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1. INTRODUCTION

Michael Kemeny taught a course (Math 245) on Syzygies at Stan-
ford in Spring 2017.

These are my “live-TEXed“ notes from the course. Conventions
are as follows: Each lecture gets its own “chapter,” and appears in
the table of contents with the date.

Of course, these notes are not a faithful representation of the course,
either in the mathematics itself or in the quotes, jokes, and philo-
sophical musings; in particular, the errors are my fault. By the same
token, any virtues in the notes are to be credited to the lecturer and
not the scribe. 1 Please email suggestions to aaronlandesman@gmail.

com.

1This introduction has been adapted from Akhil Matthew’s introduction to his
notes, with his permission.

aaronlandesman@gmail.com
aaronlandesman@gmail.com


4 AARON LANDESMAN

2. 4/3/17

Today, we’ll discuss why people care about syzygies. Syzygies go
back to mid-19th century geometric invariant theory.

A syzygy is simply a relation among the equations of a projective
variety. This goes by to Sylvester in 1850.

Example 2.1 (Syzygies of the twisted cubic). Consider the map

ν : P1 → P3

[u; v] 7→ [
u3,u2v,uv2, v3

]
.

The twisted cubic X := ν(P1), the 3-Veronese embedding of P1 in P3.
We can note also that X is the scheme theoretic intersection of

f := yw− z2

g := yz− xw

h := xz− y2

There are two syzygies:

xf+ yg+ zh = 0

yf+ zg+wh = 0.

2.1. Introducing notation. For the remainder of the course, we fix
the following notation. Consider S := C [x0, . . . , xn], a graded ring in
n+ 1 variables. Let Sd denote the homogeneous polynomials in S of
degree d. Let M be a finitely generated graded module over S. For
C a curve, we will let g denote the genus.

Example 2.2. Let the twisted module S(−n) be the S-module de-
fined so that S(−n)d := Sd−n. Note that as a module (without a
grading) this is isomorphic to S.

Definition 2.3. A graded S module M is free if one can write M =
⊕nS(−n)⊕bn .

Definition 2.4. A resolution F• →M is minimal if each δi : Fi → Fi−1
takes a basis of Fi to a minimal set of generators of im (δi).

Theorem 2.5 (Hilbert syzygy theorem, 1890). Let M be a finitely gen-
erated graded module over S := C[x0, . . . , xn]. Then there exists a unique
minimal free resolution
(2.1)
0 M F0 F1 · · · Fn+1 0

δ1 δ2 δn+1

of length at most n+ 1.
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We’ll prove this on Friday.

Definition 2.6. If M is a finitely generated graded S module, then
the Hilbert function is the map

fm : Z→ Z

d 7→ dimCMd.

Remark 2.7. One can verify that the Hilbert function is eventually
polynomial, and one defines the Hilbert polynomial to be this poly-
nomial.

Definition 2.8. Let F• be the minimal free resolution ofM. Then, say

Fi = ⊕jS (−i− j)bij .

These bij are the Betti numbers associated to f.
Define

∆j :=
∑
i≤j

(−1)j bj−i,i,

to be the alternating sum of the diagonal elements of the Betti table,
which is the table containing bij in position (i, j).

Lemma 2.9. We have

fm(d) =
∑
j

(−1)j+1∆j

(
n+ d− j

n

)
.

In this formula, we have
(
a
n

)
= 0 if a < n.

Proof. Omitted. �

Example 2.10 (Twisted cubic, revisited). The homogeneous coordi-
nate ring of the twisted cubic, S/IX has the following minimal free
resolution.
(2.2)

0 S/IX S S(−2)⊕3 S(−3)⊕2 0.
A B

Here,

A =
[
yw− z2,yz− xy, xy− z2

]
B =

x y
y z
z w

 .

The Betti table (i.e., the table with (i, j) entry given by bij of X is
Next week, we’ll show that the 4 table of a rational normal curve is
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j,i 0 1 2 3
0 1 0 0 0
1 0 3 2 0

TABLE 1. Betti table of twisted cubic

j,i 0 1 2 · · · d− 1
0 1 0 0 · · · 0
1 0

(
d
2

)
2
(
d
3

)
· · · (d− 1)

(
d
d

)
TABLE 2. Betti table of twisted cubic

2.2. Enter Brill-Noether theory. We’d like to relate the extrinsic ge-
ometry of C ⊂ Pr (the Betti number of S/IC to the abstract intrinsic
geometry of the curve. For this, we’ll use Brill Noether theory.

Remark 2.11. Recall that for C a curve of genus g, the Brill-Noether
loci are

Wr
d(C) :=

{
line bundles L of degree dwithh0(L) = r+ 1

}
.

If C is general, the Brill Noether locus

Wr
d(C)

is smooth of dimension

ρ(g, r,d) := g− (r+ 1) (g− d+ r)

g− h0(L) − h1(L).

The nicest proof of this, in Michael’s opinion, is Lazarsfeld’s proof
using K3 surfaces, which is just a couple of pages.

We’ll now define some useful invariants of a curve.

Definition 2.12. Given a smooth curve C, the gonality of C is

Gon(C) := min
d

{
d : w1d 6= ∅

}
= min

d

{
d : there exists a degree dmap C→ P1

}
≤ bg+ 3

2
c.

Definition 2.13. Given a smooth curve C, we let the Clifford index,

Cliff(C) := min
A

{
degA− 2r(A) : A is a line bundle degA ≤ g− 1,h0(A) ≥ 2

}
.
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Remark 2.14. For a generic curve, CliffC = GonC− 1.

We now introduce some more notation.

Definition 2.15. Let C be a curve and L a line bundle. Then,

ΓC(L) = ⊕nH0(C,nL)

is a graded S := SymH0(L) module.
We let

bp,q := bp,q (ΓC(L)) =: bp,q(C,L).

ForM a second, line bundle, let

ΓC(L;M) := ⊕H0(C,nL+M)

be the graded H0(L) module. Then,

bp,q(C;M,L) := bp,q(ΓC(L;M).

Goal 2.16. The goal for the first part of this course is to relate bp,q(C,L)
to Brill-Noether theory.

Theorem 2.17 (Castelnuovo-Mumford). For L a line bundle with

degL ≥ 2g+ 1
then

φL : C→ Pr

defines an embedding and ΓC(L) coincides with S/IC (meaning φL is pro-
jectively normal) which is equivalent to b0,j = 0 for j ≥ 2.

Proof. Omitted. �

Theorem 2.18 (Green, 1984). If degL ≥ 2g+ 1+ p, then

bi,j = 0 for i ≤ p, j ≥ 2.

Lemma 2.19 (Noether). IfC is not hyperelliptic, or equivalently if CliffC ≥
1, then φωC : C→ Pg−1 is projectively normal. This means

H0(Pn−1,O(n))→ H0(C,ωnC)

is surjective, or equivalently

b0,j = 0 for j ≥ 2

Proof.

Exercise 2.20. Prove this!
�
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Theorem 2.21 (Enriques, Petri, Babbage). Consider φωC : C → Pg−1.
If Cliff(C) ≥ 2 then IC is generated by quadrics. In the language of syzy-
gies, this says

bi,j = 0 for j ≥ 2.

Conjecture 2.22 (Green’s conjecture, 1984, proved by Voisin in 2002,
2005 in suitably generic cases). If p < CliffC then bp,j = 0 for j ≥ 2.

The main focus of this course will be to prove Green’s conjecture
and the secant conjecture.

3. 4/10/17

Today, we’ll discuss the Eagon-Northcott complex.

3.1. Constructing the Eagon-Northcott complex. Let R be a ring and
f : Rr → Rs for r ≥ s.

Consider the graded ring

S = R[x1, . . . , xs].

Let F = Sr(−1) be a graded S-module. Then, f defines a morphism

g : F→ S

of graded S-modules. We identify S1 ' Rs in the canonical way.
Explicitly, if e1, . . . , er is a basis for Rr, then

g (ei ⊗ 1) 7→ f(ei) ∈ Rs ' S1.
By construction, this is indeed a homogeneous map of degree 0.

Consider the Koszul complex associated to g. That is, the complex
associated to {f (ei)} .

The Koszul complex K•(g) looks like
(3.1)

0 S F ∧2F ∧3F · · · ∧rF 0

is a graded free complex. Now, take the degree d part. Note that the
degree d part of the ith component is(

∧iF
)
d
=
(
∧iS (R

r ⊗R S(−1))
)
d

'
(
∧iRR

r ⊗ S(−i)
)
d

.

Therefore, K•(g)d is
(3.2)

0 Sd Sd−1 ⊗R Rr Sd−2 ⊗R ∧2Rr · · · Sd−r ⊗∧rRr 0
δ δ δ
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as a complex of R-modules.
Next, we dualize this complex. That is, we apply Hom (•,R).

(3.3)

0 S∨d−r S∨d−r+i ⊗ Rr Sd−r+2 ⊗∧2Rr · · · ⊗ Rr S∨d ⊗∧rRr 0.

This follows from the identification

∧iRr ' ∧r−i (Rr)∨ .

Consider now the special case d = r− s. Only look at the last r− s
terms of K• (g)∨r−s. We obtain
(3.4)

0 S∨r−s ⊗∧rRr S∨r−s−1 ⊗∧r−1Rr · · · ∧sRr 0
d

and we may note

∧sRr ' S∨0 ⊗∧sRr.

To get the Eagon-Northcott complex, we extend the length of this

complex by one, via adjoining ∧sRr
∧sf−−→ ∧sRs ' R for the map f :

Rr → Rs. Altogether, we get
(3.5)

0 S∨r−s ⊗∧rRr S∨r−s−1 ⊗∧r−1Rr · · · ∧sRr ∧sRs 0.d ∧sf

Proposition 3.1. The composition of any two maps in Equation 3.5 is zero.
That is, it is a complex.

Proof. From the construction, this automatically holds at every term,
except possibly the last one. That is, it only remains to show the
composition

(3.6) S∨1 ⊗∧s+1Rr S∨0 ⊗∧sRr ∧sRs
d ∧sf

is zero. Dualizing, we need to show

(3.7) R ∧r−sRr Rs ⊗∧r−s−1Rr
ε δ

is 0. We can use the identifications

(3.8)
R ∧r−sRr Rs ⊗∧r−s−1Rr

(∧sRs)∨ ∧s (Rr)∨ S1.

ε δ
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This composition corresponds to an element of Hom
(
∧s+1Rr,Rs

)
.

Let e1, . . . , er be a basis for Rr. We have

δ ◦ ε(1)
(
ei1 ∧ · · ·∧ eis+1

)
=
∑

(−1)p+1 ε(1)
(
ei1 ∧ · · ·∧ êip ∧ · · ·∧ eis+1

)
f
(
eip
)

This is some element of Rs since∑
(−1)p+1 ε(1)

(
ei1 ∧ · · ·∧ êip ∧ · · ·∧ eis+1

)
is an element of R. This follows from the definition. Then,

ε(1) ∈ Hom (∧sRr,R) ,

so

δ ◦ ε(1)
(
ei1 ∧ · · ·∧ eis+1

)
=
∑

(−1)p+1 ε(1)
(
ei1 ∧ · · ·∧ êip ∧ · · ·∧ eis+1

)
f
(
eip
)

=
∑

(−1)p+1
(
f(ei1)∧ · · ·∧ f̂(eip)∧ · · ·∧ f

(
eis+1

))
· f
(
eip
)

.

Then, let A be the s× r matrix representing f. Let Am be the mth
column of A. Introduce the notation

A{m1,...,m`} :=
(
Am1 · · · Am`

)
.

Then, we to check the composition is zero, it suffices to verify the
identity ∑

(−1)p+1 det
(
Ai1,...,îp,...,is+1

)
Aip = 0.

Let’s start with an example:

Example 3.2. Take

A :=

(
4 5 6
7 8 9

)
We obtain∣∣∣∣(5 6

7 8

)∣∣∣∣ (47
)
−

∣∣∣∣(4 6
7 9

)∣∣∣∣ (58
)
+

∣∣∣∣(4 5
7 8

)∣∣∣∣ (69
)

.

The first entry being 0 is saying that∣∣∣∣∣∣
4 5 6
4 5 6
7 8 9

∣∣∣∣∣∣ = 0
and the second entry of the vector is 0 because∣∣∣∣∣∣

7 8 9
4 5 6
7 8 9

∣∣∣∣∣∣ .

This example easily generalizes, showing the composition is 0. �
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To recap, here is our definition:

Definition 3.3. Let f : Rr → Rs. The Eagon-Northcott complex is the
complex
(3.9)

0 R ∧sRr S∨1 ⊗∧s+1Rr · · · S∨r−s ⊗∧rRr 0
∧sf d

and S = R [x1, . . . , xn] .

Remark 3.4. Next time we will find a criterion for the Eagon North-
cott complex to be exact. The key to proving exactness will be the
Buchsbaum-Eisenbud criterion for exactness.

Definition 3.5. Let ψ : Rr → Rs be a map of free R-modules. We
define

Ij(φ) ⊂ R
to be the ideal generated by the j× jminors.

Intrinsically, Ij(ψ) is the ideal given by the image of the map

∧jRr ⊗∧j(Rs)∨ → R.

This can be thought of as an element of

Hom
(
∧jRs,∧jRs

)
given by ∧jφ. The rank of φ, notated rk(φ) is the greatest integer j
so that Ij(φ) 6= 0. Then,

I (φ) := Irk(φ)(φ).

Proposition 3.6 (Proposition 20.8, Eisenbud’s commutative algebra
book). If φ : Rr → Rs is a morphism, then cokerφ is projective if and only
if I(φ) = R. In this case, cokerφ has rank s− rkφ.

Proof. Omitted. �

Next time, we’ll apply following criterion for exactness of a com-
plex to the Eagon-Northcott complex.

Theorem 3.7 (Buchsbaum-Eisenbud). Let

(3.10) F0 F1 F2 · · · Fn 0
f1 f2 fn

be a complex. Assume
(1)

rk (Fk) = rk fk + rk fk+1
and
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(2)

depth I(fk) ≥ k

for k = 1, . . . ,n.
then F• is exact.

Proof. Omitted. �

Definition 3.8. Recall that the depth of an ideal I is the maximal
length of a regular sequence xi ∈ Rwith each xi ∈ I.

4. 4/12/17

Today’s goal is the Buchsbaum Eisenbud criterion for exactness.
There are two main ingredients:

(1) Fitting ideals
(2) The Peskine-Szpiro lemma

4.1. Fitting ideals. We’ll just state their definition and properties
without proof. Given a matrix

φ : Rr → Rs,

let the ideal Ijφ ⊂ R be the ideal generated by the j× jminors of φ.

Definition 4.1 (Fitting ideal). LetM be a finitely generated R-module
for R noetherian (in the future we will assume R noetherian without
comment). Choose a presentation

(4.1) Ra Rb M 0.
φ

Then,

Fitti(M) := Ib−i(φ).

Proposition 4.2. LetM be a finitely generated R-module. Then,
(1) Fitti(M) is well defined (i.e., independent of choice of resolution)
(2) Fitting ideals are functorial, meaning that for a maps of rings f :

R→ S, we have

Fittj (M⊗R S) = f(Fittj(M)) ⊂ S.

(3) As a consequence of the previous point, fitting ideals commute with
localization.

Proof. Omitted. �
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Remark 4.3. Recall that rkφ : F→ G is by definition

rkφ := max
i

{
j : Ij(φ) 6= 0

}
.

and

I(φ) := Irkφ(φ).

If M is a finitely generated R-module with presentation φ, we have
I(M) := I(φ).

Warning 4.4. I(φ) need not commute with localization because it
may be that rkφp < rkφ.

Remark 4.5. If we assume that I(φ) contains a nonzero divisor then

I(φ)p 6= 0
for all p ∈ Spec R. This implies that rk(φp) ≥ rk(φ), which implies
rkφp = rkφ and so by Proposition 4.2

I(φ)p = I(φp).

Lemma 4.6. LetM be a finitely generated R-module. Then,M is projective
of constant rank if and only if I(M) = R. In this case,

rk(M) = b− rkφ

for

φ : Ra → Rb

a presentation ofM.

Proof. See Eisenbud’s commutative algebra book. �

4.2. The Buchsbaum Eisenbud criterion. Here is the setup for the
Buchsbaum Eisenbud criterion for exactness.

We first recall some definitions:

Definition 4.7. Let M be a finitely generated R-module. A sequence
f1, . . . , fr in R isM-regular if fi is a nonzero divisor onM forM/ (f1, . . . , fi−1)M
for i = 1, . . . , r andM/ (f1, . . . , fr)M 6= 0.

Definition 4.8. Let I ⊂ R be an ideal. Then,

depthI(M) :=

{
maximal length of anM-regular sequence in I if IM 6=M∞ if IM =M.

If R is local then

depth(M) := depthm(M).
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Lemma 4.9. Let (R,m) be a local ring. Suppose

(4.2) 0 A B C 0

is a short exact sequence of finitely generated R-modules. Then,

(1)

depth(B) ≥ min (depthA, depthC) .

(2)

depth(C) ≥ min (depthB, depthA− 1)

(3)

depthA ≥ min (depthB, depthC+ 1) .

Proof. This follows from the characterization of depth in terms of Ext.
(Recall depth(M) = mini Exti(k,M) 6= 0.) �

Lemma 4.10 (Peskine-Szpiro). Let R be a local ring and let

(4.3) 0 Fn Fn−1 · · · F1 F0
fn f1

be a complex with Fi a finitely generated R-module. Suppose

(1) depth(Fi) ≥ i and
(2) depthHjF = 0 for j > 0.

Then, F• is exact.

Proof. Suppose F• is not exact. Let i > 0 be the largest i so that HiF
is nonzero. If i = n, then

HnF ⊂ Fn.

But, depth(Fn) ≥ n > 0 by Lemma 4.9 applied to A = Hn(F),B =
Fn,C = im fn.

So, we may assume i < n. Let i < n. As the complex is exact to
the left of Fi by induction. We then have a short exact sequence

(4.4) 0 im fj+1 Fj im fj 0
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using that for i < j ≤ n. From Lemma 4.9, we have

depth im Fj ≥ min
(
j, depth im fj+1 − 1

)
≥ min

(
j, depth im fj+2 − 2

)
≥ min (j, depth (im fn) − (n− j)) .
≥ min (j, depth (Fn) − (n− j)) .
≥ min (j,n− (n− j)) .
≥ j.

But, we also have the exact sequence

(4.5) 0 im fi+1 ker fi HiF 0.

By assumption, depthHiF = 0 but HiF 6= 0. Therefore,

depthHiF = 0

≥ min (depth ker fi, i)

This can only happen if depth ker fi = 0. Note that we have i > 0
here. This contradicts that

ker fi ⊂ Fi

so

depth ker fi ≥ 1.

since depthFi ≥ i. �

We now come to a useful criterion for the exactness of a complex.

Theorem 4.11 (Buchsbaum-Eisenbud). Let

(4.6) 0 Fn Fn−1 · · · F1 F0
fn f1

be a complex of free finite R-modules. Suppose
(1)

rkFi = rk fi + rk fi+1

(2) if I(fi) 6= R, then depth I(fi) ≥ i. for i ≥ 1.
Then, F• is exact.

Remark 4.12. In fact, this is an if and only if statement, but we only
need one direction, so we only state and prove that direction.
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Proof. The second assumption guarantees I(fi) has a nonzero divisor.
So, by Remark 4.5, we know the assumptions are preserved under
localization. Therefore, we may assume R is local.

Let’s deal with exactness at Fi. That is, we want to show

(4.7) Fi+1 Fi Fi−1
fi+1 fi

is exact.
We first consider the case i > d := depthR, we have

I(fi+1) = I(fi) = R,

by the second assumption.
By Lemma 4.6, we have cokerFi is free of rank

rk cokerFi = rkFi − rk fi+1.

Construct

(4.8) Fi cokerFi Fi−1.
f̃i

To proving exactness at Fi, it suffices to show f̃i is injective. We see
that

rk f̃i = rk fi
= rkFi − rk fi+1
= rk cokerFi

We hence have

I(f̃i) = I(fi) = R.

Then, dualizing the sequence

I
(
f̃∨i

)
= R.

By Lemma 4.6 we have cokerf̃i
∨

is free of rank

rk cokerFi − rk f̃i
∨
= rk f̃i
= 0.

This implies f̃i
∨

is surjective so f̃i is injective.
To conclude, we only need prove the case that i ≤ d. In this case,

we will apply Lemma 4.10. By truncating F•, and replacing Fd with
cokerfd+1, we may assume that F• has length at most d. That is, we
may assume n ≤ d.

Without generality, we have that R is local.
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Lemma 4.13. Suppose F• satisfies the following condition: (F•)p is exact
for every p 6= m in the local ring (R,m).

Proof. By this hypothesis, we have

Supp (HiF•) ⊂ {m} .

Therefore, there is some ` for which m`HiF• = 0. That is,

depthHiF = 0.

Note that each Fi is free, so depthFi = d ≥ i. Therefore, by Lemma 4.10,
we know F• is exact. �

To complete the proof, it suffices to reduce to the case that (F•)p is
exact for every p 6= m.

In the general case, we induct on dimR. If dimR = 0, then we
are done as there are no primes other than m. If dimR = n+ 1 then
dimRp < dimR. Therefore, by the induction hypothesis for the ring
Rp, which is of lower dimension, we know that (F•)p has vanishing
cohomology, and therefore the same follows for F• by Lemma 4.13.

�

5. 4/14/17

We’ll now discuss some applications of the Buchsbaum-Eisenbud
criterion for exactness of a complex in a geometric setting. In par-
ticular, we’ll examine the relation to the Eagon-Northcott complex.
Let f : Rr → Rs for r ≥ s. Recall we constructed an Eagon-Northcott
complex associated to f Eagon-Northcott(f) from the complex
(5.1)

0 R ∧sRr S∨ ⊗∧s+1Rr S∨2 ⊗∧s+2Rr · · · S∨r−s ∧
r Rr 0

∧sf d

where we are using that R ' ∧sRs and S = R[x1, . . . , xs].
We state the following theorem without proof, though we will

come back to it in Corollary 6.3.

Theorem 5.1 (Eagon-Northcott). Assume depth Is(f) ≥ r+1− s. Then,
Eagon-Northcott(f) is exact.

5.1. Rational normal curves. Recall a rational normal curve C ⊂ Pd

is the embedding from P1
φL−−→ Pd for L = OP1(d). Recall that C is

smooth, rational, degree d, nondegenerate, The ideal of C is gen-
erated by the equations xixj − xi−1xj+1. It’s clear that the rational
normal curves lies in the intersection of these equations, and you
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can check it actually is the vanishing of these equations by comput-
ing the Hilbert polynomial (in fact, these equations already form a
Grobner basis, so you can just use the leading terms).

Let

A =

(
x0 · · · xd−1
x1 · · · xd

)
be a 2× dmatrix of linear form. Let IC be the ideal generated by the
2× 2 minors of A. Let R = C [x0, . . . , xd] (be the graded ring). View
A as a map f : Rd(−1) → R2. Let IC = I2(f) as C has codimension
d− 1.

As C has codimension d− 1, we have depth I2(f) = d− 1. There-
fore, by Theorem 5.1, Eagon-Northcott(f) is exact.

Let S = R[y1,y2]. Recall that Eagon-Northcott(f) is the complex
(5.2)

R ∧2Rd(−2)
(
R2
)∨ ⊗∧3Rd(−3)

(Sym2 R
2)∨ ⊗∧4Rd(−4) · · · (Symd−2 R

2)∨ ⊗∧dRd(−d) 0

∧2f

using that S∨1 ' R2 by identifying y1,y2 with the basis of R2 and
identifying S2 ' Sym2 R

2. Note that we have an exact complex

(5.3) 0 R/IC Eagon-Northcott(f)

Let S = k [x0, . . . , xn]. Recall that a graded free exact S-complex
(F•,d•) is minimal if each di takes a basis of Fi to a minimal set of
generators of im di.

Proposition 5.2. Let F• be a graded free exact complex. Then F• is minimal
if and only if im di is contained in (x0, . . . , xn) Fi−1.

Proof. The proof uses the graded Nakayama lemma. We recall it
now:

Lemma 5.3 (Graded Nakayama lemma). Suppose M is a finitely gen-
erated graded S-module. Let m = (x0, . . . , xn). If a1, . . . ,ar generate
M/mM. Then a1, . . . ,ar ∈ m generateM.

Proof. The idea is to look for elements of least degree inM/ (a1, . . . ,ar).

Exercise 5.4. Flush this idea out to give a proof.

�
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By the graded Nakayama lemma, we know that F• is minimal, if
and only if

Fi/mFi
di−→ im di/mim di.

is an isomorphism. Note that we have an exact sequence

(5.4) Fi+1 Fi im di 0

The statement that di above defines an isomorphism is equivalent to
the map di+1

Fi+1/mFi+1
di+1−−−→ Fi/mFi

is 0. That is, im di+1 ⊂ (x0, . . . , xd) Fi. �

If Sa(c) f−→ Sb(c+ 1) is a morphism then f is represented by a ma-
trix of linear forms.

Corollary 5.5. We have that Eagon-Northcott(f) is minimal.

Proof. This is just because at each step we are multiplying by linear
forms, so the result follows from Proposition 5.2. �

6. 4/19/17

We want to find the syzygies of a k gonal curve, meaning a curve
C with a map f : C → P1. Let A := f∗OP1(1). We have a scroll XA
with C ⊂ XA ⊂ Pg−1 and a map

H0(A)⊗H0(ωC ⊗A∨)→ H0(ωC).

We also have a map PEf(−2)→ P1. We have an exact sequence

(6.1) Ef f∗ωf O1P.

Let H be a hyperplane class and let R be the ruling in the scroll. We
have

h0(C,A) ' h0 (P (Ef(−2)) ,R)

and

H0
(
C,ωC ⊗A∨

)
' H0 (P (Ef (−2)) ,H− R) .
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We also have a map

(6.2)
C P (Ef (−2))

Pg−1.

We have that

j (P (Ef (−2))) ⊂ XA.

Recall that H0
(
C,A2

)
= 3, meaning j is an embedding.

Proposition 6.1. We have P (Ef (−2)) ' XA.

Proof. Recall that XA was defined so that {u, v} is a basis of H0(C,A)
and t1, . . . , t` are a basis of H0(ωC −A), with ` = g+ 1− k.

We have that IXA is generated by the 2× 2minors of

M :=

(
ψut1 · · · ψut`
ψrt1 · · · ψrt`

)
with ψuti ∈ H0(Pg−1,O(1)) ' H0(C,ωC). It suffices to show XA is
irreducible of dimension b− 1 = dim P (Ef (−2)).

Let

V := im
(
H0(A)⊗H0(ωC −A)→ H0(C,ωC)

)
.

We have PV∨ ⊂ Pg−1 with H0(PV∨,O(1)) ' V . Then, XA is a cone
over the projective variety PV∨ ' Pr defined by the 2× 2minors of
MPV∨ .

To prove XA is irreducible of codimension g− k = `− 1, we may
assume the multiplication map

V ' H0(Pg−1,O(1)),
since a cone over a variety is irreducible of codimension d if and only
if the variety is irreducible of codimension d.

Then,M defines a morphism of projective bundles

ψ : Og+1−k(−1)→ O2,

and XA is the degeneracy locus of ψ. That is, XA is the locus where
ψ does not have full rank. Restricting

ψ|XA : Og+1−k(−1)→ O2

has rank at most 1. Since the multiplication map

H0(A)⊗H0(ωC −A)→ H0(C,ωC)
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is surjective, so V ' H0(Pg−1,O(1)), it is not possible for all entries
ofM to vanish.

One can verify that cokerψ is a line bundle, call it L.
We have

(6.3) O (−1)g+1−k O2 L 0.

The second map corresponds to two sections of a line bundle L,
which defines a morphism XA → P1. The fiber over

[s : t] ∈ P1

is those points p ∈ XA so that there exists f so that the diagram

(6.4)
O2 O

L

(s,t)

f

commutes. This, in turn, is true if and only if the composition

(6.5) O(−1)g+1−k O2 O
(s,t)

If

z := su+ tv ∈ H0(C,A)

then the fiber over [s : t] is the locus where the composition is 0,
which is the same as saying that ψzti = 0 for all ti. Recall we have
g+ 1− k independent linear forms. The fiber is thus a linear space
of codimension `. This implies that XA has codimension ` − 1 (be-
cause these linear spaces are distinct). Since each fiber of XA → P1 is
irreducible. �

Remark 6.2. If we drop the assumption that H0(C,A2) = 3, then j is
no longer an isomorphism, but

j (P (E (−2))) = XA,

where j may no longer be an embedding, but XA is a cone over a
smooth scroll.

In fact, XA has only rational singularities, meaning loosely that
you can compute the cohomology of line bundles on XA from line
bundles on Ef (−2).

Corollary 6.3. The complex Eagon-Northcott(XA) is exact.
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We have

bi,j
(
OXA

)
=


1 if i = j = 0
i ·
(
g+1−k
i+1

)
if j = 1, i > 0

0 else

For a projective variety Z, define

`(Z) := min
{
m : bp,1(OZ) = 0,p > m

}
.

called the length of the 2-linear strand. For brevity, we will just call
this the length of the linear strand.

Conjecture 6.4 (Green). Suppose C has gonality k and Cliff(C) =
k− 2. Then,

φωC : C→ Pg−1

for A ∈W1
k. Then,

` (ΓC(ωC)) = `
(
OXA

)
= g− k.

There is a refinement of this due to Schreyer.

Conjecture 6.5 (Schreyer). If W1
k is a reduced point A and A is the

unique line bundle line bundle of degree at most k− 1with CliffC =
k− 2, then

bg−k,1 (C,ωC) = bg−k,1 (XA,O(1)) = g− k.

6.1. Picard group of Mg.

Definition 6.6. A line bundle on Mg consists of the following data:

(1) For each π : C→ S, a line bundle `(π)
(2) For each morphism f : S1 → S2,

(6.6)
C1 C2

S1 S2

π1

F

π2

f

we are given an isomorphism

L(F) : L(π1) ' F∗L(π1)
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satisfying the cocycle condition. In more detail, if we have a
composition

(6.7)
C1 C2 C3

S1 S2 S3

F

π1

G

π2 π3

f g

then the diagram

(6.8)

L(π1) f∗L(π2)

(g ◦ f)∗ (L(π3)) f∗g∗ (L(π3)) .

Remark 6.7. There is a natural notion of isomorphism of line bun-
dles. There is also a notion of tensor product. Therefore, Pic (Mg) is
an abelian group.

Example 6.8. One interesting example of a vector bundle is the Hodge
bundle which for a family π : C→ S, we have

L (π) := det (π∗ωπ)

is a vector bundle of rank g (if S is reduced this follows by Grauert’s
theorem). And further of ωπ commutes with base change (see Liu,
Ch. 6, Thm 4.9).

7. 4/21/17

Today, we’ll have an introduction to divisor calculations on Mg.

7.1. Grothendieck Riemann Roch. To start, we’ll have a brief intro-
duction to Grothendieck-Riemann Roch. See for example, Hartshorne,
appendix A. Assume X and Y are smooth and quasi-projective. Sup-
pose we have a proper morphism π : X → Y. Then, K(X) is the free
group generated by coherent sheaves modulo the relations that on X
if we have a short exact sequence

(7.1) 0 F1 F2 F3 0

we impose the relation [F2] = [F1] + [F3] . Note that this is a ring, and
we can replace all coherent sheaves by locally free sheaves if we’d
like.

For F ∈ Coh(X). We have

π!F :=
∑

(−1)i Riπ∗F ∈ K(Y).
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Definition 7.1. For E a vector bundle, we define the total Chern class

ct(E) :=
∑
i

ci (E) ti

with

ci(E) ∈ A∗ (X, Q) .

the Chern class.

Remark 7.2. By the splitting principle, we can write

ct(E) :=
∑
i

ci (E) ti

=
∏
i

(1+αit) .

Definition 7.3. If E is a vector bundle with ct(E) =
∏

(1+αit), then
the Chern character

Ch (E) =
∑
i

eαi

Example 7.4. Viewing Ch (E) as an element of the graded ring Chi(E)
is the ith graded piece of Ch (E). We have

Ch0 (E) = rkE
Ch1(E) = c1(E).

We have

Ch2 (E) =
c21−2 c2
2

.

Lemma 7.5. The Chern class defines a ring homomorphism

K(X)→ A∗(X)

F 7→ Ch(F).

Proof.

Exercise 7.6. Verify this.
�

Definition 7.7. Let E be a vector bundle with ct(E) =
∏
i (1+αit).

We define the Todd class

Td (E) :=
∏
i

αi
1− e−αi

.
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Remark 7.8. The Todd class is multiplicative, so that if we have

(7.2) 0 F1 F2 F3 0

then

Td (F2) = Td (F1)Td (F3)

Theorem 7.9 (Grothendieck Riemann Roch). Suppose π : X → Y is
proper. Then,

Chπ!F = π∗ (cF Td(Tπ))

Let F ∈ K(X). where Tπ = TX − π
∗TY .

Theorem 7.10 (Mumford’s formula). Let π : C → Mg be the universal
curve. Let

λ := c1 (π∗ωπ)

be the hodge class and

κ := π∗ (c1ωπ · c1ωπ)
be the kappa class. Then,

κ = 12λ.

Proof. We have

π!ωπ = π∗ωπ − R
1π∗ωπ

= π∗ωπ − (π∗OC)
∨

= π∗ωπ −O∨
Mg

= π∗ωπ +OMg

This implies

Ch (π!ωπ) = Ch (π∗ωπ) + Ch
(
OMg

)
= Ch (π∗ωπ) + 1

= g+ 1+ c1(π∗ωπ) +
1

2

(
c21 (π∗ωπ) − c2 (π∗ωπ)

)
+ · · ·

Using that Tπ = −ωπ, we have

π∗ (Ch (ωπ)Td Tπ)

= π∗

(
1+ c1 (ωπ) +

1

2

(
c21 − c2

)
+ · · ·

)(
1−

1

2
c1 (ωπ) +

1

12
c1 (ωπ)

2 + · · ·
)

.
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We then have

λ = [Ch (π!ωπ)]1 ,

so

π∗ (Ch (ωπ)Td (−ωπ)) = π∗

(
1+

1

2
c1(ωπ) +

1

2
c21 −

1

2
c21 +

1

12
c21

)
.

We obtain

[π∗ (Ch (ωπ)Td (−ωπ))]1 =
1

12
κ.

�

7.2. Hurwitz Divisor.

Definition 7.11. Assume that g = 2k− 1 is odd. Define the Hurwitz
divisor Hur ⊂Mg to be{

C : ∃f : C→ P1 of degree at most k
}

.

Remark 7.12. We can also define Hur ⊂ Mg determinantally. Con-
sider π : C→Mg. Define

Cn := C×Mg · · · ×Mg C

as an n-fold fiber product. Let pi : Cn → C be the ith projection.
Consider πn : Cn →Mg. Consider

Z =

{
(p1, . . . ,pk) ∈ Ck : h0

(
C,
∑
i

pi

)
≥ 2
}

.

Then, π(Z) is Hur.

Remark 7.13. Note that π is not finite onZ, since the fibers are at least
1 dimensional as the divisor moves by the assumption h0(C,

∑
i pi) >

1.

Warning 7.14. Therefore, π|Z has fibers of dimension at least 1, mean-
ing π∗ (Z) = 0. Here is a fix to the issue that π is not generically finite,
so the pushforward would be 0 by definition.

We can fix this by demanding that the first point p1 lies in some
fixed canonical divisor. That is, we define

Ki ∈ Pic
(
Ck
)
:= p∗1 (ωπ) .

Then, we can define

Hur :=
1

(2g− 2) (k− 1) !
· (πk)∗ ([K1] · [Z]) .
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We are almost ready to define [Z] determinantally.

Definition 7.15. Define the diagonal

∆i,j ⊂ Cn

to be the (i, j)th diagonal, i.e., the image of Cn−1 → Cn under the map
sending p1, . . . ,pn−1 to p1, . . . ,pi,pi+1, . . . ,pj−1,pi,pj+1, . . . ,pn−1.

Given the short exact sequence
(7.3)

0 OCk+1 OCk+1

(∑
j∆j,k+1

)
O∑

i ∆j,k+1
0

and let

p : Ck+1 → Ck

be the projection away from the last factor.

Remark 7.16. Note that

p∗

OCk+1

 k∑
j=1

∆j,k+1)

 ' OCk+1 .

If (p1, . . . ,pk) ∈ Ck are general, then h0(C,
∑
i pi) = 1.

This is the same as saying the map

H0(C,OC) ' H0
(
OC

(∑
i

pi

))
for p1, . . . ,pk general on C. We have a natural map

p∗ (OCk+1)→ p∗
(
OCk+1

(∑
∆j,k+1

))
.

The above computation implies that for any sufficiently small open
U, the map

p∗OCk+1(U)→ p∗

OCk+1

∑
j

∆j,k+1

 (U) .

Taking derived pushforwards of the exact sequence
(7.4)

0 OCk+1 OCk+1

(∑
j∆j,k+1

)
O∑

i ∆j,k+1
0
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on 0th degree, we get

p∗OCk+1 ' p∗OCk+1

∑
j

∆j,k+1


and continuing we get

(7.5)

0 p∗O∑
i ∆j,k+1

R1p∗OCk+1 R1p∗OCk+1

(∑
j∆j,k+1

)
0

α

Note that the first term p∗O∑
i ∆j,k+1

is locally free of rank 1, and then
Z is the locus where the map α is not injective.

8. 4/24/17

Last time, we were discussing the divisor Hur ⊂ Mg for g = 2k−
1. We were discussing the construction of the Hurwitz divisor as
πk : Ck →Mg, with

Hur :=
1

(2g− 2) (k− 1) !
πk∗ ([Z]K1)

where K1 is the pullback of the canonical divisor of C → Mg along
the first projection Ck → C. Let’s review how this went. We can view

[Z] =
{
(p1, . . . ,pk) : h0(C,

∑
pi) ≥ 2

}
.

We have an exact sequence
(8.1)

0 OCk+1 O (
∑
∆i,k+1) O∑

∆i,k+1
0

Pushing this forward along p : Ck+1 → Ck, which is projection onto
the first k factors, we get an isomorphism between the pushforward
of the first two sheaves, we get a short exact sequence
(8.2)

0 p∗O∑
∆i,k+1

R1p∗OCk+1 R1p∗ (O
∑
∆i,k+1) 0

α

The fibers αq (for q corresponding to a curve) are given by
(8.3)

0 H0(OC) H0(OC (
∑
pi)) H0

(
O∑

i pi

)
H1(OC)

αq

and αq fails to be injective if and only if h0 (OC (
∑
pi)) ≥ 2. We will

define Z as the locus of points qwith αq not injective.



MATH 245 NOTES: SYZYGIES 29

Theorem 8.1 (Porteous). Suppose X is a smooth scheme over C and φ :
E→ F is a map of vector bundles with E of rank n and F a vector bundle of
rankm. Let

Xk(φ) := {p ∈ X : φp has rank at most k} .

Assume Xk(φ) has the expected dimension (m− k) (n− k). Then,

[Xk (φ)] = ∆m−k,n−k (c+(F)/ ct(E)) .,

where ∆(•) is defined as follows. If

a(t) =
∑
k

akt
k

is a formal power series, we have

∆p,q(a(t)) := det

 qp · · · ap+q−1
...

. . .
...

ap−q+1 · · · ap.


To apply Porteous’ theorem, we must know that Z ⊂ Ck has codi-

mension g− (k− 1) = k. For this, we need the following:
Clebsch The Hurwitz stack

Hd,g :=
{
C→ P1 : degd,C smooth of genus g

}
/ Aut

(
P1
)

.

has dimension 2g− 5− 2d.
Segre The map Hd,g → Mg is generically finite for (with some as-

sumption on g and d that Michael wasn’t exactly sure about,
he thought it was g ≥ 7).

Exercise 8.2. Show that the above results mean we can apply Porte-
ous’ theorem to show Hur is indeed a divisor.

Theorem 8.3 (Harris-Mumford, Harer, Kempf). We have
(1)

[Hur] = cλ

(2) In fact,

c =
(2k− 4) !

k! (k− 2) !
.

Remark 8.4. Harris-Mumford used test curves, explicit curves in Mg

that they understood well for which they could compute things ex-
plicitly.



30 AARON LANDESMAN

Proof. We have

[Z] = ∆g−k+1,1

(
ct

(
R1p∗

(
OC

(∑
∆j,k+1

))))
= cg−k+1

(
R1p∗

(
OC

(∑
∆j,k+1

)))
= 1− p!

(
OC

(∑
∆j,k+1

))
.

The Chern classes are expressible as polynomials in Chd. That is, [Z]
is polynomial in

Ch
(
p!

(
OC

(∑
∆j,k+1

)))
= p∗

(
Ch
(
OC

(∑
∆i,k+1

)
Td (ωp)

))
,

using, Grothendieck Riemann-Roch. Therefore, [Z] is a polynomial
in

p∗(
[
∆j,k+1

]
)

and

p∗ [ωp] = p∗(Kk+1).

where Ki = p∗iωC/Mg with pi the ith projection Cn → C. To simplify
this, we can use the push-pull formula. We have

p∗
([
∆j,k+1 · p∗ (ζ)

])
= p∗

([
∆j,k+1

])
· ζ

= ζ

Note here p∗ζ ∈ A∗
(
Ck
)
. We want to express as much of the above

as possible as the pullback of cycles on Ck. We have

[∆i,k+1] · · ·
[
∆j,k+1

]
= [∆i,k+1] · p∗

[
∆i,j
]

.

Loosely this is saying that if p1, . . . ,pk+1 with pi = pk+1 and pj =
pj+1 this is equivalent to saying pi = pk+1 and pi = pj. We also have
the relation [

∆j,k+1
]
· Kk+1 = [∆i,k+1] · p∗Kj.

The above relations let us deal with any monomial in which no
repeated

[
∆j,k+1

]
appears. For example,

p∗ (∆1,k+1 ·∆2,k+1 ·∆3,k+1 · Kk+1) = p∗ (∆1,k+1p∗∆1,2p∗∆1,3p∗K1)
= ∆1,2 ·∆1,3 · · ·K1.

Next, we have to deal with powers of these diagonals. For this, we
use the self intersection formula (see Hartshorne, p. 431).

Lemma 8.5 (Self Intersection Formula). Suppose we have a closed im-
mersion of schemes (or stacks) i : Y → X with both smooth of codimension
r. We have Y · Y = i∗ (cr (NY/X)).
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Using this self intersection formula, and letting q : Ck+1 → Ck be
projection away from the jth factor, we get[

∆j,k+1
]2

= i∗
(

c1
(
N∆j,k+1/Ck+1

))
= −i∗ c1 (Ωq)

= −
[
∆j,k+1

]
p∗
(
Kj
)

.

We then conclude that [Z] can be written as a polynomial in the
cycles ∆i,j and Ki. We also may include p∗

(
K`k+1

)
for some positive

integer e. To simplify this, we use flat pullback of cycles

Lemma 8.6 (Flat pullback, Fulton proposition 1.7). Suppose we have a
Cartesian square

(8.4)
A B

C D

f

i g

h

with f flat and g proper, we have

c∗f
∗α = h∗g∗α

for α ∈ A∗(B).

In our situation, we can apply this to the diagram

(8.5)
Ck+1 C

Ck Mg

pk+1

p π

πk

we obtain

p∗
(
K`k+1

)
= π∗kπ∗

(
K`
)

Therefore, Hur is a polynomial in πk,∗ times polynomials in ∆k,j,
Kj’s and π∗kπ∗

(
K`
)
. To conclude, one can factor πk as a composition

Ck → Ck−1 → · · ·→ C.

Repeating the above, things remain polynomials in the analogous
classes, except that certain ∆i,j classes become 1. When one factors
this, one obtains that [Hur] is a polynomial in π∗

(
K`
)
. Note that Hur
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is a divisor, and the only divisor in π∗(K`) is π∗(K2) (meaning ` = 1).
This implies by dimension reasons that

Hur = cπ∗
(
K2
)
= κ,

so Hur = c ′λ, which is Mumford’s formula. �

9. 4/26/17

9.1. Graded Tor. Today, we’ll discuss graded tor. Let R be a graded
k-algebra. LetM andN be two graded R-modules. Note thatM⊗kN
is graded. We have

(M⊗RN)d =

{∑
i

mi ⊗ ni : deg(mi) + deg(ni) = d

}
.

Note that TorR(M,N) is a bigraded module gotten by taking a pro-
jective resolution

(9.1) 0 M P0 P1 · · ·
f0 f1

Then, tensoring up, we obtain a complex of graded R-modules P•⊗R
N. Then,

Tor
p
k(M,N)q

is the pth homology of (P• ⊗RN)q. Then,

Tor
p
R(M,N) = ⊕q≥0Torp(M,N)q.

We have

Torp(M,N)q ' Torp(N,M)q.

9.2. The Koszul complex, revisited. Let S = k [x0, . . . , xn] andM be
a finitely generated S-module. We have a minimal free resolution

(9.2) 0 M F0 · · · Fn+1

We know that for a minimal free resolution, if we tensor by k :=
S/ (x0, . . . , xn), all differentials are 0, and therefore, all differentials
are 0 by Nakayama’s lemma. That is, if we have Fi = ⊕jS(−i− j)bi,j .
Therefore,

Fi ×S k = ⊕jk(−i− j)bi,j(9.3)

as a graded k-module. We then have

dim
(
ToriR(M,k)i+j

)
= bi,j(M).
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We can treat ToriR(M,k)i+j as the “canonical” invariant of interest,
since the isomorphism Equation 9.3 is canonical.

Now, considering k as an S-module, we have a minimal free reso-
lution given by the Koszul complex
(9.4)

0 k S E(−1) ∧2E(−2) ∧n+1E(−n− 1) 0

Then, ToriS(M,k)i+j is the homology of
(9.5)

∧i+1E(−i− 1)⊗SM)i+j ∧iE(−i)⊗SM ∧i−1E(−i+ 1)⊗SM

with V := S1 ' k⊕n+1. Then,

∧iE(−i)⊗M '
(
∧iE⊗M(−i)

)
'
(
∧iV ⊗M(−i)

)
So, (

∧iE(−i)⊗M
)
i+j
' ∧iV ⊗kMj,

and ToriS(M,N)i+j is the homology of

(9.6) ∧i+1V ⊗kMj−1 ∧iV ⊗kMj ∧i−1V ⊗Mj+1

9.3. Kernel Bundles. Let X be a projective variety and L a line bun-
dle. Define

ΓX(L) := ⊕qH0(qL).

as a graded SymH0(L) module. Assume L is base point free so that
the evaluation map

H0(X,L)⊗OX → L

is surjective. DefineML as the kernel

(9.7) 0 ML H0(X,L)⊗OX L 0.

More geometrically, if we have a map φL : X → Pr with r = h0(L) −
1. By the Euler exact sequence, we have
(9.8)

0 ωPr(1) H0(OPr(1))⊗OPr OPr(1) 0

Then,ML = φ
∗
L(ΩPr(1)) is a vector bundle.

Recall the notation

bp,q(X,L) := bp,q(ΓX(L)).
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We have a short exact sequence
(9.9)

0 ∧p+1ML ⊗ (q− 1)L ∧p+1H0(L)⊗ (q− 1)L ∧pML ⊗ qL 0

(see Hartshorne, II-5).
Taking global sections, we get a map

∧p+1H0(L)⊗H0 ((q− 1)L) α−→ H0 (∧pML ⊗ qL) .

Theorem 9.1 (Lazarsfeld). We have bp,q(X,L) is the dimension of cokerα.

Proof. Let V := H0(X,L).
(9.10)

0

∧p+1M⊗ (q− 1)L

∧p+1V ⊗ (q− 1)L

0 ∧pML ⊗ qL ∧pV ⊗ qL ∧p−1ML ⊗ (q+ 1)L 0

∧p−1V ⊗ (q+ 1)L 0

δ

Now, H0(δ) is the Koszul differential

dp : ∧pV ⊗H0(qL)→ ∧p−1V ⊗H0((q+ 1)L).

Then,

kerdp ' H0(∧pML ⊗ qL)

and

im dp+1 ' im (α) .

This is exactly the claim that the tors are given by cokernel of α. �

Corollary 9.2 (Serre-duality). If C is a smooth curve, we have

bp,q(C,ωC) = bg−2−p,3−q(C,ωC).

In particular, for q > 3, we have bp,q(C,ωC) = 0.
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Proof. Consider

∧p+1V ⊗H0((q− 1)L) α−→ H0(∧pML ⊗ qL).
We get an exact sequence
(9.11)

0 ∧p+1ML ⊗ (q− 1)L ∧p+1V ⊗ (q− 1)L ∧pML ⊗ qL 0.

Observe ∧pV∨ ' ∧r−pV ⊗ detV∨. Then,

∧p+1V ⊗H0((q− 1)ωC)∨ ' ∧g−p−1V ⊗H1 ((2− q)ωC) .

We also have

H0(∧pML ⊗ qωC)∨ ' H1(∧pM∨
L ⊗ (1− q)ωC).

We have rkML = k − 1, so detML ' L, as comes from the exact
sequence. Therefore,

H0(∧pML ⊗ qωC)∨ ' H1(∧pM∨
L ⊗ (1− q)ωC)

' H1(∧g−1−pMωC ⊗ (2− q)ωC).

Then,

cokerα∨ = ker
(
H1
(
∧g−1−pMωC ⊗ (2− q)ωC

)→ ∧g−p−1V ⊗H1 ((2− q)ωC)
)

.

Using the long exact sequence Equation 9.11, we have

cokerα∨ = ker
(
H1
(
∧g−1−pMωC ⊗ (2− q)ωC

)→ ∧g−p−1V ⊗H1 ((2− q)ωC)
)

.

' coker
(
∧g−1−pH0(ωC)⊗H0 ((2− q)ωC)→ H0

(
∧g−2−pM∧C ⊗ (3− q)ωC

))
.

The first term has dimension bg−2−p,3−q(C,ωC). This finishes the
proof by Theorem 9.1. �

10. 4/28/17

Let S = k [x1, . . . , xn]. Given an exact sequence of graded S-modules

(10.1) 0 M1 M2 M3 0

we get a long exact sequence on tor
(10.2)

· · · Tori+1S (M3,k) ToriS(M1,k) Tori(M2,k) · · ·

Taking the i+ jth strand of this complex, we get
(10.3)

· · · Tori+1S (M3,k)i+j ToriS(M1,k)i+j Tori(M2,k)i+j · · ·
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We define

Ki,j(M) := ToriS(M,k)i+j
so

bi,j(M) = dimk Ki,j(M).

Definition 10.1. The long exact sequence of Koszul cohomology is
the exact sequence obtained above, which can be rewritten as
(10.4)
· · · Ki+1,j−1(M3) Ki,j(M1) Ki,j(M2)

Ki,j(M3) Ki−1,j+1(M3) · · ·

Lemma 10.2 (Semicontinuity). Suppose π : X→ S is a flat map of finite
type schemes over Spec C (where S is not a polynomial ring). Suppose S is
integral and L ∈ Pic(X). Assume

h0(Xs,Ls),h0(Xs, (q− 1)Ls),h0(Xs,qLs),h0(Xs, (q+ 1)Ls)

are all constant for closed points s of S. Then, the function

ψ : S→ Z

s 7→ bp,q(Xs,Ls) = bp,q(ΓLs(X))

is upper semicontinuous.

Proof. Without loss of generality, we can take S = Spec R to be affine.
Let

E := π∗L

F1 := π∗L
q−1

F2 := π∗L
q

F3 := π∗L
q+1.

There is a morphism

π∗L⊗ π∗Lq → π∗L
q+1.

This is the same as given an element of

Hom
(
π∗L⊗ π∗Lq,π∗Lq+1

)
= Hom

(
π∗π∗L⊗ π∗π∗Lq,π ∗ π∗Lq+1

)
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So, we have adjunction maps

π∗π∗L→ L

π∗π∗L
q → Lq

We then obtain

(10.5) ∧p+1E⊗R F1 ∧pE⊗ F2 ∧p−1E⊗ F3
δ

with δ given by

(s1 ∧ · · ·∧ sp ⊗ t) 7→∑
j

(−1)j s1 ∧ · · ·∧ ŝj ∧ · · ·∧ sp ⊗ sjt.

For all closed points s in Spec R,
(10.6)

∧p+1E⊗R F1 ⊗ κ(s) ∧pE⊗ F2 ⊗ κ(s) ∧p−1E⊗ F3 ⊗ κ(s)
δ1⊗κ(s) δ2⊗κ(s)

The middle cohomology is

Kp,q(Xs,Ls)

and

bp,q(Xs,Ls) = dim ker (δ2 ⊗ κ(s)) − dim im (δ1 ⊗ κ(p))
= rk (∧pE⊗ F2) − dim im (δ2 ⊗ κ(s)) − dim im (δ1 ⊗ κ(s)) .

Note that we are assume rk (∧pE⊗ F2) is constant. Therefore, as we
can work locally, we have reduced to verifying that for ψ : A → B a
morphism of finitely generated free Rmodules, we have

s 7→ rk (ψ⊗ κ(s))
is lower semicontinuous. But, for any r ∈N,

{p ∈ Spec R : rk (ψ⊗ κ(s)) < r}
is closed with ideal given by entries of ∧rψ. �

Let X be a projective variety L and line bundle and F a coherent
sheaf on X. We have

ΓX(F,L) = ⊕qH0(qL⊗ F)

is a graded SymH0(L) module.

Definition 10.3. Define

Kp,q(X, F;L) = Kp,q(ΓX(F,L))

and

bp,q (X, F;L) = dimKp,q (X, F;L) .
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We now want another way for computing Kp,1.

Proposition 10.4. Let X be a projective variety and L be a line bundle on
X. Assume L is very ample and the embedding

φL : X→ Pr,

for r = h0(L) − 1 is projectively normal, meaning

H0(Pr,O(n))→ H0(X,nL)

is surjective for n ≥ 1.
Then,

Kp,1(X,L) = H0
(

Pr, (∧p−1ΩPr)(p+ 1)⊗ IX

)
.

Proof. We have a short exact sequence of sheaves defining X given
by

(10.7) 0 IX OPr OX 0

we get an exact sequence of graded SymH0(Pr,O(1)) ' SymH0(X,L)
modules
(10.8)

0 ⊕q≥0H0(Pr, IX(q)) ⊕qH0(Pr,O(q)) ⊕qH0(X,qL) 0

We get a short exact sequence
(10.9)
· · · Kp,1 (P

r,O(1)) Kp,1 (X,L) Kp−1,2 (P
r, IX;O(1)) Kp−1,2(P

r,O(1))

By the same proof as last time,

Kp−1,2 (P
r, IX;O(1))

' coker
(
∧pH0(Pr,O(1))⊗H0(IX ⊗O(1))→ H0

(
∧p−1Ω(1)⊗ IX ⊗O(2)

))
' H0

(
∧p−1(Ω(1))⊗ IX ⊗O(2)

)
using that X is linearly normal to say H0(X, IX ⊗ O(1)) = 0. So, it
suffices to show

Kp,q (P
r,O(1)) = 0

if (p,q) 6= (0, 0).

Lemma 10.5. We have

Kp,q(P
r,O(1)) = 0

for all (p,q) 6= (0, 0).
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Proof. Take V := H0(Pr,O(1)) which is an r+ 1 dimensional vector
space. Then, we get
(10.10)

∧p+1V ⊗H0 (O(q− 1)) ∧pV ⊗H0(O(q)) ∧p−1V ⊗H0 (O(q+ 1)) ,

which we want to show is exact. We know that the Koszul complex
(10.11)

0 k S V ⊗ S(−1) ∧2V ⊗ S(−2)

with S = SymV . Taking the p+ q graded part, we get
(10.12)

0 k Sp+q V ⊗ Sp+q−1 ∧2V ⊗ Sp+q−2

The complex we want to show is exact, is precisely this complex at
step p. �

�

Recall now Green’s conjecture:

Conjecture 10.6. We have bp,2(C,ωC) = 0 if and only if p < CliffC
or p ≥ g.

Remark 10.7. This can be equivalently rephrased as bp,1(C,ωC) = 0
if and only if p > g− 2− Cliff(C).

10.1. Hirschowitz-Ramanan. Taking g = 2k−1, consider HurMg =
{C : GonC ≤ k} . Green’s conjecture this is the same as the set

Kos :=
{
C : bg−k,1(C,ωC) 6= 0

}
We have a universal canonical embedding

(10.13)

C P (π∗ωπ)

Mg

j

π

p

Then,

(10.14) 0 M p∗p∗O(1) O(1) 0

where M has fibersΩPr(1). The degeneracy locus of

p∗
(
∧k−2M(2)

)→ π∗j
∗ ∧k−2M(2)

is Kos .
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11. 5/8/17

Recall the Koszul divisor Kos ⊂ Mg for g = 2k− 1 is set theoreti-
cally {C : bg−k,1(C,ωC) 6= 0}.

Consider the universal cover C→Mg given by

(11.1)
C Pπ∗ωπ

Mg

j

π

p

Recall we have the relative Euler sequence for p given by

(11.2) 0 Ωp(1) p∗p∗O(1) O(1) 0.

Lemma 11.1. The two sheaves

p∗
(
Ωk−1(k)

)
and π∗j∗Ωk−1(k)

are vector bundles of rank (k− 1)
(
2k
k

)
.

Proof. Recall the Bott formula implies

h0(Pn,Ωp(j) =


(
j+n−p
j

)(
j−1
p

)
if 0 ≤ p ≤ n, j > p

1 if j = p = 0

0 else

By the Bott formula we want to compute

h0(Pg−1,Ωk−2(k)) =
(
k− 1

k− 2

)(
2k

k

)
= (k− 1)

(
2k

k

)
.

We will show

p∗
(
Ωk−1(k)

)
is a vector bundle of rank χ

(
C,∧k−2MωC

)
.

We have an exact sequence

(11.3) 0 MωC H0(ωC)⊗OC ωC 0

withMωC = j∗ΩPg−1(1).
First, we compute χ

(
C,∧k−2MωC

)
. We have by Riemann Roch

and the splitting principle

χ
(
C,∧k−2MωC

)
= deg

(
∧k−2MωC(2ωC)

)
+ rk

(
∧k−2MωC(2ωC)

)
(1− g) .
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Using

det∧jE =

(
rk−1

j− 1

)
detE.

(where multiplication means tensor power) we obtain

χ
(
C,∧k−2MωC

)
= deg

(
∧k−2MωC(2ωC)

)
+ rk

(
∧k−2MωC(2ωC)

)
(1− g)

= 2 (2g− 2)

(
g− 1

k− 2

)
+ deg

(
∧k−2MωC

)
+

(
g− 1

k− 2

)
(1− g)

= 2(2g− 2)

(
g− 1

k− 2

)
−

(
g− 2

k− 3

)
(2g− 2) − (g− 1)

(
g− 1

k− 2

)
= 3 (g− 1)

(
g− 1

k− 2

)
−

(
g− 2

k− 3

)
(2g− 2)

= 3 (g− 1)

(
2k− 2

k− 2

)
−

(
2k− 3

k− 3

)
(2g− 2)

= 3 (2k− 2)

(
2k− 2

k

)
−

(k− 2)2(2k− 2)

2k− 2

(
2k− 2

k

)
= (4k− 2)

(
2k− 2

k

)
= (k− 1)

(
2k

k

)
.

Above we used (
2k−3
k

)(
2k−2
k

) =
(2k− 3) !

k! (k− 3) !

k! (k− 2) !

(2k− 2) !

=
k− 2

2k− 2
.

So, we have computed χ
(
C,∧k−2MωC

)
. To complete our proof,

we only need verify

h1(C,∧k−2MωC(ω
⊗2
C ) = 0.

We now know

Kp,1(C,ωC) = coker
(
∧p+1H0(ωC)⊗H0 ((q− 1)ωC)→ H0 (∧pMωC(q− 1)ωC)

)
= ker

(
H1
(
∧p+1MωC ⊗ (q− 1)ωC

)→ ∧p+1H0(ωC)⊗H1 ((q− 1)ωC)
)

.

This tells us

Kk−3,3 (C,ωC) ' H1
(
∧k−2MωC

(
ω⊗2C

))
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as H1
(
ω⊗2C

)
= 0. Serre duality tells us that

bk−3,3(C,ωC) = bk,0(C,ωC)

It suffices to show the following:

Lemma 11.2. We have bj,0(C,ωC) for j > 0.

Proof. We have
(11.4)

0 ∧jH0(ωC)⊗H0(OC) ∧j−1H0(ωC)⊗H0(ωC)d

Note that the first term is 0 because ∧j+1H0(ωC)⊗H0(−ωC) = 0. We
want to show d is injective. We have a wedge map

∧ : ∧j−1 H0(ωC)⊗H0(ωC)→ ∧jH0(ωC)

s1 ∧ · · ·∧ sj−1 ⊗ t 7→ s1 ∧ · · ·∧ sj−1 ∧ t

Then,

d
(
s1 ∧ · · ·∧ sj

)
7→∑

j

(−1)i s1 ∧ · · ·∧ ŝi ∧ · · ·∧ sj

so ∧ ◦ d = ±j · id implying d is injective. �

�

We have a natural map

F : p∗
(
Ωk−2p (k)

)
π∗j
∗
(
Ωk−2(k)

)
given by adjunction via

Hom
(
p∗Ω

k−2
p (k),π∗j∗Ωk−2(k)

)
= Hom

(
p∗Ω

k−2
p (k),p∗j∗j∗Ωk−2(k)

)
and we obtain the desired map by pushing forward along p the map
adjoint to the identity.

The map F on fibers is given by

F⊗ κ(p) : H0
(

Pg−1,∧k−2 (Ω(k))⊗O(2)
)→ H0(C,∧k−2MωC ⊗∧2C).

We are looking for when this map drops rank, which is either on a
divisor or everywhere. So, if Kos is not all of Mg, it is a divisor. Then,
H0(IC ⊗Ωk(k)) 6= 0 if and only if bk−1,1(C,ωC) 6= 0.

Definition 11.3. We define Kos = c1
(
π∗j∗Ωk−2(k)

)
−c1

(
p∗
(
Ωk−2p (k)

))
.
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We now introduce some notation. Define

M := Ωp(1)

and define

Ga,b := p∗ ∧
aM(b).

We have an Euler sequence

(11.5) 0 M p∗p∗O(1) O(1) 0.

This yields an exact sequence
(11.6)

0 ∧wM ∧wp∗p∗O(1) ∧w−1M⊗O(1) 0

we obtain

R1p∗ ∧
wM(q) = 0

for w ≥ 0,q > 0 as bw−1,q+1
(
Pg−1,O(1)

)
= 0. Pushing forward the

above sequence via p yields
(11.7)

0 p∗ (∧wM(q)) ∧wp∗O(1)⊗ p∗O(q) p∗
(
∧w−1M (q− 1)

)
0

using the projection formula. We can rewrite this as
(11.8)

0 Ga,b ∧aG0,1 ⊗G0,b Ga−1,b−1 0

Using this we can determine Chern classes by induction on a.

12. 5/10/17

Recall our setup: We have

(12.1)

C P (π∗ωπ)

Mg

j

π

p

Recall we have defined the Koszul divisor

[Kos] := c1
(
π∗j
∗Ωk−2(k) − p∗Ω

k−2(k)
)

.

We want to now compute the classes of the two bundles in this dif-
ference.
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12.1. Computing the second class. We have that

[Kos] = {[C] : bk−1,1(C,ωC) = 0} .

Recall Ga,b = p∗ ∧a M(b). with M := Ω(1). We have an exact se-
quence
(12.2)

0 Ga,b ∧aG0,1 ⊗G0,b Ga−1,b+1 0

as we saw yesterday. Then, using this short exact sequence itera-
tively and then the splitting principle, we obtain

c1
(
p∗Ω

k−2(k)
)
= c1 (Gk−2,2)

= c1
(
∧k−2G0,1 ⊗G0,2

)
− c1 (Gk−3,3)

= c1

(
k−2∑
`=0

∧k−2−`G0,1 ⊗G0,2+`

)

=

k−2∑
`=0

(−1)`
(

c1
(
∧k−2−`G0,1

)
rk (G0,2+`) + rk

(
∧k−2−`G0,1

)
c1 (G0,2+`)

)
Again, above we used the splitting principle to deduce

c1 (E⊗ F) = rkE c1(F) + c1(E) rkF.

To compute the terms at the end, we have

G0,1 = p∗O(1)

' π∗j∗O(1)
' π∗ωπ

using the isomorphismH0(Pg−1,O(1)) ' H0(C,ωC) on fibers, which
implies we have an isomorphism globally. So, we have c1 (G0,1) = λ,
the hodge class.

Next, note that

c1 (∧nE) =
(

rkE− 1
n− 1

)
c1(E)

This implies

c1(Gk−2,2) =
∑

(−1)`
((

g

k− 2− `

)
c1(G0,2+`) +

(
g− 1

k− 3− `

)
rk (G0,2+`) λ

)
So, we still need to compute

(1) c1 (G0,2+`)
(2) rkG0,2+`.
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For this, observe

SymbG0,1 = Symb p∗O(1)

' p∗ Symb p∗p∗O(1)→ p∗ SymbO(1)

' p∗O(b).

Therefore, G0,b ' SymbG0,1. Then,

c1
(
Symn E

)
=

(
rk(E) +n− 1

rk(E)

)
c1(E).

Plugging this into our expression, we can work out that c1(Gk−2,2)
is some constant multiple of λ.

Remark 12.1. One can also determine this constant with Porteous’
formula as Kempf did in his proof. But that approach would be
much more difficult.

12.2. Computing the first class. Next, we want to compute

c1
(
π∗j
∗ ∧k−2M(2)

)
.

Define

Ha,b := π∗j
∗ ∧aM(b)

If b ≥ 2, using cohomology and base change, we see that

H1
(
C,∧aMωC ⊗ω⊗bC

)
= 0

(as Ka−1,3(C,ωC) = 0). This implies that Ha,b are vector bundles for
b ≥ 2.

We then have an exact sequence
(12.3)

0 Ha,b ∧aH0,1 ⊗H0,b Ha−1,b+1 0

We can use Grothendieck Riemann Roch to compute H0,b and we
know λ = H0,1.
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Using that j∗O(1) = ωπ, for b ≥ 2, we have

c1 (Ha,b) = c1
(
π!ω

b
π

)
= π∗

([
Chωbπ Td

(
ω∨
π

)]
2

)
= π∗

(
1+ b c1(ωπ) +

b2

2
c21(ωπ) + · · ·

)(
1−

c1(ωπ)
2

+
c21(ωπ)
12

+ · · ·
)

=

(
1

12
+
b2

2
−
b

2

)
π∗ c21 (ωπ)

=
(
1+ 6b2 − 6b

)
λ

where the last step uses Mumford’s formula.
Either using a computer, or doing it by hand, one obtains the fol-

lowing expression for the Koszul class:

Theorem 12.2 (Hirschowitz-Ramanan). We have

[Kos] =
6(k+ 1)(λ− 1)(2k− 4)!

(k− 2)!k!
λ

= (k− 1) [Hur] .

Proof. The first equality follows from what we have seen above, and
the second follows from the Harris-Mumford calculation (which was
originally done over Mg, but later Kempf was able to carry out Por-
teous just over Mg). �

12.3. The factor of k− 1.

Question 12.3. How do we interpret the mysterious factor of k− 1.

Here is an answer: Let X be a complex manifold. Let M(x) =[
ai,j(x)

]
be a matrix of holomorphic functions on X.

Lemma 12.4. Suppose p ∈ X and M(p) has rank at most r. Then the
holomorphic function det(M(x)) vanishes to order at least n− r.

Proof. After replacing M(x) with P−1MP for some scalar rank d ma-
trix, with P chosen soM(p) is in Jordan normal form. This then tells
us the determinant has at least n− r zeros.

There are now two cases
Case 1: The first row of M(p) is nonzero. In this case, let M1,c be

the 1, cminor. AsM(p) is in Jordan normal form, we have rkM1,c(p) ≤
r−1. By induction onn, det(M1,c(x) vanishes to order at least (n− 1)−
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(r− 1) = n − r. This implies det (M(x)) vanishes to order at least
n− r.

Case 2: The first row of M(p) is 0. In this case, the result is
straightforward. Here we have det (M1,c(p)) vanishes to order at
least n− r− 1, the whole determinant vanishes to order at least n−
r. �

Proposition 12.5 (Hirschowitz-Ramanan). Let [C] ∈ Mg be a smooth
point of the Hurwitz divisor. Then, bk−1,1(C,ωC) ≤ k− 1.
Remark 12.6. In fact, the reverse inequality follows easily from the
eagon northcott complex. That is, we have

bk−1,1(C,ωC) ≥ k− 1.

13. 5/12/17

We’ll start with explaining why scrolls come up. We’ll describe the
relation between syzygies of curves and syzygies of scrolls.

Last time, we saw the Hirschowitz Ramanan computation implies
that for a curve C ∈ Hur which is a smooth point of Hur, then
bk−1,1(C,ωC) ≤ k − 1 [Kos]

[Hur] . In fact, the reverse inequality holds as
well.

We will show that for any [C] ∈ Hur we also have the reverse
inequality.

Lemma 13.1. For every curve C ∈ Hur, we have bk−1,1(C,ωC) ≥ k− 1.
Proof. This follows by using the scroll in which the curve lies. By
upper semicontinuity, it suffices to show that for a general curve
C ∈ Hur we have bk−1,1(C,ωC) ≥ k − 1. Let f : C → P1 be a
base point free pencil of degree k. Let X be the associated scroll with
C ⊂ X ⊂ Pg−1 so that the rulings of the scroll cut out the basepoint
free pencil on the curve. Thanks to the eagon Northcott complex,
we know ΓX(H) has a minimal free resolution of length k− 1, with
H = OX(1), and bk−1,1(X,H) = k− 1. The claim then follows imme-
diately from the following proposition. �

Proposition 13.2. The restriction OX → OC induces an inclusion bp,1(X,H)→
bp,1(C,ωC).

Remark 13.3. This says, geometrically, that some of the syzygies of
the curve come from syzygies of the scroll.

Proof. Recall the definition of the kernel bundle, given by

(13.1) 0 MH H0(OX(H)) OX(1) 0
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Writing out the kernel bundle description of Koszul cohomology, we
have the exact sequence
(13.2)

0 ∧p+1H0(X,H) H0(∧pMH ⊗H) Kp,1(X,H) 0

0 ∧p+1H0(C,ωC) H0(∧pMωC ⊗ωC) Kp,1(C,ωC) 0

' rC

To show the natural map Kp,1(X,H) → Kp,1(C,ωC) is injective, it is
equivalent to show rC is injective. We have

ker(rC) = H0 (X,∧pMH ⊗H⊗ IC/X)

coming from the following exact sequence

(13.3) 0 IC/X OX OC 0.

To conclude, is suffices to show H0(X,∧pMH ⊗H⊗ IC/X) = 0. Now
recall that we have

Kp+1,1(X, IC/X;H) = H
0(X,∧pMH ⊗H⊗ IC/X),

so it suffices to show

Kp+1,1(X, IC/X;H) = 0.

For this, the exact sequence

(13.4) 0 OX(H) IC/X(H) ωC 0

yields an exact sequence on Koszul cohomology
(13.5)

Kp+2,0(X, IC/X;H) Kp+2,0(X,H) Kp+2,0(C,ωC)

Kp+1,1(X, IC/X;H) Kp+1,1(X;H).

φ

Observe that φ is an isomorphism because the map on global sec-
tions H0(X,nH) → H0(C,ω⊗nC ) is an isomorphism, using that both
X andC are linearly normal, so the two groups above are both identi-
fied withH0(Pg−1,nH). To conclude, it suffices to verify thatKp+1,1(X;H) =
0. Indeed, from the definition of Koszul cohomology, we have that
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this is the middle cohomology of the complex

(13.6)

∧p+2H0(X,H)⊗H0(X, IC/X)

∧p+1H0(X,H)⊗H0(X,H⊗ IC/X)

∧pH0(X,H)⊗H0(X, 2H⊗ IC/X).

So, it suffices to show

∧p+1H0(X,H)⊗H0(X,H⊗ IC/X) = 0.

In turn, it suffices to verify

H0(X,H⊗ IC/X) = 0,

which holds by the crucial assumption that C is linearly normal. �

13.1. K3 Surfaces.

Definition 13.4. A K3 surface is a smooth projective surface X with
KX ' OX and H1(OX) = 0.

Lazarsfeld and Voisin studied Brill Noether theory and syzygies
using K3 surfaces. Let C ⊂ X be a smooth curve. We want to relate
L, a line bundle on a curve C to the study of vector bundles on a K3
surface. The basic construction is due to Mukai:

Construction 13.5. Let L be a line bundle on a curve C ⊂ X and
suppose L is base point free. We have an evaluation map

ev : H0(C,L)⊗OC → L.

We studied MC = ker ev. We next construct a related line bundle on
X.

Let i : C → X be a closed immersion. We define the Lazarsfeld-
Mukai bundle FL as the kernel

(13.7) 0 FL H0(C,L)⊗OX i∗L 0

Proposition 13.6. The Lazarsfeld-Mukai bundle FL constructed in Con-
struction 13.5 is locally free.

Proof. The claim is local, so we may assume L is trivial. Then, we
have an exact sequence

(13.8) 0 FL H0(C,L)⊗OX i∗OC 0
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Remark 13.7. Recall that the homological dimension of an R-module
M is the minimal length of a projective resolution. By Auslander-
Buchsbaum formula relates the homological dimension to depth. That
is,

dh(M) + depth(M) = dimR.

For E a coherent sheaf, we have

dh(E) = max {Ex : x ∈ X} .

As follows from the Auslander-Buchsbaum formula and inequalities
on depth, if we have a short exact sequence of coherent sheaves

(13.9) 0 E F G 0

for F free, we have

dh(E) = max {0, dh(G) − 1} .

Using the above, it is equivalent to show that dh(OC) = 1. But
indeed this follows because homological dimension is the minimal
length of a projective resolution, and we have a length 1 resolution

(13.10) 0 OX(−C) OX OC 0

so dh(OC) = 1. �

14. 5/15/17

Today, we’ll discuss using K3 surfaces to understand curves.

14.1. Interlude on the Picard group of a K3 surface.

Definition 14.1. Let X be a smooth projective variety. A cycle of
codimension r is an element Z of the free abelian group over Z,
Zr(X), generated by closed irreducible subschemes of codimension
r.

We have the following three notions of equivalence for cycles:

Definition 14.2. Two cycles Z1,Z2 ∈ Zr(X) are rationally equivalent
denoted Z1 ∼rat Z2 if there exists a closed subscheme V ⊂ X× P1,
flat over P1 so that

V ∩ X× {0} = Z1

V ∩ X× {∞} = Z2
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We define the Chow group

Ar(X) := Zr(X)/ ∼rat

Further, Pic(X) = A1(X).

Definition 14.3. Two cycles Z1,Z2 ∈ Zr(X) are algebraically equiv-
alent denoted Z1 ∼alg Z2 if there exists smooth curve C and a closed
subscheme V ⊂ X×C, flat over Cwith two points p,q ∈ C so that

V ∩ X× {p} = Z1

V ∩ X× {q} = Z2

The Neron-Severi group is

NS(X) := Z1(X)/ ∼alg

Remark 14.4. It turns out the Neron-Severi group is the set of con-
nected components of the Picard group.

Theorem 14.5 (Neron-Severi). NS(X) is a finitely generated abelian group.

Definition 14.6. Let X be a surface. Two invertible sheaves L1,L2 are
numerically equivalent, denoted L1 ∼num L2 if for all M ∈ Pic(X)
we have

(L1 ·M) = (L2 ·M)

Remark 14.7. Note that L1 ∼alg L2 implies L1 ∼num L2. We further
define num(X) = Pic(X)/ ∼num.

Remark 14.8. num(X) is a quotient of NS(X), hence num(X) is finitely
generated. Further, num(X) turns out to be free.

This is because if Ln = OX, we obtain L ∼num OX because 0 =
Ln ·M = nL ·M, which implies L ·M = 0.

Proposition 14.9. Let X be a K3 surface over the complex numbers. Then
the natural maps

Pic(X)→ NS(X)→ num(X)

are all isomorphisms. In particular, Pic(X) ' Zr(X) for some integer r(x).

Proof. Assume L is numerically trivial. Then, for any ample line bun-
dle H with L · H = 0. Assume L 6= OX. This implies that neither
L nor L∨ are effective, since the intersection of an ample with any
curve is positive (as we can take a high enough power of L which
is very ample and moves in a pencil, and then has positive intersec-
tion).
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We then have by Serre duality that

h0(L) = 0 = h2(L) = h0(L∨).

Then,

−h1(L) = χ(L) =
1

2
(L · L+ωX) + χ(OX) =

1

2
L2 + 2

Therefore,
1

2
(L)2 + 2 ≤ 0

and so

L2 < 0

which contradicts numerical triviality of L. �

Definition 14.10. Let X be a K3 surface and fix an ample line bundle
H. For a coherent sheaf F ∈ coh(X), define the rank of F to be its rank
as a sheaf over the generic point (i.e., the rank of the corresponding
module over K(X)).

Define the slope of F to be

µ(F) :=
degH F

rk(F)
.

Definition 14.11. Let F be. Then F is said to be H-stable if for all
subsheaves 0 ( E ( Fwith 0 < rkE < rk F, we have

µ(E) < µ(F).

Example 14.12. The sheaf H⊕OX is not stable. To see why, note that
c1(H+OX) = H. Therefore, µ(H⊕OX) = H

2/2 > 0. But,

µ(H) = H2 > H2/2 = µ(H⊕OX)

Remark 14.13. Slope stability is a useful condition for controlling
the automorphisms groups. This yields an analogy between stable
vector bundles and stable curves. We now explain this further.

Proposition 14.14. Let F be H-stable. Then, any nonzero endomorphism
φ : F → F is an isomorphism.

Proof. Suppose ψwere not an isomorphism. Then, we claim kerψ 6=
0. To see this, if ψwere injective, we would have

(14.1) 0 F F G 0

which implies that ci(G) = 0 for all i and the rank is 0 (by additivity
of rank in short exact sequences). This implies that in fact G = 0.
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Therefore, ψ is not injective. Hence, we have some kernel

(14.2) 0 G F F

Thus, G ⊂ F is some nonzero subbundle. Note that G is also torsion
free because it is a subsheaf of F, which is torsion free by assumption.
Hence, rk(F) > rk(G) ≥ 1. Which implies rk im φ < rkF. We now
apply stability to im φ ( F.

Using stability, we have

µ (im φ) < µF.

We have a short exact sequence

(14.3) 0 kerφ F im φ 0

Since degree and rank are additive, we have

degF = deg kerφ+ deg im φ rkF = rk kerφ+ rk im φ

We then obtain

µ(F) − µ(kerφ) =
rk im φ

rk kerφ
(µ(im φ) − µF) .

We know the right hand side is negative. But, by stability of F, the
left hand side is positive, a contradiction. �

14.2. Stability of Lazarsfeld-Mukai bundles. Recall the setup from
last time. Let i : C ⊂ X be a curve and let A ∈ PicC be a basepoint
free line bundle. Then, we construct FA as the kernel

(14.4) 0 FA H0(A)⊗OX i∗A 0.

Proposition 14.15. Assume the Picard rank ρ(X) = 1 and PicX = Z [C]
and H := OX(C). Then, FA is stable.

Proof. For any vector bundle which is a subsheaf of a free sheaf V ⊂
O⊕aX and any 1 ≤ s ≤ rk(V), consider ∧sV∨ as a vector bundle. Let
b =

(
a
s

)
. We then have ∧sV ⊂ O⊕bX . Therefore,

EndOX(∧
sV) ' ∧sV ⊗∧sV∨ ⊂

(
∧sV∨

)⊕b
.

It follows

0 6= id ∈ H0 (End (∧sV))

Therefore, H0
(
∧sV∨

)
≥ 1.
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Now, let E ⊂ FA be a subsheaf with rkE < rk FA. By the above,
taking s = rkE, and noting that E ⊂ FA ⊂ OX ⊗H0(A), we see

h0(detE∨) ≥ 1
h0(∧e−1E∨) ≥ 1.

Then, since detE has a section, we conclude detE = kH∨ for k ≥ 0.
Lemma 14.16. We have detE 6= 0. That is, k 6= 0 above.

Proof. Note that

E ' ∧e−1E∨ ⊗ detE.

Since k = 0, we have E ' ∧e−1E∨, and so E would then have a
section. Taking cohomology for the exact sequence, we get

(14.5) FA H0(A)⊗OX i∗A,

we see

(14.6) 0 H0(FA) H0(A) H0(A)
'

which implies H0(FA) = 0 and so H0(E) = 0. �

So, we know k > 0. Then,

det FA = − c1(im A) = − c1(OC).

This implies i∗A ' OC outside of codimension 2. Hence, from the
short exact sequence

(14.7) 0 OX(−C) OX OC 0

we obtain c1(OC) = c1(OX(C)) It follows that det FA = − [C] = −H.
Since these degrees are negative, and the rank of E is less than that
of A, we obtain rk(E) < rk(F), using that k > 0. �

15. 5/17/17

15.1. Hirzebruch-Riemann-Roch for K3 surfaces. Let us start by
recalling Hirzebruch-Riemann-Roch: For E a vector bundle and X
smooth and projective then

χ(E) =

∫
X

c(E) · Td(X)

where integration means taking the top degree piece. Here, Td(X) =
Td(TX).

Lemma 15.1. For X a K3 surface, we have deg c2(TX) = 24.
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Proof. If X is a K3 surface, then c1(TX) = 0. Therefore,

2 = χ(OX)

= deg
[
1+

c1
2
+
1

12
(c2+ c2)

]
2

This implies 12 · 2 = deg c2 (TX). Hence, deg c2(TX) = 24. �

Recall that

Ch(E) = rkE+ c1(E) +
1

2

(
c21(E) − 2 c2(E)

)
.

Corollary 15.2. For X a K3 surface and E any vector bundle, we have

χ(E) = deg (Ch2(E) + 2 rk(E)) .

Proof. This follows by plugging in the result of the previous lemma
to Hirzebruch-Riemann-Roch. �

15.2. Recollection of Brill-Noether theory. Let C be a curve and
A ∈ Pic(C). Recall the Brill-Noether number

ρ(A) := g− h0(A)h1(A).

This is the “expected dimension” of the locus of line bundles of de-

gree degA and h0(A) sections. We letWh0(A)−1
degA denote this locus.

We’ll give a simple argument due to Lazarsfeld for that a general
curve the dimension ofWr

d is the expected dimension.
Assume C ⊂ X is a K3 surface. Let A be basepoint free. Recall

(15.1) 0 FA H0(C,A)⊗OX i∗A 0

Proposition 15.3. ForA a basepoint free invertible sheaf on a curveCwith
C ⊂ X for X a K3 surface, we have

χ
(
FA ⊗ F∨A

)
= 2− 2ρ(A).

Proof. Ch gives a ring homomorphism from the K group to the chow
ring. That is,

Ch(FA ⊗ F∨) = Ch(FA) ·Ch(F∨A).
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Exercise 15.4. Let

ct(E) = 1+ c1(E)t+ c2(E)t2 + · · ·
= (1+ a1(E)t) · · · (1+ as(E)t)

and comparing ct(E) to

ct(E∨) = 1+ c1(E∨)t+ c2(E∨)t2 + · · ·
= (1− a1(E)t) · · · (1− as(E)t) .

Show using the above and the splitting principle that

ci(E∨) = (−1)i ci(E).

By the above, we have

Ch(FA) = rk(FA) + c1(FA) +
1

2

(
c21(FA) − 2 c2(FA)

)
Ch(F∨A) = rk(FA) − c1(FA) +

1

2

(
c21(FA) − 2 c2(FA)

)
.

Letting e = h0(C,A) and L = [C], we have

rk FA = e

c1 FA = −L

We using the exact sequence

(15.2) 0 FA H0(C,A)⊗OX i∗A 0

and the facts that χi∗A = χ(C,A) (we saw this last time, but essen-
tially it follows because the two agree outside a codimension 2 set)
and χ(OX) = 2, we have

2e = χ(FA) + χ(C,A)
= χ(FA) + (d+ 1− g).

Hence, using Hirzebruch Riemann Roch as above, we get χ(FA) =
Ch2(FA) + 2 rk(FA), and so

2e+ Ch2(FA) + d+ 1− g = 2e

It follows
1

2
L2 − c2(FA) = g− 1− d.(15.3)

We have an exact sequence

(15.4) 0 OX L OC(C) 0



MATH 245 NOTES: SYZYGIES 57

Note that OC(C) = ωC by adjunction because KX = OX. Therefore,

χ(L) − 2 = g− 1.

Using this and Riemann-Roch (on surfaces) which says χ(L) = 1
2L ·

(L+KX) + 2, we obtain
1

2
L2 = g− 1.

We then obtain, by plugging in the previous line to Equation 15.3

c2(FA) = d,

Collating this, and using Hirzebruch-Riemann-Roch, we have

χ
(
FA ⊗ F∨A

)
=
[
2 rk

(
FA ⊗ F∨A

)
+ Ch2

(
FA ⊗ F∨A

)]
= 2e2 + Ch2(FA)

Therefore,

χ
(
FA ⊗ F∨A

)
= 2e2 + e (2g− 2− 2d) − (2g− 2) .

Therefore, since

ρ(A) = g− e (e+ g− d− 1) ,

with e+ g− d− 1 = h1(A). It follows that

χ
(
FA ⊗ F∨A

)
= 2− 2ρ(A).

�

15.3. Brill Noether on K3 surfaces.

Definition 15.5. Let k be a field with ch k = 0, X a variety over k
and E a vector bundle on X. We say a vector bundle E is simple if
Hom(E,E) = k.

Lemma 15.6. Assume PicX = Z [C] and FA as above the Lazarsfeld-
Mukai bundle associated to A on C ⊂ X. Then, FA is simple.

Proof. We know FA is stable, so any nonzero morphism φ : FA → FA
is an isomorphism. We claim φ is constant. Assume otherwise. Pick
any x ∈ X. Then, φ⊗ k(x) is a matrix. Pick any eigenvalue λ. Then
φ− λidis not an isomorphism and is nonzero, a contradiction. �

We deduce the following result in Brill-Noether theory.

Proposition 15.7. Let C ⊂ X be a smooth curve and Pic(X) ' Z [C].
Then, for any A ∈ Pic(C) we have ρ(A) ≥ 0.
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Proof. Assume A is basepoint free. Then,

χ
(
FA ⊗ F∨A

)
=
(
FA ⊗ F∨A

)
− h1

(
FA ⊗ F∨A

)
+ h2(FA ⊗ F∨A)

= 2− h1
(
FA ⊗ F∨A.

)
.

Therefore,

2− 2ρ(A) = 2g− h1(FA ⊗ F∨A),
which implies ρ(A) ≥ 0.

If A is not basepoint free, let Z be the base locus. Then, A(−Z) is
basepoint free. Then,

deg(A(−Z)) < deg(A)

h0(A(−Z)) = h0(A)

This implies

0 < ρ (A(−Z)) < ρ(A)

�

15.4. Deformation theory of Hilbert schemes. One reference for this
section is Sernesi’s book on deformation theory. We now state the
main results on properties of the Hilbert scheme.

Let X ⊂ Pr be a projective variety and fix a polynomial p(t) ∈
Q [t]. The Hilbert functor HY

p(t) assigns to any scheme locally noe-
therian S-scheme all flat morphisms

(15.5)
X X× S

S

so that each fiber has Hilbert polynomial p(t).

Theorem 15.8. The functor HY
p(t) is representable by a schemeH. Further,

there is a universal family Z ⊂ Y × H, flat over H which is universal,
meaning that for any S and X ⊂ Y × S in HY

p(t)(S) so that there is a fiber
square

(15.6)
X Z

S H

We have the following result on deformation theory:
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Theorem 15.9. Assume Y is smooth and let [X ⊂ Y] ∈ H(Spec k) where
X is smooth. Then,

(1) TX(H) ' H0(X,NX/Y)

(2) If H1(X,NX/Y) = 0 then H is smooth at [X].

16. 5/22/17

Today’s objective is to prove Lazarsfeld’s Brill Noether theorem.
We’ve already seen that on a K3 surface of Picard rank 1, the corre-
spondingWr

d is empty. Lazarsfeld’s theorem says that when ρ(g, r,d) >
0, allWr

d’s are smooth of the expected dimension ρ.

Definition 16.1. Fix r,d > 0 and let X be a K3 surface with PicX '
ZL. Fix an isomorphism V ' Cr+1. Define Prd to be the scheme
parameterizing tuples (C,A, λ) so that

(1) C ∈ |L| is smooth and irreducible
(2) A ∈Wr

d(C) is base point free
(3) λ is a surjection

V ⊗OX � i∗A

so that

H0(λ) : V ' H0(C,A).

modulo the equivalence relation that

(C,A, λ) ∼ (C,A,aλ)

with a ∈ C − {0}.

Lemma 16.2. The functor Prd is a open subscheme of the Hilbert scheme
H(X×P(V)), contained in a single component of the Hilbert scheme (i.e.,
there is a single Hilbert polynomial associated to the Hilbert scheme in
which Prd lies.

Proof. The triple (C,A, λ) determines

λ|C : V ⊗OC → A

which yields a morphism C→ P(V). Since we started with a closed
immersion C → X we hence have a closed immersion C ⊂ X×PV .
Conversely, given such a closed embedding, we obtain (C,A, λ), and
these two constructions are clearly mutually inverse. We are just
using that λ|C being a surjection is an open condition. �
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There is a morphism

π : Prd → P|L|

(C,A, λ) 7→ C ∈ |L|

where |L| := PH0(L). We want to study the differential of π. A triple
(C,A, λ) ∈ Prd corresponds to C ⊂ X×P(V). We obtain g : C→ PV .
Here g = φA. We then have a short exact sequence

(16.1) 0 g∗TPV NC/X×P(V) NC/X 0
α

Hence,

T(C,A,λ)P
r
d = H0(C,NC/X×PV).

We have

TC,λ|L| = H
0(C,NC/X)

= H0(C,OC(C))

= H0(C,ωC).

We can identify dπ at (C,A, λ) with H0(α).

Theorem 16.3 (Lazarsfeld). Assume PicX ' ZL. Then, dπ(C,A,λ) is
surjective if and only if Petri’s multiplication map

µ : H0(C,A)⊗H0(C,ωC −A)→ H0(C,ωC)

is injective.

Proof. To start, recall the short exact sequence

(16.2) 0 g∗TPV NC/X×PV NC/X 0
α

We have the following claim:

Lemma 16.4. The map H1(α) is an isomorphism.

Proof. We know H2(C,g∗TPV) = 0 so H1(α) is surjective. Second, we
know h1(NC/X) = h

1(ωC) = 1. So, it suffices to show h1(NC/X×PV) =
1. For this, let us describe the embedding C ⊂ X×PV with projec-
tions pr1 : X× PV → X, pr2 : X× PV → PV . We can canonically
identify

V ' H0 (PV ,O(1)) .

We have an exact sequence

(16.3) 0 FA V ⊗OλX i∗A 0
φ
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Then φ induces a morphism

pr∗1(FA)⊗ pr∗2 O(−1)→ OX×PV .

This map sends S⊗ T 7→ T (φ(S)). We obtain a global section z of

pr∗1
(
F∨A

)
⊗ pr∗2 O(1).

We can check from the exact sequence (16.3) Z(z) = C ⊂ X×PV . It
follows that

NC/X×PV ' F∨A|C ⊗A|C

We need h1
(
X, F∨ ⊗ i∗A

)
= 1. This is the same as the restriction to

C because i∗A is supported on C.
Tensoring our definition of FA by F∨A we get

(16.4) 0 FA ⊗ F∨A V ⊗ F∨A A⊗ F∨A 0.

Since FA is simple, using Serre duality, we have

h0(FA ⊗ F∨A) = h2(FA ⊗ F∨A) = 1.

Then,

h2
(
V ⊗ F∨A

)
= dimV · h2(F∨A) = dimV · h0(FA) = 0,

as follows from the sequence

(16.5) 0 FA V ⊗OX i∗A 0
η

and the fact that H0(η) is an isomorphism. To show the map

H1(A⊗ F∨)→ H2(FA ⊗ F∨A) ' C

is an isomorphism, which would complete the proof, it only remains
to check H1(V ⊗ F∨A).

Indeed, this follows becauseH1(OX) = 0 and so from the sequence

(16.6)

0 h0(FA) V H0(i∗A

h1(FA) 0

H0(λ)

This implies H1(FA) = 0 since H0(λ) is an isomorphism. Hence,
H1(F∨A) = 0, as we wanted to show. �
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So, we have seen H1(α) is an isomorphism. We want to show the
petri map is injective if and only if dπ is surjective.

We have an exact sequence
(16.7)

0 H0(C,g∗TPV) H0(NC/X×PV) H0(NC/X)

H1(g∗TPV) 0

dπ

Then, dπ is surjective if and only if H1(g∗TPV) = 0.
To complete the proof, it suffices to check H1(C,g∗TPV) = 0 if and

only if the Petri map is injective.
Here, g = φA : C → PV , up to a choice of basis. Then, the result

follows from Petri’s theorem, which we’ll talk about next time.
That is, Petri’s theorem says:

Theorem 16.5 (Petri).

H1(C,g∗TPV)
∨ = ker

(
µ : H0(ωC −A)⊗H0(A)→ H0(ωC)

)
.

This tells us dπ is surjective if and only if µ is injective. �

17. 5/24/17

Today, we’ll discuss the Petri map.

Definition 17.1. Given a curve C and a line bundle L on C, the petri
map is

µ : H0(L)⊗H0(ωC − L)→ H0(∧C).

Late time, we studied the map p : Prd → |L|. sending (C,A, λ) 7→
C. We saw that generic smoothness of the map p implies that the
differential is surjective, which means µA is injective.

Today’s goal will be to relate this to Brill-Noether theory.

17.1. The construction ofWr
d(C). Let L be a Poincare bundle onC×

Picd(C), meaning that L|C×[M] = M on C. These are determined up
to pullback of a bundle from Picd(C). Let q : C× Picd(C)→ Picd(C)
be the projection.

Fix a divisor E on C of degree 2g− d− 1. Here, g = g(C). Let

F := E× Picd(C) ⊂ C× Picd(C).
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We get an exact sequence

(17.1) 0 L(−F) L L|F 0

and twisting by Fwe get

(17.2) 0 L L(F) L|F(F) 0

For any L ∈ Picd(C) we have that degL(E) ≥ 2g− 1 so

h1(C,L(E)) = 0.

From Grauert’s formula,

R1q∗L (F) = 0.

Pushing forward the exact sequence above by q, we get the exact
sequence
(17.3)

0 q∗L q∗L(F) q∗ (L|F(F)) R1q∗L 0
f

Let

A := q∗L(F)

B := q∗L|F(F).

Both A and B are vector bundles by Grauert’s theorem. Further,
pushforward commute with base change, so we obtain

f⊗ k(p) : H0(C,L(E))→ H0(C,L|E(E)).

Choose [L] = P ∈ Picd(C). Pick H0(C,L) ≥ r+ 1. Then the rank of
f⊗ κ(p) is at most 2g− d− 1+m− (r+ 1). We define Wr

d(C) as the
locus of points p so that f : A→ B has rank at most 2g− d− 1+m−
(r+ 1).

We saw long ago how to construct such loci in a functorial way via
fitting ideals:

Set

OWrd(C)
:= OPicd(C)/Ij(f),

where Ij(f) is the fitting ideal. Recall the definition: We have a map

∧jf : ∧jA→ ∧jB ∈ Hom(∧jA,∧jB)

' ∧jA∨ ⊗∧jB

' Hom
(
∧jA⊗∧jB∨,OPicd(C)

)
.
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Under this correspondence, we define Ij(f) as the image of ∧jf in
OPicd(C). The key property that we talked about in lecture 6 or so is
that Ij(f) is functorial. That is, it commutes with base change. That
is, Ij (f⊗ Spec B) = Ij(f)⊗ Spec B. Loosely speaking “fitting ideals
are independent of presentation.”

Let’s try to understand

T[L]W
r
d(C) ⊂ T[L] Picd(C) ' H1(C,OC) ' H0(ωC)∨.

We wish to describe those L ′ ∈ Picd (C× Spec k [ε]) reducing to L

which come from elements of T[L]Wr
d(C). That is we want to charac-

terize first order deformations of L so that the sections s1, . . . , sr+1 of
H0(C,L) also deform.

We can describe a line bundle L via transition functions. That is, L
is the same as the data {Uα} together with transition functions{

gαβ ∈ O×
(
Uα ∩Uβ

)}
.

Let

Ũα := {Uα × Spec k [ε]} ,
{
g̃αβ
}

be the transition data for L ′. As L ′ reduces to L, we have

g̃αβ = gαβ(1+ εhαβ).

Then,

hαβ ∈ O×
(
Uα ∩Uβ

)
.

Then, these gαβ satisfy the cocycle relation, which means

g̃αβg̃βγ = g̃αγ.

We obtain

gαβ
(
1+ εhαβ

)
gβγ

(
1+ εhβγ

)
= gαγ (1+ εhαγ)

so

gαβgβγ
(
1+ ε

(
hαβ + hβγ

))
. = gαγ (1+ εhαγ) .

Comparing the ε coefficient, we obtain

gαγ
(
hαβ + hβγ

)
= gαγ(hαγ).

It follows that

hαβ + hβγ = hαγ.

We want to understand when a section s ∈ H0(C,L) lifts to a sec-
tion of L ′.
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In terms of transition data, a section is a collection

{sα} , sα ∈ Γ(OUα) such that sα = gαβsβ.

Then, an extension s̃ of s to a global section of L ′ is

{s̃α} , s̃α ∈ Γ
(
ÕUα

)
satisfying the two conditions that

(1)

s̃α = sα + εs
′
α

(2)

s̃α = g̃αβs̃β

Expanding the second equation, we get

sα + εs
′
α = s̃α

= g̃αβ · s̃β
= gαβ

(
1+ εhαβ

) (
sβ + εs

′
β

)
.

Expanding this and comparing coefficients of ε, we see

s ′α = gαβs
′
β + gαβhαβsβ

This can be simplified slightly to

hαβsα = s ′α − gαβs
′
β.

By the property that

hαβ + hβγ = hαγ,

we have that h is a 1-cocycle in C1 ({Uα} , {OUα}) . That is, it deter-
mines an element z ∈ H1(C,OC). In other words, the tangent space
to the Picard group is H1(C,OC) = T[L] Picd(C). Here, z corresponds
to L ′. Further, z⊗ s = {hαβsα} ∈ H1(C,L). The condition for s to
extend is saying z⊗ s = 0 because

hαβsα = s ′α − gαβs
′
β = δ

(
s ′α
)
∈ C0 ({Uα} , {Lα}) .

Theorem 17.2. So, assume that L ∈Wr
d(C) has r+ 1 sections. Then,

T[L]W
r
d(C) =

{
z ∈ H1 (OC) : z⊗H0 (C,L) = 0

}
∈ H1(C,L).

Equivalently, using Serre duality,

T[L]W
r
d(C) = (im µ)⊥

For µ the petri map.
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18. 5/26/17

18.1. Wrapping up the Petri map. Assume L ∈Wr
d(C) with h0(C) =

r+ 1. We saw

v ∈ H1(C,OC) ' Picd(C)

lies in

T[L]W
r
d(C)

if and only if

v⊗H0(C,L)→ H1(C,L)
s 7→ s⊗ v

is the zero map.

Lemma 18.1. The above is equivalent to saying

T[L]W
r
d(C) = (im µ)⊥

with

µ : H0(C,L)⊗H0(C,ωC − L)→ H0(C,ωC).

Proof. Indeed, for s ∈ H0(C,L) and v ∈ H1(C,OC) ' H0(ωC)
∨ we

have

s⊗ v = 0 ∈ H1(C,L) ' H0(ωC − L)∨

if and only if

(s⊗ v, t) = 0 for all t ∈ H0(ωC − L).

In turn, this is equivalent to

(v,µ(st)) = 0 for all t ∈ H0(ωC − L).

Above, v ∈ H0(C,ωC)∨,µ(st) ∈ H0(C,ωC). This is the condition we
wanted. Namely, if the above holds for all s and t as above, then

v ∈ (im µ)⊥ .

�

Corollary 18.2. If the Petri map µ is injective, then

dim T[L]W
r
d(C) = ρ = g− h0(L)h1(L).

Theorem 18.3 (Brill-Noether theorem). We have dimWr
d(C) ≥ ρ at

each point. Further, if µ is injective thenWr
d(C) is smooth of dimension ρ.
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18.2. Return to syzygies. Suppose we have a smooth curve in a K3
surface, C ⊂ X, with PicX ' Z [C].

Then, provided C is general in its linear system |C|, then µ is injec-
tive, so C is Brill-Noether general.

We suspect there is a close relation between syzygies and Brill
Noether theory. Therefore, it makes sense to study syzygies of curves
on a K3 surface, since they behave like Brill Noether general curves.

The reason K3 surfaces are so useful is because of the Lefschetz
theorem. One definition of a K3 surface is that it is a surface X ⊂ Pg

so that each hyperplane section of X is a canonical curve of genus g
in Pg−1.

On a K3 surface, let H be the hyperplane section. Then, we have
an exact sequence

(18.1) 0 OX(−H) OX OD 0

for D ∈ |H|. Then, twisting up by H, we get

(18.2) 0 OX OX(H) ωD 0

We then obtain a surjection on cohomology

H0 (OX(H))→ H0(ωD),

using H1(X,OX) = 0. We further obtain

h0(ωD) + 1 = h
0(OX(H)).

This means the curve is embedded by a complete linear system, so it
is a canonical embedding.

Choosing a non-canonical splitting, we obtain an isomorphism

H0(OX(H)) ' H0(D,ωD)⊕C {s}

corresponding to choosing an embedding ofH0(D,ωD)→ H0(X,OX).
Now, recall some notation. Let L and H ∈ Pic(X) be two line bun-

dles on a K3 surface X. Recall

Kp,q(X,−L;H)

was defined as the (p,q)th syzygy space of the SymH0(X,H) mod-
ule ⊕q∈ZH

0(X,qH− L). Let us also assume that the graded pieces of
H0(X,qH− L) are 0 for q � 0. Recall Kp,q(X,−L;H) was the coho-
mology of

∧p+1H0(X,H)⊗H0 ((q− 1)H− L)→ ∧pH0(H)⊗H0(qH− L)→ ∧p−1H0(H)⊗H0 ((q+ 1)H− L) .
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The following lemma explains the power of K3 surfaces for study-
ing syzygies.

Lemma 18.4 (Lefschetz theorem). Suppose X is a K3 surface with line
bundles L and H ∈ Pic(X). Suppose H is base point free and let D ∈ |H|
be a smooth curve. Assume either

(1) L ' OX and H1(X,qH) = 0 for q ≥ 0 (this may hold often by
Kodaira vanishing, if H is ample)

(2) (H · L) > 0 and H1(X,qH− L) = 0 for q ≥ 0.
Then,

Kp,q(X,−L;H) ' Kp,q(D,−L|D,ωD).

Proof. By the assumption we have the following short exact sequence
of SymH0(X,H) modules:
(18.3)

0 ⊕q∈ZH
0(X, (q− 1)H− L) ⊕q∈ZH

0(X,qH− L)

⊕q∈ZH
0(D,qωD − L) 0

s

using that H1 of the first term is 0. Rename the third term above by

B := ⊕q∈ZH
0(D,qωD − L)

thought of as a SymH0(X,H) module.
Take the long exact sequence of Koszul cohomology of Equation 18.3.

We obtain
(18.4)

Kp,q−1(X,−L;H) Kp,q(X,−L;H) Kp,q(B,H0(X,H)) Kp−1,q(X,−L;H)

We now require the following lemma due to green:

Lemma 18.5 (Green). Let M be a graded Sym(V) module and s ∈ V .
Then,

Kp,q(M,V) ⊗s−→ Kp,q+1(M,V)

is zero.

Proof. The Koszul cohomologyKp,q+1(M,V) is associated to the com-
plex

→ ∧pV ⊗Mq
d−→ · · · .
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Take t1 ∧ · · ·∧ tp ⊗m a representative of kerd. Now, consider

t1 ∧ · · ·∧ tp ⊗ sm ∈ Kp,q+1(M,V).

We want to show this is 0. To do this, we need to construct an ele-
ment w ∈ ∧p+1V ⊗Mq with d(w) = t1 ∧ · · ·∧ tp ⊗ sm.

For this, consider

s∧ t1 ∧ · · ·∧ tp ⊗m ∈ ∧p+1V ⊗Mq.

Then,

d (s∧ t1 ∧ · · ·∧ tp ⊗m) = t1 ∧ · · ·∧ tp ⊗ sm− s∧ d (t1 ∧ · · ·∧ tp ⊗m)

= t1 ∧ · · ·∧ tp ⊗ sm.

Hence, t1 ∧ · · ·∧ tp ⊗ sm = 0. �

Coming back to the proof of the Lefschetz hyperplane theorem,
observe that we have
(18.5)

Kp,q−1(X,−L;H) Kp,q(X,−L;H) Kp,q(B,H0(X,H)) Kp−1,q(X,−L;H)⊗s

Since the ⊗smap is 0, we obtain

Kp,q(B,H0(X < H)) ' Kp,q(X,−L;H)⊕ Kp−1,q(X− L,H).

Recall that B = ⊕qH0(qωD − L). It only remains to relate syzygies
of B with respect to SymH0(X,H) to syzygies when viewed as an
SymH0(D,ωD) module. Due to the surjective map

H0(X,H)→ H0(D,ωD)

we can consider B as a SymH0(D,ωD) module. We want to compare
the resulting Kp,q groups. Indeed, we obtain

∧pH0(X,H) ' ∧pH0(D,ωD)⊕∧p−1H0(D,ωD).

using the non-canonical identification

H0(X,H) ' H0(D,ωD)⊕C〈s〉.

Exercise 18.6. Using the fact that s|D = 0, show that the isomorphism

∧pH0(X,H) ' ∧pH0(D,ωD)⊕∧p−1H0(D,ωD).

is compatible with the differentials of the Koszul complex associated
to B.
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From this, we obtain

Kp,q(B,H0(X,H))

is computed by the direct sum of the two complexes
(18.6)

∧pH0(KD)⊗H0((q− 1)KD − L)⊕∧p+1H0(KD)⊗H0((q− 1)KD − L)

∧pH0(KD)⊗H0(qKD − L)⊕∧pH0(KD)⊗H0(qKD − L)

...

Therefore,

Kp,q(B,H0(X,H)) ' Kp,q(D,−LD,ωD)⊕ Kp−1,q(D,−LD,ωD)
' Kp,q(X,−L;H)⊕ Kp−1,q(X,−L;H).

So, for p = 0, we get

K0,q(D,−L,ωD) ' K0,q(X,−L;H)

and by induction, we get

Kp,q(D,−L,ωD) ' Kp,q(X,−L;H)

�

19. 5/31/17

Hilbert scheme of points. Voisin rephrases the Koszul cohomology
of a line bundle on a surface in terms of the Hilbert scheme of points.

There’s a lot of techniques using chow theory and hodge theory to
attack Koszul cohomology.

So, today, we’ll prove some things about Hilbert schemes of points.
Let X be a surface and L be a very ample line bundle. Consider
φL : X → Pg. If X is a K3, then L2 = 2g− 2, as follows from Rie-
mann Roch for surfaces.

Let Z ⊂ X be a zero dimensional subscheme of a surface. Let
n := h0(OZ). Then, p(t) = pZ(t) = n.

We have

Hn
X := {Z ⊂ X : pZ(t) = n} .
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Then,

T[Z]H
n ' H0(Z,NZ/X)

' H0(Z,HomOZ(IZ/I2Z,OZ).

Let’s try and work out this normal bundle. We can assume Z is sup-
ported at one point by analyzing the support at just one of the points.
Further, we can assume X = Spec A is affine, where A is local, and
regular of dimension 2.

Then, IZ ⊂ A. The condition that Z has length n means A/IZ has
length n as an A-module. We have

HomA/I

(
I/I2,A/I

)
' HomA(I,A/I).

Proposition 19.1. LetA be a regular local ring of dimension 2. Let I be an
ideal withA/I of length n. Then,HomA(I,A/I) is anAmodule of length
at most 2n.

Proof. Note that depth I ≥ 1. By Auslander Buchsbaum,

depth(I) + Projdim(I) = dimA = 2.

Since the projective dimension of I is nonzero. Since it is also not
free, it must have depth 1.

Localizing away from the maximal ideal, we see I is free of rank 1.
Let

(19.1) 0 P1 P0 I 0

be a resolution of I. We obtain P0 = Ak+1,P1 = Ak. Applying the
functor

Hom(•,A/I),

we get
(19.2)

0 HomA(I,A/I) HomA(A
k+1,A/I) HomA(A

k,A/I) Ext1(I,A/I) 0.

Then,

`A(HomA(A
k,A/I)) = k (HomA(A,A/I))

= k`A(A/I)
= kn.

So,

`A(I,A/I) − (k+ 1)`A(A/I) + k`A(A/I) − `(Ext( I,A/I)) = 0.
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To conclude, we only have to show

`A(Ext1(I,A/I)) ≥ n.

We only need

`A(Ext1(I,A/I)) ≤ n.

We then use

(19.3) 0 I A A/I 0

and apply Hom(•,A/I). We obtain
(19.4)

0 = Ext1(A,A/I) Ext1(I,A/I) Ext2(A/I,A/I) 0 = Ext2(A,A/I).

It then suffices to show

`A

(
Ext2 (A/I,A/I)

)
≤ n.

Then, we apply Hom(A/I, •). We similarly get that it suffices to
show

`A(Ext1(A/I,A)) ≤ n

using that Ext3(•, •) = 0. Since A is Gorenstein, we have

ExtiA/m(A/mA,A) = 0

and

Ext2A(A/mA,A) ' A/mA.

We then have, for I ⊂ mA,

(19.5) 0 N A/I A/mA 0

with I ⊂ mA. Then, `A(N) = n − 1. Then, by induction, we get
Ext2(A/I,A) = n. �

Exercise 19.2. Show that the depth of (x,y) ⊂ k [x,y] is one.

Corollary 19.3. IfX is a smooth surface, X[n] = Hn
X is smooth of dimension

2n.

Proof. It suffices to show that X has dimension n. Then you use con-
nectedness of the Hilbert scheme. �
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20. 6/2/17

Today, we’ll discuss Voisin’s description of syzygies. Let X be a
smooth projective surface. Last time, we proved Fogarty’s theorem,
that X[n] := Hn

X is smooth of dimension 2n.
Recall that the trick to proving this was to show dim TpX

[n] ≤ 2n
and then appealing to Hartshorne’s theorem on connectedness of the
Hilbert schemes.

We have the universal subscheme

(20.1)
Z X× X[n]

X[n].

(p,q)

q

Definition 20.1. Let L ∈ PicX. Define the tautological bundle L[n]
by

L[n] := q∗p
∗L.

Remark 20.2. The fiber over [z], for z ⊂ X a 0 dimensional subscheme
is isomorphic toH0(L⊗OZ), which is n dimensional. Therefore, L[n]
has rank n.

Remark 20.3. The tautological bundle is useful in Gromov Witten
theorem, various invariants. If you’re interested in learning more,
look at Ellingsrudd-Gottsche-Lehn.

Proposition 20.4 (Ellingsrudd-Gottsche-Lehn). We have

H0
(
X[n], detL[n]

)
= ∧nH0(X,L).

Proof. Here is a sketch of the proof. Consider the evaluation map

H0(X,L)⊗OX[n] → L[n]

which over [z] ∈ X[n] sends H0(X,L)→ H0(X,L⊗Oz).
Take the nth wedge of the above evaluation map and taking global

sections, we obtain a map

∧nH0(X,L)→ H0(detLn).

We will prove this is an isomorphism by constructing an inverse.
Recall that if X is any factorial variety and U ⊂ X is any set whose
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complement has codimension at least 2 with H0(X,L) ' H0(U,L) is
an isomorphism. There is a Hilbert chow morphism

ρ : X[n] → X(n) = Xn/Sn

where the latter denotes zero cycles of degree n and is called the
symmetric product. We also have a projection

π : Xn → X(n),

LetU ⊂ X[n] be the subscheme parameterizing reduced 0-dimensional
whose support has length at least n− 1 (so we allow one degree 2
point). Let V = π−1(U) ⊂ Xn. Let

Ṽ := Bl∆ V ,

where ∆ is the diagonals ∆ = ∪i,j∆i,j with ∆i,j =
{
xi = xj

}
.

Remark 20.5. One can think of X[n] as a resolution of singularities for
X(n).

Fact 20.6 (Fogarty). The quotient of Ṽ under the Sn action is an open
set whose complement has codimension at least 2 W ⊂ X[n].

The relevant diagram is

(20.2)
Ṽ V ⊂ Xn

X[n] ⊃W X(n)

q

p π

ρ

On X[n] we have a rank n bundle L[n] and we also have a bundle
Ln = p∗1L⊕ · · · ⊕ p∗nL, where pi : Xn → X is the ith projection. There
is a natural map

p∗L[n] → q∗Ln

given as follows: If z ∈ Ṽ , the fiber of f is

H0(L⊗Op(z))→ ⊕iH0(L⊗ Xi)
where q(z) = (x1, . . . , xn).

The map f is an isomorphism on the open set of tuples of distinct
points. Therefore, the morphism of vector bundles is injective (as it
is such on the generic fiber, and any subsheaf of a torsion free sheaf
is torsion free). Let E be the exceptional divisor. Then, cokerf is
supported on the exceptional divisor. That is, we have

(20.3) 0 p∗L[n] q∗Ln cokerf 0
f
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It turns out that cokerf has rank 0 and is supported on E, and it turns
out that det cokerf ' OX(E). Therefore,

detp∗L[n] ' L�n(−E).

We have

H0(X[n], detL[n]) ' H0(W, detL[n])

' H0(Ṽ ,p∗ detL[n])Sn

' H0(q∗L�n(−E))Sn

⊂ H0(q∗L�n)Sn

' H0(V ,L[n])Sn

' H0(Xn,L[n])Sn

Summarizing, we have a map

H0(X[n], detL[n])→ H0(Xn,L�n)Sn .

For σ ∈ Sn and ti ∈ H0(X,L), we define

σ (p∗1t1 ⊗ p∗2t2 ⊗ · · · ⊗ p∗ntn) := sgn(σ)
(
p∗1tσ(1) ⊗ · · · p∗ntσ(n)

)
.

That is, Sn acts by permuting factors and taking determinants. There-
fore,

H0(Xn,L�n)Sn ' ∧nH0(X,L).

Exercise 20.7. Verify that this construction is inverse to the map in
the other direction, yielding an isomorphism.

�

21. 6/5/17

Today, we’ll start by discussing Curvilinear schemes.

Definition 21.1. We say [Z] ⊂ X[n] is called curvilinear if

OZ,p ' C[t]/(t`).

The value of this concept of curvilinear schemes is that if we fix
x ∈ Supp(Z), we can then define the residual of x for any curvilinear
scheme.
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Definition 21.2. For Z a curvilinear scheme and x ∈ Supp(Z), the
residual τx is

τx(z) :=

{
Zy if y 6= x
Spec C[t]/(t` − 1) if y = x

Exercise 21.3 (Easy exercise). Let X be a surface. The set of curvilin-
ear schemes X[n]

curv ⊂ X[n] is open and its complement has codimen-
sion 2.

Let

Zn ⊂ X[n]
curv × X

be the universal subscheme. We have the residual morphism

τ : Zn → X
[n−1]
curv × X

([Z], x) 7→ (τx[Z], x)

The point of this is that it gives you inductive arguments.

Theorem 21.4 (Voisin). Let

(21.1)
Zn X

[n]
curv

X.

q

p

Let L be a line bundle on X. There is an isomorphism

Kn−1,1(X,L) ' H0
(
Zn,q∗ detL[n]

)
/q∗H0

(
X
[n]
curv, detL[n]

)
.

Proof. Recall last class we showed H0(detL[n]) = ∧nH0(X,L). We
have

(21.2)
X
[n]
curv × X X

X
[n]
curv

p2

p1

There is a morphism

φ : q∗L[n] → τ∗
(
p∗1L

[n−1] ⊕ p∗2L
)

.

This map sends [Z] ∈ Zn for

τ(Z) =
(
Z ′, x

)



MATH 245 NOTES: SYZYGIES 77

to

H0(L⊗OZ)→ H0(L⊗OZ ′)⊕H0(x).

Let D ⊂ Zn be the complement of

{(Z, x) ∈ Zn : Z is reduced at x} .

We have τ(D) = Zn−1. We have that φ is injective outside of D. The
cokernel of φ is D (and not 2D), even scheme theoretically. We then
have

q∗ detL[n] ' τ∗
(

detL[n] � L
)
(−D),

which implies

H0
(
Zn,q∗ detL[n]

)
= ker

(
H0
(
τ∗ detL[n] � L

)→ H0
(
(τ∗ detL[n] � L)|D

))
.

Then, τ is an isomorphism away fromD and it sendsD to Zn−1. One
then shows

H0
(
Zn,q∗ detL[n]

)
= ker

(
H0
(
X[n−1] × X, detL[n] � L

)→ H0
(
Zn−1,L[n] � L

))
.

So we have an exact sequence
(21.3)

0 H0
(
Zn,q∗ detL[n]

)
H0
(
X[n−1] × X, detL[n] � L

)

H0
(
Zn−1,L[n] � L

)
0

By Proposition 20.4, we have an equality

H0
(
X
[n−1]
curv × X, detL[n−1] � L

)
' ∧n−1H0(L)⊗H0(L).

We obtain a corresponding commutative diagram
(21.4)

∧n−1H0(L)⊗H0(L) H0(Zn−1, detL[n−1] � L)

∧n−1H0(L)⊗H0(L2).

Repeating the above argument, we obtain a map

H0(Zn−1, detL[n−1] � L)→ H0(X
[n−2]
curv × X, detL[n−2] � L2.
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We similarly obtain

(21.5)

∧n−2H0(L)

H0(Zn,q∗ detL[n]) ∧n−1H0(L)⊗H0(L)

H0(Zn−1, detL[n−1] � L)

∧n−2H0(L)⊗H0(L2)

δ

δ

We can identify

ker
(
∧n−1H0(X,L)⊗H0(L) δ−→ ∧n−2H0(L)⊗H0(L2)

)
with

H0(Zn,q∗ detL[n]).

and im δn−2 ' q∗H0(X[n]
curv × X, detL[n]). �

Theorem 21.5 (Voisin). Let X be a K3 surface and L and ample line bun-
dle. Suppose PicX ' ZL. We have L2 = 2g− 2, and assume g = 2− k.
Then, Kk−1,1(C,ωC) = Kk−1,1(X,L) = 0 for C ∈ |L|.

By Lazarsfeld’s result, if C ∈ |L| is general, then it is Brill Noether
general for Gon(C) = k+ 1.

22. 6/7/17

Theorem 22.1 (Voisin). LetX be a K3 surface, L a line bundle and PicX '
ZL. We have L2 = 2g− 2 and g = 2k. Then, Kk,1(X,L) ' Kk,1(C,ωC) =
0.

Remark 22.2. If C ∈ |L| is general then Lazarsfeld’s result says C is
Brill-Noether-Petri general. We have

ρ(g, 1,k+ 1) = g− 2h1 = 2k− 2k = 0,

since 2− h1 = (k+ 1) + 1− 2k, so h1 = k. So, C has gonality k+ 1,
by the Brill-Noether theorem.
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So, C carries a base point free D ∈ W1
k+1. We have the Lazarsfeld-

Mukai bundle

(22.1) 0 F H0(C,D⊗OX i∗D 0.

We have that F has rank 2.

Lemma 22.3. If G is a vector bundle with the same Chern character of F,
we have F ' G.

Proof. We showed previously

χ(F⊗ F∨) = 2− 2ρ(D) = 2.

Suppose G is any vector bundle with Ch(G) = Ch(F). Then,

χ(F⊗G∨) = 2,

since the Euler characteristic only depends on the Chern charac-
ter, by Hirzebruch Riemann Roch. Then, either H0(F⊗ G∨) > 0 or
H0(F∨ ⊗G) ' H2(F⊗G∨) > 0. Therefore, either there is a nonzero
G → F or F → G. But since F and F∨ are stable, and µ1(F) = µ1(G)
and F is stable, we have seen F ' G. �

22.1. An alternate construction of F. Using Lemma 22.3, we can
now give an alternate construction. The following construction is
either due to Serre or Griffiths-Harris.

Let D ∈W1
k+1(C). We have

χ (OC(D)) = k+ 1+ 1− 2k = 2− k.

We know

h0 (OC(D)) = 2,

so

h0(ωC −D) = h1 (O(D)) = k.

We have an exact sequence

(22.2) 0 O(−D) OC OD 0

which we twist to

(22.3) 0 ωC −D ωC ωC|D 0

Note thatωC|D ' OD. We obtain

h0(ωC) = 2k,h0 (ωC|C) = k+ 1.
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Chasing the exact sequences and using Riemann Roch, we deduce

H0(C,ωC)→ H0(D,ωC|D)

has 1-dimensional cokernel.
On a K3 surface, we have the sequence

(22.4) 0 OX L L|C 0

where L|C ' ωC. We have h1(OX) = 0. Therefore

(22.5)

H0(X,L) H0(C,ωC)

H0(D,ωC|D)

f

Note that f has corank 1 if and only ifD ∈Wk+1 withD ∈ Pick+1(C).
Look at the ideal sheaf of D as a codimension 2 subscheme of X. We
have the sequence

(22.6) 0 ID OX OD 0

We have the following facts:

Fact 22.4. (1) Ext1(OD,L∨) = 0
(2) Ext2(OD,L∨) ' H0(L∨⊗OD), thinking of the latter as a vector

space.

To prove the above facts, use the local to global Ext sequence.
We now apply the functorHom

(
•,L∨

)
to the prior exact sequences.

We obtain
(22.7)

0 Ext1(OX,L∨) Ext1(ID,L∨) H0(L∨ ⊗OD) Ext2(O,L∨).

Using the facts, we obtain
(22.8)

0 H1(L∨) Ext1(ID,L∨) H0(L∨ ⊗OD) H0(L)∨,

where we used

Ext2(O,L∨) = H2(L∨) = H0(L)∨.

Dualizing the above sequence, we obtain
(22.9)

H0(L) H0(L⊗OD) Ext1(ID,L∨)∨ H1(L) 0.
resD
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We have shown resD is not surjective with corank 1 if and only if
D ∈W1

k+1. If D ∈W1
k+1, we get

0 6= e ∈ Ext1(ID,L∨)∨

' Ext1(ID ⊗ L,ωX)∨

Therefore,

e∨ ∈ Ext1(ID ⊗ L,OX)

This element corresponds to an extension

(22.10) 0 OX V ID ⊗ L 0.

Let E := F∨. Via a local computation, one obtains that V is a vector
bundle with ChV = Ch(F∨) = Ch(E). So, V ' E ' F∨, using
Lemma 22.3.

Note that our construction in this case yields

(22.11) 0 OX E ID ⊗ L 0.s

We then obtain a global section s of E vanishing on D ∈ W1
k+1. It

follows that the map E → ID ⊗ L can be written as ∧s (sending t 7→
t∧ s). So the exact sequence above is

(22.12) 0 OX E ID ⊗ L 0.s ∧s

For any t ∈ H0(E), we can see that V(t) is some W1
k+1(C

′) for some
C ′.

Motivated by the above description, Voisin studies

φ : P
(
H0(E)

)→ X[k+1]

s 7→ V(s).

One can verify φ is a closed immersion. Let’s use this an Voisin’s
description of syzygies via the Hilbert scheme.

Define

P
(
H0(E)

)
curv

:= P
(
H0(E)

)
∩ X[k+1]

curv .
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Let

(22.13)
Zk+1 X

[k+1]
curv

X[k+1]

q

LetW = q∗
(
P
(
H0(E)

)
curv

)
.

Voisin wants to prove the following. She doesn’t actually prove
this, she has to do some alterations, but for simplicity, we’ll just pre-
tend she proves this:

(1) H0(W,q∗ detL[k+1]) ' q∗H0
(

P(H0(E))curv, detL[k+1]
)

.
(2) The restriction

H0(Zk+1,q∗ detL[k+1])→ H0(W,q∗ detL[k+1]

is injective.
Let’s see why these facts above imply Theorem 22.1. By our de-

scription of syzygies from previous lectures, we know

Kk+1(X,L) ' H0(Zk+1,q∗ detL[k+1])/q∗H0(X[k+1], detL[k+1]).

We want to show

H0(Zk+1,q∗ detL[k+1])/q∗H0(X[k+1], detL[k+1]) = 0.

That is, we want to show

H0(Zk+1,q∗ detL[k+1]) ' q∗H0(X[k+1], detL[k+1]).

We know this is injective and it is an isomorphism when restricted
to the curvilinear part. To do this, we use the trace map. This is
essentially summing over the fibers. Explicitly, it is

H0(Zk+1,q∗ detL[k+1])→ H0(X[k+1], detL[k+1]).

We have degq = k+ 1 so tr ◦q∗ = (k+ 1) id. Let

α ∈ H0(Zk+1,q∗ detL[k+1]).

We want to show it comes from something in q∗H0(X[k+1], detL[k+1]).
We know that α|W = q∗β for some

β ∈ H0
(

P
(
H0(E)

)
curv

, detL[k+1]
)

.

We have

(22.14) β =
1

k+ 1
(tr (α)) |W .
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If α ′ = α− q∗
(
1
k+1 tr(α)

)
. We have by (22.14), that α ′|W = 0. The

second property (saying that the restriction to W is injective). We
obtain α ′ = 0 so α ∈ im q∗ as we wanted, completing the proof.
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