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1. Introduction

The Loeb measure construction has been a powerful tool in proving exis-
tence theorems for stochastic differential equations. There are many strong
existence theorems which depend on the richness of the adapted Loeb space
and which cannot be proved by classical methods. See, for example, [1].

In these lectures we shall first use the method to show that solutions
exist. We shall then exploit the method further to find solutions of stochas-
tic differential equations with additional properties, such as solutions which
are optimal in a variety of ways, and solutions which are Markov processes.

In most cases, a nonstandard existence proof shows more than mere
existence of a solution—it also gives a characterization of the set of all
solutions in terms of liftings. By the monad of a set C of stochastic pro-
cesses we shall mean the set of all liftings of elements of C. A typical lifting
theorem will show that the monad of the set of all solutions of the stochas-
tic differential equation under consideration is a countable intersection of
internal sets.

These lifting theorems draw their power from the fact that sets C whose
monads are countable intersections of internal sets behave much like com-
pact sets. For this reason, we call a set whose monad is a countable inter-
section of internal sets a neocompact set.

Some of the ideas developed here go back to the monograph [5], where
several existence theorems for stochastic differential equations with extra
properties were obtained. We are now taking another look at these ideas
in the light of more recent developments. The notion of a neocompact set
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captures a common thread which appears in many proofs both in [5] and
in the more recent literature.

In these lectures we use neocompact sets in the “conventional” non-
standard setting. In a recent series of papers (see [6] for a survey), the
neocompact sets are instead taken as a primitive notion and used to prove
existence theorems directly—avoiding the steps of lifting to the nonstan-
dard universe and coming back down to the standard universe.

2. Spaces of Stochastic Processes

We begin by fixing notation and setting up a framework which is appro-
priate for studying liftings of stochastic processes. For simplicity we shall
restrict time to the closed interval [0, 1]. In the spirit of the previous lectures
in this conference, we shall concentrate on square-integrable stochastic pro-
cesses. We first look at liftings of random variables with values in a metric
space M, and then use the fact that a continuous or L2 stochastic process
with values in M is the same thing as a random variable with values in the
metric space C([0, 1],M) or L2([0, 1],M).

Let
T = {0, ∆t, 2∆t, . . . , H∆t = 1}

be a hyperfinite time line where H is an infinite hyperinteger and ∆t = 1/H.
Our sample space Ω = ΩT

0 will be the set of all internal functions from
T into Ω0 where Ω0 is a ∗ finite set with at least two elements. Let P
be the hyperfinite counting measure on Ω, so that every internal set A
is P -measurable and P (A) = |A|/|Ω|. PL will denote the Loeb measure
generated by P . For ω ∈ Ω and t ∈ T let

[ω]t = {α ∈ Ω : α(s) = ω(s) for all s < t}.

Let Gt be the ∗-algebra composed of all internal sets A such that [ω]t ⊆ A
for all ω ∈ A, and let σ(Gt) be the PL-complete σ-algebra generated by Gt.
For t ∈ [0, 1) let

Ft =
⋂

{σ(Gs) : ◦s > t},

and let F1 = σ(G1).
We let (M, ρ), (N , π), . . . be standard complete separable metric spaces.

Let us pick out an element m0 ∈ M. The metric space L2(Ω,M) is the
space of all Loeb measurable random variables x : Ω → M such that
(ρ(x(ω),m0))2 is integrable, with the metric ρ2 defined by

ρ2(x, y) =
[∫

(ρ(x(ω), y(ω))2dω
]1/2

.
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We identify each m ∈ M with the constant function from Ω to m, so that
M ⊆ L2(Ω,M). If A ⊆ L2(Ω,M) and r ∈ R, we let Ar be the set of all x
such that ρ2(x, y) ≤ r for some y ∈ A.

We also need an internal counterpart of L2(Ω,M). To give us some
flexibility, we first let M′ be an internal subset of ∗M which is S-dense,
that is, every point of ∗M is infinitely close to some point of M′. We now
define SL2(Ω,M) as the internal set consisting of all internal functions
X : Ω →M′, with the internal metric

ρ̄2(X, Y ) =
[
∑

(∗ρ(X(ω), Y (ω))2∆ω
]1/2

.

Let X ∈ SL2(Ω,M) and x : Ω → M. We shall say that X is S2-
integrable if (∗ρ(X(ω),m0))2 is S-integrable over Ω. We say that X lifts x,
and that x is the standard part of X (in symbols x = ◦X), if X(ω) ≈ x(ω)
PL-almost surely and X is S2- integrable. If X has a standard part, we say
that X is near-standard and write X ∈ ns2(Ω,M).

The following proposition, which follows from the fundamental results
in the earlier lectures, gives the connection between the standard part map
and the spaces L2(Ω,M).

2.1. Proposition. (Loeb [8] and Anderson [2]). L2(Ω,M) is the set of all
standard parts of elements of ns2(Ω,M). 2

We shall extend the standard part terminology to sets. For a set A ⊆
SL2(Ω,M), the standard part of A is defined as the set

◦A = {◦X : X ∈ A ∩ ns2(Ω,M)}

of standard parts of near-standard elements of A. We say that A is near-
standard if every element of A is near-standard. In the upward direction,
the monad of a set B ⊆ L2(Ω,M) is the set of all X ∈ ns2(Ω,M) such
that ◦X ∈ B.

We next apply our setup to spaces of L2 stochastic processes and of
continuous stochastic processes.

We first consider L2 processes. Let L(M) = L2([0, 1],M) be the space
of L2 paths in M. Thus L2(Ω,L(M)) is the space of L2 stochastic processes
with values in M. In this case we take the internal set L(M)′ to be the set
of all T -step functions induced by internal functions X : T → ∗M. This
set is S-dense in ∗(L2([0, 1],M)) as required. Then ns2(Ω,L(M)) turns out
to be the set of all X such that X(ω, t) is S2-integrable over Ω × T and
near-standard in ∗M almost everywhere in Ω× T .

We now consider continuous processes. Let

C(M) = C([0, 1],M)
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be the space of continuous paths in M with the sup metric, and assume
that M is a linear space. Then L2(Ω, C(M)) is the space of L2 continuous
stochastic processes with values in M. This time we take the internal set
C(M)′ to be the set of all polygonal paths induced by internal functions
X : T → ∗M. This set is again S-dense. ns2(Ω, C(M)) is the set of all X
such that X(ω) is S-continuous PL-almost surely and is S2-integrable over
Ω.

Another space which is often used for the paths of a stochastic process is
the space D([0, 1],Rd) of right continuous functions with left limits and the
Skorokhod metric. In the interest of simplicity, we shall avoid that space in
these lectures.

We are now ready to study liftings of stochastic processes in a systematic
way.

By an adapted process in M we shall mean a stochastic process
x ∈ L2(Ω,L(M)) such that x(ω, t) is Ft-measurable for each t ∈ [0, 1]. A
continuous adapted process in M is defined similarly but with x ∈
L2(Ω, C(M)). A continuous martingale in Rd is a continuous adapted
process x in Rd such that E[x(•, t)|Fs] = x(ω, s) whenever s ≤ t.

An internal stochastic process X ∈ SL2(Ω,L(M)) or X ∈ SL2(Ω, C(M))
will be called adapted after r if X(ω, s) is Gt-measurable whenever s ≤
t ∈ T and r ≤ t, and called adapted if it is adapted after 1/n for each
n ∈ N. X is called a martingale after r if X is adapted after r and
E[X(•, t)|Gs] = X(ω, s) whenever r ≤ s ≤ t, and a martingale if it is a
martingale after each 1/n.

We shall need the following lifting lemma which gives the connection
between the standard notions of an adapted process and martingale and
the nonstandard counterparts of these notions. We shall leave this lemma
as an exercise for the reader, with a warning that the proof is not as easy
as one would expect!

2.2. Lemma. (i) A process x ∈ L2(Ω,L(M)) is adapted in M if and only
if x has an adapted lifting X ∈ SL2(Ω,L(M)).

(ii) A process x ∈ L2(Ω, C(M)) is continuous adapted in M if and only
if x has an adapted lifting X ∈ SL2(Ω, C(M)).

(iii) A process x ∈ L2(Ω, C(Rd)) is a martingale in Rd if and only if x
has an adapted lifting X ∈ SL2(Ω, C(Rd)) which is a martingale. 2

Parts (i) and (ii) are proved in [5], and part (iii) is due to Hoover,
Perkins, and Lindstrøm, (see [1]). Going up, the idea in the proof is to
start with a lifting and modify it on a set of measure zero to a lifting which
is adapted after 1/n for each n. Going down, the idea is to start with a
standard part and modify it on a set of measure zero to an adapted process.
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The following result is a lifting theorem for stochastic integrals. To avoid
the complication of introducing SL2(w) liftings, we restrict our discussion
to the case of uniformly bounded integrands.

2.3. Proposition. (Anderson [2] for Brownian motions; Hoover, Perkins,
and Lindstrøm in general). Suppose f ∈ L2(Ω,L(Rd×d)) is uniformly bounded
and adapted and w ∈ L2(Ω, C(Rd)) is a continuous martingale. Then for
any uniformly bounded adapted lifting F of f and any martingale lifting W
of w, the hyperfinite sum

S(ω, t) =
∑

s<t
F (ω, s)∆W (ω, s)

is a lifting of the stochastic integral

I(ω, t) =
∫ t

0
f(ω, s)dw(ω, s)

in the space L2(Ω, C(Rd)).

Sketch of Proof: The hyperfinite sum S(ω, t) is S-continuous by Lind-
strøm Theorem 9.3. Since F is uniformly bounded, one can check that
S(ω, t) is also SL2, and hence near-standard. By Lindstrøm Theorem 12.2,
S(ω, t) is a lifting of the stochastic integral I(ω, t).

The idea of the proof of this last fact is as follows. For any sequence of
adapted step functions fn converging to f in L2(Ω,L(Rd)), the stochastic
integrals

∫ t

0
fn(ω, s)dw(ω, s)

are defined in the natural way and can be shown to be convergent in
L2(Ω, C(Rd)). The limit of this sequence is the standard definition of the
stochastic integral

∫ t

0
f(ω, s)dw(ω, s).

Taking Fn to be a step function lifting fn, the hyperfinite sums
∑

s<t
Fn(ω, s)∆W (ω, s)

S-converge to S(ω, t), and it follows that S(ω, t) lifts I(ω, t). 2

3. Solutions of Stochastic Differential Equations

To motivate our approach to solving stochastic differential equations, let us
examine the simplest existence theorem for stochastic differential equations
in [5]. Let C(Rd,Rd×d) be the space of all continuous functions from Rd into
Rd×d with a metric for the topology of uniform convergence on compact sets.
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3.1. Theorem. Let w(ω, s) be a continuous martingale in Rd and let

g ∈ L2(Ω,L(C(Rd,Rd×d)))

be a uniformly bounded adapted process with values in the space C(Rd,Rd×d).
Then there exists a continuous martingale x in Rd such that

x(ω, t) =
∫ t

0
g(ω, s)(x(ω, s))dw(ω, s). (1)

Proof: By Lemma 2.2, g has an adapted lifting G and w has a martingale
lifting W . W (ω, •) is S-continuous PL-almost surely. It follows from Lind-
strøm’s lectures that the quadratic variation [W ] is S-continuous PL-almost
surely. By truncating we may take G to have the same finite bound as g.
Define X(ω, t) as the unique solution of the hyperfinite difference equation

X(ω, t) =
∑

s<t
G(ω, s)(X(ω, s))∆W (ω, s). (2)

X is clearly an internal martingale. Since [W ] is S-continuous and G is
bounded, [X] is S-continuous, and therefore X is S-continuous. Similarly,
since W is S2-integrable, one can show that X is S2-integrable. Therefore X
is near-standard and has a standard part x which is a continuous martingale
in Rd. Furthermore,

◦G(ω, t)(X(ω, t)) = g(ω, ◦t)(x(ω, ◦t))

almost surely in Ω× T . By Proposition 2.3,
∑

s<t
G(ω, s)(X(ω, s))∆W (ω, s)

lifts
∫ t

0
g(ω, s)(x(ω, s))dw(ω, s).

Taking standard parts we see that x is a solution of the original equation (1).
2

This proof actually gives a characterization of the set C of all solutions
of (1). Let Ĉ be the set of all X ∈ SL2(Ω, C(Rd)) such that

ρ̄2

(

X(ω, t),
∑

s<t
G(ω, s)(X(ω, s))∆W (ω, s)

)

≈ 0,

and
(∃Y )[Y is adapted and ρ̄2(X,Y ) ≈ 0].
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The set Ĉ is the intersection of the decreasing chain of internal sets Ĉn,
where Ĉn is the set of all X such that

ρ̄2

(

X(ω, t),
∑

s<t
G(ω, s)(X(ω, s))∆W (ω, s)

)

≤ 1/n, (3)

and
(∃Y )[Y is adapted after 1/n and ρ̄2(X,Y ) ≤ 1/n]. (4)

If x ∈ C and X lifts x, then X ∈ Ĉ. Moreover, if X ∈ Ĉ then X is near-
standard, and taking standard parts we see that ◦X ∈ C. Therefore Ĉ is the
monad of C. This shows that the set C of all solutions of equation (1) has
the property that the monad of C is a countable intersection of internal sets.
In the following definition, we shall call sets with this property neocompact
sets. In these lectures we show how to exploit the fact that the set of
solutions of a stochastic differential equation in an adapted Loeb space is
neocompact

3.2. Definition. By a Π0
1 set we mean a countable intersection of internal

sets. A set C of random variables or stochastic processes on Ω is neocom-
pact if the monad of C is a Π0

1 set. A neocompact relation, i.e. a neocompact
set of n-tuples of random variables and/or stochastic processes, is defined
similarly.

3.3. Theorem. (See [3]) For every neocompact set C of continuous mar-
tingales, the set D of all pairs (x,w) such that (x,w) solves equation (1)
and w ∈ C is neocompact.

Proof: Let the monad of C be
⋂

n Cn where each set Cn is internal. Let D̂
be the monad of D. Let Dn be the internal set consisting of all pairs (X,W )
such that W ∈ Cn and (X,W ) satisfies 3 and 4. The proof of Theorem 3.1
shows that D̂ =

⋂

n Dn, so D̂ is a Π0
1 set. Therefore D is neocompact. 2

Here is an alternative proof of Theorem 3.1, the “delay” proof, which
will be easier to generalize to other cases. Let us take x(ω, u) to be zero
when u < 0. Let h be the delayed stochastic integral function

h(x, u)(ω, t) =
∫ t

0
g(ω, s)(x(ω, s− u))dw(ω, s).

Using the liftings G and W as before, we may form the internal counterpart

H(X,U)(ω, t) =
∑

s<t
G(ω, s)(X(ω, s− U))∆W (ω, s).

It follows as before that the set of all pairs (x, u) such that x = h(x, u) is
neocompact. For each u > 0 we can easily build an x such that x = h(x, u)
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by first building x on the time interval [0, u], then building x on [u, 2u], and
so on. This is done without using the lifting at all. From the lifting we see
that the set D of all u ∈ [0, 1] such that ∃x x = h(x, u) is also neocompact.
We have (0, 1] ⊆ D, so the monad of D contains all noninfinitesimals. By
ℵ1-saturation, the monad of D contains an infinitesimal. Therefore 0 ∈ D,
so there exists x such that x = h(x, 0). This shows that x is a solution of
the equation (1). 2

There are many other natural examples of neocompact sets. For in-
stance, the set of all Brownian motions w in L2(Ω, C(Rd)) such that w(ω, 0) =
0 is neocompact. Its monad is the Π0

1 set B̂ =
⋂

n B̂n where B̂n is the in-
ternal set of all processes W such that W (ω, t) is within 1/n of a process
which is adapted after 1/n, and the law of W is within 1/n of the Wiener
law (in the Prohorov metric on the set of measures on C([0, 1],Rd)).

Another important example is the set of all stopping times τ in the time
interval [0, 1]. A random variable τ ∈  L2(Ω, [0, 1]) is a stopping time if
the stochastic process min(t, τ(ω)) is adapted. The corresponding notion
of an internal stopping time was introduced in Lindstrøm’s lectures. The
set of all internal stopping times is itself internal. The monad of the set of
stopping times is the Π0

1 set of all X such that X is infinitely close some
internal stopping time.

Lemma 2.2 shows that for every neocompact set C in either L2(Ω,L(M))
or L2(Ω, C(M)), the set of all adapted x ∈ C is again neocompact. Simi-
larly, for each neocompact set C in L2(Ω, C(Rd)), the set of all continuous
martingales in C is neocompact.

The two proofs of Theorem 3.1 illustrate the usefulness of the following
notion of a neocontinuous function.

3.4. Definition. Let B ⊆ L2(Ω,M) and f : B → L2(Ω,N ). We say that
a function F : B̂ → SL2(Ω,N ) is a lifting of f if F is internal, B ⊆ ◦B̂,
and whenever X ∈ B̂ and ◦X = x ∈ B we have ◦(F (X)) = f(x). We say
that f is neocontinuous if it has a lifting on each neocompact subset of
B.

It is clear that the composition of two neocontinuous functions is again
neocontinuous.

Many examples of neocontinuous functions can be found in the earlier
lectures. For example, the distance function

ρ : L2(Ω,M)× L2(Ω,M) → R

is neocontinuous. The projection functions (x, u) 7→ x and (x, u) 7→ u are
neocontinuous. For each bounded continuous function ϕ : M → R, the
function x 7→ E[ϕ(x(•))] is a neocontinuous function from L2(Ω,M) to R.



9

Proposition 2.3 shows that the stochastic integral

(f, w) 7→
∫ t

0
f(ω, s)dw(ω, x)

is a neocontinuous function on the set of pairs (f, w) where f is uniformly
bounded and adapted and w is a continuous martingale.

In the proof of Theorem 3.1 the application function

(g(ω, t), x(ω, t)) 7→ g(ω, t)(x(ω, t))

is neocontinuous

L2(Ω,L(C(Rd,Rd×d)))× L2(Ω, C(Rd)) → L2(Ω,L(C(Rd,Rd×d))).

It follows that the function

(g, x, w) 7→
∫ t

0
g(ω, s)(x(ω, s))dw(ω, s)

is neocontinuous on the set of triples (g, x, w) where g is uniformly bounded
and adapted, and x, w are continuous martingales. If (x, y) 7→ f(x, y) is a
neocontinuous function of two variables, then x 7→ f(x, y0) is neocontinuous
in x for each y0. Thus, for example,

∫ t

0
g(ω, s)(x(ω, s))dw(ω, s)

is also neocontinuous as a function of x alone. The function h(x, u) from
the delay proof is also neocontinuous.

The following proposition about neocompact sets and neocontinuous
functions contains the key facts needed in many of the applications. The
proofs in a more general abstract setting are in [3] and [4].

3.5. Proposition. Let C be a neocompact set and let f be a neocontinuous
function on C.

(i) C is closed and bounded.
(ii) f is continuous.
(iii) f(C) is neocompact.
(iv) If D is neocompact then C ∩ f−1(D) is neocompact.
(v) Every compact set is neocompact.
(vi) The intersection of any countable chain Cm of nonempty neocom-

pact sets is nonempty.
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Proof: (i) Let C be neocompact and let x be a limit of a sequence xn

of points in C. Let the monad of C be Ĉ =
⋂

n Ĉn. Let X lift x. For each
n there exists Yn ∈ Cn such that Yn is within 1/n of X. By ℵ1-saturation
there exists Y ∈ Ĉ such that Y ≈ X, and therefore x ∈ C. This proves
that C is closed.

Suppose C is not bounded. Then for each n there is a pair of points
Xn, Yn in the monad of C such that ρ̄(Xn, Yn) ≥ n. By ℵ1-saturation there
is a pair of points X, Y in the monad of C such that ρ̄(X,Y ) is infinite,
which is impossible.

(ii) By definition, f has an S-continuous lifting F .
(iii) Let F be a lifting of f , and let the monad of C be Ĉ =

⋂

n Ĉn.
Let B̂ be the domain of F . Then B̂ is internal and C ⊆ ◦ (B̂). Let D̂ =
B̂ ∩ Ĉ, and D̂n = B̂ ∩ Ĉn. Then C = ◦D̂ and f(C) = ◦(F (D̂)). We have
F (D̂) =

⋂

n F (D̂n); the nontrivial inclusion follows from ℵ1-saturation. By
ℵ1-saturation again,

◦(F (D̂)) = ◦(
⋂

n
F (D̂n)) =

⋂

n
(◦F (D̂n)) =

⋂

n
((◦F (D̂n))1/n).

It follows that the monad of f(C) is the Π0
1 set

⋂

n((◦F (D̂n))1/n).
The proof of (iv) is similar.
(v) Let E be compact. For each n, there is a finite subset En such that

E ⊆ ((En)1/n). Then the monad of E is the Π0
1 set

⋂

n Ên where

Ên = {X : ρ̄2(X, En) ≤ 1/n}.

(vi) For each m we may represent the monad of Cm as an intersection
⋂

n Ĉm,n of a decreasing chain of internal sets. Then the intersection of any
finite number of the internal sets Ĉm,n is nonempty. By ℵ1-saturation, the
intersection

⋂

m
⋂

n Ĉm,n is nonempty. Let X belong to this intersection.
Then X is near-standard and ◦X ∈

⋂

m Cm. 2

As a consequence, we see that if C is a nonempty neocompact set and
f : C → R is a neocontinuous function, then f has a minimum and a
maximum. (Because the range f(C) is a closed bounded set of reals). This
allows us to prove that optimal solutions of various kinds exist.

Another consequence is that for any neocompact relation C ⊆M×N ,
the projection function f(x, y) = x is neocontinuous and hence its range

{x ∈M : (∃y ∈ N )(x, y) ∈ C}

is neocompact.
We can now very quickly get many applications of the result that the set

of solutions of the stochastic differential equation (1) is neocompact. Here
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are several typical examples. In each case, we can conclude that optimal
solutions exist and that the set of all optimal solutions is again neocompact.

3.6. Corollary. (i) Let w be a continuous martingale, and let

f : C([0, 1],Rd) → R

be a bounded continuous function. Then the set of solutions x of equation (1)
such that E[f(x(ω))] is a minimum is nonempty and neocompact.

(ii) Let C be a nonempty neocompact set of continuous martingales, and
let

f : C([0, 1],Rd × Rd) → R

be a bounded continuous function. Then the set of pairs (x,w) such that
w ∈ C, (x,w) solves equation (1), and E[f(x(ω), w(ω))] is a minimum, is
nonempty and neocompact.

(iii) For every pair of stochastic differential equations of the form (1),
the set of pairs of solutions (x1, x2) such that ρ2(x1, x2) is a minimum is
nonempty and neocompact.

(iv) Let w be a continuous martingale. For any nonempty neocompact
set C ⊆ L2(Ω, C(Rd)) or C ⊆ L2(Ω,L(Rd)), the set of all y ∈ C, such that

ρ2

(

y,
∫ t

0
g(ω, s)(y(ω, s))dw(ω, s)

)

is a minimum, is nonempty and neocompact.

3.7. Corollary. Suppose that we have a sequence of equations

x(ω, t) =
∫ t

0
gn(ω, s)(x(ω, s))dwn(ω, s)

where each gn is a bounded adapted process with values in the space
C(Rd,Rd×d)), and wn is a continuous martingale with values in Rd. Assume
that for each n there exists an x which is a solution of the first n equations.
Then there exists an x which is a simultaneous solution of all the equations,
and the set of all such x is again neocompact. 2

3.8. Corollary. (Stochastic differential equations with control)
(i) Let w(ω, s) be a continuous martingale in Rd, let h(ω, s) be a uni-

formly bounded adapted process with values in the space C(Rd × Rd,Rd×d),
and let x be an adapted process with values in Rd. Then the set of all con-
tinuous martingales y in Rd such that

y(ω, t) =
∫ t

0
h(ω, s)(x(ω, s), y(ω, s))dw(ω, s) (5)
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is nonempty and neocompact.
(ii) For any neocompact set C of triples (h, x, w) of the appropriate kind,

the set of quadruples (h, x, w, y) such that (h, x, w) ∈ C and y is a contin-
uous martingale which is a solution of the above equation is neocompact.
2

3.9. Corollary. Let y be a continuous martingale such that for some con-
tinuous martingale x, x solves equation (1) and (x, y) solves (5). Let

f : C([0, 1],Rd × Rd) → R

be bounded and continuous. Then the set of controls x such that x solves
equation (1), (x, y) solves (5), and E[f(x(ω), y(ω))] is a minimum, is nonempty
and neocompact. 2

4. Solutions which are Markov processes

In [5] it was shown that in the case that w is a Brownian motion and the
coefficient g is deterministic, equation (1) has a solution with the strong
Markov property. In this section we shall give a simpler argument and prove
a weaker result—there is a solution with the ordinary Markov property. To
find such a solution, we shall use a particular countable sequence of optimal
solutions and a lifting theorem from [5] for Markov processes. A continuous
stochastic process x in M is a Markov process (with respect to F•) if
it is adapted and for each pair of times s < t in [0, 1] and each bounded
continuous function ϕ : M→ R,

E[ϕ(x(•, t))|Fs] = E[ϕ(x(•, t))|x(•, s)]. (6)

That is, the value of x at time s gives all information available at time s
about the value of x at time t. The strong Markov property is a stronger
condition obtained by replacing the time s with a stopping time τ .

We need a lifting theorem for conditional expectations of random vari-
ables.

4.1. Lemma. Let x ∈ L2(Ω,Rd) be a random variable, let X lift x, and
let A be a countably generated sigma-algebra contained in Ft. Then for all
sufficiently large s ≈ t in T ,

(i) E[X|Gs] is a lifting of E[x|Ft].
(ii) There is an internal algebra B ⊆ Gs such that E[X|B] is a lifting of

E[x|A].

Proof: Part (i) is in [5] and is left as an exercise. (ii) Let An be an
increasing chain of finite algebras whose union generates A. Then E[x|A] =
limn→∞E[x|An]. Let Bn be a finite internal algebra which approximates An
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within a null set. For each n, E[X|Bn] lifts E[x|An]. Since An ⊆ Ft, we may
take Bn so that Bn ⊆ Gs for some s ≈ t. By ℵ1-saturation we may extend
the sequence Bn to an internal sequence BJ , J ∈ ∗N. By overspill, for all
sufficiently small infinite J we have BJ ⊆ Gs and E[X|BJ ] lifts E[x|A]. 2

4.2. Theorem. (See [5]) Let w be a Brownian motion with values in Rd on
Ω, and let g ∈ L(C(Rd,Rd×d)) be uniformly bounded. Then the stochastic
differential equation

x(ω, t) =
∫ t

0
g(s, x(ω, s))dw(ω, s) (7)

has a solution which is a Markov process.

One cannot expect to have a Markov solution in the case that the co-
efficient g depends on ω, because the value of x at time t will then depend
on ω through g. Similarly, one cannot expect a Markov solution in the case
that w is an arbitrary continuous martingale. However, in the case that w
is a continuous martingale with the Markov property, the theorem can be
improved, with more work, to say that the equation has a solution x such
that the joint process (x,w) has the Markov property.

Proof of Theorem 4.2: Let Φ be a countable set of bounded continuous
functions from Rd into R such that whenever E[ϕ(x(ω))] = E[ϕ(y(ω))] for
all ϕ ∈ Φ, x and y have the same distribution. Then for x to be a Markov
process it is sufficient that equation (6) hold for all ϕ ∈ Φ. Since each side
of equation 6 is continuous in t, it is even sufficient that (6) holds for all
rational t and all ϕ ∈ Φ. Let (ϕn, tn), n ∈ N be an enumeration of the
countable set Φ× (Q ∩ [0, 1]).

Let C0 be the set of all solutions of equation (7). We inductively define
Cn+1 to be the set of all x ∈ Cn such that E[ϕn(x(•, tn))] is maximal among
all members of Cn. The functions x 7→ E[ϕn(x(•, tn))] are neocontinuous.
Using Corollary 3.6, it follows by induction that for each n, the set Cn
is nonempty and neocompact. The sets Cn form a decreasing chain. Then
by countable compactness, the intersection x ∈

⋂

n Cn is nonempty and
neocompact.

Let x ∈
⋂

n Cn. x is a solution of (7) because it belongs to C0. We shall
prove that x is a Markov process. To do this we prove by induction that
for all n,

E[ϕn(x(•, tn))|Fs] = E[ϕn(x(•, tn))|x(•, s)] (8)

for all s ≤ tn. Suppose this holds for all n < m, but fails for m and
some s ≤ tm. Since Rd is separable, the σ-algebra determined by x(•, s) is
countably generated.
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We now go up to the hyperfinite world. Let G be a uniformly bounded
lifting of g. Let X be a martingale lifting of x. Then for all ω in a set U0 of
Loeb probability one,

(∀t)◦X(ω, t) = x(ω, ◦t)

and
(∀t)X(ω, t) ≈

∑

s<t
G(s,X(ω, s))∆W (ω, s). (9)

Moreover, any X which satisfies (9) is a lifting of an element of C0.
By Lemma 4.1, there exists u ≈ s in T and an internal algebra B ⊆ Gu

such that E[ϕm(X(•, tm)|Gu] lifts E[ϕm(x(•, tm)|Fs] and E[ϕm(X(•, tm)|B]
lifts E[ϕm(x(•, tm)|x(•, s)]. Since equation (8) fails, there is a set U ∈ Fs
of positive Loeb measure and a real ε > 0 such that for all ω ∈ U ,

E[ϕm(x(•, tm))|Fs](ω) + ε ≤ E[ϕm(x(•, tm))|x(•, s)](ω).

U has an internal subset V ∈ Gu of positive Loeb measure such that both
conditional expectation liftings hold at all ω ∈ V .

We now form a new internal stochastic process Y as follows. For each
equivalence class [ω]u ⊆ V , internally choose a new equivalence class [ω′]u
such that ω, ω′ belong to the same B-equivalence class but

E[ϕm(X(•, tm))|Gu](ω) + ε/2 ≤ E[ϕm(X(•, tm))|Gu](ω′).

Form the process Y from X by exchanging the set of paths in the class [ω]u
by a copy of the set of paths in the class [ω′]u, for each ω ∈ V . Then Y is
an improvement on X for the function ϕm, because

E[ϕm(X(•, tm))] + ε · P (V )/2 ≤ E[ϕm(Y (•, tm))].

Moreover, Y is near-standard, and we may take y = ◦Y . Taking standard
parts, the corresponding inequality also holds for x and y. We shall show
that y ∈ Cm. This will contradict the fact that x ∈ Cm+1 and hence that
E[ϕm(x(•, tm))] is maximal.

Y still satisfies equation (9) and thus y belongs to the set C0. By induc-
tive hypothesis, x satisfies (8) for all n < m. The exchange procedure will
not disturb this property, so y also satisfies (8) for all n < m. Therefore

E[ϕm(X(•, tm))] ≈ E[ϕm(Y (•, tm))]

for all n < m. Then

E[ϕm(x(•, tm))] = E[ϕm(y(•, tm))]

for all n < m. This shows that y ∈ Cm and completes the induction. 2

The longer proof in [5] uses the same neocompact set
⋂

n Cn and shows
that every x ∈

⋂

n Cn is a strong Markov process.
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4.3. Corollary. Suppose that the solutions of the stochastic differential
equation (7) in Theorem 4.2 are unique in distribution, that is, for any two
solutions x and y, we have E[ϕ(x(•, t))] = E[ϕ(y(•, t))] for each bounded
continuous ϕ : Rd → R and t ∈ [0, 1]. Then every solution of (7) is a
Markov process with respect to F•.

Proof: In the proof of Theorem 4.2, it was shown that every x in the
neocompact set

⋂

n Cn is a Markov process. But in the case that the so-
lutions of (7) are unique in distribution, every solution x ∈ C0 maximizes
E[ϕn(x(•, tn))] for every n, so the sets Cn are all the same. Therefore the
set

⋂

n Cn is equal to the set C0 of all solutions of (7). 2

In the above corollary, the weaker conclusion that every solution x is
a Markov process with respect to the filtration generated by the process x
itself is well known and easily proved by classical methods. The point of
the above result is that all solutions are Markov processes with respect to
the filtration F• which is given in advance and is rich enough so that the
existence theorem holds.

5. A Fixed Point Theorem

We shall now prove a simple but quite general fixed point theorem which
can be used to show that for many stochastic differential equations set of
all solutions is both nonempty and neocompact.

Let A2(Ω, C(M)) be the set of all adapted processes in L2(Ω, C(M)).
Given a stochastic process x ∈ L2(Ω, C(M)) and a time t ∈ [0, 1], we let

x[0, t] be the restriction of x to the time interval [0, t], that is, (x[0, t])(ω) =
x(ω) ∩ ([0, t]×M).

For x ∈ L2(Ω, C(M)) and u ∈ [0, 1], define the delay function dl by

dl(x, u)(ω, t) = x(ω,max(0, t− u)).

The delay function has the following properties:

dl(x, t + u) = dl(dl(x, t), u),

x[0, t] = y[0, t] ⇒ (dl(x, u))[0, t + u] = (dl(y, u))[0, t + u].

One can readily check that the delay function dl is neocontinuous from
L2(Ω, C(M)) × [0, 1] to L2(Ω, C(M)), and also maps A2(Ω, C(M)) × [0, 1]
to A2(Ω, C(M)).

5.1. Definition. By an adapted function on A2(Ω, C(M)) we shall mean
a function

I : A2(Ω, C(M)) → A2(Ω, C(M))
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such that for all x, y, t,

(I(x))(ω, 0) = x(ω, 0),

and
x[0, t] = y[0, t] ⇒ (I(x))[0, t] = (I(y))[0, t].

That is, I(x) has initial value x(ω, 0) and for each t, I(x)[0, t] depends
only on x[0, t].

For example, if
w ∈ A2(Ω, C(Rd×d))

is a continuous martingale and

g ∈ A2(Ω× [0, 1], L2(Rd,Rd×d))

is uniformly bounded then the stochastic integral

I(x)(ω, t) = x(ω, 0) +
∫ t

0
(g(ω, s, x(ω, s))dw(ω, s)

is an adapted function on A2(Ω, C(M)).

5.2. Theorem. (Fixed Point Theorem) Let C ⊆ A2(Ω, C(M)) be a nonempty
neocompact set such that for each x ∈ C and t ∈ [0, 1], dl(x, t) ∈ C. Let I
be an adapted function on A2(Ω, C(M)) such that I(C) ⊆ C and I is neo-
continuous. Then there exists a point x ∈ C such that I(x) = x (a fixed
point for I), and the set of all fixed points for I in C is neocompact.

Proof: The function j(x) = ρ(x, I(x)) is a composition of neocontinuous
functions and hence is itself neocontinuous on C. The set {0} is neocompact,
and therefore the inverse image

j−1({0}) = {x ∈ C : x = I(x)},

which is the set of all fixed points of I, is neocompact.
The proof that a solution exists is an abstract form of the delay argu-

ment.
Let D be the set of all pairs (y, u) ∈ C× [0, 1] such that y = I(dl(y, u)).

Then D is a neocompact set. Since the projection function (y, u) 7→ u is
neocontinuous, the set E of all u ∈ [0, 1] such that (∃y ∈ C)(y, u) ∈ D is
a neocompact subset of [0, 1]. We show that (0, 1] ⊆ E. Once this is done,
the proof is completed as follows. Since E is neocompact it is closed, and
therefore 0 ∈ E. But this means that there exists y ∈ C such that

y = I(dl(y, 0)) = I(y)
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as required.
We let u ∈ (0, 1] and prove that u ∈ E. Choose an element y0 ∈ C.

Inductively define a sequence yn by

yn+1 = I(dl(yn, u)).

We see by induction that each yn belongs to C.
We now claim that for each n,

yn+1[0, nu] = yn[0, nu].

We prove this claim by induction on n. For n = 0 we have

(y1)(ω, 0) = (I(dl(y0, u)))(ω, 0) = (dl(y0, u))(ω, 0) = (y0)(ω, 0),

so
y1[0, 0] = y0[0, 0].

Assume that the claim holds for n and let t = nu, so that

yn+1[0, t] = yn[0, t].

Then
(dl(yn+1, u))[0, t + u] = (dl(yn, u))[0, t + u],

and therefore
yn+2[0, t + u]

= (I(dl(yn+1, u))[0, t + u]

= (I(dl(yn, u)))[0, t + u]

= yn+1[0, t + u].

This completes the induction and proves the claim.
Now take k large enough so that ku ≥ 1. Then by the claim,

yk+1 = yk,

and therefore
yk = I(dl(yk, u)).

This shows that (yk, u) ∈ D and so u ∈ E as required. 2
As a first illustration let us apply the Fixed Point Theorem to the case of

equation (1). Let k be a uniform bound for the adapted continuous function
g, and let C be the set of all stochastic integrals

∫ t
0 h(ω, s)dw(ω, s) where

w is a continuous martingale of dimension d and h is an adapted process
in L2(Ω,Rd×d) with bound k. Then C is neocompact because its monad is
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the set of all X such that for each n, X is within 1/n of some hyperfinite
sum

∑

s<t
H(ω, s)∆W (ω, s)

where H is adapted after 1/n and bounded by k + 1/n. Whenever x ∈ C
and u ∈ [0, 1], we have dl(x, u) ∈ C. This can be seen by changing the
coefficient h to be zero before u.

In this case,

I(x)(ω, t) =
∫ t

0
g(ω, s, x(ω, s))dw(ω, s).

Then I is an adapted function, I : C → C, and I is neocontinuous. By the
Fixed Point Theorem, the set of all fixed points x ∈ C of I is a nonempty
neocompact set, and this set is the set of all solutions of equation (1).

6. Stochastic Differential Equations with Nondegenerate Coeffi-
cients

In this section we apply the Fixed Point Theorem to give a short proof of a
more difficult existence theorem. This is the case of stochastic differential
equations where the coefficient is measurable rather than continuous in x,
but the determinant of the coefficient is bounded away from zero. This
result is from [5], and is an improvement of a weak existence theorem of
Krylov [7]. The present proof uses some neocontinuity results from [3].

Let us choose a uniform bound k > 0 once and for all, and let J be the
compact set of all d× d matrices A such that the entries of A are bounded
by k and det(AAT ) ≥ 1/k.

We collect the needed facts in a lemma which we state without proof.

6.1. Lemma. ([3]) Let w be a Brownian motion in Rd. There is a neocom-
pact set C ⊆ L2(Ω, C(Rd)) such that:

(i) For each adapted process y ∈  L2(Ω,L(J)), and r ∈ [0, 1], the integral
∫ t
min(r,t) y(ω, s)dw(ω, s) belongs to C,

(ii) C is closed under delays,
(iii) For each function g ∈ L2([0, 1] × Rd, J) where Rd has the normal

measure, the function

I(x)(ω, t) =
∫ t

0
g(s, x(ω, s))dw(ω, s)

is neocontinuous on C. 2

Here is the existence theorem.
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6.2. Theorem. ([5]) Let w be a Brownian motion in Rd. For each function
g ∈ L2([0, 1]× Rd, J) where Rd has the normal measure, the equation

x(ω, t) =
∫ t

0
g(s, x(ω, s))dw(ω, s)

has a continuous martingale solution, and the set of all solutions is neo-
compact.

Proof: Let C be the neocompact set from Lemma 6.1 and let I(x) be
the stochastic integral function

I(x) =
∫ t

0
g(s, x(ω, s))dw(ω, s).

I is neocontinuous on C by Lemma 6.1. By Lemma 2.2, we may take C to
be included in the set of adapted processes and may also take C so that
x(ω, 0) = 0 for all x ∈ C. Then by part (i) of Lemma 6.1, I(C) ⊆ C, and
(I(x))(ω, 0) = x(ω, 0). Since (I(x))(ω, t) depends only on (ω, s) and the
values of x(ω, s) for s ≤ t, I is an adapted function. The conclusion of the
theorem now follows from the Fixed Point Theorem. 2

It would be interesting to use the Fixed Point Theorem to find addi-
tional existence theorems. One candidate to be checked is the equation of
Theorem 6.2 with the coefficient g being an adapted function rather than
deterministic.
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