Michael Kemeny
Assistant Professor at the Department of Mathematics at the University of Wisconsin - Madison.
Office 319
Van Vleck Hall
Madison, WI 53706-1325
Email: michael.kemeny+at+gmail.com
Research interests
Moduli theory: particularly moduli spaces of curves, stable maps, K3 surfaces or Abelian varieties.
Commutative algebra: in particular syzygies of coordinate rings of varieties.
My CV is available here.
Publications
- Extremal syzygies of projective space.
[arXiv:2311.03625]
- Betti Numbers of Curves and Multiple-Point Loci. J. Pure Appl. Math (2022) 226 (11): 107090.
[arXiv:1804.09221]
- The Rank of Syzygies of Canonical Curves.
To appear in Crelle. [arXiv:2104.10624]
- Universal Secant Bundles and Syzygies of Canonical Curves.
Inventiones Math. (2021) 223: 995-1026. [arXiv:2003.05849]
- Projecting Syzygies of Curves. Algebraic Geometry (2020) 7 (5): 561-580. [arXiv:1811.01105]
- Linear Syzygies of Curves with prescribed gonality, joint with
G. Farkas. Advances in
Math. (2019) 356: 106810. [arXiv:1610.04424]
-
The Resolution of Paracanonical Curves of Odd Genus, joint with
G. Farkas. Geometry
and Topology (2018) 22 (7): 4235-4257.
[arXiv:1707.06297]
-
Syzygies of Curves beyond Green's Conjecture. Proceedings of the Abel Symposium 2017, Springer, Cham (2018): 195-216. [arXiv:1711.04463]
-
The Prym-Green Conjecture for torsion line bundles of high order, joint with
G. Farkas.
Duke Math. J. (2017) 166 (6): 1103-1124.
[arXiv:1509.07162]
-
The extremal Secant Conjecture for curves of arbitrary gonality.
Compositio Math. (2017) 153 (2): 347-357.
[arXiv:1509.07162]
-
The generic Green-Lazarsfeld secant conjecture, joint with
G. Farkas.
Inventiones Math. (2016) 203 (1): 265-301
[arXiv:1408.4164]
-
The moduli of singular curves on K3 surfaces.
J. Math. Pures. Appl. (2015) 104 (5): 882-920.
[arXiv:1401.1047]
-
Stable maps and Chow groups, joint with
D. Huybrechts.
Doc. Math. (2013) 18: 507-517.
[arXiv:1202.4968]
-
The universal Severi variety of rational curves on K3 surfaces.
Bull. London Math. Soc. (2013) 45 (1): 159-174.
[arXiv:1110.4266]
- Stable maps and singular curves on K3 surfaces.
PhD thesis at Universität Bonn (June 2015). Supervised by Daniel Huybrechts.
[arXiv:1507.00230]