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ABSTRACT. We determine the asymptotic behavior of the optimal Lipschitz
constant for the systole map from Teichmüller space to the curve complex.

1. INTRODUCTION

Let S = Sg be a closed surface of genus g> 2. We equip the Teichmüller space
T (S) of S with the Teichmüller metric, and equip the 1–skeleton C (1)(S) of the
complex of curves C (S) with its usual path metric dC .

In [6], Masur and Minsky study the systole map

sys : T (S)→ C (1)(S),

which assigns a hyperbolic metric one of its shortest curves, called a systole. They
prove that sys is (K,C)–coarsely Lipschitz for K,C > 0, meaning that, for all X and
Y in T (S)

dC (sys(X),sys(Y ))6 KdT (X ,Y )+C.

This is the starting point of their proof that C (1)(S) is δ–hyperbolic. (The constant
δ has recently been shown to be independent of g by Aougab [1], Bowditch [4],
and Clay, Rafi, and Schleimer [5].)

In this paper we consider the optimal Lipschitz constant

κg = inf{K > 0 | sys is (K,C)–coarsely Lipschitz for some C > 0}.
We write F(g) � H(g) to mean that F(g)/H(g) is bounded above and below by
two positive constants, and prove the following theorem.

Theorem 1.1. As g→ ∞ we have

κg �
1

log(g)
.

This is a sharp version of the closed case of Theorem 1.4 of [1], which provides
a Lipschitz constant that is independent of χ(S). An analogous result holds when
hyperbolic length is replaced with extremal length, see Proposition 4.9.

The upper bound on κg is established by a careful version of Masur and Minsky’s
proof that sys is coarsely Lipschitz. To establish the lower bound, we construct a
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sequence of pseudo-Anosov mapping classes whose translation lengths on T (S)
and C (1)(S) behave like log(g)/g and 1/g, respectively.

2. A LIPSCHITZ CONSTANT.

Given the isotopy class [ f : S → X ] of a marked hyperbolic surface and the
homotopy class of a curve α , we write `X(α) for the hyperbolic length of α in
[ f : S→ X ]. Let sys(X) denote the set of α in C (0)(S) for which `X(α) is minimal.
If α , β are in sys(X), then the geometric intersection number i(α,β ) is at most 1,
and so the diameter of sys(X) in C (1)(S) is at most 2. We abuse notation and view
sys as a map from T (S) to C (1)(S), although the image of X is actually a subset of
diameter at most 2. One may obtain a bona fide map via the Axiom of Choice.

Given a hyperbolic surface X and a geodesic α on X , a collar neighborhood of
width r about α is an r–neighborhood whose interior is homeomorphic to an open
annulus. We have the following lemma.

Lemma 2.1. Given a closed hyperbolic surface X, if α lies in sys(X), then there
is a collar neighborhood of α of width greater than `X(α)/2.

Proof. Consider a maximal–width collar neighborhood Nw/2(α) of width w. This
has a self–tangency on its boundary. From this one can construct a curve γ that
runs a distance w/2 from one of the points of tangency to α , then at most half–way
around α a distance at most `X(α)/2, and then a distance w/2 to the second point
of tangency. Since α is a systole, we have

`X(α)6 `X(γ)< w+ `X(α)/2.

So w > `X(α)/2 as required. �

Recall that a pair of isotopy classes of curves fills S if, whenever the curves are
realized transversally, the complement of their union is a set of topological disks.

Lemma 2.2. Given α and β in C (0)(S) that fill the surface S, we have

i(α,β )> 2g−1.

Proof. The union α ∪β is a graph on S with i(α,β ) vertices and 2i(α,β ) edges.
The complement is a union of F > 1 disks. Therefore

2g−2 =−χ(S) =−i(α,β )+2i(α,β )−F = i(α,β )−F 6 i(α,β )−1.

So i(α,β )> 2g−1 as required. �

We need Wolpert’s inequality [12] describing change in lengths in terms of the
Teichmüller distance.

Lemma 2.3 (Wolpert, Lemma 3.1 of [12]). Given X ,Y ∈ T (S) and a curve α on
S we have

`Y (α)6 edT (X ,Y )`X(α).

�

Our upper bound on κg now follows from the following proposition.
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Proposition 2.4. For g> 2 and all X ,Y ∈T (Sg) we have

dC (sys(X),sys(Y ))6
2

log(g− 1
2)

dT (X ,Y )+2.

Lemma 2.5. If dT (X ,Y )6 log(g−1/2), then dC (sys(X),sys(Y ))6 2.

Proof. Suppose that dT (X ,Y )6 log(g−1/2). Write α = sys(X) and β = sys(Y ),
and, without loss of generality, assume that

`X(α)6 `Y (β ).

According to Lemma 2.1, we have

i(α,β )`Y (β )

2
< `Y (α).

On the other hand, Lemma 2.3 implies that

`Y (α)6 elog(g−1/2)`X(α) = (g−1/2)`X(α) =
(2g−1)

2
`X(α).

Combining these two inequalities yields

i(α,β )<
2`Y (α)

`Y (β )
6

(2g−1)`X(α)

`Y (β )
6 2g−1.

By Lemma 2.2, α and β cannot fill the surface S, and hence

dC (sys(X),sys(Y )) = dC (α,β )6 2.

This proves the claim. �

Proof of Proposition 2.4. Now, given any two points X and Y in T (S), let n be the
nonnegative integer such that

n log(g−1/2)6 dT (X ,Y )< (n+1) log(g−1/2).

Let X = X0, . . . ,Xn+1 = Y be a chain in T (S) with

dT (Xk−1,Xk)6 log(g−1/2)

for each 16 k 6 n+1. By the triangle inequality and (2.5), we have

dC (sys(X),sys(Y ))6
n+1

∑
k=1

dC (sys(Xk−1),sys(Xk))

6 2(n+1)

6
2

log(g−1/2)
dT (X ,Y )+2

as required. �

3. PSEUDO-ANOSOV MAPS

Given a pseudo-Anosov homeomorphism f : S → S, we let λ ( f ) denote the
dilatation of f . We recall a few facts about pseudo-Anosov homeomorphisms, and
refer the reader to the listed references for more detailed discussions.
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3.1. Asymptotic translation length. Given a homeomorphism f : S→ S, the as-
ymptotic translation length of f on C (1)(S) is defined by

`C ( f ) = liminf
j→∞

dC (α, f j(α))

j
,

where α is any simple closed curve. This is easily seen to be independent of
α . When f is pseudo-Anosov, Masur and Minsky proved f has a quasi-invariant
geodesic axis, and so this limit infimum is in fact a limit. Moreover, there is a C > 0
depending only on the genus of S such that `C ( f )>C, see [6] or Corollary of 1.5
[3]. It follows from the definition that `C ( f k) = k`C ( f ).

One can similarly define the asymptotic translation length of f : S→ S acting on
T (S). A pseudo-Anosov f has an axis in T (S) (see [2]), and the asymptotic trans-
lation length is just the translation length `T ( f ). In fact, Bers’ proof of Thurston’s
classification theorem shows that

`T ( f ) = log(λ ( f )).

The following lemma allows us to use asymptotic translation lengths to bound
optimal Lipschitz constants.

Lemma 3.2. For any pseudo-Anosov f : Sg→ Sg we have

κg >
`C ( f )

log(λ ( f ))
.

Proof. If K,C > 0 are such that sys is (K,C)–coarsely Lipschitz, then, for any X
in T (S), we have

`C ( f )
log(λ ( f ))

= lim
j→∞

dC (sys(X), f j(sys(X)))

dT (X , f j(X))

= lim
j→∞

dC (sys(X),sys( f j(X)))

dT (X , f j(X))

6 lim
j→∞

KdT (X , f j(X))+C
dT (X , f j(X))

6 K.

Since κg is the infimum of these K, the lemma is proven. �

3.3. Invariant train tracks for pseudo-Anosov maps. For more on train tracks,
we refer the reader to [10], whose notation we adopt.

Given a pseudo-Anosov map f : S→ S, let τ denote an invariant train track.
So τ carries f (τ), written f (τ) ≺ τ , and a carrying map sends vertices of f (τ) to
vertices of τ . Let Pτ denote the polyhedron of measures on τ , viewed either as the
space of weights on the branches B of τ satisfying the switch conditions (a cone in
RB
>0), or a subset of the space ML (S) of measured laminations on S.
Although the carrying map is not unique, f induces a canonical linear inclusion

f∗ : Pτ ⊂ Pτ . There is a unique eigenray in Pτ spanned by the stable lamination,
and the corresponding eigenvalue is the dilatation λ ( f ). In fact, this is the unique
eigenray in all of RB

>0 with eigenvalue greater than one.
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Theorem 3.4. If τ is an invariant train track for a pseudo-Anosov homeomorphism
f : S→ S with transition matrix A, then λ ( f ) is the spectral radius of A. �

The dilatation λ ( f ) is also the spectral radius of the matrix that defines the map

RB
>0→ RB

>0,

induced by f . Furthermore, given any f –invariant subspace V of Pτ , the dilatation
is the spectral radius of the matrix (with respect to any basis) defining the map
V → V induced by f . If the matrix is a nonnegative integral matrix A, there is an
associated directed graph, a digraph, with vertices the basis vectors, and Ai j edges
from the ith basis vector to the jth basis vector.

3.5. Basic Nesting Lemma and lower bound for asymptotic translation length.
A maximal train track τ is recurrent if there is some µ in Pτ that has positive
weights on every branch. The set of such µ will be denoted int(Pτ). A maximal
train track τ is transversely recurrent if every branch intersects some closed curve
that intersects τ efficiently. A train track that is both recurrent and transversely
recurrent is called birecurrent.

For a maximal train track τ , Masur and Minsky observed that if α is a curve in
int(Pτ) and a curve β is disjoint from α , then β is in Pτ , see Observation 4.1 of [6].
From this they deduce the following proposition.

Proposition 3.6. If τ is a maximal birecurrent invariant train track for a pseudo-
Anosov f : S→ S and r > 1 is such that f r(Pτ)⊂ int(Pτ), then

`C ( f )> 1/r.

�

We call an r satisfying the conditions of Proposition 3.6 a mixing number for f
and τ . In the next section, we construct a family of pseudo-Anosov maps φg : Sg→
Sg and maximal birecurrent invariant train tracks τg with mixing numbers 2g−1.

4. LOWER BOUND ON κg.

We build a family of pseudo-Anosov maps {φg : Sg→ Sg} for which the asymp-
totic translation lengths on T (Sg) are on the order of logg/g while the asymptotic
translation lengths on C (1)(Sg) are bounded below by a linear function of g. The
lower bound on κg in Theorem 1.1 follows from this and Lemma 3.2. Our con-
struction is similar to Penner’s [8], but the asymptotic behavior is different.

Let g> 4 and consider the genus g surface S = Sg with curves

Ω = Ωg = {a0, . . . ,ag−2,b0, . . . ,bg−2,c0, . . . ,cg−2,d0, . . . ,dg−2}

as indicated in Figure 4 when g = 9. For a curve x in Ω, let Tx be the left–handed
Dehn twist in x. Let ρ = ρg be the symmetry of order g−1 obtained by rotating Sg
clockwise by 2π/(g−1), and let

φ = φg = ρg ◦Ta0 ◦Tb1 ◦Tc0 ◦T−1
d0

.
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FIGURE 4.1. The pseudo-Anosov φ9

Observe that the only nonzero intersection numbers among curves in Ω are

i(d j,a j) = i(d j,a j+1) = i(d j,b j) = i(d j,b j+1) = 1 and i(d j,c j) = 2

for j ∈ {0, . . . ,g− 2}, where indices are taken modulo g− 1. Smoothing inter-
section points as indicated in Figure 4.2, we produce a maximal train track τ = τg.
Each of the curves in Ω is carried by τ , proving that τ is recurrent, and these curves
are elements of Pτ . Moreover, each of the curves can be pushed off τ to meet it
efficiently, proving that τ is transversely recurrent. Let PΩ ⊂ Pτ be the subspace of
measures carried by τ that lie in the span of Ω. Because no two curves of Ω put
nonzero weights on the same set of branches, the set Ω is a basis for PΩ.

Since Ω is ρ–invariant, we may assume that τ is. Furthermore, one has that
Ta j(τ), Tb j(τ), Tc j(τ), and T−1

d j
(τ) are carried by τ for any j, as in [9]. In fact, we

have f (PΩ)⊂ PΩ for any f in {ρ,T−1
d j

,Ta j ,Tb j ,Tc j | 06 j 6 g−1}. It follows that
φ(PΩ) ⊂ PΩ and, as in [8], φ is pseudo-Anosov. Let A denote the matrix for the
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FIGURE 4.2. Smoothing the intersection points. Here x is some
ai,bi, or ci.

action of φ on PΩ in terms of the basis Ω. This is a Perron–Frobenius matrix whose
associated digraph Gg is shown in Figure 4.3 in the case g = 9. The vertices are
labeled by the corresponding elements of Ω, and multiple edges are represented by
an edge labeled with the multiplicity. An important feature is that G has exactly
one self–loop, at the vertex a1.
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First we bound the translation length on C (1)(S) from below.

Proposition 4.4. For every g> 4,

`C (φg)>
1

2g−1
.

Proof. By Proposition 3.6, it is enough to show that r = 2g−1 is a mixing number
for φ and τ . We show this in two steps.

We first show that, for any µ ∈ Pτ , there is an s6 g so that φ s(µ) = ta1 +µ ′ for
some t > 0 and µ ′ ∈ Pτ . Observe that µ has positive intersection number with some
curve a j or d j. Indeed, if we push all of the a j and d j off of τ in both directions
so as to meet it efficiently, then the union of these curves intersects every branch.
Next, set s0 = g− 1− j, so that 1 6 s0 6 g− 1. Then µs0 = φ s0(µ) has positive
intersection number with either a0 or d0. From this we have

Ta0T−1
d0

(µs0) = µs0 + i(µs0 ,d0)d0 + i(µs0 + i(µs0 ,d0)d0,a0)a0

= µs0 + i(µs0 ,d0)d0 +(i(µs0 ,a0)+ i(µs0 ,d0)i(d0,a0))a0

= µs0 + i(µs0 ,d0)d0 +(i(µs0 ,a0)+ i(µs0 ,d0))a0.

Applying ρTb1Tc0 to this is the same as applying φ to µs0 since Ta0 commutes with
Tb1Tc0 . Therefore

φ
s0+1(µ) = φ(µs0) = ta1 +µ

′

where

s = s0 +1,

t = i(µs0 ,a0)+ i(µs0 ,d0)> 0, and

µ
′ = ρTb1Tc0(µs0 + i(µs0 ,d0)d0) ∈ Pτ .

The second step is to show that, for any k > g− 1, we have φ k(a1) ∈ int(Pτ).
This follows from the fact that, for any k > g−1, there is a path of length k from
a1 to any other vertex x ∈Ω, see Figure 4.3.

From these two steps, we have

φ
2g−1(µ) = φ

2g−1−s(φ s(µ))

= φ
2g−1−s(ta1 +µ

′)

= tφ 2g−1−s(a1)+φ
2g−1−s(µ ′).

The iterate s from step one satisfies 2g−1− s> g−1. By step two, we know that
the right–hand side lies in int(Pτ)+Pτ ⊂ int(Pτ). It follows that φ 2g−1(Pτ)⊂ int(Pτ)
and so 2g−1 is a mixing number for φ and τ . �

4.5. Bounds on dilatations.

Lemma 4.6. For g > 4, the mapping classes φg satisfy

log(4g−4)
2g−2

6 log(λ (φg))6
log(10g−21)

g−2
.
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Proof. The lower bound holds for any Perron–Frobenius digraph with a self–loop,
thanks to work of Tsai (Proposition 2.4 of [11]), and so we prove only the upper
bound.

For any j 6 g−2, inspection reveals that the number of directed edge–paths in
Gg of length j emanating from each of

a0, a1, b0, b1, c0, dg−2, and d0

to be

(10 j−6), 5 j, (10 j−1), 5 j, (10 j−6), (10 j−11), and (5 j−1),

respectively—see Figure 4.3. For any other vertex v of Gg, there is a unique edge–
path starting at v and ending at one of the vertices listed above, and every shorter
edge–path is an initial segment of this one. It follows that the number of edge–
paths of length g− 2 starting at any vertex is maximized at one of the vertices
listed above, and is hence at most 10g−21.

Let Ag be the incidence matrix of Gg. The maximum row sum of Ag−2
g is pre-

cisely the maximum number of edge–paths starting at any vertex, and is hence at
most 10g− 21. But the maximum row sum of a Perron–Frobenius matrix is an
upper bound for its spectral radius. Applying this to Ag−2

g we have

log(λ (φg)) =
log(λ (φg)

g−2)

g−2
=

log(λ (φ g−2
g ))

g−2
6

log(10g−21)
g−2

. �

Alternatively, one may calculate the characteristic polynomial PGg(x) of Gg by
observing that the mapping classes φg are the monodromies of fibrations of a single
3–manifold. In fact, all of the fibers lie in a single cone on a fibered face of the
Thurston norm ball, and one can use the Teichmüller polynomial to calculate the
PGg(x) by specializing a single polynomial. See [7]. The polynomial is

PGg = x4g−4− x4g−5− x2g−1−10x2g−2− x2g−3− x+1,

and one may estimate λ (φg) by noting that it equals the maximum modulus of
the roots of PGg , which is estimable due to the special form of PGg . Though more
involved, this argument yields the better upper bound of

log(λ (φg))6
3log(4g−4)
(4g−4)

.

4.7. The main theorem. We can now assemble the proof of the main theorem.

Proof of Theorem 1.1. Proposition 2.4 implies that

κg 6
2

log(g− 1
2)
� 1

log(g)
.

Lemma 3.2 applied to the sequence φg : Sg→ Sg above, together with Proposition
4.4 and the upper bound in Lemma 4.6, implies

κg >
`C (φg)

log(λ (φg))
>

1/(2g−1)
log(10g−21)/(g−2)

� 1
log(g)

. �
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4.8. Extremal length. Masur and Minsky [6] use extremal length rather than hy-
perbolic length to define the map T (S)→ C (1)(S). Recall that the extremal length
of a curve α with respect to X in T (S) is ExtX(α) = 1/modX(α), where modX(α)
is the supremum of conformal moduli for embedded annuli with core curves ho-
motopic to α . The set of curves with smallest extremal length,

sysExt(X) = {α in C (1)(S) | ExtX(α)6 ExtX(β ) for all β ∈ C (0)(S)},

is finite. As with hyperbolic length, the set sysExt(X) has diameter bounded above
by a constant c = c(S) (Lemma 2.4 of [6]), and again we view sysExt as a map
T (S)→ C (1)(S). This map is also coarsely Lipschitz, and we let κExt

g denote the
optimal Lipschitz constant for sysExt : T (Sg)→ C (1)(Sg).

Proposition 4.9. We have κg = κExt
g for all g. In particular, κExt

g � 1
log(g) .

Proof. Suppose α in sys(X). The collar neighborhood of width `X(α)/2 from
Lemma 2.1 provides a conformal annulus of definite modulus (depending on `X(α)),
and hence ExtX(α) < L′ for some L′ = L′(S). Now let β lie in sysExt(X), so that
ExtX(β )6 L′. By Lemma 2.5 of [6], d(α,β )6 2L′+1. From this we deduce

|sys(X)− sysExt(X)|< 2L′+1.

Therefore, if one of sys or sysExt is (K,C)–coarsely Lipschitz, then, by the triangle
inequality, the other is (K,C + 2(2L′+ 1))–coarsely Lipschitz. The proposition
follows. �
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