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Abstract. The randomization of a complete �rst order theory T is the

complete continuous theory TR with two sorts, a sort for random ele-

ments of models of T , and a sort for events in an underlying probability

space. We give necessary and su�cient conditions for an element to be

de�nable over a set of parameters in a model of TR.

1. Introduction

A randomization of a �rst order structure M, as introduced by Keisler
[Ke] and formalized as a metric structure by Ben Yaacov and Keisler [BK],
is a continuous structure N with two sorts, a sort for random elements
of M, and a sort for events in an underlying atomless probability space.
Given a complete �rst order theory T , the theory TR of randomizations of
models of T forms a complete theory in continuous logic, which is called
the randomization of T . In a model N of TR, for each n-tuple ~a of random
elements and each �rst order formula ϕ(~v), the set of points in the underlying
probability space where ϕ(~a) is true is an event denoted by Jϕ(~a)K.

In a �rst order structure M, an element b is de�nable over a set A of
elements ofM (called parameters) if there is a tuple ~a in A and a formula
ϕ(u,~a) such that

M |= (∀u)(ϕ(u,~a)↔ u = b).

In a general metric structure N , an element b is said to be de�nable over a
set of parameters A if there is a sequence of tuples ~an in A and continuous
formulas Φn(x,~an) whose truth values converge uniformly to the distance
from x to b. In this paper we give necessary and su�cient conditions for
de�nability in a model of the randomization theory TR. These conditions
can be stated in terms of sequences of �rst order formulas.

In Theorem 3.1.2, we show that an event E is de�nable over a set A of
parameters if and only if it is the limit of a sequence of events of the form
Jϕn(~an)K, where each ϕn is a �rst order formula and each ~an is a tuple from
A.

In Theorem 3.3.6, we show that a random element b is de�nable over a set
A of parameters if and only if b is the limit of a sequence of random elements
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bn such that for each n,

J(∀u)(ϕn(u,~an)↔ u = bn)K

has probability one for some �rst order formula ϕn(u,~v) and a tuple ~an from
A.

Our principal aim in this paper is to lay the groundwork for the study of
independence relations in randomizations, that will appear in a forthcoming
paper. However, in Section 4 of this paper we will give some more modest
consequences of our results in the special case that the underlying �rst order
theory T is ℵ0-categorical.

Continuous model theory in its current form is developed in the papers
[BBHU] and [BU]. The papers [Go1], [Go2], [Go3] deal with de�nability
questions in metric structures. Randomizations of models are treated in
[AK], [Be], [BK], [EG], [GL], and [Ke].

2. Preliminaries

We refer to [BBHU] and [BU] for background in continuous model theory,
and follow the notation of [BK]. We assume familiarity with the basic no-
tions about continuous model theory as developed in [BBHU], including the
notions of a theory, structure, pre-structure, model of a theory, elementary
extension, isomorphism, and κ-saturated structure. In particular, the uni-
verse of a pre-structure is a pseudo-metric space, the universe of a structure
is a complete metric space, and every pre-structure has a unique completion.
In continuous logic, formulas have truth values in the unit interval [0, 1]
with 0 meaning true, the connectives are continuous functions from [0, 1]n

into [0, 1], and the quanti�ers are sup and inf. A tuple is a �nite sequence,
and A<N is the set of all tuples of elements of A.

2.1. The theory TR. We assume throughout that L is a �nite or countable
�rst order signature, and that T is a complete theory for L whose models
have at least two elements.

The randomization signature LR is the two-sorted continuous signature
with sorts K (for random elements) and B (for events), an n-ary function
symbol Jϕ(·)K of sort Kn → B for each �rst order formula ϕ of L with n free
variables, a [0, 1]-valued unary predicate symbol µ of sort B for probability,
and the Boolean operations >,⊥,u,t,¬ of sort B. The signature LR also
has distance predicates dB of sort B and dK of sort K. In LR, we use B,C, . . .
for variables or parameters of sort B. B .

= C means dB(B,C) = 0, and B v C
means B

.
= B u C.

A pre-structure for TR will be a pair P = (K,B) where K is the part of
sort K and B is the part of sort B. The reduction of P is the pre-structure

N = (K̂, B̂) obtained from P by identifying elements at distance zero in the
metrics dK and dB, and the associated mapping from P onto N is called the
reduction map. The completion of P is the structure obtained by completing
the metrics in the reduction of P. By a pre-complete-structure we mean a
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pre-structure P such that the reduction of P is equal to the completion of
P. By a pre-complete-model of TR we mean a pre-complete-structure that
is a pre-model of TR.

In [BK], the randomization theory TR is de�ned by listing a set of ax-
ioms. We will not repeat these axioms here, because it is simpler to give the
following model-theoretic characterization of TR.

De�nition 2.1.1. Given a modelM of T , a neat randomization of M is a
pre-complete-structure (K,B) for LR equipped with an atomless probability
space (Ω,B, µ) such that:

(1) B is a σ-algebra with >,⊥,u,t,¬ interpreted by Ω, ∅,∩,∪, \.
(2) K is a set of functions a : Ω→M .
(3) For each formula ψ(~x) of L and tuple ~a in K, we have

Jψ(~a)K = {ω ∈ Ω :M |= ψ(~a(ω))} ∈ B.
(4) B is equal to the set of all events Jψ(~a)K where ψ(~v) is a formula of

L and ~a is a tuple in K.
(5) For each formula θ(u,~v) of L and tuple ~b in K, there exists a ∈ K

such that
Jθ(a,~b)K = J(∃u θ)(~b)K.

(6) On K, the distance predicate dK de�nes the pseudo-metric

dK(a, b) = µJa 6= bK.

(7) On B, the distance predicate dB de�nes the pseudo-metric

dB(B,C) = µ(B4C).

De�nition 2.1.2. For each �rst order theory T , the randomization theory
TR is the set of sentences that are true in all neat randomizations of models
of T .

It follows that for each �rst order sentence ϕ, if T |= ϕ then TR |= JϕK .
=

>. Moreover, in every model N of TR, the events form a σ-algebra and µ is
an atomless probability measure.

Result 2.1.3. (Fullness, Proposition 2.7 in [BK]).
Every pre-complete-model P = (K,B) of TR has perfect witnesses, i.e.,

(1) For each �rst order formula θ(u,~v) and each ~b in Kn there exists
a ∈ K such that

Jθ(a,~b)K .
= J(∃u θ)(~b)K;

(2) For each B ∈ B there exist a, b ∈ K such that B
.
= Ja = bK.

The following results are proved in [Ke], and are stated in the continuous
setting in [BK].

Result 2.1.4. (Theorem 3.10 in [Ke], and Theorem 2.1 in [BK]).
For every complete �rst order theory T , the randomization theory TR is

complete.
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Result 2.1.5. (Strong quanti�er elimination, Theorems 3.6 and 5.1 in [Ke],
and Theorem 2.9 in [BK]).

Every formula Φ in the continuous language LR is TR-equivalent to a
formula with the same free variables and no quanti�ers of sort K or B.

Result 2.1.6. (Proposition 4.3 and Example 4.11 in [Ke], and Proposition
2.2 and Example 3.4 (ii) in [BK]).

Every modelM of T has neat randomizations.

Corollary 2.1.7. Every model N of TR has a pair of elements c, d such that
Jc 6= dK = >.

Proof. Every model of T has at least two elements, so T |= (∃u)(∃v)u 6= v.
The result follows by applying Fullness twice. �

Lemma 2.1.8. Let P = (K,B) be a pre-complete-model of TR and let a, b ∈
K and B ∈ B. Then there is an element c ∈ K that agrees with a on B and
agrees with b on ¬B, that is, B v Jc = aK and (¬B) v Jc = bK.

De�nition 2.1.9. In Lemma 2.1.8, we will call c a characteristic function
of B with respect to a, b.

Note that the distance between any two characteristic functions of an
event B with respect to elements a, b is zero. In particular, in a model of TR,
the characteristic function is unique.

Proof of Lemma 2.1.8. By Result 2.1.3 (2), there exist d, e ∈ K such that
B
.
= Jd = eK. The �rst order sentence

(∀u)(∀v)(∀x)(∀y)(∃z)[(x = y → z = u) ∧ (x 6= y → z = v)]

is logically valid, so we must have

J(∃z)[(d = e→ z = a) ∧ (d 6= e→ z = b)]K .
= >.

By Result 2.1.3 (1) there exists c ∈ K such that

Jd = e→ c = aK .
= >, Jd 6= e→ c = bK .

= >,
so Jd = eK v Jc = aK and Jd 6= eK v Jc = bK. �

We will need the following result, which is a consequence of Theorem 3.11
of [Be]. Since the setting in [Be] is quite di�erent from the present paper,
we give a direct proof here.

Proposition 2.1.10. Every model of TR is isomorphic to the reduction of
a neat randomization of a model of T .

Proof. Let N = (K̂, B̂) be a model of TR of cardinality κ. Let Ω be the Stone

space of the Boolean algebra B̂ = (B̂,>,⊥,u,t,¬). Thus Ω is a compact

topological space, the points of Ω are ultra�lters, we may identify B̂ with the
Boolean algebra of clopen sets of Ω, and µN is a �nitely additive probability

measure on B̂.
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We next show that µ is σ-additive on B̂. To do this, we assume that A0 ⊇
A1 ⊇ · · · in B̂ and C =

⋂
n An ∈ B̂, and prove that µ(C) = limn→∞ µ(An).

Indeed, the family {C ∪ (Ω \ An) : n ∈ N} is an open covering of Ω, so by
the topological compactness of Ω, we have Ω =

⋃n
k=0(C∪ (Ω \Ak)) for some

n ∈ N. Then C = An, so µ(C) = µ(An) = limn→∞ µ(An).
By the Caratheodory theorem, there is a complete probability space (Ω,B, µ)

such that B ⊇ B̂, µ agrees with µN on B̂, and for each B ∈ B and m > 0

there is a countable sequence Am0 ⊆ Am1 ⊆ · · · in B̂ such that

(2.1) B ⊆
⋃
n

Amn and µ

(⋃
n

Amn

)
≤ µ(B) + 1/m.

Note that since the probability space (Ω,B, µ) is complete, every subset of
Ω that contains a set in B of measure one also belongs to B and has measure
one.

We claim that for each B ∈ B there is a unique event f(B) ∈ B̂ such
that µ(f(B)4B) = 0. The uniqueness of f(B) follows from the fact that the

distance function dB(C,D) = µ(C4D) is a metric on B̂. To show the existence
of f(B), for each m > 0 let Am0 ⊆ Am1 ⊆ · · · be as in (2.1). Note that
(Am0,Am1, . . .) is a Cauchy sequence of events in the model N , so there is an

event Cm ∈ B̂ such that Cm = limn→∞ Amn. Hence limn→∞ µ(Amn4Cm) =
0, so µ((

⋃
n Amn)4Cm) = 0. Then (C1,C2, . . .) is a Cauchy sequence, so

there is an event f(B) = limm→∞ Cm in B̂ with µ(f(B)4B) = 0.

We make some observations about the mapping f : B → B̂. If B,C ∈ B
and dB(B,C) = 0, then f(B) = f(C). For each B,C ∈ B, we have

f(B ∪ C) = f(B) ∪ f(C), f(B ∩ C) = f(B) ∩ f(C),

Ω \ f(B) = f(Ω \ B), µ(B) = µ(f(B)).

Moreover, the mapping f sends B onto B̂, because if C ∈ B̂ then C ∈ B
and f(C) = C. Therefore the mapping f̂ that sends the equivalence class of
each B ∈ B under dB to f(B) is well de�ned and is an isomorphism from the
reduction of the pre-structure (B,t,u,¬.>,⊥, µ) onto the measure algebra

(B̂, µ) (with the usual Boolean operations).
A model M of T is κ+-universal if every model of T of cardinality ≤ κ

is elementarily embeddable in M. By Theorem 5.1.12 in [CK], every κ-
saturated model of T is κ+-universal, so κ+-universal models of T exist. We
now assume thatM is a κ+-universal model of T , and prove that N is iso-
morphic to the reduction of a neat randomization ofM with the underlying
probability space (Ω,B, µ).

In the following paragraphs, we will use boldface letters b,d, . . . for ele-

ments of K̂. Let LK̂ be the �rst order signature formed by adding a constant

symbol for each element b ∈ K̂. For each ω ∈ Ω, the set of LK̂-sentences

U(ω) = {ψ(~b) : ω ∈ Jψ(~b)K}
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is consistent with T and has cardinality ≤ κ. By the Compactness and
Löwenheim-Skolem theorems, each U(ω) has a model (Mω, bω)

b∈K̂ of car-

dinality ≤ κ. Since M is κ+-universal, for each ω ∈ Ω we may choose an
elementary embedding hω : Mω ≺ M. Then (M, hω(bω))

b∈K̂ |= U(ω) for

every ω ∈ Ω. It follows that for each formula ψ(~v) of L and each tuple
~b ∈ K̂<N,

Jψ(~b)K = {ω ∈ Ω: Mω |= ψ(~bω)} = {ω ∈ Ω: M |= ψ(hω(~bω))} ∈ B̂.
For each formula ψ(~v) of L and tuple ~c of functions in MΩ, de�ne

Jψ(~c)K := {ω ∈ Ω: M |= ψ(~c(ω))}.
Let K be the set of all functions a : Ω → M such that for some element

b ∈ K̂, we have
µ({ω ∈ Ω: a(ω) = hω(bω)}) = 1.

We claim that for each a ∈ K there is a unique element f(a) ∈ K̂ such that

µ({ω ∈ Ω: a(ω) = hω(f(a)ω)}) = 1.

The existence of f(a) is guaranteed by the de�nition of K. To prove unique-
ness, suppose b,d ∈ K̂ and

µ({ω ∈ Ω: a(ω) = hω(bω)}) = µ({ω ∈ Ω: a(ω) = hω(dω)}) = 1.

Then
µ({ω ∈ Ω: hω(bω) = hω(dω)}) = 1,

so
µ(Jb = dK) = µ({ω ∈ Ω: bω = dω}) = 1,

and hence dK(b,d) = 0. Since dK is a metric on K̂, it follows that b = d.

We now make some observations about the mapping f : K → K̂. This

mapping sends K onto K̂, because for each b ∈ K̂, we have f(a) = b where a
is the element of K such that a(ω) = hω(bω) for all ω ∈ Ω. Suppose ~c ∈ K<N

and ~d = f(~c). We have ~d ∈ K̂<N and

Jψ(~d)K = {ω ∈ Ω: M |= ψ(hω(~dω))} .= {ω ∈ Ω: M |= ψ(~c(ω))} = Jψ(~c)K.

Since the probability space (Ω,B, µ) is complete, Jψ(~d)K ∈ B̂ ⊆ B, and
Jψ(~d)K .

= Jψ(~c)K, we have Jψ(~c)K ∈ B and Jψ(~d)K = f(Jψ(~c)K). Therefore, if
a, c ∈ K and dK(a, c) = 0, then dK(f(a), f(c)) = 0, and hence f(a) = f(c).
This shows that P = (K,B) is a well-de�ned pre-complete-structure for LR,

and that the mapping f̂ that sends the equivalence class of each B ∈ B to
f(B), and the equivalence class of each a ∈ K to f(a), is an isomorphism
from the reduction of P to N .

It remains to show that P is a neat randomization ofM. It is clear that
P satis�es conditions (1)-(3) in De�nition 2.1.1.

Proof of (4): We have already shown that Jψ(~c)K ∈ B for each formula
ψ(~v) of L and each tuple ~c in K. For the other direction, let B ∈ B. By
Corollary 2.1.7, there exist a, e ∈ K such that Ja 6= eK .

= Ω. We may
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choose a function b ∈MΩ such that b(ω) = e(ω) whenever a(ω) 6= e(ω), and
b(ω) 6= a(ω) for all ω ∈ Ω. Then b ∈ K and Ja 6= bK = Ω. By Lemma 2.1.8,
there exists c ∈ K which is a characteristic function of B with respect to a, b.
Then Jc = aK .

= B. Let d ∈ MΩ be the function such that d(ω) = a(ω) for
ω ∈ B, and d(ω) = b(ω) for ω ∈ ¬B. Then µ(Jc = dK) = 1, so d ∈ K. Since
Ja 6= bK = Ω, we have Ja = dK = B. Thus (4) holds with ψ being the sentence
a = d.

Proof of (5): Consider a formula θ(u,~v) of L and a tuple ~b in K. By
Fullness, there exists c ∈ K such that

Jθ(c,~b)K .
= J(∃u)θ(u,~b)K.

We may choose a function a ∈MΩ such that for all ω ∈ Ω,

M |= [θ(c(ω),~b(ω))↔ (∃u)θ(u,~b)] implies a(ω) = c(ω),

and

M |= [(∃u)θ(u,~b(ω))→ θ(a(ω),~b(ω))].

Then µ(Ja = cK) = 1, so a ∈ K and

Jθ(a,~b)K = J(∃u)θ(u,~b)K,

as required.
Proof of (6) and (7): By Result 2.1.6, the properties

(∀x)(∀y)dK(x, y) = µ(Jx 6= yK), (∀U)(∀V)dB(U,V) = µ(U4V)

hold in some model of TR. By Result 2.1.4, these properties hold in all
models of TR, and thus in N . Therefore (6) and (7) hold for P. �

2.2. Types and De�nability. For a �rst order structureM and a set A of
elements ofM,MA denotes the structure formed by adding a new constant

symbol to M for each a ∈ A. The type realized by a tuple ~b over the

parameter set A inM is the set tpM(~b/A) of formulas ϕ(~u,~a) with ~a ∈ A<N

satis�ed by ~b inMA. We call tpM(~b/A) an n-type if n = |~b|.
In the following, let N be a continuous structure and let A be a set of

elements of N . NA denotes the structure formed by adding a new constant

symbol to N for each a ∈ A. As in [BU] and [BK], the type tpN (~b/A)

realized by ~b over A in N is the function p that maps each formula Φ(~x,~a)

with ~a ∈ A<N to the value Φ(~x,~a)p := Φ(~b,~a)N in [0, 1].
We now recall the notions of de�nable element and algebraic element from

[BBHU]. An element b is de�nable over A in N , in symbols b ∈ dclN (A),
if there is a sequence of formulas 〈Φk(x,~ak)〉 with ~ak ∈ A<N such that the
sequence of functions 〈Φk(x,~ak)N 〉 converges uniformly in x to the distance
function d(x, b)N of the corresponding sort. b is algebraic over A in N , in
symbols b ∈ aclN (A), if there is a compact set C and a sequence of formulas
〈Φk(x,~ak)〉 with ~ak ∈ A<N such that b ∈ C and the sequence of functions
〈Φk(x,~ak)N 〉 converges uniformly in x to the distance function d(x,C)N of
the corresponding sort.
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If the structure N is clear from the context, we will sometimes drop the
superscript and write tp, dcl, acl instead of tpN ,dclN , aclN .

Result 2.2.1. ([BBHU], Exercises 10.7 and 10.10) For each element b of
N , the following are equivalent, where p = tpN (b/A):

(1) b is de�nable over A in N ;
(2) in each model N ′ � N , b is the unique element that realizes p over

A;
(3) b is de�nable over some countable subset of A in N .

Result 2.2.2. ([BBHU], Exercise 10.8 and 10.11) For each element b of N ,
the following are equivalent, where p = tpN (b/A):

(1) b is algebraic over A in N ;
(2) in each model N ′ � N , the set of elements b that realize p over A in
N ′ is compact.

(3) b is algebraic over some countable subset of A in N .

Result 2.2.3. (De�nable Closure, Exercises 10.10 and 10.11 in [BBHU])

(1) If A ⊆ N then dcl(A) = dcl(dcl(A)) and acl(A) = acl(acl(A)).
(2) If A is a dense subset of B and B ⊆ N , then dcl(A) = dcl(B) and

acl(A) = acl(B).

It follows that for any A ⊆ N , dcl(A) and acl(A) are closed with respect
to the metric in N .

We now turn to the case where N is a model of TR. In that case, a set of
elements of N may contain elements of both sorts K,B. But as we will now
explain, we need only consider de�nability over sets of parameters of sort K.

Remark 2.2.4. Let N = (K̂, B̂) be a model of TR. Since every model of
T has at least two elements, N has a pair of elements a, b of sort K such

that N |= Ja = bK = ⊥. For each event D ∈ B̂, let 1D be the characteristic
function of D with respect to a, b. Then in the model N , D is de�nable over
{a, b, 1D}, and 1D is de�nable over {a, b,D}.

Proof. By Result 2.2.1. �

In view of Remark 2.2.4 and Result 2.2.3, if C is a set of parameters in N
of both sorts, and there are elements a, b ∈ C such that N |= Ja = bK = ⊥,
then an element of either sort is de�nable over C if and only if it is de�nable
over the set of parameters of sort K obtained by replacing each element of C
of sort B by its characteristic function with respect to a, b. For this reason, in
a model N of TR we will only consider de�nability over sets of parameters of
sort K. We write dclB(A) for the set of elements of sort B that are de�nable
over A in N , and write dcl(A) for the set of elements of sort K that are
de�nable over A in N . Similarly for aclB(A) and acl(A).
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2.3. Conventions and Notation. We will assume hereafter that N =
(K̂, B̂) is a model of TR, P = (K,B) is a neat randomization of a model
M |= T with probability space (Ω,B, µ), and N is the reduction of P. The
existence of P is guaranteed by Proposition 2.1.10.

We will use boldfaced letters a, b, . . . for elements of K̂. For each element

a ∈ K̂, we will choose once and for all an element a ∈ K such that the
image of a under the reduction map is a. It follows that for each �rst order
formula ϕ(~v), Jϕ(~a)K is the image of Jϕ(~a)K under the reduction map. For

any countable set A ⊆ K̂ and each ω ∈ Ω, we de�ne

A(ω) = {a(ω) : a ∈ A}.

When A ⊆ K̂, cl(A) denotes the closure of A in the metric dK. When

B ⊆ B̂, cl(B) denotes the closure of B in the metric dB, and σ(B) denotes

the smallest σ-subalgebra of B̂ containing B.

3. Randomizations of Arbitrary Theories

3.1. De�nability in Sort B. We characterize the set of elements of B̂ that

are de�nable in N over a set of parameters A ⊆ K̂.

De�nition 3.1.1. For each A ⊆ K̂, we say that an event E is �rst order
de�nable over A, in symbols E ∈ fdclB(A), if E = Jϕ(~a)K for some �rst order
formula ϕ(~v) and tuple ~a in A<N.

Theorem 3.1.2. For each A ⊆ K̂, dclB(A) = cl(fdclB(A)) = σ(fdclB(A)).

Proof. By quanti�er elimination (Result 2.1.5), in any elementary extension
N ′ � N , two events have the same type over A if and only if they have the
same type over fdclB(A). Then by Result 2.2.1, dclB(A) = dclB(fdclB(A)).
Moreover, dclB(fdclB(A)) is equal to the de�nable closure of fdclB(A) in

the measure algebra (B̂, µ). By Observation 16.7 in [BBHU], the de�n-

able closure of fdclB(A) in (B̂, µ) is equal to σ(fdclB(A)), so dclB(A) =

σ(fdclB(A)). Since fdclB(A) is a Boolean subalgebra of B̂, cl(fdclB(A)) is

a Boolean subalgebra of B̂. By metric completeness, cl(fdclB(A)) is a σ-
algebra and σ(fdclB(A)) is closed, so cl(fdclB(A)) = σ(fdclB(A)). �

Corollary 3.1.3. The only events that are de�nable without parameters in
N are > and ⊥.

Proof. For every �rst order sentence ϕ, either T |= ϕ and TR |= JϕK = >, or
T |= ¬ϕ and TR |= JϕK = ⊥. So fdclB(∅) = {>,⊥}. �

3.2. First Order and Pointwise De�nability. To prepare the way for
a characterization of the de�nable elements of sort K, we introduce two
auxiliary notions, one that is stronger than de�nability in sort K and one that
is weaker than de�nability in sort K. We will work in the neat randomization

P = (K,B) ofM, and let A be a subset of K̂ and b be an element of K̂.
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De�nition 3.2.1. A �rst order formula ϕ(u,~v) is functional if

T |= (∀~v)(∃≤1u)ϕ(u,~v).

We say that b restricted to E is �rst order de�nable over A if there is a
functional formula ϕ(u,~v) and a tuple ~a ∈ A<N such that E = Jϕ(b, ~a)K.

We say that b is �rst order de�nable over A, in symbols b ∈ fdcl(A), if b
restricted to > is �rst order de�nable over A.

Remarks 3.2.2. b is �rst order de�nable over A if and only if there is a
�rst order formula ϕ(u,~v) and a tuple ~a from A such that

µ(J(∀u)(ϕ(u, ~a)↔ u = b)K) = 1.

First order de�nability has �nite character, that is, b is �rst order de�nable
over A if and only if b is �rst order de�nable over some �nite subset of A.

If b restricted to E is �rst order de�nable over A, then E is �rst order
de�nable over A ∪ {b}.

If b restricted to D is �rst order de�nable over A, and E is �rst order
de�nable over A∪{b}, then b restricted to DuE is �rst order de�nable over
A.

Lemma 3.2.3. If b is �rst order de�nable over A then b is de�nable over
A in N . Thus fdcl(A) ⊆ dcl(A).

Proof. Let N ′ � N and suppose that tpN
′
(b) = tpN

′
(d). Then

Jϕ(b, ~a)K = Jϕ(d, ~a)K = >.

Since ϕ is functional,

J(∀t)(∀u)(ϕ(t, ~a) ∧ ϕ(u, ~a)→ t = u)K = >.

Then Jb = dK = >, so b = d, and by Result 2.2.1, b ∈ dcl(A). �

De�nition 3.2.4. When A is countable, we de�ne

Jb ∈ dclM(A)K := {ω ∈ Ω: b(ω) ∈ dclM(A(ω))}.

Lemma 3.2.5. If A is countable, then

Jb ∈ dclM(A)K =
⋃
{Jθ(b,~a)K : θ(u,~v) functional, ~a ∈ A<N},

and Jb ∈ dclM(A)K ∈ B.

Proof. By de�nition, ω ∈ Jb ∈ dclM(A)K if and only if b(ω) ∈ dclM(A(ω)).
Note that for every �rst order formula θ(u,~v), the formula

θ(u,~v) ∧ (∃≤1u) θ(u,~v)

is functional. Therefore ω ∈ Jb ∈ dclM(A)K if and only if there is a functional
formula θ(u,~v) and a tuple ~a ∈ A<N such thatM |= θ(b(ω),~a(ω)). Since A
and L are countable, Jb ∈ dclM(A)K is the union of countably many events
in B, and thus belongs to B. �
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De�nition 3.2.6. When A is countable, we say that b is pointwise de�nable
over A if

µ(Jb ∈ dclM(A)K) = 1.

Corollary 3.2.7. If A is countable, then b is pointwise de�nable over A if
and only if there is a function f on Ω such that:

(1) For each ω ∈ Ω, f(ω) is a pair 〈θω(u,~v),~aω〉 where θω(u,~v) is func-

tional and ~aω ∈ A|~v|;
(2) f is σ(fdclB(A))-measurable (i.e., the inverse image of each point

belongs to σ(fdclB(A)));
(3) M |= θω(b(ω),~aω(ω)) for almost every ω ∈ Ω.

Proof. If ω ∈ Jb ∈ dclM(A)K, let f(ω) be the �rst pair 〈θω,~aω〉 such that

θω(u,~v) is functional, ~aω ∈ A|~v|, and M |= θω(b(ω),~aω(ω)). Otherwise let
f(ω) = 〈⊥, ∅〉. The result then follows from Lemma 3.2.5. �

Lemma 3.2.8. If b is de�nable over A in N , then b is pointwise de�nable
over some countable subset of A.

Proof. By Result 2.2.1 (3), we may assume that A is countable. By Lemma
3.2.5, the measure r := µ(Jb ∈ dclM(A)K) exists. Suppose b is not pointwise
de�nable over A. Then r < 1. For each �nite collection θ1(u,~v), . . . , θn(u,~v)
of �rst order formulas, each tuple ~a ∈ A<N, and each ω ∈ Ω\ Jb ∈ dclM(A)K,
the sentence

(∃u)[u 6= b(ω) ∧
n∧

i=1

[θi(b(ω),~a(ω))↔ θi(u,~a(ω))]

holds inM, because b(ω) is not de�nable over A(ω). Therefore in P we have

µJ(∃u)[u 6= b ∧
n∧

i=1

[θi(b,~a)↔ θi(u,~a)]K ≥ 1− r.

By condition 2.1.1 (5), there is an element d ∈ K̂ such that

µJd 6= b ∧
n∧

i=1

[θi(b,~a)↔ θi(d,~a)]K ≥ 1− r.

By Lemma 2.1.8, there exists d′ ∈ K̂ such that µ(Jd′ 6= bK) ≥ 1 − r, and
Jθi(b,~a)K .

= Jθi(d′,~a)K for each i ≤ n. By compactness, in some elementary
extension of N there is an element d such that µJd 6= bK ≥ 1 − r, and
Jθ(b, ~a)K = Jθ(d, ~a)K for each �rst order formula θ(u,~v). Then d 6= b, and
by quanti�er elimination, tp(d/A) = tp(b/A). Hence by Result 2.2.1 (2),
b /∈ dcl(A). �

The following example shows that the converse of Lemma 3.2.8 fails badly.
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Example 3.2.9. Let M be a �nite structure with a constant symbol for
every element. Then every element of K is pointwise de�nable without pa-

rameters, but the only elements of K̂ that are de�nable without parameters
are the equivalence classes of constant functions b : Ω→M.

3.3. De�nability in Sort K. We will now give necessary and su�cient

conditions for an element of b ∈ K̂ to be de�nable over a parameter set

A ⊆ K̂ in N .

Theorem 3.3.1. b is de�nable over A if and only if there exist pairwise
disjoint events {En : n ∈ N} such that

∑
n∈N µ(En) = 1, and for each n, En

is de�nable over A, and b restricted to En is �rst order de�nable over A.

Proof. (⇒): Suppose b ∈ dcl(A). By Lemma 3.2.8, b is pointwise de�nable
over some countable subset A0 of A. The set of all events C such that b
restricted to C is �rst order de�nable over A0 is countable, and may be
arranged in a list {Cn : n ∈ N}. Let E0 = C0, and

En+1 = Cn+1 u ¬(C0 t · · · t Cn).

The events En are pairwise disjoint, and for each n we have

E0 t · · · t En = C0 t · · · t Cn.

By Remarks 3.2.2, for each n, b restricted to En is �rst order de�nable over
A. By Lemma 3.2.5 and pointwise de�nability,∑

n∈N
µ(En) = lim

n→∞
µ(C0 t · · · t Cn) = µ(JdclM(A0)K) = 1.

By Remarks 3.2.2, En is de�nable over A∪{b}, and since b is de�nable over
A, En is de�nable over A by Result 2.2.3.

(⇐): Let En be as in the theorem. For each n, we have En = Jθn(b, ~an)K
for some functional formula θn and tuple ~an ∈ A<N. Since En is de�nable
over A, by Theorem 3.1.2 there is a sequence of formulas ψk(~v) and tuples
~ak ∈ A<N such that

lim
k→∞

dB(Jψk(~ak)K, Jθn(b, ~a)K) = 0.

Suppose d has the same type over A as b in some elementary extension N ′
of N . Then

lim
k→∞

dB(Jψk(~ak)K, Jθn(d, ~a)K) = 0.

Hence
Jθn(d, ~an)K = Jθn(b, ~an)K = En

in N ′. Since θn(u,~v) is functional, we have Jθn(b, ~a)K v Jd = bK for each n.
Then

µ(Jd = bK) ≥
∑
n∈N

µ(En) = 1,

so d = b. Then by Result 2.2.1, b ∈ dcl(A). �
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Corollary 3.3.2. An element b ∈ K̂ is de�nable without parameters if and
only if b is �rst order de�nable without parameters. Thus dcl(∅) = fdcl(∅).

Proof. (⇒): Suppose b ∈ dcl(∅). By Theorem 3.3.1, there is an event E such
that µ(E) > 0, E is de�nable without parameters, and b restricted to E is
�rst order de�nable without parameters. By Corollary 3.1.3 we have E = >,
so b is �rst order de�nable without parameters.

(⇐): By Lemma 3.2.3. �

Corollary 3.3.3. If fdclB(A) is �nite, then dclB(A) = fdclB(A) and dcl(A) =
fdcl(A).

Proof. dclB(A) = fdclB(A) follows from Theorem 3.1.2. Lemma 3.2.3 gives
dcl(A) ⊇ fdcl(A). For the other inclusion, suppose b ∈ dcl(A). By Theorem
3.3.1, there is a �nite partition E0, . . . ,Ek of >, a tuple ~a ∈ A<N, and
�rst order formulas ψi(~v) such that Ei = Jψi(~a)K and b restricted to Ei is
�rst order de�nable. Then there are functional formulas ϕi(u,~v) such that
Ei

.
= Jϕi(b, ~a)K. We may take the formulas ψi(~v) to be pairwise inconsistent

and such that T |=
∨n

i=0 ψ(~v). Then
∧n

i=0(ψi(~v) → ϕi(u,~v)) is a functional
formula such that

J
n∧

i=0

(ψi(~a)→ ϕi(b, ~a))K = >,

so b is �rst order de�nable over A. �

Corollary 3.3.4. b is de�nable over A if and only if:

(1) b is pointwise de�nable over some countable subset of A;
(2) for each functional formula ϕ(u,~v) and tuple ~a ∈ A<N, Jϕ(b, ~a)K is

de�nable over A.

Proof. (⇒): Suppose b ∈ dcl(A). Then (1) holds by Lemma 3.2.8. Jϕ(b, ~a)K
is obviously de�nable over A∪{b}, so Jϕ(b, ~a)K is de�nable over A by Result
2.2.3, and thus (2) holds.

(⇐): Assume conditions (1) and (2). By (1) and Lemma 3.2.5, there is a
sequence of functional formulas θn(u,~v) and tuples ~an ∈ A<N such that

Jb ∈ dclM(A)K =
⋃
n∈N

Jθn(b,~an)K .
= Ω.

Let En = Jθn(b, ~an)K, so b restricted to En is �rst order de�nable over A.
By Remark 3.2.2, we may take the En to be pairwise disjoint, and thus∑

n∈N µ(En) = 1. By (2), En is de�nable over A for each n. Then by
Theorem 3.3.1, b ∈ dcl(A). �

Corollary 3.3.5. b is de�nable over A if and only if:

(1) b is pointwise de�nable over some countable subset of A;
(2) fdclB(A ∪ {b}) ⊆ dclB(A).

Theorem 3.3.6. b is de�nable over A if and only if b = limm→∞ bm, where
each bm is �rst-order de�nable over A. Thus dcl(A) = cl(fdcl(A)).



14 URI ANDREWS, ISAAC GOLDBRING, AND H. JEROME KEISLER

Proof. (⇒): Suppose that b ∈ dcl(A). If A is empty, then b is already �rst
order de�nable from A by Corollary 3.3.2. Assume A is not empty and let c ∈
A. Let {En : n ∈ N} be as in Theorem 3.3.1, and �x an ε > 0. Then for some
n,
∑n

k=0 µ(Ek) > 1 − ε. For each k, Ek is de�nable over A, so by Theorem
3.1.2, there is an event Dk ∈ fdclB(A) such that µ(Dk4Ek) < ε/n. Since the
events Ek are pairwise disjoint, we may also take the events Dk to be pairwise
disjoint. We have Ek = Jθk(b, ~ak)K for some functional θk(u,~v), so we may
assume that Dk has the additional properties that Dk v J(∃!u)θk(u, ~ak)K,
and that Dk = Jψk(~ak)K for some formula ψk(~v). Then there is a unique

element d ∈ K̂ such that{
M |= θk(d(ω),~ak(ω)) if k ≤ n and ω ∈ Jψk(~ak)K,
d(ω) = c(ω) if ω ∈ Ω \

⋃n
k=0Jψk(~ak)K.

Then d is �rst order de�nable over A, and dK(b,d) < ε.
(⇐): This follows because �rst order de�nability implies de�nability (Lemma

3.2.3) and the set dcl(A) is metrically closed (Result 2.2.3 (2)). �

The following result was proved in [Be] by an indirect argument using
Lascar types. We give a simple direct proof here.

Proposition 3.3.7. For any model N = (K̂, B̂) of TR and set A ⊆ K̂,
aclB(A) = dclB(A) and acl(A) = dcl(A).

Proof. By Results 2.2.1 and 2.2.2, we may assume N is ℵ1-saturated and A

is countable. Suppose an event E ∈ B̂ is not de�nable over A. By Result

2.2.1 and ℵ1-saturation, there exists D ∈ B̂ such that tp(D/A) = tp(E/A)
but dB(D,E) > 0. As we noted after the de�nition of TR, µ is an atomless
probability measure in every model N of TR. By ℵ1-saturation again, there

is a countable sequence of events 〈Fn : n ∈ N〉 in B̂ such that

µ(C ∩ Fn) = µ(C \ Fn) = µ(C)/2

for each n and each event C in the Boolean algebra generated by

fdclB(A) ∪ {D,E} ∪ {Fk : k < n}.

For each n, let

Dn = (D ∩ Fn) ∪ (E \ Fn).

Then for each C ∈ fdclB(A) and n ∈ N, we have

µ(Dn ∩ C) = µ(D ∩ C)/2 + µ(E ∩ C)/2 = µ(E ∩ C).

By quanti�er elimination, tp(Dn/A) = tp(E/A) for each n ∈ N. Moreover,
whenever k < n we have

Dn \ Dk = ((D \ Dk) ∩ Fn) ∪ ((E \ Dk) \ Fn),

so

µ(Dn \ Dk) = µ(D \ Dk)/2 + µ(E \ Dk)/2.
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Note that whenever tp(D′/A) = tp(D′′/A), we have µ(D′) = µ(D′′), and
hence

µ(D′ \ D′′) = µ(D′′ \ D′) = dB(D′,D′′)/2.

Therefore

dB(Dn,Dk) = dB(D,Dk)/2 + dB(E,Dk)/2 ≥ dB(D,E)/2.

It follows that the set of realizations of tp(E/A) is not compact, and E is not
algebraic over A. This shows that aclB(A) = dclB(A).

Now suppose b ∈ acl(A) \ dcl(A). There is an element c ∈ K̂ such that
tp(b/A) = tp(c/A) but dK(b, c) > 0. For each �rst order formula ψ(u,~v)
and ~a ∈ A<N, Jψ(b, ~a)K ∈ aclB({b} ∪ A) ⊆ aclB(acl(A)). By Result 2.2.3,
Jψ(b, ~a)K ∈ aclB(A). By the preceding paragraph, Jψ(b, ~a)K ∈ dclB(A).
Since tp(b/A) = tp(c/A), we have tp(Jψ(b, ~a)K/A) = tp(Jψ(c, ~a)K/A). By
Result 2.2.1, it follows that Jψ(b, ~a)K = Jψ(c, ~a)K for every �rst order formula
ψ(u,~v). Then tp(b(ω)/A(ω)) = tp(c(ω)/A(ω)) for µ-almost all ω. Since µ
is atomless and N is ℵ1-saturated, there are countably many independent

events Dn ∈ B̂ such that Dn v Jb 6= cK and µ(Dn) = dK(b, c)/2. Let cn agree
with c on Dn and agree with b elsewhere. We have tp(cn/A) = tp(b/A)
for every n ∈ N, and dK(cn, ck) = dK(b, c)/2 whenever k < n. Thus the
set of realizations of tp(b/A) is not compact, contradicting the fact that
b ∈ acl(A). �

4. A Special Case: ℵ0-categorical theories

4.1. De�nability and ℵ0-Categoricity. We use our preceding results to
characterize ℵ0-categorical theories in terms of de�nability in randomiza-
tions.

Theorem 4.1.1. The following are equivalent:

(1) T is ℵ0-categorical;
(2) For each n there are only �nitely many formulas in n variables up to

T -equivalence.
(3) fdclB(A) is �nite for every �nite A;
(4) dclB(A) is �nite for every �nite A;
(5) fdclB(A) = dclB(A) for every �nite A;
(6) fdcl(A) is �nite for every �nite A;
(7) dcl(A) is �nite for every �nite A.
(8) fdcl(A) = dcl(A) for every �nite A;

Proof. By the Ryll-Nardzewski Theorem (see [CK], Theorem 2.3.13), (1) is
equivalent to (2).

Assume (2) and let A ⊆ K̂ be �nite. Then (3) holds. Moreover, there
are only �nitely many functional formulas in |A|+ 1 variables, so (6) holds.
Then by Corollary 3.3.3, (4), (5), (7), and (8) hold.

Now assume that (2) fails.
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Proof that (3) and (4) fail : For some n there are in�nitely many formulas
in n variables that are not T -equivalent. Hence there is an n-type p in T with-
out parameters that is not isolated. So there are formulas ϕ1(~v), ϕ2(~v), . . . in
p such that for each k > 0, T |= ϕk+1 → ϕk but the formula θk = ϕk∧¬ϕk+1

is consistent with T . The formulas θk are consistent but pairwise inconsis-

tent. By Fullness, for each k > 0 there exists an n-tuple ~bk ∈ K̂n such that

Jθk(~bk)K = >. Since the measure algebra (B̂, µ) is atomless, there are pair-

wise disjoint events E1,E2, . . . in B̂ such that µ(Ek) = 2−k for each k > 0.
By applying Lemma 2.1.8 k times, we see that for each k > 0 there is an

n-tuple ~ak ∈ K̂n that agrees with ~bi on Ei whenever 0 < i ≤ k. Whenever
0 < k ≤ j, we have µ(J~ak = ~ajK) ≥ 1 − 2−k. So 〈~a1, ~a2, . . .〉 is a Cauchy

sequence, and by metric completeness the limit ~a = limk→∞ ~ak exists in K̂n.

Let A = range(~a). For each k > 0 we have Ek = J~a = ~bkK = Jθk(~a)K, so
Ek ∈ fdclB(A). Thus fdclB(A) is in�nite, so (3) fails and (4) fails.

Proof that (5) fails: Let Ek be as in the preceding paragraph. The set
fdclB(A) is countable. But the closure cl(fdclB(A)) is uncountable, because
for each set S ⊆ N \ {0}, the supremum

⊔
k∈S Ek belongs to cl(fdclB(A)).

Thus by Theorem 3.1.2,

dclB(A) = cl(fdclB(A)) 6= fdclB(A),

and (5) fails.
Proof that (6), (7), and (8) fail : By Corollary 2.1.7, there exist c,d ∈ K

such that Jc 6= dK = >. Let C be the �nite set C = A ∪ {c,d}. By
Remark 2.2.4, for any event D ∈ fdclB(A), the characteristic function 1D
of D with respect to c,d is de�nable over C. Moreover, we always have
dK(1D, 1E) = dB(D,E). It follows that fdcl(C) is in�nite, so (6) and (7)
fail. To show that (8) fails, we take an event D ∈ dclB(A) \ fdclB(A). By
Theorem 3.1.2 we have D ∈ cl(fdclB(A)). It follows that 1D ∈ cl(fdcl(C)), so
by Theorem 3.3.6, 1D ∈ dcl(C). Hence dcl(C) is uncountable. But fdcl(C)
is countable, so (8) fails. �

By the Ryll-Nardzewski Theorem, if T is ℵ0-categorical then for each n,
T has �nitely many n-types; so each type p in the variables (u,~v) has an
isolating formula, that is, a formula ϕ(u,~v) such that T |= ϕ(u,~v)↔

∧
p.

We now characterize the de�nable closure of a �nite set A ⊆ K̂ in the case
that T is ℵ0-categorical. Hereafter, when A is a �nite subset of K̂, ~a will
denote a �nite tuple whose range is A.

Corollary 4.1.2. Suppose that T is ℵ0-categorical, b ∈ K̂, and A is a �nite

subset of K̂. Then b ∈ dcl(A) if and only if:

(1) b is pointwise de�nable over A;
(2) for every isolating formula ϕ(u,~v), if µ(Jϕ(b, ~a)K) > 0 then

Jϕ(b, ~a)K = J(∃u)ϕ(u, ~a)K.

Proof. (⇒): Suppose b ∈ dcl(A). (1) holds by Lemma 3.2.8. Suppose ϕ(u,~v)
is isolating and µ(Jϕ(b, ~a)K) > 0. We have Jϕ(b, ~a)K ∈ fdclB({b} ∪ A), so
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by Corollary 3.3.5, Jϕ(b, ~a)K ∈ dclB(A). By Theorem 4.1.1, Jϕ(b, ~a)K ∈
fdclB(A). We note that (∃u)ϕ(u,~v) is an isolating formula, so J(∃u)ϕ(u, ~a)K
is an atom of fdclB(A). Therefore (2) holds.

(⇐): Assume (1) and (2). By (2), for every isolating formula ϕ(u,~v) such
that µ(Jϕ(b, ~a)K) > 0, we have

Jϕ(b, ~a)K ∈ fdclB(A).

Every formula θ(u,~v) is T -equivalent to a �nite disjunction of isolating for-
mulas in the variables (u,~v). It follows that fdclB(A ∪ {b}) ⊆ fdclB(A).
Therefore by Corollary 3.3.5, b ∈ dcl(A). �

Corollary 4.1.3. Suppose that T is ℵ0-categorical, b ∈ K̂, and A is a �nite

subset of K̂. Then b ∈ dcl(A) if and only if for every isolating formula ψ(~v)
there is a functional formula ϕ(u,~v) such that Jψ(~a)K v Jϕ(b, ~a)K.

Proof. (⇒): Suppose b ∈ dcl(A). By Theorem 4.1.1, b is �rst order de�nable
over ~a, so there is a functional formula ϕ(u,~v) such that Jϕ(b, ~a)K = >. Then
for every isolating ψ(~v) we have Jψ(~a)K v Jϕ(b, ~a)K.

(⇐): There is a �nite set {ψ0(~v), . . . , ψk(~v)} that contains exactly one
isolating formula for each |~a|-type of T . By hypothesis, for each i ≤ k there
is a functional formula ϕi(u,~v) such that Jψi(~a)K v Jϕi(b, ~a)K. Since the

formulas ψi(~v) are pairwise inconsistent, the formula
∨k

i=0(ψi(~v) ∧ ϕi(u,~v))
is functional, and

J
k∨

i=0

(ψi(~a) ∧ ϕi(b, ~a))K = >.

Hence b is �rst order de�nable over ~a, so by Lemma 3.2.3 we have b ∈
dcl(A). �

4.2. The Theory DLOR. We will use Corollary 4.1.3 to give a more natural
characterization of the de�nable closure of a �nite parameter set in a model
of DLOR, where DLO is the theory of dense linear order without endpoints.
Note that in DLO, every type in (v1, . . . , vn) has an isolating formula of the

form
∧n−1

i=1 uiαiui+1 where {u1, . . . un} = {v1, . . . , vn} and each αi ∈ {<,=}.
(This formula linearly orders the equality-equivalence classes).

Corollary 4.2.1. Let T = DLO, b ∈ K̂, and A be a �nite subset of K̂. Then
b ∈ dcl(A) if and only if for every isolating formula ψ(v1, . . . , vn) there is an
i ∈ {1, . . . , n} such that Jψ(~a)K v Jb = aiK.

Proof. For any M |= DLO and parameter set A, we have dclM(A) = A.
Therefore for every isolating formula ψ(v1, . . . , vn) and functional formula
ϕ(u, v1, . . . , vn) there exists i ∈ {1, . . . , n} such that

DLO |= (ψ(v1, . . . , vn) ∧ ϕ(u, v1, . . . , vn))→ u = vi.

The result now follows from Corollary 4.1.3. �
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In the theory DLO, we de�ne min(u, v) and max(u, v) in the usual way.

For a, b ∈ K̂, we let min(a, b) be the unique element e ∈ K̂ such that

Je = min(a, b)K = >,

and similarly for max. For �nite subsets A of K̂, min(A) and max(A) are
de�ned by repeating the two-variable functions min and max in the natural
way.

We next show that in DLOR, the de�nable closure of a �nite set can be
characterized as the closure under a �choosing function� of four variables.

De�nition 4.2.2. In the theory DLO, let ` be the function of four variables
de�ned by the condition

`(u, v, x, y) = x if u < v, and `(u, v, x, y) = y if not u < v.

For a, b, c,d ∈ K, let `(a, b, c,d) be the unique element e ∈ K̂ such that

Je = `(a, b, c, d)K = >. Given a set A ⊆ K̂, let lcl(A) be the closure of A
under the function `.

Note that in DLO, the function ` is de�nable without parameters. In both
DLO and DLOR, min(u, v) = `(u, v, u, v), and max(u, v) = `(u, v, v, u).

Proposition 4.2.3. Let T = DLO. Then for every �nite subset A of K̂,
dcl(A) = lcl(A).

Proof. It is clear that lcl(A) ⊆ dcl(A).
We prove the other inclusion. If A is empty, the result is trivial, so we

assume A is non-empty. Let 0 = min(A),1 = max(A). We have 0,1 ∈
lcl(A). Let Ω0 = J0 < 1K. Note that Ω \Ω0 = J0 = 1K. If µ(Ω0) = 0, then A
is a singleton, and we trivially have lcl(A) = dcl(A) = A. We may therefore
assume that µ(Ω0) > 0. To simplify notation we will instead assume that
Ω0 = Ω; the argument in the general case is similar.

In the following, all characteristic functions are understood to be with
respect to 0,1. Note that `(a, b,0,1) is the characteristic function of the
event Ja < bK. If d is the characteristic function of an event D and e is the
characteristic function of an event E, then `(d,1,1,0) is the characteristic
function of ¬D, min(d, e) is the characteristic function of DuE, and max(d, e)
is the characteristic function of DtE. It follows that for every quanti�er-free
�rst order formula ϕ(~v) of DLO with |~v| = |~a|, the characteristic function of
the event Jϕ(~a)K belongs to lcl(A). Since DLO admits quanti�er elimination,
the characteristic function of every event that is �rst order de�nable over A
belongs to lcl(A). Hence by Theorem 4.1.1, the characteristic function of
every event in dclB(A) belongs to lcl(A). Moreover, for every c ∈ A and
event D ∈ dclB(A) with characteristic function d, c � D := `(d,1,0, c) is the
element that agrees with c on D and agrees with 0 on the complement of D,
so c � D belongs to lcl(A). Let {D1, . . . ,Dn} be the set of atoms of dclB(A)
(which is �nite because DLO is ℵ0-categorical). By Corollary 4.2.1, every
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element of dcl(A) has the form

max(c1 � D1, . . . , cn � Dn)

for some c1, . . . , cn ∈ A. Therefore dcl(A) ⊆ lcl(A). �

Example 4.2.4. In this example we show that the exchange property fails
for DLOR, even though it holds for DLO. Thus the exchange property is
not preserved under randomizations. Let T = DLO. By Fullness, there exist

elements a, b ∈ K̂ such that max(a, b) /∈ {a, b}. Let c = max(a, b),d =
min(a, b). It is easy to check that

dcl({a, b}) = {a, b, c,d}, dcl({a, c}) = {a, c}, dcl({a}) = {a}.

Thus c ∈ dcl({a, b}) \ dcl({a}) but b /∈ dcl({a, c}).
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