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Abstract

We show the set of faithful representations of a closed orientable hy-
perbolic surface group is dense in both irreducible components of the
PSL2(K) representation variety, where K = C or R, answering a question
of W. Goldman. We also prove the existence of faithful representations
into PU(2, 1) with certain nonintegral Toledo invariants.

1 Introduction

Let π be the fundamental group of a closed oriented surface Σ of genus g ≥ 2.
For K = C or R, the set Hom(π, PSL2(K)) is naturally a K–algebraic set, called
the PSL2(K) representation variety of π. The representation variety inherits a
topology from its ambient affine space; call this the classical topology. We prove
the following

Theorem 1. For K = C or R, the set of faithful representations is dense in
Hom(π, PSL2(K)) equipped with its classical topology.

This answers a question of W. Goldman [1, 3].
Given a representation φ : π → PSL2(K), there is an associated flat principal

PSL2(K)–bundle over Σ, obtained by forming the quotient

Σ̃ × PSL2(K)/(x · γ, g) = (x, φ(γ)g),

see [9]. The only obstruction to building a cross-section of this bundle is a
class o2(φ) in H2(π; π1(PSL2(K))) ∼= π1(PSL2(K)). When K = R, o2(φ) is
the Euler number e(φ)—so called as it is the Euler number of the associated
RP1–bundle over Σ—and when K = C, o2(φ) is the second Stiefel-Whitney
class w2(φ)—as it is the second Stiefel-Whitney class of the associated H3–
bundle over Σ. The second Stiefel-Whitney class of a real representation is the
Euler number modulo two. If one works with SLn(R) rather than PSL2(K),
an analogous discussion produces obstruction classes identical to the Euler and
second Stiefel-Whitney classes of the associated Rn–bundles over Σ when n = 2
and n > 2 respectively—see [3] for a more detailed discussion.

In [3], Goldman proves that the topological components of Hom(π, PSL2(C))
are w−1

2 (i) for i = 0, 1 and those of Hom(π, PSL2(R)) are e−1(n) for 2−2g ≤ n ≤
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2g−2. Furthermore, each representation variety has two irreducible components,
corresponding to the two possible Stiefel-Whitney classes [1, 3].

We prove that in each of these irreducible components, the set of faithful
representations is a countable intersection of open dense sets, which by the
Baire Category Theorem is dense. To do this, we use the fact that Fuchsian
representations have even Euler numbers and the following

Theorem 2. For any nontrivial w ∈ π, there is a representation φ : π →
PSL2(R) such that e(φ) = 3 − 2g and φ(w) is nontrivial.

In section 4 we discuss the effect upon the obstruction classes when a repre-
sentation is altered by choosing a new embedding of the entry field of its image.
In the final section we use our techniques to prove a result about representations
into PU(2, 1).

2 Proof of Theorem 2

Proof. Fix a hyperbolic structure on Σ. If α is a geodesic in Σ, let `(α) denote
its length with respect to the chosen hyperbolic structure.

Let ω be a closed geodesic in Σ. Since the closed geodesics are in 1-1 cor-
respondence with the conjugacy classes in π1(Σ, p) for any choice of basepoint
p, it is enough to show that for such a geodesic, there is some basepoint p
and a representation of π1(Σ, p) sending some element w in the conjugacy class
corresponding to ω to a nontrivial isometry of H2.

Choose a simple closed geodesic γ on Σ with `(γ) > 2`(ω), γ t ω 6= ∅, and
so that γ cuts Σ into a surface Σa of genus g − 1 and a punctured torus Σb.
This can be done by applying high powers of a pseudo-Anosov homeomorphism
to any simple closed curve cutting off a punctured torus. Let p ∈ γ, and let
A = π1(Σa, p) and B = π1(Σb, p). Then π1(Σ, p) = A ∗C B, where C is the
subgroup generated by [γ], the homotopy class of γ relative to p. Given an
element h in π1(Σ, p), let 〈〈h〉〉 denote its normal closure in π1(Σ, p).

Lemma 1. There exists w ∈ π1(Σ, p) in the free homotopy class of ω such that

w = a0b0 · · · an−1bn−1,

where, for each i, bi ∈ B − 〈〈[γ]〉〉 and ai ∈ A− 〈〈[γ]k〉〉 for all k > 1 and is not
conjugate to a power of [γ].

Proof. Orient γ, and write ω as a concatenation of oriented geodesic arcs,

ω = α0.β0 . . . αn−1.βn−1,

where αi is contained in Σa and βi is contained in Σb for all i.
For each i let εi be the arc of γ from p to the terminal point of βi in the

positive direction, and let δi be the shortest arc of γ from the terminal point of βi

to its initial point. For any arc α, let α denote α with the opposite orientation.
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Now for 0 ≤ i ≤ n − 1, define

ai = [εi−1.αi.δi.εi] and bi = [εi.δi.βi.εi],

where all indices are taken modulo n. Then transparently, the word w =
a0b0 · · ·an−1bn−1 is in the free homotopy class of ω.

Note that ai is freely homotopic to the closed curve αi.δi.εi.εi−1 with length
less than `(ω)+ 1

2`(γ)+ `(γ) < 2`(γ). This curve is essential and not homotopic
into γ, since transverse geodesics intersect minimally, and so ai is not conjugate
to a power of [γ]. Similarly, note that bi is freely homotopic to δi.βi. This curve
has length less than 1

2`(γ) + `(ω) < `(γ) and is essential for the same reason as
above.

The lemma follows immediately from the following (compare the proofs of
Lemma 1 and Theorem 6 of [6]):

Claim. If x ∈ 〈〈[γ]k〉〉, then `(x) ≥ |k|`(γ).

By Theorem 1 of [8], the cover Σ̃ corresponding to 〈〈[γ]k〉〉 is planar. Let
x have the shortest geodesic representative among all nontrivial elements of
〈〈[γ]k〉〉. Then every lift of x to Σ̃ has a simple geodesic representative, for

otherwise one could find a shorter element in π1(Σ̃) = 〈〈[γ]k〉〉. Suppose the
geodesic representatives of two lifts x̃1 and x̃2 intersect transversely. By the
planarity of Σ̃, the number of points of intersection is even. Choose two such
points, and let α be the shortest of the arcs of x̃1 and β the shortest of the arcs
of x̃2 in the complement of these two points. Then α.β has a shorter geodesic
representative than x̃1, a contradiction. This shows that x is some power of a
simple closed curve in Σ. But by Corollary 4.2 of [5], the only such powers in
〈〈[γ]k〉〉 are of the form [γ]ik, |i| ≥ 1.

We now define a family of representations φt : A ∗C B → PSL2(R), t ∈ R,
with Euler number 3 − 2g, using a construction of Goldman [3]. Let

[
a b
c d

]
∈ PSL2(R)

denote the projective class of
(

a b
c d

)
∈ SL2(R).
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Pick two nonparallel simple closed curves on Σb intersecting in a single point,
and let x and y represent them in B. Then B = 〈x, y〉, and we define a solvable
representation φB : B → PSL2(R) by

φB(x) =

[
α 0
0 α−1

]
φB(y) =

[
β 1
0 β−1

]
,

where α 6= ±1 and β /∈ {αr | r ∈ Q}. We record for future reference that

φB([γ]) = φB([x, y]) =

[
1 β(α2 − 1)
0 1

]

is parabolic.
Choose a Fuchsian representation φA : A → PSL2(R) so that φA([γ]) =

φB([γ]). Note that since φA is discrete and faithful, and φA([γ]) fixes ∞, for no
element a ∈ A−C can φA(a) fix ∞. Therefore, for every a ∈ A−C, φA(a) has
a nonzero 2, 1 entry.

To complete the construction, for t ∈ R define λt = [ 1 t
0 1 ], and note that

since λt commutes with elements of φB(C), the representations φA and λtφBλ−1
t

agree on C. The universal property of free products with amalgamation yields
a representation φt : π → PSL2(R) given by

φt|A = φA and φt|B = λtφBλ−1
t .

The Euler number of each φt is 3− 2g, just as in the proof of Lemma 8.2 of [3].
The following lemma, which uses techniques of the proof of Proposition 1.3

of [12], gives a criterion for an element to survive φt.

Lemma 2. Suppose w ∈ A ∗C B is of the form

w = a1b1a2b2 · · ·albl, ai ∈ A, bi ∈ B for 1 ≤ i ≤ l,

where for each i, φ0(ai) has a nonzero 2, 1 entry and φ0(bi) is hyperbolic. If t
is transcendental over the entry field of φ0(π), then φt(w) is not the identity.

Proof. Let t be transcendental over the entry field of φ0(π). The lemma follows
from the following

Claim. The entries of φt(w) are polynomials in t, where the degree of the 2, 2
entry is l, the degree of the 1, 2 entry is at most l, and the other entries have
degree at most l − 1.

We prove the claim by induction on l. Suppose l = 1. Let
[

a b
c d

]
= φA(a1)

and [ u v
0 u−1 ] = φB(b1). Then

φt(w) = φA(a1)λtφB(b1)λ
−1
t

=

[
a b
c d

] [
1 t
0 1

] [
u v
0 u−1

] [
1 −t
0 1

]

=

[
a b
c d

] [
u v + t(u−1 − u)
0 u−1

]

=

[
au av + bu−1 + at(u−1 − u)
cu cv + du−1 + ct(u−1 − u)

]
.
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Since by assumption c 6= 0 and u 6= ±1 (because φB(b1) is hyperbolic), the
claim visibly holds.

Now suppose l > 1. Write

φt(w) =
(
φA(a1)λtφB(b1)λ

−1
t

)
·
(
φA(a2) · · ·λtφB(bl)λ

−1
t

)

=

[
p1,1(t) p1,2(t)
p2,1(t) p2,2(t)

] [
q1,1(t) q1,2(t)
q2,1(t) q2,2(t)

]

=

[
p1,1(t)q1,1(t) + p1,2(t)q2,1(t) p1,1(t)q1,2(t) + p1,2(t)q2,2(t)
p2,1(t)q1,1(t) + p2,2(t)q2,1(t) p2,1(t)q1,2(t) + p2,2(t)q2,2(t)

]
.

By the base case, p1,1 and p2,1 are both constant in t, and p1,2 and p2,2 are at
most linear in t (where p2,2 has a nonzero t-coefficient). Then by the inductive
hypothesis, p2,2q2,2 has degree l and p2,1q1,2 has degree at most l−1, and hence
the 2, 2 entry of φ(w) has degree l in t. The argument for the other entries is
similar.

It is easy to see that the set of elements of B taken by φB to parabolics is
precisely the commutator subgroup of B, which is contained in 〈〈[γ]〉〉. There-
fore, by Lemma 1, there is a word w in the conjugacy class corresponding to ω
satisfying the hypotheses of Lemma 2. This proves the theorem.

3 Proof of Theorem 1

Proof. Write
Hom(π, PSL2(C)) = X0 ∪ X1,

where Xi is the irreducible component consisting of representations with Stiefel-
Whitney class i for i = 0, 1. Similarly write

Hom(π, PSL2(R)) = Y0 ∪ Y1,

where Yi is the irreducible component consisting of representations with Euler
number equal to i modulo 2 for i = 0, 1. Note that Yi ⊂ Xi under the natural
inclusion Hom(π, PSL2(R)) ⊂ Hom(π, PSL2(C)). For an element w of π, let Xw

(respectively, Yw) be the algebraic subset of X1 (Y1) consisting of representations
killing w.

By Theorem 2, if w ∈ π is nontrivial then Xw ⊂ X1 and Yw ⊂ Y1 are proper
algebraic subsets. It is a standard fact about irreducible complex varieties (see
page 124 of [11]) that the complement of any proper subvariety is dense in the
classical topology. Therefore X1 − Xw is an open dense subset of X1.

For arbitrary irreducible real algebraic varieties it is not true that the com-
plements of proper subvarieties are dense in the classical topology. However it
is true given the additional hypothesis that smooth points are dense (see the
discussion below), and this follows from Proposition 3.7 of [2]:

Theorem (Goldman). The set of smooth points of Hom(π, PSL2(R)) is dense
in Hom(π, PSL2(R)).
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So Y1−Yw is an open dense set of Y1. But the set of faithful representations
in Y1 is precisely ⋂

16=w∈π1Σ

Y1 − Yw

and similarly for faithful representations in X1. This is an intersection of open
dense subsets, which by the Baire Category Theorem is dense.

This proves that the set of faithful representations is dense in the irreducible
component of each representation variety corresponding to a nonzero Stiefel-
Whitney class. In the other component this is immediately evident by the
above argument, since Fuchsian representations, for instance, are faithful with
Stiefel-Whitney class 0.

Here is an example that shows that the complement of a proper subvariety
of an irreducible real algebraic variety is not always dense. The two-variable
polynomial

p(x, y) = y2 − x2(x − 1)

is irreducible, and so the set

V (p) = {(x, y) ∈ R2 | p(x, y) = 0}

is an irreducible real algebraic variety. The points (0, 0) and (1, 0) are the only
elements of V (p) with y-coordinate equal to 0, and if (x, y) ∈ V (p) with y 6= 0,
then y2 > 0, which implies that x > 1. Hence (0, 0) is an isolated point of
V (p) in the classical topology, even though V (p) is one dimensional. It is also
a proper subvariety, which, by the above, is not approached by points in its
complement.

In this example, the origin is not a smooth point of the variety. The following
fact shows that the situation at smooth points is analogous to the complex case.
We give a proof, adapted from the proof of the complex case in [11].

Lemma 3. Let X ⊂ Rn be a real algebraic variety of dimension k, and let
x ∈ X be a smooth point. Let Y ⊂ X be a subvariety of dimension l < k with
x ∈ Y . Then x is approached by a sequence in X − Y .

Proof. The proof is by induction on k.
If k = 1, then l = 0. Hence Y consists of a finite collection of points. Since

x is a smooth point of X , there is a chart φ : (0, 1) → X around x. Now pick
any sequence in (0, 1) that approaches φ−1(x) and misses φ−1(Y ).

Now suppose k > 1. For each irreducible component Yi of Y , let yi ∈ Yi−{x},
and choose an affine hyperplane A so that x ∈ A, yi /∈ A for all i, and A is
transverse to X at x. Then A ∩ X is (k − 1)–dimensional and no irreducible
component of Y is contained in A ∩ X . So for each i,

dim Yi ∩ A ≤ l − 1 < k − 1.

Furthermore, x is a smooth point of X ∩ A since the tangent space at x is of
the proper dimension, and the claim follows by induction.
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Now for a variety X in which smooth points are dense, any point x in a
proper subvariety Y is approached by smooth points of X , each of which is
either in X − Y or approached by a sequence in X − Y . A diagonal argument
gives a sequence in X − Y approaching x.

4 Embeddings of Entry Fields

Given a representation φ : π → PSL2(K) with image Γ, a presentation

π = 〈x1, . . . , x2g | [x1, x2] · · · [x2g−1, x2g] = 1 〉,

and lifts φ̃(x1), . . . , φ̃(x2g) to the universal covering p : P̃SL2(K) → PSL2(K),
we have

o2(φ) = [φ̃(x1), φ̃(x2)] · · · [φ̃(x2g−1), φ̃(x2g)] ∈ ker p ∼= π1(PSL2(K)),

see [9].
We may choose a new embedding σ of the entry field of Γ to obtain a new

representation φσ with image Γσ. Computing the Stiefel-Whitney class of φσ,
we have

w2(φ
σ) = [φ̃σ(x1), φ̃σ(x2)] · · · [φ̃σ(x2g−1), φ̃σ(x2g)]

= (±I)σ

= ±I,

since Q has a unique complex embedding. We therefore have

Remark. w2(φ
σ) = w2(φ).

This implies that the Euler numbers of two such real representations have
the same parity. They may not be equal, as the following example, from [7] pp.
161-162 (originally in [10]), shows.

Consider the Saccheri quadrilateral pictured, where the angle at A is π/3,
embedded in the upper half plane so that C is at i and the side DC lies along
the geodesic between 0 and ∞.

The Fuchsian subgroup F of the group generated by reflections in the sides
of this quadrilateral has presentation

〈x, y, z |x2 = y2 = z2 = (xyz)3 = 1 〉,

where x, y, and z are rotations by π around B, C, and D, respectively. It surjects
Z3 o (Z2 ⊕ Z2) (where Z2 ⊕ Z2 acts on Z3 by (1, 0) · 1 = (0, 1) · 1 = 2) by

x 7→ (1, (1, 0)) y 7→ (0, (0, 1)) z 7→ (0, (1, 1)).

The kernel of this map, Γ0, is torsion-free with coarea 4π and so it is the deck
group of a genus 2 surface.

Let L be the length of the side BC, c = cosh2 L. As in [7], the invariant
trace field of F is Q(c). Note that Γ0 is contained in the commutator subgroup
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of F , and so its trace field is contained in Q(c). The element g0 = (yx)2 is in Γ0.
Conjugate Γ0 so that g = γg0γ

−1 is
(

λ 0
0 λ−1

)
, where λ = 2c− 1 − 2

√
c2 − c. We

may conjugate the result to obtain a group Γ whose entries lie in Q(c, λ)—see
the discussion on page 115 of [7]—and so the entries of Γ lie in Q(c,

√
c2 − c).

Choose L so that c =
√

2. Then the entries of Γ lie in Q(
√

2 −
√

2). Let

σ be the embedding given by σ(
√

2 −
√

2) =
√

2 +
√

2. Consider the element
h0 = (yz)2 of Γ0, which has trace 1 + c

c−1 . Note that σ(
√

2) = −
√

2 and so the

trace of hσ (where h = γh0γ
−1) is 1 +

√
2√

2+1
< 2.

Now, by the main theorem of [1], any representation of the genus 2 surface
group with Euler number ±2 is Fuchsian. Since Γσ contains the elliptic element
hσ, the associated representation must have Euler number 0.

5 Other Lie Groups

It is natural to ask to what extent these techniques prove informative about
representations of surface groups into other Lie groups. One example is the
following

Theorem 3. For g ≥ 3 and any even k, 2 < k ≤ 2g − 2, there are faithful
representations π → PU(2, 1) with Toledo invariants ±(k − 4/3).

Theorem 3 follows from

Theorem 4. For g ≥ 3 and any finite collection of nonidentity elements {wj} ⊂
π, there is a representation φ : π → PU(2, 1) with Toledo invariant 2g− 2− 4/3
such that φ(wj) is nontrivial for all j.

Proof. We recall the construction of Proposition 5.1 of [4]. Let γ be a simple
closed geodesic on Σ which cuts off a punctured torus, and let A = π1(Σa, p) and
B = π1(Σb, p) be the fundamental groups of the punctured genus g − 1 surface
and torus, respectively, cut off by γ, where p is a point on γ. Then A and B are
free and π1(Σ, p) = A ∗C B, as before. Choose generators x1, . . . , x2g−2 for A
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represented by simple closed curves on Σa so that [x1, x2] · · · [x2g−3, x2g−2] = [γ]
and generators x2g−1, x2g for B represented by simple closed curves on Σb so
that [x2g−1, x2g] = [γ]−1. This determines an isomorphism π → A ∗C B.

Now let Qa be the regular 4(g − 1)-gon in H1
C

⊂ H2
C

with vertex angles
π/(6g − 6), and let Qb be the regular quadrilateral in H2 with vertex angles
π/6. Define φa : A → SU(1, 1) ⊂ PU(2, 1) by sending the xi to the appropriate
transvections pairing sides of Qa so that the quotient of H1

C
by φa(A) is a genus

g − 1 surface with one cone point of order 3. Then φa([γ]) is an elliptic of order
3 fixing some vertex v of Qa. As in [4], this rotates by 2π/3 in H1

C
and by

4π/3 in the normal complex geodesic. Similarly define φb : B → SU(1, 1) so
that the quotient is a punctured torus with one cone point of order 3, then we
may assume without loss of generality that φb([γ]) = φa([γ]). Let θ ∈ PU(2, 1)
fix v and interchange H1

C
with its normal complex geodesic at that point; then

θφb([γ])θ−1 = φb([γ])−1. We thus obtain a representation φ : π → PU(2, 1)
given by φ|A = φa and φ|B = θφbθ

−1. This representation has Toledo invariant
2g − 2 − 4/3 (see [4]).

Given a nontrivial element w ∈ π, Lemma 1 allows us to choose γ so that
w = a1b1 . . . ambm where the φa(ai) and φb(bi) are hyperbolic. In fact, it is easy
to see that γ may be chosen so that the above holds for any finite collection of
elements {wj}.

Half the side length of the regular n-gon in H1
C

with vertex angles 2π/3n is
ln given by cosh(ln) = cos(π

n
)/ sin( π

3n
). The largest ball around a vertex of the

polygon Qa which is either disjoint from or identical to each of its translates
under φa(A) has radius ra = l4(g−1) ≥ l8. The largest such ball around any
vertex of Qb has radius rb = l4. Let Πa : H2

C
→ H1

C
and Πb : H2

C
→ θ(H1

C
) be

the orthogonal projections. An elementary argument, similar to the proof of
Proposition 3.1 of [4], shows that Sa = Π−1

a (H1
C
− B(ra, v)) does not intersect

Sb = Π−1
b (θ(H1

C
−B(rb, v)))—this is where the hypothesis that g ≥ 3 is used, as

Π−1
a (H1

C
−B(l4, v)) and Π−1

b (θ(H1
C
−B(l4, v))) do indeed intersect. Therefore any

hyperbolic element of φa(A) takes Sb inside Sa and vice-versa. By a ping-pong
argument, φ(w) is a nontrivial isometry of H2

C
.

Proof of Theorem 3. By the main theorem of [13], there is a unique topological
component T of the PU(2, 1) representation variety of π consisting of represen-
tations with Toledo invariant 2g − 2 − 4/3. Let W1, . . . , Wn be the irreducible
components that contain smooth points in T. Suppose that for each i there
is an element wi 6= 1 such that all representations in Wi kill wi. Theorem 4
produces a representation in which all of the wi survive; furthermore, this rep-
resentation is a smooth point of T (this follows from [2], Proposition 3.7), a
contradiction. Hence there is some irreducible component W for which each
Xw = {ρ ∈ W | ρ(w) = 1} is a proper subvariety, and a representation ρ ∈ W
with Toledo invariant 2g − 2 − 4/3 which is a smooth point of W . Let U be
an open neighborhood of ρ in W consisting entirely of smooth points. Then for
each w 6= 1, Xw ∩U is nowhere dense in U by Lemma 3. The union of such sets
cannot be all of U , and so faithful representations exist in U .

The more general statement follows from the fact that, given a surface Σ of
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genus g ≥ 3 and a finite set of nontrivial elements in π1(Σ), there is a degree
one map from Σ to a surface of genus g − 1 so that each element of the finite
set survives the induced map between fundamental groups.

Remark. A stronger theorem concerning PU(2, 1) has been announced by N.
Gusevskii.
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