (i) denote the i-skeleton of T, i.e. T (i) = ∪{ simplices of dimension ≤ i}.
Let F ⊂ M be a closed surface (not necessarily connected). By a small
ambient isotopy, we may assume F is transverse to each T (i), so F ∩T (0) = ∅,
F ∩ T (1) is a finite number of points of transverse intersection, and F ∩ ∆,
∆ a 2-simplex, is a finite disjoint union of simple closed curves and properly
embedded arcs.

Lemma 2.1. F may be isotoped so that for every 3-simplex τ ∈ T , each
component of F ∩ ∂τ is one of the following 3 types:

0-gon 3-gon 4-gon

Proof. Define the weight of F, w(F ) to be |F ∩T (1)|, where |X| is the number
of components of X . Isotop F to minimize w(F ). Let C be a component of
F ∩ ∂τ , τ some 3-simplex of T . It suffices to prove the following:
Claim: C meets each 1-simplex (edge) of τ in at most one point.

Suppose there exists an edge e of τ such that |C∩e| > 1. Now, C bounds
a disk in ∂τ , and so there exist two points of C ∩ e of opposite sign. Choose
such a pair, innermost on e, bounding an arc β ⊂ e. Then there exists a disk
D′ ⊂ ∂τ such that ∂D′ = α′ ∪ β, α′ ⊂ C.

β

α ’

e

D’
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Let D be a nearby parallel copy of D′ (“tilt D′ into τ along β”), with D ⊂ τ ,
D ∩ ∂τ = β. D ∩ F = ∂D ∩ F = α, an arc.

on left
D

D’

’α

τ

β

e

F

Use D to define an isotopy of F that is fixed outside a small neighborhood
of D.

on topτ
D

F

e

F

e

This decreases w(F ) by two, contradicting the minimality of w(F ).

�

Definition (Kneser: 1929). A surface F ⊂M is normal (with respect to T )
if each component of F ∩ τ , for each 3-simplex τ of T , is a disk of one of the
following 2 types:

Triangle Square
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We’ll see later that in several interesting cases, we can “make” F normal.
Let F ⊂ M be a normal surface, τ a 3-simplex of T . Each component

of F ∩ τ is one of 7 possible types. There are 4 TRIANGLE types, one for
each vertex, and 3 SQUARE types, corresponding to the 3 partitions of the
4 vertices into 2 pairs. Since F is embedded, in fact at most one square type
occurs in any given 3-simplex τ .

Definition. Say a component of τ/F (τ cut along F ) is good if it lies between
two components of F ∩ τ of the same type:

good

good

good

otherwise, bad. Say a component X of M/F is good if X ∩ τ is good for all
3-simplices τ of T . Otherwise, X is bad.

Notice that τ/F has a most 6 bad components. So, the number of bad
components of M/F is less than 6t, where t is the number of 3-simplices in
T .

Lemma 2.2. A good component X of M/F is an I-bundle over a closed
surface.

LetM be a closed (n−1)-manifold. An I-bundle overM is a space X with
a map ρ : X → M such that for every x ∈ M there exists a neighborhood
U of x in M and a homeomorphism ρ−1(U) ∼= U × I such that the following
diagram commutes.

ρ−1(U)

ρ|
ρ−1(U)

∼=
U × I

π

U

X is an n-manifold, with ∂X = (∂I-bundle over M), ρ|∂X : ∂X → M is
a two-fold covering projection, and X is determined by ρ|∂X : ∂X →M .
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X is the mapping cylinder of ρ|∂X : ∂X → M . If f : A → B, let Mf

denote the mapping cylinder of f , i.e.

Mf = (A× I) ⊔B/(a,1)∼f(a)

for all a ∈ A.
Assume M is connected. Then |∂X| = 2 implies that X ∼= M × I, and

we say that X is a product I-bundle. If |∂X| = 1, we say X is a twisted
I-bundle.

Now, if X is a product I-bundle, then X orientable ⇒ M orientable. If
X is a twisted I-bundle, then X orientable ⇒M non-orientable.

EXAMPLE: RP n − intBn is a twisted I bundle over RP n−1.

Lemma 2.3. Let X be an I-bundle over a closed surface F. Then

H1(X, ∂X ;Z2) ∼= Z2.

Proof. Using Z2 coefficients, we have, by Lefschetz duality,
H1(X, ∂X) ∼= H2(X), and H2(X) ∼= H2(X), by the Universal Coefficient
Theorem. SinceX is an I-bundle over F , we also have H2(X) ∼= H2(F ) ∼= Z2.

�

Lemma 2.4. Let
0→ V1 → V2 → · · · → Vn → 0

be an exact sequence of finite dimensional vector spaces. Then

n∑

i=1

(−1)idimVi = 0.

Proof. Let the homomorphisms be ϕi : Vi → Vi+1(0 ≤ i ≤ n), V0 = 0,
Vn+1 = 0, ϕ0 = 0, ϕn+1 = 0. The exact sequence determines the short exact
sequence

0→ kerϕi → Vi ∼= Imϕi−1 → Imϕi → 0.

So, dimVi = dim(Imϕi−1) + dim(Imϕi). Therefore,

n∑

i=1

(−1)idimVi = dim(Imϕ0)± dim(Imϕn+1) = 0.

�
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Lemma 2.5. Let M be a closed 3-manifold, F be a closed surface in M . Let
p denote the number of components of M/F that are not twisted I-bundles.
Then

p ≥ |F | − dimH1(M ;Z2) + 1.

Proof. Let the components of F be F1, F2, . . . , Fn. Let X1, X2, . . . , Xk be the
components ofM/F that are twisted I-bundles, without loss of generality we
assume ∂Xi = Fi, 1 ≤ i ≤ k. For k + 1 ≤ i ≤ n let Xi be N(Fi), a regular
neighborhood of Fi.

Note: N(Fi) is an I-bundle over Fi, k + 1 ≤ i ≤ n. Let X =
⊔n

i=1Xi.
Then M −X is the disjoint union of the components of M/F that are not
twisted I-bundles. The homology exact sequence of the pair (M,M −X ;Z2)
gives:

· · · → H1(M)→ H1(M,M −X)→ H0(M −X)→ H0(M)→ 0

Now, H1(M) ∼= (Z2)
m. By excision, H1(M,M − X) ∼= H1(X, ∂X) ∼=

(Z2)
n, by Lemma 2.3 with n = |F |. Also, H0(M) ∼= Z2 and H0(M − X) ∼=

(Z2)
p. By Lemma 2.4, m ≥ n− p + 1, so p ≥ n−m+ 1.

�

Lemma 2.6. Let M be a closed 3-manifold with a triangulation T , with t
the number of 3-simplices. Let F be a normal surface in M. If

|F | ≥ 6t+ dimH1(M ;Z2) + 1,

then some pair of components of F are parallel in M.

Proof. Let d = dimH1(M ;Z2) The number of bad components ofM/F is less
than or equal to 6t. The number of components ofM/F that are not twisted
I-bundles is greater than or equal to |F | − d. Therefore, if |F | ≥ 6t + d+ 1,
then 6t ≤ |F | − d− 1. Therefore, the number of bad components of M/F is
less than or equal to |F | − d − 1. Therefore M/F has a good component X
that is not a twisted I-bundle. So, X ∼= Fi × I.

�

II. Kneser’s Prime Decomposition Theorem.
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Note: for the following, we are working in the PL category. Let Mi be a
closed n-manifold , Di an n-cell in Mi, for i ∈ N. Then we define

Mi#Mj = (Mi −Di ∪h Mj −Dj)

where h : ∂Di → ∂Dj is a homeomorphism.
Two facts:

1. Any two n-cells in a connected n-manifold M are isotopic.

2. Any two orientation preserving homeomorphisms Sn−1 → Sn−1 are
isotopic.

So,Mi#Mj is well defined up to homeomorphism ifMi, say, is non-orientable,
and well defined up to orientation preserving homeomorphism if Mi, Mj are
orientable and h is orientation reversing.

Theorem (Kneser). Let M be a closed 3-manifold. Then

M ∼= M1#M2# . . .#Mn,

Mi prime, 1 ≤ i ≤ n.

Remark: If M is orientable, then the Mi are unique. Suppose M =
M1# . . .#Mn. Then there exist a disjoint union S of (n−1) 2-spheres in M ,
such thatM/S =

⊔n
i=1M

′
i whereM

′
i
∼=Mi−⊔{open 3-cells}. Now, Mi

∼= S3

iff M ′
i
∼= S3 − ⊔{open 3− cells} = punctured S3.

Definition. Say S is a system of independent 2-spheres if no component of
M/S is a punctured S3.

Theorem 2.7. Let M be a closed 3-manifold. Then there exists k(M) ∈ Z
such that if S is an independent system of 2-spheres in M , then |S| ≤ k(M).

Note: Theorem 2.7 implies Kneser’s Finiteness Theorem.

Definition. Let F be a closed surface in M . Suppose there exists a disk
D ⊂M such that D ∩F = ∂D. Then D has a neighborhood N(D) ∼= D× I
such that N(D)∩F = ∂D× I. Let F ′ = (F − (∂D× I))∪ (D× ∂I). So, we
say that F ′ is obtained from F by surgery along D.

Lemma 2.8. LetM be an n-manifold with boundary, B ∼= Dn,M ′ =M∪DB
where D ∼= Dn−1. Then M ′ ∼=M .
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Proof. Clear, use the collar on ∂M .

�

Lemma 2.9. Let S be a 2-sphere in a 3-manifoldM . Let S ′∪S ′′ be obtained
by surgering S along a disk. If S ′ and S ′′ bound 3-cells in M , then so does
S.

Proof. Suppose S ′ = ∂B′, S ′′ = ∂B′′, B′, B′′ 3-cells.

1. B′ ∩ B′′ = ∅. Then S = ∂B, B = B′ ∪ B′′, a 3-cell be Lemma 2.8.

2. B′ ∩B′′ 6= ∅. Without loss of generality, we may assume B′ ⊂ B′′. Let
D′ = S ′ −D. Then B′′ = B ∪D′ B′, where ∂B = S. By Lemma 2.8,
B ∼= B′′, a 3-cell.

B’’

S S’’S’

B’

�

Lemma 2.10. Let S be a disjoint union of 2-spheres in M . Let D be a disk
inM with D∩S = ∂D = D∩S0, S0 a component of S. Let S ′ = (S−S0)∪S

′
0,

S ′′ = (S − S0)∪ S
′′
0 , where S

′
0 ∪ S

′′
0 is obtained by surgering S0 along D. If S

is independent then either S ′ or S ′′ is independent.

D

Y

X S’
S’’

S 0

0
0
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Proof. Let X , Y (possibly X = Y ) be the components of M/S that meet
S0. Without loss of generality, let D be a disk in X . Now, X/D = X ′ ∪X ′′

(possibly X ′ = X ′′). Suppose S ′ not independent. Since S is independent,
then one of the components of M/S ′ that meets S ′

0 must be a punctured S3.
Let Z be the disjoint union of |∂(X ∪S0 Y )| 3-cells. Let N = (X ∪S0 Y )∪∂ Z.
So S ′

0 bounds a 3-cell in N .
Similarly, if S ′′ is not independent, the S ′′

0 bounds a 3-cell in N . So, by
Lemma 2.9, S ′, S ′′ not independent implies that S0 bounds a 3-cell in N ,
and so S is not independent, a contradiction.

�

Alexander’s Theorem. Any (PL) 2-sphere in S3 bounds a 3-cell in S3.

Note: In the PL category, this is unknown for Sn−1 ⊂ Sn, n ≥ 4. The
case n = 4 implies the result for all n ≥ 4.

Lemma 2.11. If M is a closed 3-manifold and contains an independent
system of k 2-spheres, then it contains such a system that is normal.

Proof. Let S ⊂ M be an independent system of k 2-spheres. Let T be a
triangulation of M . Choose S to be in general position with respect to T
and such that w(S) is minimal. Then, by Lemma 2.1, each component of
S ∩ ∂τ , τ a 3-simplex of T , is either a 0-gon, a 3-gon, or a 4-gon.

0-gon 3-gon 4-gon

1. We may assume no 0-gons. If S ∩ ∂τ contains a 0-gon, let γ be one
that is innermost on the 2-simplex ∆ ⊂ ∂τ , i.e. there exists a disk
D ⊂ ∆ such that γ = ∂D, and intD ∩ S = ∅. Surger S along D and
push that resulting S ′ and S ′′ slightly off ∆. By Lemma 2.10, S ′, say,
is independent and the number of 0-gon intersections of S ′ is less than
the number of 0-gon intersections of S.

Note: w(S ′
0) +w(S ′′

0 ) = w(S0), S0 the component of S meeting D, and
so w(S ′) < w(S).
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2. For each 3-simplex τ of T , each component of S ∩ τ is a disk. Suppose
not. By Alexander’s Theorem, no component of S is contained in the
interior of τ . Let P be a component of S ∩ τ which is not a disk
and is innermost in the sense that some component γ of ∂P bounds a
disk D′ ⊂ ∂τ , such that every component of S ∩ τ that meets intD′

is a disk. Then there exists a disk D in the interior of τ such that
D ∩ S = ∂D ∩ S = ∂D ∩ P is parallel in P to γ.

D

D’

P

γ

τ

Now, surger S along D to get S ′, S ′′. So, S ′, say, is independent, by
Lemma 2.10. So, w(S ′) < w(S), a contradiction. So, each component
of S ∩ τ is a disk.

1. and 2. imply that the system is normal.

�

Proof of Theorem 2.7 Let S be an independent system of 2-spheres in
M with |S| = k. By Lemma 2.11, we may assume S normal (with respect
to some triangulation T of M). S independent implies that no components
of S are parallel. Therefore, by Lemma 2.6,

k < 6t+ dimH1(M ;Z2),

t the number of 3-simplices in T .
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�

III. Incompressible surfaces and Haken manifolds
After Kneser’s prime decomposition theorem, we may restrict our attention
to prime 3-manifolds.

Definition. A 3-manifold M is irreducible if every 2-sphere S ⊂M
bounds a 3-ball B ⊂M .

Clearly, M irreducible implies M prime. Also,

1. S1 × S2 and S1×̃S2 are prime, but not irreducible.

2. M prime and reducible implies that M ∼= S1 × S2 or S1×̃S2.

Definition. Let F be a surface in a 3-manifold M . A compressing disk for
F in M is a disk D ⊂M such that D ∩ F = ∂D ∩ F = ∂D does not bound
a disk in F . If there exists such a disk, F is compressible. F is
incompressible if it is not compressible and no component of F is S2.

Assume M is irreducible, F an incompressible surface in M . Suppose D is
a disk in M such that D ∩ F = ∂D ∩ F = ∂D. Then F incompressible
implies that ∂D = ∂E, E a disk in F . D ∪ E = ∂B, B a 3-ball. Now, we
can isotop E across B to D, which gives us a surface F ′ isotopic to F .
Note: B ∩ F = E. Otherwise, we could isotop F into B, which would
contradict the following theorem:

Theorem. Every closed connected surface F (≇ S2) in S3 is compressible.

The proof of the theorem is similar to the proof of Alexander’s Theorem.
Remark: Let F be a compressible surface in M . Then π1(F )→ π1(M) is
not injective.

Theorem (Disk Theorem (“Dehn’s Lemma-Loop Theorem”)). If F is a
2-sided surface in M , then F is compressible if and only if π1(F )→ π1(M)
is not injective.

Definition. A 3-manifold M is Haken if M is irreducible and contains a
2-sided incompressible surface.

Definition. Let M be a 3-manifold. Let F1, F2 ⊂M be surfaces. Let
D1 ⊂ F1 be a disk. Then we say that F1 and F2 are disk-equivalent if there
exists a disk D2 ⊂M with ∂D2 = ∂D1 and (F1 −D1) ∪D2 isotopic to F2.
F2 is said to be obtained from F1 by a disk replacement.
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Lemma. Let M be a 3-manifold, F1, F2 ⊂ M disk-equivalent surfaces. If F1

is incompressible, then so is F2. Also, if F ⊂M is a compressible surface
in M , D a compressing disk, and D′ disk-equivalent to D, then D is a
compressing disk for F .

Proof. Exercise.

�

Lemma 2.12. Let M be a closed 3-manifold, and F ⊂M an
incompressible surface (possibly disconnected), then M contains such a
surface that is normal.

Proof. (cf proof of Lemma 2.11 for spheres) Take F so that w(F ) is minimal
over all disk-equivalent surfaces and isotop F to be in general position with
respect to the triangulation T . By Lemma 2.1, for all 3-simplices τ of T ,
each component of F ∩ ∂τ is either a 0-gon, 3-gon, or 4-gon.

1. We may assume that F ∩ ∂τ contains no 0-gons: Take an innermost
such in some 2-simplex ∆, this bounds a disk D ⊂ ∆ such that
D ∩ F = ∂D. Since F is incompressible, ∂D = ∂E, E a disk in F .
Now, F ′ = (F − E) ∪D is an incompressible surface and can be
isotoped to a surface F ′′ with w(F ′′) ≤ w(F ) and the number of
0-gons of intersection of F ′′ is less than that of F , just push D off of
∆.

2. We can isotop F so that each component of F ∩ τ is a disk. Suppose
some component of F ∩ τ is not a disk. Note: There are no closed
components of F ∩ τ , by the theorem above. Let P be a non-disk
component of F ∩ τ , innermost in the sense of the proof of Lemma
2.11. So, some component γ of ∂P bounds a disk D′ ⊂ ∂τ , and we
obtain a disk D ⊂ intτ as before, with D ∩ F = ∂D = D ∩ P parallel
in P to γ. Since F is incompressible, ∂D bounds a disk E ⊂ F . Let
F ′ = (F −E) ∪D. Note that ∂P 6= ∂D′, for if ∂P = ∂D′, then
P = E, a disk, which contradicts our assumption on P . So, we have
two cases: Performing the above disk replacement has

(a) eliminated ∂D′ from F ∩ T (2),

(b) eliminated ∂P − ∂D′ from F ∩ T (2),
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and in either case, w(F ′) < w(F ), a contradiction.

�

Theorem 2.13. Let M be a closed 3-manifold. The there exists h(M) ∈ N
such that if F is an incompressible surface in M with |F | > h(M), then two
components of F are parallel.

Proof. Lemma 2.12 and Lemma 2.6 imply the Theorem.

�
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3 Matching Equations, Fundamental

Solutions, the Haken Sum

I. Warm Up: Normal 1-Manifolds in Surfaces
Let F be a closed surface, T a triangulation of F . Let C be a 1-manifold in
F . C is normal (with respect to T ) if every component of C ∩∆, ∆ a
2-simplex of T , is a normal arc:

, but not

C is essential if no component of C bounds a disk in F .

Theorem 3.1. Let C be an essential 1-manifold in a surface F. If we
isotop C to minimize w(C), then C is normal.

Proof. Exercise.

�

Let t be the number of 2-simplices in T , C a normal 1-manifold in F . Then
C determines a 3t-tuple of non-negative integers. There are three arc types
in each 2-simplex ∆, one for each vertex. Let x1, x2, x3 denote the number
of arcs of each type in ∆1, x4, x5, x6 denote the number of arcs of each type
in ∆2, et cetera.
Then the xi satisfy

3t
2
matching equations, one for each 1-simplex of T , of

the form
xp + xq = xr + xs.

x p

qx x s

x r
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Clearly, the set of normal 1-manifolds in F is in one to one correspondence
with the set of solutions in Z3t

+ of the matching equations.
Remark: A singular triangulation of a closed n-manifold M (n = 2, 3), is a
decomposition of M as a union of n-simplices, where the (n− 1) faces are
identified in pairs. So, the n-simplices are not necessarily embedded in M .
This allows us to get away with fewer n-simplices. The whole theory of
normal surfaces, normal 1-manifolds, goes through for singular
triangulations. Example: Essential simple closed curves in a Klein Bottle

Here is a singular triangulation of F with two 2-simplices, three 1-simplices,
and one 0-simplex:

1x

2x

3x

1
y

2
y

3
y

The matching equations are:

x1 + x2 = y1 + y2

x2 + x3 = y2 + y3

x3 + x1 = y3 + y1

The general solution is given by:

x1 = y1 = a

x2 = y2 = b

x3 = y3 = c

Let C(a, b, c) be the normal 1-manifold corresponding to the 6-tuple
(a, b, c, a, b, c) ∈ Z6

+. Let C be an essential simple closed curve in F . Then
C is isotopic to C(a, b, c) by Theorem 3.1. Now,

1. At least one of a, b, c is zero. For if not, C is vertex linking, which
implies that C is inessential, a contradiction.
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2. If a = 0, then b = 0 or c = 0, for if not, C is not connected.

3. If a = b = 0, then c = 1 or 2. Otherwise, C is not connected.

4. If a = c = 0, then b = 1 or 2. Otherwise C is not connected.

By (2),(3),(4), we may assume a 6= 0.

5. If a 6= 0, then c = 0. If not, then b = 0 by (1).

isotopy of C

Now isotop to decrease weight.

6. If a 6= 0, then a = 1, and b = 0 or 1. Assume a 6= 0. If b = 0, then
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a = 1, since C is connected.

isotopy of C

Suppose b > 0, a > 1.

If a = 1, b > 0, then b = 1 by connectivity.

Summarizing: any essential simple closed curve C is isotopic to one of

C(0, 0, 1), C(0, 0, 2), C(0, 1, 0),

C(0, 2, 0), C(1, 0, 0), C(1, 1, 0).

Now, C(0, 0, 1) and C(1, 1, 0) are isotopic:

isotopic to

both isotopic to  

C(0,0,1) C(1,1,0)
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and C(0, 0, 2) and C(0, 2, 0) are isotopic:

isotopic to

C(0,0,2) C(0,2,0)

So, we have α1 = C(0, 0, 1), α2 = C(0, 2, 0), which are both orientation
reversing and distinct in Z2 homology. And also β = C(0, 2, 0), orientation
preserving and seperating; and γ = C(1, 0, 0), orientation preserving and
non-seperating. In particular, β seperates F into two Möbius bands B1, B2,
with αi the core of Bi:

C(1,0,0) C(0,1,0)

β

α αγ1 2

F

So, there are 4 isotopy classes of essential simple closed curves on a Klein
bottle.

�

Let M be a closed 3-manifold, T a triangulation with t 3-simplices, F a
normal surface in M . The components of F ∩ τ , τ any 3-simplex of T , are
disks of one of seven types: four Triangle types, three Square types. So F
determines a 7t-tuple (x1, . . . , x8, . . .) ∈ Z7t

+ . F embedded implies the Square
Condition: for each τ , at most one Square type has nonzero coordinate.
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Let ∆ be a 2-simplex of T ; F ∩∆ is a set of normal arcs in ∆. Let τ, τ ′ be
the two 3-simplices containing ∆. Each arc type in ∆ corresponds to one of
two disk types in τ (τ ′) (one Triangle type, one Square type).
So, for each 2-simplex ∆ we get 3 matching equations of form:

xp + xq︸ ︷︷ ︸
τ

= xr + xs︸ ︷︷ ︸
τ ′

and since we have a total of 4t
2
2-simplices, we get 6t matching equations.

Clearly the set of normal surfaces in M is in one to one correspondence
with the set of solutions of the matching equations in Z7t

+ satisfying the
Square Condition.

Consider a finite system of homogeneous equations in n unknowns.
(∗) Ax = 0
where the entries of A are in Z. We seek solutions of (∗) in Zn

+.

Theorem 3.2. There exists a finite set S ⊂ Zn
+ of solutions of (*) such

that every solution of (*) is a sum of solutions in S. Moreover, S is
constructible, i.e. there exists an algorithm which, given A, produces S. S
is called a fundamental set of solutions.

Let V = {solutions of (∗) in Rn}, a subspace of Rn. Let ∆ = ∆n−1 be the
standard (n− 1)-simplex in Rn, i.e.

∆ = {(x1, . . . , xn) : xi ≥ 0,
n∑

i=1

xi = 1}

= cx{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

where for X ⊂ Rn, cx(X) = {tx+ (1− t)x′ : x, x′ ∈ X, 0 ≤ t ≤ 1}.
Note that every face of ∆ is a standard (m− 1)-simplex in some
m-dimensional coordinate subspace Rm ⊂ Rn. We’re interested in
V ∩∆ = C.

Lemma. Let σ1, . . . , σk be the faces of ∆ such that V ∩
◦
σi is a single point

v(i). Then,

1. C = cx{v(1), . . . , v(k)},

2. v(i) ∈ Qn, where v(i) are the vertices of C.
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Proof. 1. We proceed by induction on n. Let P be the affine

(n− 1)-subspace of Rn containing ∆. If V ∩
◦

∆ = ∅, i.e.
V ∩∆ = V ∩ ∂∆, then the result holds by induction. (Note that
V ∩ ∂∆ ⊂ V ∩ F , F some (n− 2)-dimensional face of ∆.) Also, if

V ∩
◦

∆ is a single point, we’re done. Otherwise, let x ∈ V ∩
◦

∆. Then
x ∈ L, L an affine line in V ∩ P . Therefore,

x ∈ cx(V ∩ ∂∆) =by induction cx(
⋃

F

cx{v(i) : v(i) ∈ F}

= cx{v(1), . . . , v(k)}

where F ranges over all (n− 2)-dimensional faces of ∆. Therefore,
C = cx{v(1), . . . , v(k)}.

2. Now, v(j) is the unique solution of a linear sustem of the form

Ax = 0︸ ︷︷ ︸
V

with
xi1 = xi2 = . . . = xin−m

= 0 and
∑

xi = 1
︸ ︷︷ ︸

defines σj

with all coefficients in Z. So, v(j) ∈ Q.

�

Proof of Theorem 3.2. For all v(i), let di be the lcm of the denominators of
the v

(i)
j such that 1 ≤ j ≤ n, and let w(i) = div

(i) ∈ Zn. For x ∈ Rn
+, define

|x| =
∑n

j=1 xj . Suppose z ∈ Zn
+ is a solution of (∗). Then |z| ∈ Z+ − {0},

and z
|z|
∈ C. Therefore, by the first part of the Lemma,

z

|z|
=

k∑

i=1

λiv
(i) (λi ≥ 0,

∑
λi = 1)

Therefore, z =
∑k

i=1 µiw
(i). Suppose |z| >

∑k

i=1 |w
(i)|. Then, µj > 1 for

some j, 1 ≤ j ≤ k. Let z′ = z −w(j). Then z′ ∈ Zn
+, is a solution of (∗), and

|z′| < |z|. So, we can take

S = {w(1), . . . , w(k)} ∪ {solutions z ∈ Zn
+of (∗) with |z| ≤

∑
|w(i)|}

Clearly, S is constructible.
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�

Let M be a closed 3-manifold with triangulation T . Let F1, F2 be normal
surfaces in M . By an arbitrarily small normal isotopy, we can ensure that

1. (F1 ∩ F2) ∩ T
(1) = ∅

2. Let αi be an arc of Fi ∩∆, ∆ some 2-simplex of T , i = 1, 2, then
|α1 ∩ α2| ≤ 1.

3. Let Di be a component of Fi ∩ τ , τ a 3-simplex of T , i = 1, 2, then
D1 ∩D2 = ∅ or a single arc.

Now, F1 ∩ F2 is a disjoint union of simple closed curves. We say that F1

and F2 are compatible if, in each 3-simplex τ , (F1 ∩ τ) ∪ (F2 ∩ τ) contains at
most one Square type. If F1 and F2 are compatible normal surfaces, with
F1 ∩ F2 as above, then we can form the Haken Sum F1 + F2 as follows:
F is obtained by cutting and pasting F1 and F2 along simple closed curves
F1 ∩ F2, by making regular switches, i.e. for each 2-simplex ∆, we preserve
normality on F1 ∩ F2. Using the compatibility condition, we can now
extend this cutting and pasting along the arcs of intersection of the normal
disks of F1 ∩ τ and those of F2 ∩ τ for all 3-simplices τ . We shall see below
that F is a normal surface.
Note: The compatibility condition is needed, as the following figure
demonstrates. The regular switch instructions at the two ends of D1 ∩D2

are incompatible:

Let the vectors in Zn
+ corresponding to F1, F2 and F be x(1), x(2), x. Then

x = x(1) + x(2)
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Since F is obtained by “disassembling and reassembling” F1 and F2, we
have that

(# i−simplices in F1) + (# i−simplices in F2) = (# i−simplices in F )

with respect to any triangulation of F1 and F2. So, we have

χ(F ) = χ(F1) + χ(F2)

Also, it is clear that
w(F ) = w(F1) + w(F2)

The Haken Sum is also associative:

Let x ∈ Zn
+ be a fundamental solution of the matching equations that

satisfies the Square Condition. Then x yields a normal surface F , which we
call a fundamental surface.

Theorem 3.3. Every normal surface can be expressed as a sum of
fundamental ones.

Proof. Let F be a normal surface. F yields a solution x ∈ Zn
+ of the

matching equations. Therefore x =
∑m

i=1 x
(i), x(i) ∈ S. Since x satisfies the

Square Condition, each x(i) does. Therefore, each x(i) yields a normal
surface F (i) and F (1), . . . , F (m) are compatible. So, F ′ = F (1) + . . .+ F (m) is
defined. But, the solution of the matching equations corresponding to F ′ is
exactly x. So, F ′ = F .

�

Definition. Let M be a closed 3-manifold with triangulation T . F0 ⊂M is
an immersed normal surface if
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1. F0 ∩ T
(0) = ∅.

2. For each 2-simplex ∆ of T , F0 ∩∆ is a union of normal arcs, each pair
intersecting transversely in at most one point.

3. For each 3-simplex τ of T , F0 ∩ τ is a union of normal disks with

(a) All squares are of the same type

(b) For each pair of normal disk D, D′,

D ∩D′ =

{
∅ or one arc if D or D′ is a triangle
∅ or one or two arcs if D and D′ are squares

(c) D ∩D′ ∩D′′ = ∅ for any triple of normal disks.

Note: The singular set Γ of F0 is a disjoint union of simple closed curves,
all double curves, i.e. there are no triple points.
Now, given an immersed normal surface, we may not be able to perform
regular switches along Γ in order to obtain a normal surface. The following
example, suggested by Saul Schleimer, demonstrates the difficulty:
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The two faces of the tetrahedron facing the reader are identified by a 1
3

twist, the square and the two triangles becoming an immersed normal
surface with one curve of self intersection. Now, in an attempt to perform a
regular switch, we begin by following the regular switch instructions at one
intersection point in the face of the tetrahedron. Continuing along the
curve, we obtain the following abnormal surface:

To elucidate the problem, consider the intersection of the surface with the
identified face:



3 MATCHING EQUATIONS, FUNDAMENTAL SOLUTIONS, THE HAKEN SUM28

Now, after each switch is performed we label the intersection in our original
picture with r’s and i’s, which serves as our regular switch instructions, like
so:

r r
i

i

Beginning at the North intersection and performing regular switches in a
clockwise fashion, we have the following set of instructions:

r r
i

r
ri

i
r

r
i

i

i

Beginning at the Southwest intersection and performing regular switches in
a clockwise fashion, we have the following set of instructions:

r
ri
i

r
r i

i

r
i i

r

Luckily, if the immersed surface is the union of two embedded ones, then
this does not happen, thanks to the two following lemmas.
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Lemma. Let α =
⋃m

i=1 αi, β =
⋃n

j=1 βj be properly embedded normal
1-manifolds in a 2-simplex, all αi, βj arcs, such that |αi ∩ βj | ≤ 1 and
|αp ∩ βq| = 1 for some p, q. Then there exists a pair of arcs α′ and β ′ that
cobound an outermost triangle with one side lying in one edge of the
2-simplex:

Proof. We induct on the number of arcs, m+ n. If α and β each consist of
a single arc, then we have the following picture and we are done:

Now, suppose the result is true for all such 1-manifolds with m+ n ≤ k.
Now, let α and β be such 1-manifolds with k + 1 arcs total. Now,
B = (α ∪ β)− βl is a 1-manifold with k arcs and by the inductive
hypothesis, we have two arcs α′ and β ′ in B which cobound a triangle.
Now, if βl does not intersect this triangle, then we’re done. If βl does
intersect this triangle, the α′ and βl are the desired arcs:
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α
β

l
β

’

’

�

Lemma. Let α =
⋃m

i=1 αi, β =
⋃n

j=1 βj be properly embedded normal
1-manifolds in a 2-simplex such that αi, βj are all arcs with the property
that |αi ∩ βj| ≤ 1. Then the regular switch instructions are independent of
the order in which regular switches are performed along α ∩ β.

Proof. We proceed by induction on |α ∩ β|. If |α ∩ β| = 0, then there is
nothing to show. Now, suppose the result holds for all such 1-manifolds
with |α ∩ β| ≤ k. Now let α and β be such manifolds with |α ∩ β| = k + 1.
Now, by the previous lemma, there are two arcs αp and βq which cobound a
triangle with an edge in one face of the 2-simplex. Now, there is only one
possible choice for a regular switch at the point αp ∩ βq. Let α

′
p and β ′

q be
the traces of αp and βq after performing the regular switch at αp ∩ βq, as
pictured:

β
αp

q

β’ ’αq p
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Note that α′
p, β

′
q only intersect arcs of β and α respectively. Now, replacing

αp by α′
p and βq by β ′

q in α and β respectively, we obtain two embedded
1-manifolds α′ and β ′ with |α′ ∩ β ′| = k, and so by induction, the regular
switch instructions at this stage are independent of order. But this means
that the instructions are independent for α ∪ β, as there is no choice
involved at the point αp ∩ βq.

�

In particular, given embedded normal surfaces F1 and F2, we can isotop F1,
say, through normal surfaces so that F1 ∪F2 is an immersed normal surface.
Then we may perform regular switches along Γ in any order to obtain a
normal surface F . From now on, we concern ourselves only with immersed
surfaces which are “descendents” of embedded ones:

Definition. Let F1, F2 be compatible embedded normal surfaces in a
3-manifold M . Let F be the immersed surface obtained from F1 ∪ F2 by
performing regular switches on some subcollection of curves in F1 ∩ F2.
Then we say that that F is an immersed surface of embedded descent.

Lemma 3.4. Let F be a connected normal surface that is not fundamental,
i.e. F = G+H, (G,H 6= ∅), with |G ∩H| minimal. Then,

1. G and H are connected

2. no component γ of G ∩H seperates both G and H.

Proof. 1. Suppose H = H1 ⊔H2(H1, H2 6= ∅). Let G
′ = G+H2. Since F

is connected, G ∩H2 6= ∅. Then F = G′ +H1 and
|G′ ∩H1| < |G ∩H|, a contradiction.
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2. Suppose γ, a component of G ∩H , seperates G and H :

G
H

γ

γ

Performing a regular switch along γ, we obtain two immersed normal
surfaces F1 and F2 of embedded descent:

F F1 2

Note: γ seperates G into G1 and G2, H into H1 and H2. Without loss
of generality,

F1 = G1 ∪H1

F2 = G2 ∪H2

Doing regular switches along the self intersections of F1 and F2, we
obtain two embedded normal surfaces F ′

1, F
′
2 with F = F ′

1 + F ′
2 and

|F ′
1 ∩ F

′
2| < |G ∩H|, a contradiction.
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�

If γ is a double curve of an immersed normal surface, we can do an
irregular switch along γ:

irregular

Lemma 3.5. Let H be an immersed normal surface of embedded descent
with singular set Γ. Let F be the normal surface obtained from H by doing
regular switches along Γ, and let G be the (embedded) surface obtained from
H by doing irregular switches along Γ. Then G is isotopic to G′ with
w(G′) < w(F ).

Proof. There is some 2-simplex ∆ of T such that G ∩∆ is not normal, i.e
there exists an arc component with both endpoints lying in the same edge
of ∆, and we can isotop G to reduce w(G).

�

Remark. If F ⊂M is compressible, with compressing disk D, then ∂D is
2-sided in F . Hence, if P ⊂ M is a projective plane, then P is
incompressible.

Definition. Let F0 be an immersed normal surface in M with singular set
Γ. A region of F0 is a component of F0/Γ.

For example, if F0 = F1 ∪ F2, F1, F2 normal surfaces, then a region is a
component of (F1 ∪ F2)/(F1 ∩ F2).
From now on, we shall assume that M is orientable. So, if F1, F2 are
surfaces in M , γ a component of F1 ∩ F2, then γ is 2-sided in F1 iff γ is
2-sided in F2.
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4 Finding Geometrically Essential 2-Spheres

Let M be a 3-manifold. A 2-sphere S ⊂M is geometrically essential if S
does not bound a 3-cell in M .
Remarks. Let S be a 2-sphere in M . S is essential if [S] 6= 0 ∈ π2(M).
Clearly S essential implies S geometrically essential. S non-seperating
implies S essential. S seperating (M =M ′

1 ∪S M
′
2), i.e. M =M1#M2

(Mi =M ′
i ∪B

3), then S essential if and only if π1(Mi) 6= 1, i = 1, 2.
(Hence, modulo the Poincaré Conjecture, S essential is equivalent to S
geometrically essential.)

Theorem (Papakyriakopoulos). π2(M) 6= 0 implies that there exists an
embedded essential 2-sphere S ⊂ M .

Lemma 4.1. Let M be a closed 3-manifold. If M contains a geometrically
essential S2 or P 2 then it contains a fundamental surface which is either a
geometrically essential S2 or a P 2.

Proof. Let T be a triangulation of M . If M contains a geometrically
essential S2, then, by Lemma 2.11, it contains a normal one, say S, of least
weight among all spheres in M . If M contains a P 2, then, by Lemma 2.12,
it contains a normal one of least weight among all projective planes in M .
Let F be a normal surface, either a geometrically essential 2-sphere or a
projective plane, of least weight among all geometrically essential 2-spheres
and projective planes in M .
Claim: F is a fundamental surface.
Proof of Claim. Suppose F not fundamental. Then F = G+H (G,H 6= ∅).
Choose such G, H with | G ∩H | minimal. Let Γ denote G ∩H . Now,
0 < χ(F ) = χ(G) + χ(H). Therefore, without loss of generality, χ(G) > 0.
Therefore G is S2 or P 2. Now, w(F ) = w(G) + w(H), with
w(G), w(H) > 0. So, w(G) < w(F ). Now, by the minimality of w(F ), the
only possibility for G is a geometrically inessential 2-sphere, i.e. G ∼= S2

and G = ∂B3.

Case I, F ∼= S2 Recall that a region is a component of (G ∪H)/Γ. Let D
be a disk region in G, ∂D = γ (see Figure 1). So, γ is 2-sided in G
and H , as M is orientable. Now D yields a disk, call it D again, in F,
and γ yields two curves γ′ and γ′′ in F with γ′ = ∂D (see Figure 2).
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Figure 1

G

D Hγ

Figure 2

Ε

’γ γ ’’D

Figure 3

D D’

E E’

Figure 4

Now, γ′′ seperates F into 2 disks. Let E be the one shown in Figure
2. If E is a region of G ∪H , then γ seperates both G and H . This
contradicts Lemma 3.4. Therefore, there exists a region D′ ⊂ intE
(D′ ⊂ G). Let this be the disk shown in Figure 3. As above, we have
a γ′ that seperates E into an annulus and a disk, say E ′. Again, E ′

cannot be a region, so there exists a disk region D′′ ⊂ E ′; et cetera.
Continue in this fashion until you first get an E that contains a
previous D, i.e. we get a cycle: D0, E0, D1, E1, ..., Dk−1, Ek−1, where
Di is a disk region; ∂Di = γi (Di ⊂ G) (see Figures 4,5). Ei is a disk
in F with ∂Ei = γ′′i , Di+1 ⊂ intEi, all indices modulo k.

k > 1 Let Si be the 2-sphere Di ∪ Ei. Let Fi be the immersed normal
surface obtained from G ∪H by doing regular switches along all
components of Γ except γi (see Figure 6). Now, a regular switch
along γi yields F and an irregular switch along γi yields a surface
with Si as a component (see Figure 7). Therefore, by Lemma 3.5,
Si is isotopic to S ′

i with w(S
′
i) < w(F ). Therefore, by assumption

on F , Si bounds a 3-cell Bi in M . So, Bi is as shown in Figure 7.
Otherwise F ⊂ Bi, contradicting non-triviality of F . We can use
these Bi, i ∈ Z/nZ, to define an isotopy of F , to F ′, see Figure
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8. Doing regular switches on G ∪H along all components of Γ
except γ0, γ1, ..., γk−1, we get F ′ ∪ F ′′, F ′, F ′′ normal surfaces,
F ′′ 6= ∅, F ′ isotopic to F , and F = F ′ + F ′′ (see Figure 8). So,
w(F ) = w(F ′) + w(F ′′) and so w(F ′) < w(F ), a contradiction.

Figure 5

D
i

γ i

E i

Figure 6

i
γ

F i

Figure 7

i
γ B i

Figure 8

F’’

F’

Figure 9(a)

ED
E’

γ ’’

Figure 9(b)

T
S

k = 1 D ⊂ intE. F = E ∪ E ′, E ′ a disk (Figure 9a). Let S = D ∪ E ′.
S is a nonseperating 2-sphere in M , and therefore geometrically
essential. As above, we get F = S + T (see Figure 9b.).
Therefore w(S) < w(F ), a contradiction.

Case II, F ∼= P 2 As in case I, let D be a disk region in G. ∂D = γ, γ is
two-sided in G, and so is two-sided in H , as M is orientable. So, we
have γ′′ two-sided in F ∼= P 2, and so γ′′ bounds a disk E ⊂ F . If E is
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as shown in Figure 10, proceed as in case I.

Suppose F/γ′′ = E ∪ B, B a Möbius band (Figure 11).

Figure 10

Eγ ’’D

Figure 11

E

B

Figure 12(a)

E

D

Figure 12(b)

F’’ S

D * E Regular switch along γ, see Figure 12a. Doing regular
switches along Γ− γ: see Figure 12b. So, we get F = F ′′ + S, S
a non-seperating 2-sphere. Therefore, w(S) < w(F ), a
contradiction.

D ⊂ E Let P = B ∪D = P 2. Doing regular switches along Γ− γ, we
get immersed normal surface F ′. Doing a regular switch on F ′

along γ yields F , and an irregular switch along γ yields a
surface, one of whose components is P (see Figure 13). By
Lemma 3.5, P is isotopic to some P ′ with w(P ′) < w(F ),
contradicting the definition of F .

Figure 13

P

B

B

E

D
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�

Theorem (Rubinstein: 1994). There exists an algorithm to decide whether
or not a given closed 3-manifold is homeomorphic to S3. Let R denote this
algorithm.

Corollary. There exists an algorithm to decide whether or not a given
2-sphere in a 3-manifold is geometrically essential.

Theorem 4.2. There exist algorithms which take an arbitrary 3-manifold
M and

1. decide whether or not M is irreducible.

2. find a maximal independent system of 2-spheres in M .

3. decide whether or not M is prime.

4. find the prime decomposition of M.

Proof of 1. Given a triangulation T of M .

(i) Write down the matching equations.

(ii) Find a fundamental set of solutions.

(iii) Find those that correspond to embedded normal surfaces,
fundamental surfaces.

(iv) Find all fundamental surfaces with χ > 0.

(a) If none, then M is irreducible by Lemma 4.1.

(b) If there exists a fundamental surface P with χ(P ) = 1, then
P ∼= P 2, and N(P ) ∼= P 3− IntB3. Therefore, M ∼= M ′#P 3. Now
use R to decide whether or not M ′ ∼= S3. If YES, then M ∼= P 3

(irreducible). If NO, then M reducible.

(c) If not (a) or (b), there exist fundamental surfaces S1, . . . , Sn with
χ(Si) = 2; Si

∼= S2. If some Si is nonseperating, then M is
reducible. If all Si seperate, then Si gives us M ∼= M ′

i#M
′′
i .

Apply R: if for some i, M ′
i ≇ S3 ≇ M ′′

i , then M is reducible. If
not, then M is irreducible (by Lemma 4.1).

�
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5 Deciding Boundary Compressibility; The

Knot Triviality Problem

Let M be a compact, orientable 3-manifold with boundary, T a
triangulation of M . The theory of normal surfaces carries over to properly
embedded surfaces F ⊂M (F ∩ ∂M = ∂F ). For the matching equations,
we consider only 2-simplices not in ∂M . The Haken Sum is now performed
along simple closed curves and properly embedded arcs.

Definition. A compressing disk for ∂M is a properly embedded disk
D ⊂M such that ∂D does not bound a disk in ∂M . If such a disk exists,
∂M is compressible. If not, and no component of ∂M is S2, ∂M is
incompressible.

Let F be a properly embedded surface in M , ∂F 6= ∅. let D ⊂M be a disk
such that

D ∩ F = ∂D ∩ F = α

D ∩ ∂M = ∂D ∩ ∂M = β

with α, β arcs; α ∪∂ β = ∂D. Then we can do a boundary surgery of F
along D:

boundary F

boundary F

boundary M

D
α

β

F

Definition. If we have such a D such that no component of F/α is a disk,
then D is a boundary compressing disk for F , and we say that F is boundary
compressible. If F is not ∂-compressible, then F is ∂-incompressible.

Normal surfaces can be used to prove an analog of the Haken finiteness
theorem for surfaces with boundary.
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Theorem. Let M be a compact orientable 3-manifold with incompressible
boundary. The there exist h(M) such that if F is an incompressible
∂-incompressible surface in M, no pair of components of which are parallel,
then |F | ≤ h(M).

Proof. Exercise.

�

Exercise: Let M be a handlebody (at least genus 2). For all n, show that
there exists an incompressible surface F (properly embedded) in M with
|F | > n, no pair of components of which are parallel.
Proof of the theorem uses the following:

Lemma. Let M be a compact orientable 3-manifold with incompressible
boundary, F ⊂M incompressible ∂-incompressible. Then M contains such
a surface that is normal.

Proof. Exercise.

�

Lemma 5.1. Let M be a 3-manifold. Let E be a compressing disk for ∂M .
Suppose E ′ ⊔ E ′′ is obtained from E by ∂-surgery along a disk. Then, either
E ′ or E ′′ is a compressing disk for ∂M

Proof. Let γ = ∂E, γ′ = ∂E ′, γ′′ = ∂E ′′. Suppose that neither E ′ nor E ′′ is
a compressing disk, i.e. γ′ = ∂∆′, γ′′ = ∂∆′′, ∆′,∆′′ disks in ∂M .
There are two cases:

1. ∆′ ∩∆′′ = ∅, γ = ∂∆, ∆ = “∆′ ∪β ∆
′′”

2. ∆′ ⊂ ∆′′

γ
γ

γ

’’

’

And in either case γ = ∂∆, ∆ a disk in ∂M , a contradiction.

�
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Lemma 5.2. Let M be a compact 3-manifold. If ∂M is compressible, then
there exists a compressing disk E, with w(E) minimal over all compressing
disks, which is a normal surface.

Proof. Let E be a compressing disk for ∂M with minimal weight. Let ∆ be
a 2-simplex of T . Consider E ∩∆.

1. We can assume no component of E ∩∆ is a 0-gon. Otherwise, let γ
be an innermost such. Then γ = ∂D, D a disk in ∆, with
intD ∩ E = ∅. If ∆ ⊂ ∂M , then γ = ∂E, contradicting the definition
of the compressing disk. So ∆ * ∂M . Surger E along D to obtain
E ′ ⊔ S, E ′ a disk with ∂E ′ = ∂E, and S ∼= S2. Then w(E ′) ≤ w(E).

2. No component of E ∩∆ is an arc with both endpoints in the same
edge. Otherwise, let α be an outermost such. Then ∂α is contained in
an edge e, α ∪ ẽ bounds a disk D ⊂ ∆, ẽ an arc contained in e with
∂ẽ = ∂α, and there are three cases to consider:

(a) e * ∂M . Then we can isotop E across D to reduce w(E), a
contradiction.

(b) ∆ ⊂ ∂M . Again, we can isotop E across D to reduce w(E).

(c) e ⊂ ∂M , ∆ * ∂M . We perform ∂-surgery on E along D which
yields E ′ ⊔E ′′. By Lemma 5.1, E ′, say, is a compressing disk and
w(E ′) < w(E), a contradiction.

3. Let τ be a 3-simplex of T . Each component of E ∩ ∂τ meets any edge
at most once. Suppose not. So, there exists a disk D′ ⊂ ∂τ such that
∂D′ = α′ ∪ β, β ⊂ e, α′ ⊂ E ∩ ∂τ . Near e, α′ is contained in a
2-simplex ∆. Let δ ⊂ ∆ be β pushed slighlty into ∆. Let D ⊂ τ be a
suitable parallel copy of D′; D is D′ “tilted about δ′′. If ∆ * ∂M , use
D to isotop E to E ′, then apply 2.

E’ ∆

δ

α’

β
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If ∆ ⊂ ∂M , perform a ∂-surgery along D to obtain E ′ ⊔ E ′′ with E ′,
say, a compressing disk with w(E ′) < w(E), a contradiction.

�

Theorem 5.3. Let M be a compact orientable 3-manifold. If ∂M is
compressible, then there exists a compressing disk for ∂M which is a
fundamental surface.

Proof. Let F be a compressing disk for ∂M , with w(F ) minimal over all
compressing disks, which is normal.
Claim: F is fundamental.
Proof of Claim: Suppose not. So, F = G+H (G,H 6= ∅). Now, G ∩H is a
disjoint union of simple closed curves and properly embedded arcs. We may
choose such G and H so that |G ∩H| is minimal. Analogs of Lemma 3.4
hold, and, in particular, G and H are connected. Now,

1 = χ(F ) = χ(G) + χ(H)

Therefore, χ(G), say, is greater than zero. So, G ∼= P 2, S2, D2.

Case I, G ∼= P 2 Note that χ(H) = 0 and since ∂G = ∅ and |∂F | = 1 and
|∂H| = 1, H is a Mobius band. Let γ be a component of Γ = G ∩H .
Now, γ is 2-sided in G iff γ is 2-sided in H , as M is orientable. So, if
γ is 2-sided in G, then γ is seperating in G and H , since G is a
projective plane and H is a Mobius band, and this contradicts
Lemma 3.4. Therefore, γ is 1-sided in G and H . So, since γ is a
simple closed curve in G and H , it is the only component of G∩H , as
there is only one 1-sided simple closed curve in G and H , up to
isotopy. Now, performing an irregular switch at γ on G ∪H yields a
connected surface F ′, with nonempty boundary, such that χ(F ′) = 1.
So, F ′ is a disk. But, by Lemma 3.5, F ′ may be isotoped to F ′′ so
that w(F ′′) < w(F ), and since ∂F ′ = ∂F , F ′′ is a compressing disk,
contradicting the minimality of w(F ).

Case II, G ∼= S2 Let D be a disk region of G ∪H in G, ∂D = γ. Regular
switches along Γ = G ∩H yields F ∼= D2, and so D gives rise to a
disk D′ in F . So, γ′′ bounds a disk E ⊂ F .
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(i)

ED’

Proceed as in proof of Lemma 4.1. Since γ seperates G, γ does
not seperate H , by Lemma 3.4. Therefore, E is not a region. So,
E contains a disk region D̃ ⊂ G. If (i) holds for D̃, continue.
Eventually, we get a cycle

D0, E0, . . . , Ek−1 ⊃ D0

Now, replacing Ei with Di, 0 ≤ i ≤ k − 1, we have a disk F ′ that
is disk-equivalent to F with F = F ′ + F ′′ and w(F ′) < w(F ), a
contradiction:

F’’

F’

Note: We don’t have to treat the case k = 1 seperately.

(ii) Let D′ be as above, ∂D′ = γ′, D′′ the parallel copy of D with
∂D′′ = γ′′ ⊂ F . Let E ′ be a parallel copy of E with ∂E ′ = γ′.

D’

EE’

E’ E

D’’
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D′ * E Replace E with D′′ in F . Then replace D′ with E ′. Call
the resulting surface B. Now perform regular switches on
G ∪H along Γ− γ to obtain an immersed surface F ′. Now,
an irregular switch along γ on F ′ yields B, and so B is
isotopic to B′ with w(B′) < w(F ), B disk equivalent to F , a
contradiction.

D′ ⊂ E
E

D’ B

Note that B = (F − E) ∪D′′ is a disk with ∂B = ∂F .
Perform regular switches along all components of Γ except γ
to obtain an immersed surface F ′. Now, a regular switch at
γ on F ′ yields F , and an irregular witch at γ yields a
surface, one component of which is B. By Lemma 3.5, we
can isotop B to B′ with w(B′) < w(F ), a contradiction.

Case III, G ∼= D2

1 = χ(F ) = χ(G) + χ(H)

and since χ(G) = 1, χ(H) = 0. If ∂H = ∅, then ∂F = ∂G, and then
G is a compressing disk with w(G) < w(F ), a contradiction. If
∂H 6= ∅, then H is an annulus or a Mobius band. Suppose γ is a
simple closed curve component of Γ, γ seperating G. Also, M being
orientable and γ 2-sided in G implies that γ is 2-sided in H . So, γ
seperates H . This contradicts the minimality of Γ, by Lemma 3.4. So,
Γ is a disjoint union of arcs.

Let D be an outermost disk region in G corresponding to an arc
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component α ∈ Γ.

α

G

D H

boundary of M

α

D

boundary of M

α

α ’

’’

E

Now, α′′ is an arc in F and so α′′ seperates F into two disks, E and
E ′. Let E be the disk shown. Now, α seperating in G implies that α
does not seperate H , and so E contains a disk region. As before, we
get a cycle

D0, E0, . . . , Ek−1 ⊃ D0 (k ≥ 1)
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boundary of M

k ≥ 2

E

A i

i

Di

∆ i

boundary of M

α i

Let Ai = Di ∪αi
Ei. Now, perform regular switches on all

components of Γ to obtain an immersed surface Fi. Now,
performing a regular switch at αi yields F, and an irregular
switch yields a surface, one component of which is Ai. By,
Lemma 3.5, Ai is isotopic to A′

i with w(A
′
i) < w(F ). So, Ai is

not a compressing disk, i.e. ∂Ai bounds a disk ∆i ⊂ ∂M . Then
Ai ∪∆i

∼= S2. Note: Di is as shown, otherwise ∂F ⊂ ∆i, a
contradiction. So, F is isotopic to F ∪∆i and we can replace the
disk Ei ∪∆i with Di, 1 ≤ i ≤ k − 1, to obtain a surface F ′ with
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F = F ′ + F ′′, w(F ′) < w(F ), a contradiction.

F’

F’’

k = 1
F’

α

F’’
F’’

F’

Perform regular switches along Γ− α to obtain an immersed
surface F ′. Now, a regular switch at α on F ′ yields F and an
irregular switch at α on F ′ yields a disk F ′′ with ∂F ′′ = ∂F , F ′′

isotopic to F ′′′ with w(F ′′′) < w(F ), a contradiction.

�

Corollary 5.4. There exists an algorithm to decide whether or not a given
compact 3-manifold has compressible boundary.

Proof. Exercise.

�

Hence,

Theorem 5.5 (Haken: 1962). There exists an algorithm to decide whether
or not a given knot is trivial.
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Let K ⊂ S3 be a knot. Then K is trivial iff it is isotopic to ©. Let MK

denote the exterior of K, i.e. MK = S3 − intN(K).

Lemma 5.6. Let µ be a meridian of ∂N(K). Then H1(MK) ∼= Z is
generated by [µ].

Proof. S3 =MK ∪∂N N , N = N(K). The Mayer-Vietoris exact sequence
gives us:

H2(S
3)→ H1(∂N)→ H1(MK)⊕H1(N)→ H1(S

3)

Now, H1(∂N) ∼= 〈[µ], [λ]〉 = Z⊕ Z where λ ∈ ∂N is a simple closed curve
such that [λ][µ] = 1. Now, [µ] maps to zero in H1(N), [λ] maps to 1. Now,
the map H1(∂N)→ H1(MK)⊕H1(N) is surjective and so we have:

(1, 0) = a(i∗[µ], 0) + b(x, 1)

where [λ] 7→ (x, 1). So, b = 0 and i∗[µ] = ±1. So, i∗[µ] generates
H1(MK) ∼= Z.

�

Note: MK is irreducible by Alexander’s Theorem.

Theorem 5.7. Let K be a knot in S3. Then the following are equivalent:

(i) K is trivial.

(ii) MK
∼= S1 ×D2.

(iii) ∂MK is compressible.

Proof. (i)⇒ (ii)⇒ (iii). Clear. (iii)⇒ (i). Let D be a compressing disk
for ∂MK . Let µ be a meridian, λ the latitude of K, i.e. λ is a simple closed
curve in ∂N , [λ][µ] = 1, and λ ∼ 0 in MK . Now,

[∂D] = p[λ] + q[µ], (p, q) = 1

but [∂D] = 0 in H1(MK) and since

[λ] 7→ 0 and [µ] 7→ generator

in H1(MK), q = 0, p = ±1. Therefore, ∂D is isotopic to λ in ∂N .
Therefore, there exists an annulus A ⊂ N such that ∂A = K ⊔ ∂D.
Therefore, D+ = D ∪ A is a disk in S3 with ∂D+ = K. So, K is trivial.
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�

Theorem 5.7 and Corollary 5.4 imply Theorem 5.5.
Question: Is there a polynomial time algorithm for this?
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6 Deciding the Existence of Incompressible

Surfaces

Note: Let M be a closed orientable 3-manifold. Let G be a connected
non-orientable surface in M , then N(G) is a twisted I-bundle over G, and
∂N(G) is a 2-fold orientation preserving cover of G.

Theorem 6.1 (Jaco, Oertel: 1984). Let M be a closed 3-manifold that
contains an orientable incompressible surface F. Then M contains such a
surface that is either fundamental or ∂N(G), where G is non-orientable and
fundamental.

Proposition 6.2. Let M be a closed 3-manifold, F incompressible surface
(not necessarily connected) in M, which is of least weight among all
disk-equivalent surfaces in M. Suppose F = G+H with G,H normal. Then
G and H are incompressible.

Lemma 6.3. Let F = G+H as in Proposition 6.2. Then no region of
G ∪H is a disk.

Proof. Let Γ = G ∩H . Let D be a disk region in G, say. So, D yields a
disk D′ ⊂ F with ∂D′ = γ′. Now, there exists a disk D′′, a parallel copy of
D in M such that D′′ ∩ F = ∂D′′ = γ′′. Now, since F is incompressible,
γ′′ = ∂E, E a disk in F .

1

Eγ ’’D

Exercise (Compare earlier arguments: E cannot be a region, so we
obtain a cycle, et cetera).
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2 Let D′, D′′ be as above. Let E ′ be a parallel copy of E with ∂E ′ = γ′.

D’

EE’

E’ E

D’’

D′ * E Replace E with D′′ in F . Then replace D′ with E ′. Call the
resulting surface B. Now perform regular switches on G ∪H
along Γ− γ to obtain an immersed surface F ′. Now, an irregular
switch along γ on F ′ yields B, and so B is isotopic to B′ with
w(B′) < w(F ), B disk equivalent to F , a contradiction.

D′ ⊂ E Replace E with D′′ to obtain F ′′ = (F − E) ∪D′′. Doing
regular switches along Γ− γ yields an immersed normal surface
F ′, say. Now, performing a regular switch at γ on F ′ yields F
and an irregular switch at γ yields a surface with F ′′ as a
component. So, by Lemma 3.5, F ′′ is isotopic to some F ′′′ with
w(F ′′′) < w(F ). But, F ′′ is isotopic to F , and we have a
contradiction.

�

Lemma 6.4. Each region of G ∪H is incompressible in M .

Proof. Let R be a region of (G ∪H)/Γ. let D ⊂M be a disk such that
D ∩R = ∂D. Now, R ⊂ F , F is incompressible, and so ∂D bounds a disk
E ⊂ F . Suppose E * R. Then E contains a disk region of (G ∪H)/Γ,
contradicting Lemma 6.3. Therefore, E ⊂ R and so R is incompressible.

�

Proof of Proposition 6.2: Suppose F = G+H and, without loss of
generality, assume |G ∩H| minimal over all G′, H ′ disk-equivalent to G,H
with F = G′ +H ′. Now, G, say, is compressible, and let D be a
compressing disk for G with |D ∩H| minimal.
Claim 1: D ∩H 6= ∅.
Proof of Claim 1. Suppose D ∩H = ∅. Then ∂D is contained in some
region R ⊂ G. Therefore, by Lemma 6.4, ∂D = ∂E, E a disk in R ⊂ G.
Therefore D is not a compressing disk for G, a contradiction.
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Claim 2: No component of D ∩H is a simple closed curve.
Proof of Claim 2. Suppose there is such a component. Then an innermost
such in D bounds a disk D0 ⊂ D. Now, ∂D0 is contained in some region
R ⊂ H , and by Lemma 6.4, ∂D0 = ∂E, E a disk in R.

E

0D

H

Now, replace D0 with E and then we can isotop the resulting D′ to D′′ so
that |D′′ ∩H| < |D ∩H|, a contradiction.
So, D ∩H is a disjoint union of properly embedded arcs. So, we have the
following diagram:

D0

D r r

r

i

r
r

DH

r i
i r

G
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where the corners of G ∩H are labelled r for a regular switch, and i for an
irregular switch as in Chapter 3.
Claim 3: There exists a component of D/(D ∩H) with at most one
i-label. Proof of Claim 3. Let n = |D ∩H|. Then D/(D ∩H) has (n+ 1)
components. Also, there are 2n i-labels and 2n r labels. Therefore there
exists a component of D/(D ∩H) with at most one i-label.
Let D0 be such a component.

Case I There exists a D0 with no i-label. Do all of the regular switches on
Γ = G ∩H to obtain F .

γ~

D0

Regard D0 as a disk in M with D0 ∩ F = ∂D0. Since F is
incompressible, ∂D0 = ∂E, E a disk in F . For γ a component of
G ∩H , let γ̃ be the image of γ in F . Let

Γ̃ =
⋃

γ comp’t of G∩H

γ̃.

Note: F/Γ̃ = (G ∪H)/Γ. Consider E ∩ Γ̃. By Lemma 6.3, F/Γ̃ has
no disk regions, and so E ∩ Γ̃ is a disjoint union of properly embedded
arcs. Let E0 be an outermost component of E/(E ∩ Γ̃). Now,
∂E0 = α ∪ β, β ⊂ ∂E, α ⊂ Γ̃.

subcase i, E0 ⊂ G Isotop D by pushing β along E0 to α, and slightly
beyond to obtain a D′ with |D′ ∩H| < |D ∩H|, a contradiction:
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H

D

H

β

E

D0

0

α

G
H

H

D

H

G

β

D0
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subcase ii, E0 ⊂ H

E0

α

β
H

Perform boundary surgery on D along E0 to obtain D′ ⊔D′′. So,
D′, say, is a compressing disk for G and |D′ ∩H| < |D ∩H|, a
contradiction.

Case II There exists a D0 with exactly one i-label.

D0D

r

i

r
r

r

r

0

regular

switches

A 0

Let γ be the component of G ∩H corresponding to the i-label in D0.

subcase i Suppose γ is 2-sided in G and H . Then there exists an
annulus A0 ⊂ M with A0 ∩ F = ∂A0 = γ̃ = γ′ ⊔ γ′′. Note: F is
2-sided in M , and D0 and A0 lie on the same side of F .
Therefore γ meets ∂D0 only at the corner corresponding to the
i-label. So, regard D0 as a disk in M with

D0 ∩ F = ∂D0 ∩ F = δ,
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and D0 ∩ A0 = ∂D0 ∩ A0 = ε

δ, ε arcs.

D0 0
A

γ

γ’

’’

δ

So, δ ∪ ε = ∂D0. Let N(D0) ∼= D0 × [−1, 1] be a neighborhood of
D0 such that

N(D0) ∩ F = δ × [−1, 1]

and N(D0) ∩ A0 = ε× [−1, 1].

Let D±
0 = D0 × {±1}, δ

± = δ × {±1}. Let

ω = (γ′ ∪ γ′′ −N(ε)) ∪ δ+ ∪ δ−

ω

δ δ+ -

Now, ω is a simple closed curve in F , and ω = ∂Ω, where Ω is
the disk

Ω = (A0 −N(ε)) ∪D+
0 ∪D

−
0

and Ω ∩ F = ∂Ω = ω. Since F is incompressible, ω = ∂E, E a
disk in F .
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Suppose N(δ) ⊂ E.

γ

δ
δ

δ

+

-

γ’ ’’

N(   )

Then γ′, γ′′ would bound disks in F , and so F would contain a
disk region, a contradiction. So N(δ) * E. Then A = E ∪N(δ)
is an annulus in F , as F is orientable. Now, ∂A = γ′ ⊔ γ′′ and so
T = A ∪ A0 is a torus. (Exercise: Why not a Klein Bottle?).
Now, D0 is a compressing disk for T , and so we may isotop F so
that N(δ) ⊂ N(ε) = A0. Let ∆ = A−N(δ), ∆0 = A0 −N(ε).
We perform a disk replacement in order to obtain
F0 = (F −∆) ∪∆0. Now, F0 is incompressible and, performing
regular switches along all components of Γ except γ yields an
immersed normal surface F ′. Performing a regular switch at γ
on F ′ yields F , and performing an irregular switch at γ on F ′

yields a surface which has F0 as a component. Therefore we may
isotop F0 to F1 with w(F1) < w(F ). Since F0 is disk-equivalent
to F , this contradicts the minimality of w(F ).

subcase ii Suppose γ is 1-sided in G and H . Then we have γ̃ = ∂B,
B a Mobius band. Let A0 be the annulus parallel to B and
proceed as in subcase (i).

A0

G

H B

�

Proof of Theorem 6.1. Let F be an orientable, incompressible surface,
w(F ) minimal among all disk-equivalent surfaces in M , and normal.
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Suppose F not fundamental. So, F =
∑k

i=1Gi, Gi are fundamental, and so

F =
∑k

i=2Gi = G+H , G fundamental. By Proposition 6.2, G is
incompressible. If G is orientable, then we are done. If G is non-orientable,
consider

2F = 2G+ 2H,

and note that 2G = ∂N(G) is an orientable surface. So, since
w(2F ) = 2w(F ) and w(F ) is minimal in the above sense, w(2F ) is minimal
in the equivalence class of 2F as F is orientable. By Proposition 6.2, 2G is
incompressible.

�

Theorem 6.5. There is an algorithm to decide whether or not a given
closed irreducible 3-manifold M contains an incompressible orientable
surface.

Proof. By Theorem 6.1, if M contains an incompressible surface, then it
contains one that is either fundamental of ∂N(G), G non-orientable and
fundamental. Now, find all fundamental surfaces F1, . . . , Fn. Let

F ′
i =

{
Fi if Fi is orientable

∂N(Fi) if Fi is non-orientable

and let Mi =M/F ′
i . Now, F

′
i is incompressible in M if and only if ∂Mi is

incompressible in Mi, and this is a decidable condition. Now, ∂Mi is
compressible if and only if there is a fundamental compressing disk, and
we’re done.

�

Theorem 6.6. Let M be a closed irreducible, atoroidal 3-manifold. Let
g ≥ 2. Then M contains only finitely many isotopy classes of orientable
incompressible surfaces of genus g.

Proof. Let F be an incompressible surface of genus g in M . Then
F =

∑k
i=1 Fi, Fi fundamental (and connected). Choose F in its isotopy

class to have minmal weight. By Lemma 6.3, we can assume that no region
is a disk. So, no Fi is a sphere. Similarly, 2F =

∑k

i=1 2Fi, Fi ≇ P 2,
i = 1, . . . , k. So, χ(Fi) ≤ 0, i = 1, . . . , k. By Lemma 6.4, Fi is
incompressible, i = 1, . . . , k, and similarly, 2Fi incompressible. Since M is
atoroidal, Fi ≇ T 2 and 2Fi ≇ T 2, i.e. Fi ≇ Klein Bottle.



6 DECIDING THE EXISTENCE OF INCOMPRESSIBLE SURFACES59

So, χ(Fi) < 0, i = 1, . . . , k. Since there are only finitely many fundamental
surfaces, for a given e > 0, there are only finitely many (F1, . . . , Fk), Fi

fundamental and
∑k

i=1 χ(Fi) = e. So, there are only finitely many

incompressible F =
∑k

i=1 Fi.

�
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7 Haken Manifolds and Hierarchies

Definition. A hierarchy for a 3-manifold M is a sequence
M =M1,M2, . . . ,Mn where Mi+1 =Mi/Fi, Fi a properly embedded
orientable incompressible surface in Mi and Mn =

⊔
B3’s. A partial

hierarchy is a sequence as above without the assumption that Mn
∼=

⊔
B3’s.

Analog in dimension 2

Let F be a compact surface. A hierarchy for F is a sequence F = F1, . . . , Fn

where Fi+1 = Fi/γi, γi an arc or simple closed curve in Fi and Fn =
⊔
D2’s.

Any compact surface F has a hierarchy if F ≇ S2 and, in fact, if we always
choose γi so that

1. γi is not a simple closed curve bounding a disk in Fi,

2. γi is not a simple closed curve parallel to a component of ∂Fi,

3. γi is not an arc parallel into ∂Fi.

γi
γi γi

1. 2. 3.

Then the sequence Fi, . . . terminates with Fn =
⊔
D2’s (Exercise).

Dimension 3

In dimension 3, the definition given does not garauntee that the process
terminates.
Example: Let M be a handlebody of genus k + 1

F
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The surface F ⊂M as shown in the figure is incompressible, and M/F is a
handlebody of genus 2k:

But, of course, a handlebody does have a hierarchy:

Recall:

Definition. A compact 3-manifold M is Haken if M is irreducible and
contains an 2-sided incompressible surface.

Remark. We could allow M to be non-orientable and require the Fi above
to be 2-sided incompressible surfaces. But, (exercise), if M is a closed
non-orientable 3-manifold, then H1(M) is infinite, and so M contains a
closed 2-sided incompressible surface. So, every closed non-orientable
3-manifold is Haken.
Now, if M has a hierarchy, then M ∼= B3 or M contains an incompressible
surface. Also, if F is incompressible in M , then M/F is irreducible if and
only if M is irreducible (exercise). Conversely, we have

Theorem 7.1. A Haken 3-manifold has a hierarchy.

Definition. Let G be a group. A K(G, 1) is a path connected space K s.t.
π1(K) ∼= G and πi(K) = 0, i ≥ 2.

For example, S1 is a K(Z, 1).
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Lemma 7.2. Let X be a path connected finite simplicial complex and let
ϕ : π1(X)→ G be a homomorphism. Let K be a K(G, 1). Then there exists
a map f : X → K such that ϕ = f∗ : H1(X)→ H1(K).

Proof. Let X(i) be the (i)-skeleton of X . We define f inductively on X(i).
Let T be a maximal tree in X(1). Let k0 be a basepoint of K. Define
f(T ) = k0. Let σ

(1) be a 1-simplex in X(1) − T . So, σ(1) represents an
element [σ(1)] ∈ π1(X). Define f on σ(1) such that
[f(σ(1))] = ϕ[σ(1)] ∈ π1(K, k0) = G. This defines f on X(1).
Let σ(2) be a 2-simplex in X . We have f defined on ∂σ(2). Also,
[∂σ(2)] = 1 ∈ π1(X). Therefore, [f(∂σ(2))] = ϕ(1) = 1 ∈ π1(K). Therefore,
f |∂σ(2) extends to f : σ(2) → K. So, f is defined on X(2).
Let σ(3) be a 3-simplex in X . We have f defined on ∂σ(3). Now, π2(K) = 0
implies that f |∂σ(3) : ∂σ(3) → K extends to f : σ(3) → K. So, f can be
defined on X(3), and so on.

�

Lemma 7.3. Let

0→ V1 → V2 → · · · → Vn →W
ϕ
→ W → · · · → V2 → V1 → 0

be an exact sequence of finite dimensional vector spaces. Then

dim(kerϕ) =
1

2
dimW.

Proof. We get exact sequences

0→ V1 → V2 → · · · → Vn → ker ϕ→ 0

and
0→ im ϕ→ Vn → · · · → V1 → 0

Therefore, by Lemma 2.4,

dim(ker ϕ) = |
∑n

i=1(−1)
idim Vi|

dim(im ϕ) = |
∑n

i=1(−1)
idim Vi|

and so dim(ker ϕ) = dim ( im ϕ). But, dim W = dim(ker ϕ)+ dim(im ϕ).

�
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Lemma 7.4. Let M be a compact orientable 3-manifold. Then, with field
coefficients,

dim(ker(H1(∂M) → H1(M))) =
1

2
H1(∂M).

Proof. Since we are working with field coefficients, H i(M) ∼= Hi(M), and
by Lefschetz Duality, we have Hi(M) ∼= H3−i(M, ∂M) ∼= H3−i(M). So, in
the Homology long exact sequence of the pair (M, ∂M),

0→ H3(M)→ H3(M, ∂M)→ H2(∂M)→ H2(M)→ H2(M, ∂M) → H1(∂M)

ϕ
→ H1(M)→ H1(M, ∂M)→ H0(∂M)→ H0(M)→ H0(M, ∂M)→ 0

we have:
H3(M) ∼= H0(M, ∂M)

H3(M, ∂M) ∼= H0(M)

H2(∂M) ∼= H0(∂M)

H2(M) ∼= H1(M, ∂M)

and
H2(M, ∂M) ∼= H1(M)

and so our sequence can be rewritten:

0→ H0(M, ∂M)→ H0(M)→ H0(∂M)→ H1(M, ∂M) → H1(M)→ H1(∂M)

ϕ
→ H1(M)→ H1(M, ∂M)→ H0(∂M)→ H0(M)→ H0(M, ∂M)→ 0

Now, by Lemma 7.3, dim(ker ϕ) = 1
2
dim H1(∂M).

�

Remark. The same proof shows that for a compact orientable
(2n+1)-manifold,

dim(ker(Hn(∂M)→ Hn(M))) =
1

2
Hn(∂M).
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Corollary 7.5. Let M be a compact 3-manifold, ∅ 6= ∂M 6=
⊔
S2’s. Then

H1(M) is infinite.

Proof. Take Q coefficients. Then dimH1(∂M ;Q) ≥ 2. Therefore
dimH1(M ;Q) ≥ 1. Now, by the Universal Coefficient Theorem,
H1(M ;Q) ∼= H1(M ;Z)⊗Q, and so H1(M ;Z) is infinite.

�

Lemma 7.6. Let M be a compact 3-manifold, α, β simple closed curves in
∂M such that |α ⋔ β| = 1. Then [α], [β] are not both of finite order in
H1(M).

Proof. Attach handlebodies to all components of ∂M other than the one,
say F , which contains α and β. Attach a handlebody V of genus

genus(F )− 1 to F −
◦

N(α ∪ β) along ∂V −
◦

D2. This gives a compact
3-manifold N with ∂N ∼= T 2, α, β ⊂ ∂N . Now, [α], [β] both of finite order
in H1(M) implies that [α], [β] = 0 in H1(M ;Q), which means that
[α], [β] = 0 in H1(N ;Q), and so H1(∂N ;Q)→ H1(N ;Q) is zero,
contradicting Lemma 7.4.

�

Lemma 7.7. Let M be a compact 3-manifold.

1. If H1(M) is infinite, then M contains a non-seperating connected
surface F that is either incompressible or S2.

2. If ∂M has a component of genus greater than 0 (in which case H1(M)
is infinite, by Corollary 7.5), then F , as in (1), can be chosen to
satisfy [∂F ] 6= 0 in H1(M).

Proof. 1. Since M is compact, H1(M) is finitely generated. Therefore,
H1(M) infinite means that H1(M) ∼= Z⊕ . . .. So, there exists an
epimorphism H1(M) ։ Z, and so we get an epimorphism
ϕ : π1(M) ։ Z :

H1(M) Z

π1(M)

ϕ
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Now, S1 is a K(Z, 1). Therefore, by Lemma 7.2, there exists
f :M → S1 such that f∗ = ϕ. Homotop f to be transverse to ⋆ ∈ S1.
Then f−1(⋆) = F ⋆ is a two-sided surface in M .
Claim: Some component of F ⋆ is nonseperating in M .
Let γ be a simple closed curve in M such that f∗[γ] generates
π1(S

1) ∼= Z. F ⋆ has a neighborhood N(F ⋆) ∼= F ⋆× [−1, 1], and ⋆ ∈ S1

has a neighborhood homeomorphic to [−1, 1] such that f |N(F ⋆) is
given by (x, t) 7→ t. Make γ ⋔ F ⋆. We see that the algebraic
intersection number γ • F ⋆ = f(γ) • ⋆ = ±1. Therefore, there is a
component F of F ⋆ such that γ • F is odd. So, F is non-seperating.
Now, if F is compressible, then surgering F along a compressing disk
gives F ′. Some component of F ′ is non-seperating (exercise). Hence,
we eventually get F connected non-seperating and incompressible or
S2.

2. By the hypothesis, there exist simple closed curves α, β ⊂ ∂M such
that |α ⋔ β| = 1. By Corollary 7.6, [α], say, is of infinite order in
H1(M). Therefore, we can choose our epimorphism ψ : H1(M) ։ Z
such that ψ[α] 6= 0. Then we have F ⋆ = f−1(⋆) as in (1). Now,
α • ∂F ⋆ = f(α) • ⋆ 6= 0, since f∗[α] 6= 0 in H1(S

1) ∼= Z. Therefore,
there exists a component F of F ⋆ such that α • F 6= 0. If F is
compressible, surger F along a compressing disk to get F ′ and we
have α • ∂F ′ = α • ∂F , as ∂F = ∂F ′. Therefore there exists a
component F ′

0 of F ′ such that α • F ′
0 6= 0. Eventually, we get a

connected incompressible surface F with α • ∂F 6= 0. Therefore
[∂F ] 6= 0 in H1(∂M).

�

Corollary 7.8. Let M be a compact irreducible 3-manifold with H1(M)
infinite. Then M is Haken. In particular, ∅ 6= ∂M 6=

⊔
S2’s implies that M

is Haken.

Let M be a compact irreducible 3-manifold. Let h(M) denote the
maximum number of pairwise disjoint, pairwise non-parallel, closed
incompressible surfaces in M . By Theorem 2.6, h(M) is well-defined.

Lemma 7.9. Let M be a compact irreducible 3-manifold with ∂M 6= ∅. Let
F be an incompressible surface in M such that F is
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(a) a compressing disk for ∂M , if ∂M is compressible, or

(b) a connected surface with [∂F ] 6= 0 in H1(∂M) (as in Lemma 7.7) if
∂M is incompressible.

Then

(a) h(M/F ) ≤ h(M) (in fact h(M/F ) = h(M) (exercise))

(b) h(M/F ) < h(M).

Proof. 1. Let F1, F2, . . . , Fn be a collection of disjoint, non-parallel
closed incompressible surfaces in M/F , with n = h(M/F ).

(a) F1, . . . , Fn are pairwise non-parallel in M . Suppose Fi and Fj are
parallel in M . So, there exists W ⊂M such that ∂W = Fi ⊔ Fj

and W ∼= Fi × I. Now, Fi, Fj are not parallel in M/F , and so
W ∩ F 6= ∅. Since F is connected, F ⊂W . But, ∂F ⊂ ∂M , and
W ∩ ∂M = ∅.

(b) Fi is incompressible in M . Exercise. (Suppose not. Let D be a
compressing disk for Fi in M . Fi incompressible in M/F implies
that D ∩ F 6= ∅. Now use the fact that F is incompressible to
obtain a contradiction.)

(a) and (b) imply that h(M/F ) ≤ h(M).

2. Let S be a component of ∂M such that S ∩ ∂F 6= ∅ after being
pushed slightly into intM . S is incompressible in M , by hypothesis.
Now, h(M/F ) < h(M) follows from:
Claim: S is not parallel in M to any Fi. Suppose to the contrary.
Then there exists a W ⊂M , ∂W = S ⊔ Fi, W ∼= S × I, and
S ∩ F 6= ∅ by choice of S. So, since F is connected, F ⊂W . But,
[∂F ] 6= 0 in H1(∂M), hence [∂F ] 6= 0 in H1(S). Therefore,
H1(S)→ H1(W ) is not injective, contradicting that W ∼= S × I.

�

Proof of Theorem 7.1. Let F be an orientable, closed surface in M ,
F1, . . . , Fn the components of F . Define c(F ) =

∑n

i=1 g(Fi)
2, where g(Fi) is

the genus of Fi. Let F
′ be obtained from F by surgering along an essential
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simple closed curve γ ⊂ F . Then c(F ′) < c(F ).
It is enough to prove the Theorem for M Haken with ∂M 6= ∅. For such M ,
define α(M) = (h(M), c(∂M)), ordered lexicographically. We proceed by
induction on α(M).

α(M) = (0, 0) Therefore ∂M =
⊔
S2’s and M irreducible implies that M is

a disjoint union of B3’s.

α(M) > (0, 0) Let F be as in Lemma 7.9. Then, by Lemma 7.9,
α(M/F ) < α(M). By induction, M/F has a hierarchy. Therefore, M
has one too.

Example: Let M be a handlebody, F a disjoint union of B3’s:

So, M has a hierarchy of length 1 as M/F = B3.
Exercise. Every Haken 3-manifold M has a hierarchy of length less than
or equal to 3? 4? 2?
Let K be a knot in S3, MK = S3 − intN(K) the exterior of K. Now the
∂M ∼= T 2. H1(M) ∼= Z is generated by [µ], µ a meridian of K. Now, we
have a map π1(M)→ Z induced by f :M → S1 such that f |∂M ∼= S1 × S1

is projection onto the first factor.

H1(M)
∼= Z

π1(M)

As before, we get f−1(⋆) an orientable incompressible surface F , and ∂F is
a copy of the latitude in ∂M , λ. Extending F slightly into N(K) we obtain
F+ ⊂ S3 with ∂F+ = K. F+ is a Seifert surface for K.
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Example. Let K be the trefoil, F as pictured.

F

Since K 6=©, F is an incompressible Seifert surface in MK as

F ∼= T 2 −
◦

D2. In this case, MK is actually an F -bundle over S1.

M/F ∼= S3 −N(F ) ∼= S3 − ∼= H

where H is a handlebody of genus two, and by the above example,
H/(D1 ⊔D2) ∼= B3 where D1, D2 are disks as above. So,

M, M/F ∼= H, H/(D1 ⊔D2) ∼= B3

is a hierarchy for M .
Example. Let T be a standardly embedded torus in S3, S3 = V1 ⊔ V2, Vi a
solid torus, i = 1, 2, and let K be a knot in T . Now, we can choose N(K)
such that N(K) ∩ T is an annular neighborhood of K in T . Let
A = T −N(K) ∩ T , an annulus. Then MK

∼= V1 ∪A V2.
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N(K)

V2

AA

A

V1

Now, A is incompressible in MK . (exercise) (In the pictured example,
H1(A)→ H1(V2) is multiplication by 3, and H1(A)→ H1(V1) is
multiplication by 2.)
So,

M, M/A = V1 ⊔ V2,
⊔

Vi/Di = B3
1 ⊔B

3
2

is a hierarchy for M .
Example. Let K1, K2 be knots in S3, with exteriors M1,M2. Let
M =M1 ∪g M2, g : ∂M1 → ∂M2 some gluing homeomorphism,
∂M1 = ∂M2 = T ⊂M . Ki 6= 0 implies that ∂Mi is incompressible in Mi.
Therefore, T is incompressible in M . M1,M2 irreducible, T incompressible
implies that M is irreducible. So, M is Haken, and has a hierarchy
M,M/T, . . . if g is chosen so that g(µ1) = λ2, g(λ1) = µ2. Then, (exercise)
H1(M) = 0.

Remarks. M Haken and closed implies that π1(M) is infinite. So, we may
pose the question:
If M is a closed irreducible 3-manifold and π1(M) is infinite, is M Haken?
This would be nice!
Answer: NO.
Let K be a knot in S3, M =MK . Now, we may perform Dehn Surgery on
K: Let M(α) =M ∪∂ V , V a solid torus, α an essential simple closed curve
in ∂M . We glue V and ∂M together in such a way that α is sent to the
boundary of a meridian disk of V .
Exercise: M(α) depends only on the isotopy class of α. Also, if M(α)
contains an incompressible surface, then either M contains a closed
incompressible surface not parallel to ∂M , or α is a boundary slope–i.e.
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there exists an incompressible ∂-incompressible F ⊂M with ∂F consisting
of copies of α.
Example: Let K be the figure eight knot. It can be shown that M does
not contain a closed non-boundary-parallel incompressible surface. Now,

Theorem (Hatcher). For any MK, there exist only finitely many bounday
slopes.

So, for K the figure eight, M(α) does not contain an incompressible
surface. Also,

Theorem (Thurston). The figure eight knot has MK hyperbolic.

So, M(α) is hyperbolic for all but finitely many α. So, M(α) ∼= H3/Γ, and
so the universal cover of M(α) is H3 ∼= R3. Therefore, π1(M(α)) is infinite
and M(α) is irreducible. Hence, for all but finitely many α, M(α) is
irreducible, π1(M(α)) is infinite, and M(α) is not Haken.
Open Question: Let M be a closed irreducible 3-manifold with π1(M)
infinite. Does M have a finite sheeted covering that is Haken?
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8 The Disk Theorem

Theorem 8.1 (Disk Theorem, originally stated by Kneser). Let M be a
compact (orientable) 3-manifold, F an incompressible component of ∂M .
Then π1(F )→ π1(M) is injective.

Remarks.

1. An equivalent statement is: Let M be a compact 3-manifold, F a
component of ∂M . If there exists f : (D2, ∂D2)→ (M,F ) such that
f |∂D2 : S1 → F is not homotopic to a point, then there exists an
embedding g : (D2, ∂D2)→ (M,F ) such that g|∂D2 → F is not
null-homotopic.

2. The assumption that M is compact is unnecessary (exercise).

3. The Disk Theorem is sometimes called The Loop Theorem-Dehn’s
Lemma (or The Loop Theorem (inaccurate) or Dehn’s Lemma (also
inaccurate)), and was first proved by Papakyriakopoulos in 1957. We
will give a proof based on one by Johannson (1992) using hierarchies.

4. We can assume that M is irreducible. Let M,F be as in the Disk
Theorem. Let S be a maximal independent system of 2-spheres in M .
Let M ′ be the component of M/S that contains F . Let M̂ ′ denote M ′

with B3’s attached along the sphere components of ∂M ′. Now, M̂ ′ is
irreducible (excercise). Now, since F is incompressible in M , F is

incompressible in M ′, and so incompressible in M̂ ′. If π1(F )→ π1(M̂
′)

is injective, then π1(F )→ π1(M) is injective (exercise, Make
f : D2 →M transverse to S, pull back, do a disk exchange.).

Let M be a compact irreducible 3-manifold with ∂M 6= ∅. Let
M =M1, . . . ,Mn with Mi+1 =Mi/Fi, Fi an incompressible, orientable
surface in Mi, be a hierarchy for M . Recall that
Mi/Fi

∼=Mi −N(Fi), N(Fi) ∼= Fi × [−1, 1]. Let Ti ⊂ ∂Mi+1 be the trace of
∂Fi in ∂Mi+1, Ti = ∂Fi × {−1, 1}.

Example. Let M = V1 ∪A V2, Vi a solid torus, A the (pi, qi) annulus in ∂Vi,
i = 1, 2, e.g.
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V1

A1

D1

V2

A2

D2

Let M1 =M , F1 = A. Let M2 =M/A = V1 ⊔ V2. Then Γ2 = ∂A1 ⊔ ∂A2.
Let F2 = D1⊔D2. Then let M3 =M2/F2 = B3

1 ⊔B
3
2 , and then Γ3 looks like:

. . . . . .

B3
1

2p  arcs 2p  arcs
21

B3
2

Definition. A hierarchy is good if

1. Fi is ∂-incompressible in Mi,

2. |∂Fi ∩ Γi| is minimal among all ∂-incompressible Fi satisfying (a) or
(b) of Lemma 7.9.

Lemma 8.2. Let M be a compact irreducible 3-manifold, ∂M 6= ∅. Then
M has a good hierarchy.

Proof. Let Fi be a surface satisfying (a) or (b) of Lemma 7.9. Then, if Fi is
∂-incompressible, then we are in case (b), and ∂-compressing Fi yields F

′
i

with [∂F ′
i ] = [∂Fi] ∈ H1(∂Mi). So, some component of F ′

i satisfies (a) or
(b). So, we can assume that that Fi is ∂-incompressible. Now force (2) to
hold.

�
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Definition. A Haken 1-complex in a surface S (possibly with ∂) is a set
∆ ⊂ S such that ∆ is expressed as

⋃n
i=0∆i where ∆i is a disjoint union of

embedded arcs and circles, each circle is contained either in int S or ∂S,

∂∆i ⊂
⋃

j<i

◦

∆j and meet just so:

∆ j

∆ i

We call n the depth of ∆. A face of ∆ in S corresponds to a component R
of S −N(∆), where N(∆) is a “small” neighborhood of ∆. An edge of ∆ in
S is a component of some ∆i, an is said to have index i.

Let M be a compact irreducible 3-manifold, ∂M incompressible in M , with
a partial hierarchy. We define a Haken 1-complex (a.k.a. boundary pattern)
Γi ⊂ ∂Mi, 1 ≤ i ≤ n, inductively by Γ1 = ∅, Γi+1 = Γi ∪ Ti, 1 ≤ i < n,
where Fi is chosen so that ∂Fi is transeverse to Γi ⊂ ∂Mi. So, every x ∈ Γi

has a neighborhood in ∂Mi homeomorphic to either

x x

or

Lemma 8.3. Each face of Γn in ∂Mn is incompressible in Mn.

Proof. Let D̃ be a disk in Mn with ∂D̃ ⊂
◦

R, a face of Γn. Let F̃i denote the
trace of Fi in Mn. So, R ⊂ F̃i, for some 0 ≤ i < n. So, D̃ gives rise to a disk
D ⊂Mi, with ∂D ⊂ Fi. Now, Fi is incompressible in Mi and therefore ∂D
bounds a disk E in Fi. If E ∩ Γn 6= ∅, then some component of some ∂Fj ,
j > i, lies in E. This contradicts the fact that Fj is either a compressing
disk or incompressible. Therefore, E ⊂ R, and so R is incompressible in Mn.

�
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Corollary 8.4. If Mn
∼=

⊔
B3’s, then each face of Γn in ∂Mn is a disk (or

a 2-sphere).

Lemma 8.5. Let M =M1, . . . ,Mn be a partial good hierarchy (same as
above without assumption that Mn is

⊔
B3’s), with ∂M incompressible. Let

D be a properly embedded disk in Mn such that |∂D ⋔ Γn| = p ≤ 3. Then D
is isotopic rel ∂ to a disk D′ ⊂ ∂Mn, where D

′ looks like:

p = 0 p = 2 p = 3

Proof. p=0 By Lemma 8.3, ∂D bounds a disk D′ ⊂ R, where R is the face
of Γn containing ∂D. Since Mn is irreducible, D is isotopic to D′ rel ∂.

p=1 This case is impossible. Consider the local picture about an arc α in
Γn containing ⋆ = ∂D ∩ Γn. On one side of the arc lies a region
Ri ⊂ F̃i and on the other, Rj ⊂ F̃j , i 6= j. So, ∂D/⋆ must be
contained in Ri and Rj , which is impossible.

p=2 Let ε, ε′ be the edges of Γn containing the two points of ∂D ∩ Γn. Let
α, β be the two arcs in ∂D with ∂α = ∂β = ∂D ∩ Γn. Now, ε ⊂ Ti,
ε′ ⊂ Tj , say. Suppose i < j. Then ∂D ⊂ ∂Mj+1 and meets Tj in one
point, a contradiction. So, i = j. Now, we have the following picture:
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’ε ε
?

Fi

boundary of M i

β

α

Since Fi is ∂-incompressible in Mi, there exists a disk E ⊂ Fi with
∂E = α ∪ γ, γ = ∂E ∩ ∂Mi.

’ε ε
γ

E

Γ

Fi

boundary of Mi

β

α

?

i

Case I: Fi is a disk Boundary compress Fi along D to obtain
F ′
i , F

′′
i . Now, one of F ′

i , F
′′
i is a compressing disk for ∂M . So, we

can’t have |γ ∩Γi| 6= 0 6= |γ′′∩Γi|, by the minimality of |∂Fi ∩Γi|.
Therefore, γ ∩ Γi = ∅, say. Therefore, β ∪ γ is contained in a
region of Γi, say R ⊂ ∂Mi, and bounds a disk, (essentially
D ∪ E). Therefore, by Lemma 8.3, β ∪ γ = ∂E ′, E ′ a disk in R.
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Let D′ = E ∪E ′, (Γn ∩ int D
′) = ∅. Now, D∪D′ is the boundary

of a 3-ball in Mn and so D is isotopic in Mn to D′ as desired.

Case II: Fi is not a disk If γ ∩ Γi 6= ∅, then F
′
i = (Fi −E) ∪D is

incompressible and ∂-incompressible (exercise) and
|∂F ′

i ∩ Γi| < |∂Fi ∩ Γi|. Now, [∂Fi] = [∂F ′
i ] + [∂F ′′

i ] ∈ H1(∂Mi).
But, F ′′

i is a disk. Therefore, (since we are in situation (b)), ∂F ′′
i

bounds a disk in ∂Mi. Therefore, [∂F
′
i ] = [∂Fi] 6= 0, and this

contradicts our choice of Fi. Therefore, γ ∩ Γi = ∅. Now, the rest
of the argument follows as in Case I.

p=3

F

F

F

j

k

i

α

β

β1

2

i < j < k

?

Let β = β1 ∪ β2 ⊂ ∂Mk. Now, Fk ∂-incompressible in Mk implies that
there exists a disk E ⊂ Fk such that ∂E = α ∪ γ, γ = E ∩ ∂Mk.
If γ ∩ Γk = ∅, then β ∪ γ is a simple closed curve in ∂Mk meeting Γk

in one point, a contradiction. Therefore, |γ ∩ Γk| ≥ 1.
Suppose |γ ∩ Γk| > 1, then as in the case p = 2, we get F ′

k with
|∂F ′

k ∩ Γk| < |∂Fk ∩ Γk|, and F
′
k still satisfies our minimality

conditions (exercise). So, |γ ∩ Γk| = 1.
Now, β ∪ γ = ∂(D ∪ E) and |(β ∪ γ) ∩ Γk| = 2. Now we reduce to the
case p = 2 to obtain disks E1 ⊂ Fi, E2 ⊂ Fj that look like:
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E E

E

2

1

Now, D′ = E ∪ E1 ∪ E2 is the desired disk.

�

Corollary 8.6. Suppose Mn
∼=

⊔
B3’s and γ is a simple closed curve in

∂Mn such that |γ ∩ Γn| = p ≤ 3. Then γ bounds a disk D′ ⊂ ∂Mn as in
Lemma 8.5.

Proof. Mn
∼=

⊔
B3’s and so γ = ∂D, D a disk in Mn. Now apply Lemma

8.5.

�

Lemma 8.7. Suppose Mn
∼=

⊔
B3’s, δ a loop in ∂Mn such that

|δ ⋔ Γn| = p ≤ 3. Then δ looks like:

p = 2 p = 3p = 0

R R R R

R

R1 2 2 3

1

α α
α α

α

1 2
2

1

3

Proof. Mn
∼=

⊔
B3’s implies that each face of Γn is a disk.

p = 0 Clear.



8 THE DISK THEOREM 78

p = 2 δ = α1 ∪ α2, αi an arc (not necessarily embedded) contained in a disk
face Ri. Now, each αi is homotopic rel ∂ to βi, an embedded arc in
Ri. Now, γ = β1 ∪ β2 is an embedded loop with |γ ∩ Γn| = 2. The
result now follows from Lemma 8.6.

p = 3 (exercise, similar to p = 2)

�

Definition. Let ∆ ⊂ D2 be a Haken 1-complex with ∂D2 ⊂ ∆,
∆ =

⋃n
i=0∆i with ∆0 = ∂D2. The order of a face R of ∆ is the number of

corners in ∂R:

. .
.

..
R

. corner

A p-gon of ∆ is a face of order p. An elementary reduction cell D for ∆ is a
p-gon of ∆, p = 0, 2, 3:

i
i

i 1

2
3

p = 3

i

i

1

2

p = 2p = 0

A reduction cell D for ∆ is a p-gon face of a Haken subcomplex of ∆,
p = 0, 2, 3:
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i
i

i 1

2
3

p = 3

i

i

1

2

p = 2p = 0

Lemma 8.8. Let ∆ be a Haken 1-complex in D2. The ∆ has a face of
order 0, 2, 3.

Proof. We proceed by induction of the number of edges of ∆.

1 edge Here ∆ = ∆0 = ∂D2, and we’re done.

more than 1 edge Let ε be an edge of maximal index. Then ∆′ = ∆− ε
is a Haken 1-complex. By induction, ∆′ has a face D of order 0, 2, 3.
If ε * D, then D is a face of ∆. If ε ⊂ D, then ε determines a face of
E of ∆ of order 0, 2, 3, E ⊂ D:

et cetera

E E

E

E
E

E E
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�

Remarks. Let M be a compact irreducible 3-manifold, ∂M 6= ∅
incompressible. Our goal is to show that π1(∂M)→ π1(M) is injective, i.e.
and f : (D2, ∂D2)→ (M, ∂M) has f |∂D2 ≃ ⋆ in ∂M .
Let M =M1,M2, . . . ,Mn+1

∼=
⊔
B3’s be a good hierarchy with

Mi+1 =Mi/Fi, 1 ≤ i ≤ n, F0 = ∂M . Let X =
⋃n

i=0 Fi ⊂M . By a small
homotopy, make f transverse to X . Then, f−1(X) = ∆ is a Haken
1-complex in D2 with ∆i = f−1(Fi). In particular, ∆0 = ∂D2.

Definition. Let ∆ be a Haken 1-complex in D2 as above. Let D be a
reduction cell for ∆. Let N(D) be a regular neighborhood of D in D2, thus

(∆−D ∩N(D) ∼= ((∆−D) ∩ ∂D)× I

We say that a Haken 1-complex ∆′ is obtained from ∆ by a reduction along

D and write ∆
D
99K ∆′, if:

1. ∆′ = ∆ outside N(D)

2. In N(D), ∆′ is as follows:

p = 0 Every edge of ∆′ that meets N(D) has index greater than i:

D

D > i

p = 2

j

i

D

D
> j

> i

Dj

Di

The edge of index i seperates N(D) into two disk Di, Dj as
shown. Then every edge of ∆′ that meets Dj has index greater
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than j, and every edge of ∆′ that meets Di has index greater
than i, and the original edge of index j disappears.

p = 3

j
k

i

D

D > j
> k

> i

D
D

D

j
k

i

The edges of index i and j seperate N(D) into three disks
Di, Dj , Dk. Then every edge of ∆′ that meets Di has index
greater than i, every edge of ∆′ that meets Dj has index greater
than j, every edge of ∆′ that meets Dk has index greater than k,
and the edge of index k disappears.

Note: We allow D ∩ ∂D2 6= ∅, in which case Di = ∅. The motivation for
this definition is the following. Let M be a compact irreducible 3-manifold,
∂M incompressible. We have a good hierarchy
M =M1,M2, . . . ,Mn+1 =

⊔
B3’s, Mi+1 =Mi/Fi, F0 = ∂M . Let

X =
⊔n

i=0 Fi = “Haken 2-complex” in M . We also have a map of pairs,
f : (D2, ∂D2)→ (M, ∂M). By a small homotopy of pairs, make f
transverse to X . Then f−1(X) = ∆ is a Haken 1-complex in D2,
∆i = f−1(Fi). Now, fix f0 : (D

2, ∂D2)→ (M, ∂M), and let
F = {∆ = f−1(X) | f : (D2, ∂D2)→ (M, ∂M), f ≃ f0 as pairs}

Lemma 8.9. Suppose ∆ ∈ F, ∆ 6= ∆0. let D be an elementary reduction

cell for ∆. Then there exists ∆′ ∈ F such that ∆
D
99K ∆′.

Proof.p = 0 Define a function g by g = f outside N(D), and on N(D), g is
obtained by “pushing f(D) into, and then slightly off of, Fi.” Now,
let ∆′ = g−1(X) and then ∆′ ∈ F and ∆ 99K ∆′.
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-1f    (X)
-1g   (X)

D

i

F  sj

f(D)

g(D)

F

p = 2 By Lemma 8.7, f(D) looks like:
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Fr r > i

Fs s > i push f(D)

g(D)

Define g ≃ f as maps of pairs by “pushing f(D) through Fi ∪ Fj,”
and let ∆′ = g−1(X).

p = 3 Exercise.

�



8 THE DISK THEOREM 84

Call Γ a subgraph of ∆, i.e. a union of edges of ∆ (not necessarily a
subcomplex). Let αi(Γ) = # of edges of Γ of index i. Define
c(Γ) = (α1(Γ), α2(Γ), . . . , αn(Γ)), lexicographically ordered. Let D be a
reduction cell for ∆, and define ∆D to be the subgraph of ∆:
∆D = ∆ ∩ intD, e.g.

D ∆D

Let ε be an edge of ∆, ε ⊂ D, ∂ε = ∂D. Then ε determines (at least one)
reduction cell E for ∆, E ( D.

ε
E

D

Lemma 8.10. Suppose ∆
E
99K ∆′. Then c(∆′

D) < c(∆D).

Proof.

j
k

i

l

i < j < k < l

D

E
> l

unchanged

∆D
’

Now, αr(∆
′
D) ≤ αr(∆D), r ≤ l, αl(∆

′
D) < αl(∆D). Therefore,

c(∆′
D) < c(∆D).

�

Note: Take D = D2. Then ∆D2 = ∆−∆0 and c(∆D2) = c(∆).
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Lemma 8.11. Suppose ∆ ∈ F, and let D be a reduction cell for ∆. Then

there exists ∆′ ∈ F such that ∆
D
99K ∆′.

Proof. We proceed by induction on c(∆D). Suppose c(∆D) = 0 = (0, . . . , 0).
Then D is an elementary reduction cell and by Lemma 8.9, we are done.
Now, suppose c(∆D) > 0. So, there exists an edge ε ⊂ D, ∂ε ⊂ ∂D which
gives rise to a reduction cell E ( D. Clearly, c(∆E) < c(∆D). Therefore, by

induction, there exists ∆′′ ∈ F such that ∆
E
99K ∆′′. By Lemma 8.10,

c(∆′′
D) < c(∆D). Once again, by induction, there exists ∆′ ∈ F such that

∆′′ D
99K ∆′. Now, ∆

D
99K ∆′, for:

j
k

i

l

i < j < k < l

D

E
> l

unchanged

∆D
’

> j

> k
E

> k
> j

> j

> k

> i

D D

∆ ’

�

PROOF OF THE DISK THEOREM: Pick f0 : (D
2, ∂D2)→ (M, ∂M).

We will show that f0|∂D2 ≃ ⋆. Choose ∆ ∈ F with c(∆) minimal.
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c(∆) = 0 Then f0 ≃ f as maps of pairs with f(D2) ∩ (
⋃n

i=1 Fi) = ∅.
Therefore, f(∂D2) ⊂ R ∼= D2, a face of Γn+1 ⊂ ∂Mn+1. Therefore,
f |∂D2 ≃ ⋆ ∈ ∂M .

c(∆) > 0

boundary of D2

E
E

ε

ε

Then there exists an edge ε of ∆ with ∂ε ⊂ ∂D2. So, ε defines a
reduction cell E (of order 0 or 2) for ∆. By Lemma 8.11, there exists

∆′ ∈ F such that ∆
E
99K ∆′. By Lemma 8.10,

c(∆′) = c(∆′
D2) < c(∆D2) = c(∆), contradicting the minimality of

c(∆).

�

Now, the Disk Theorem and hierarchies can be used to show:

Theorem (Waldhausen, 1970). Let M be a Haken 3-manifold. Then
π1(M) has solvable word problem.

For arbitrary 3-manifolds, this remains open.
The Disk Theorem also implies:

Theorem (Loop Theorem). Let F be a component of ∂M , M a compact
3-manifold with π1(F )→ π1(M) not injective. Then there exists a simple
loop γ ⊂ F such that [γ] 6= 1 ∈ π1(F ), but [γ] 7→ 1 ∈ π1(M).
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Problems.

1. (Nothing to do with topology). Consider the following semigroups S
given by generators and relations. The elements of S are equivalence
classes of words in the generators (e.g. aabcddeaabbc), where two
words are equivalent (represent equal elements of S) iff one can be
obtained from the other by a finite sequence of substitutions using
the given relations, i.e. if r1 = r2 is a relation, then, in a word wich
contains r1 as a subword, r1 may be replaced by r2.
E.g. in the third example:

abcd = acbd = cabd = cdb = cd.

In each case, find an algorithm to solve the word problem in S, i.e., to
decide whether or not two given words are equivalent.

(a) |a, b : ab = ba|

(b) |a, b, c, d : ac = ca, ad = da, bc = cb, bd = db|

(c) |a, b, c, d : ac = ca, ad = da, bc = cb, bd = db, ca = c, db = d|

(d) |a, b, c, d, e : ac = ca, ad = da, bc = cb, bd = db, eca = ce, edb =
de, cca = ccae|

2. Let S be a listable set, and let ∼ be an equivalence relation of S. The
elements of S can be classified up to ∼ iff there exists a listable set
S ′ ⊂ S such that S ′ contains exactly one element from each ∼ class.
The ∼ problem is solvable iff there is an algorithm to decide whether
or not two given elements of S are ∼.

(a) Show that if the ∼ problem is solvable then the elements of S
can be classified up to ∼.

(b) What about the converse?

(c) What about the converse in the case where S is the set of closed
PL n-manifolds and ∼ is PL homeomorphism?

3. Let P = 〈X : R〉 be a finite presentation of a group G. Let W be the
set of words in X and let T = {w ∈ W : w = 1} ⊂W .

(a) Show that T is listable.
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(b) Show that the decidability of T depends only on G.

4. Let P be the presentation 〈a, b : aba = bab, a2 = b3〉. Find a sequence
of Tietze transformations taking P to the empty presentation 〈∅ : ∅〉
(of the trivial group).

5. Let F be a surface in a closed 3-manifold M . Show that F is
incompressible iff each component of F is incompressible.

6. Let S2×̃S1 be the twisted S2-bundle over S1, i.e. the identification
space S2 × I/{(α(x), 0)∀x ∈ S2}, where α : S2 → S2 is the antipodal
map. (Note that S2 × S1 has an analogous description with α
replaced by the indentity map.) Prove

(a) S2 × S1 and S2×̃S1 are prime;

(b) M irreducible implies that M is prime;

(c) M prime implies that M is irreducible or homeomorphic to
S2 × S1 or S2×̃S1.

7. Let F be a 2-sided incompressible surface in a closed 3-manifold M .
Show that M is irreducible iff M/F is irreducible. What if F is
1-sided?

8. Show that uniqueness of prime factorization for closed 3-manifolds is
false in general. (Hint: consider S2 × S1 and S2×̃S1.)

9. Let K be a knot in S3 and let MK = S3− intN(K). Show that MK is
irreducible. What about links L ⊂ S3?

10. Show that a handlebody is irreducible.

11. Let M be an irreducible 3-manifold which contains a 1-sided P 2.
Show that M is homeomorphic to P 3.

12. Let M̃ →M be a covering projection of 3-manifolds. Show

(a) M irreducible ⇒ M̃ irreducible

(b) M̃ irreducible ⇒M irreducible.

Give an example where M̃ is prime but M is not.
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13. Give an example of a closed 3-manifold M with π1(M) finite such
that M contains an incompressible surface.

14. Let M be a closed 3-manifold, and S ⊂M a 2-sphere, realizing M as
a connected sum M1#M2. Show that if π1(M) 6= 1, i = 1, 2, then
[S] 6= 0 ∈ π2(M).

15. A link L in S3 is split if there is a 2-sphere S ⊂ S3 − L, seperating S
into two 3-balls B1 and B2, such that L ∩ Bi 6= ∅, i = 1, 2. Show that
there is an algorithm to decide whether or not a given link in S3 is
split.

16. Show that, assuming the Rubinsteing algorithm for recognizing S3,
there is an algorithm to decide whether or not a given compact
3-manifold is a handlebody.

17. Use the theory of normal 1-manifolds in surfaces to show that RP 2

contains a unique essential simple closed curve, up to isotopy.

18. Show that for each g ≥ 1, there is an algorithm to decider whether or
not a given closed irreducible 3-manifold M contains a closed
incompressible orientable surface of genus ≤ g. What about genus
= g?

19. Every knot K in S3 bounds an orientable surface F . The genus of K
is the minimal genus of such a surface. (Thus K is trivial iff genus
K = 0.) Show that there is an algorithm to compute the genus of a
knot.

20. Let M be a closed triangulated 3-manifold. A maximal system of
normal 2-spheres in M is a normal surface S in M such that

(a) each component of S is a 2-sphere;

(b) no two components of S are normally parallel (i.e. correspond to
the same vector x ∈ Zn

+);

(c) if S0 is a normal 2-sphere in M disjoint from S, then S0 is
normally parallel to some component of S.

Show that such a system may be constructed algorithmically in any
3-manifold M that does not contain a projective plane.



8 THE DISK THEOREM 90

21. Let M be a 3-manifold with boundary, and let S be a 2-sphere in int
M . Show that a simple closed γ in ∂M bounds a disk in M iff it
bounds a disk in M/S.

22. Let F be a connected, incompressible, boundary-incompressible
surface in a handlebody. Show that F is a disk.

23. Let F be a surface properly embedded in a 3-manifold M , and let F ′

be obtained from F by boundary surgery along a disk. Show that F
incompressible implies F ′ incompressible.

24. Let F be a connected incompressible surface in a 3-manifold M such
that ∂F is contained in a torus component of ∂M . Show that, if F is
not an annulus, then F is boundary-incompressible.

25. Let M be a compact, irreducible, triangulated 3-manifold. Show that
if M contains an incompressible torus, then it contains one that is
either fundamental or ∂N(fundamental Klein bottle).

26. Let M be any manifold. The double of M if dM =M ∪g M
′, where

M ′ is a copy of M , and g : ∂M → ∂M ′ is the identity map.
Let M be a 3-manifold with ∂M incompressible, and let F ⊂M be a
properly embedded surface. Show that F is incompressible and
boundary-incompressible in M iff dF is incompressible in dM .

27. For any diagram D of the unknot, let ρ(D) be the least number of
Reidemeister moves required to transform D to the trivial diagram
(with no crossings). Define f : Z+ → Z+ by

f(n) = max{ρ(D) : D a diagram of the unknot with n crossings}.

Show that f is a computable function.

28. Let M be a closed 3-manifold, having a triangulation with t
3-simplices. Since, for a given t, there are only finitely many such
manifolds M , there is a function f : N→ N such that
dimH1(M ;Z2) ≤ f(t). Find an explicit such function f .

29. Assuming Alexander’s (3-dimensional Schoenflies) Theorem and
Dehn’s Lemma, show that every torus in S3 bounds a solid torus.
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30. Let M ⊂ S3 be a connected compact 3-manifold with ∂M a disjoint
union of k tori. Show that there is a k-component link L in S3 such
that M is homeomorphic to S3 − IntN(L).

31. Can you find an example of M as in the previous exercise such that
not all components of S3 − IntM are solid tori? Such that no
component of S3 − IntM is a solid torus?

32. Let M be a compact 3-manidold with ∂M a torus, and let
M̂ =M ∪ V , where V is a solid torus, glued along their boundaries.
Assume that M̂ is irreducible. Let F̂ be a closed incompressible
surface in M̂ , isotoped so that F̂ ∩ V consists of n ≥ 0 meridian disks
of V , where n is minimal. Show that F = F̂ ∩M is incompressible
and ∂-incompressible in M .

33. Let P be a compact, connected planar surface, i.e. a 2-sphere with
the interiors of a finite (non-zero) number of disjoint disk removed.
let P = P1, . . . , Pn be such that Pi+1 = Pi/αi, where αi is an essential
arc in Pi, 1 ≤ i < n, and Pn is a disjoint union of disks. Show that if
P is not a disk then |Pn| < |∂P |.

34. Let M be a handlebody of genus 2. Can you find a connected,
orientable, incompressible surface F (with boundary) in M , other
than a disk? If F is such a surface, what can you say about χ(F )?
About |∂F |?


