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Abstract

Given a triangular array with mn random variables in the n-th row and a
growth rate {kn}∞n=1 with lim supn→∞(kn/mn) < 1, if the empirical distributions
converge for any sub-arrays with the same growth rate, then the triangular array
is asymptotically independent. In other words, if the empirical distribution of any
kn random variables in the n-th row of the triangular array is asymptotically close
in probability to the law of a randomly selected random variable among these
kn random variables, then two randomly selected random variables from the n-th
row of the triangular array are asymptotically close to being independent. This
provides a converse law of large numbers by deriving asymptotic independence
from a sample stability condition. It follows that a triangular array of random
variables is asymptotically independent if and only if the empirical distributions
converge for any sub-arrays with a given asymptotic density in (0, 1). Our proof is
based on nonstandard analysis, a general method arisen from mathematical logic,
and Loeb measure spaces in particular.
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1 Introduction

The law of large numbers says that the average of a large number of “independent”

random events is guaranteed to be approximately stable. Such an idea could be traced

back to the Italian mathematician Cardano in the 16th century.1 The corresponding

mathematical result, such as the Bernoulli weak law of large numbers, appeared in 1713.

The rigorous formulation and proof of the strong law of large numbers for a sequence of

independent and identically distributed random variables came much later (the zero-one

valued case by Borel in 1909 in [5] and the general case by Kolmogorov in 1933 in [15]).

The key assumption in the statement of the law of large numbers is the concept

of independence. Indeed, as noted in [6, page 54], “Independence may be considered

the single most important concept in probability theory,2 demarcating the latter from

measure theory and fostering an independent development. In the course of this evolution,

probability theory has been fortified by its links with the real world, and indeed the

definition of independence is the abstract counterpart of a highly intuitive and empirical

notion.”

The law of large numbers also provides a theoretical foundation for insurance. It

means that if an insurance company has a large number of customers and the risks

being insured are independent, then it can approximately balance its budget almost

surely by charging the expected loss. That is, independent risks are insurable. On the

other hand, intuition also suggests that when the risks have substantial correlations, this

kind of insurance will have problems. In practice, a standard insurance contract may

often have a special exclusion clause about large-scale disasters such as earthquakes,

wars, epidemics, etc., since such risks violate the independence assumption across the

underlying population.3

1See the Wikipedia entry http://en.wikipedia.org/wiki/Law of large numbers#History, or the
Appendix of [19] / Preface of [6].

2This is also emphasized in [18, page 233]: “Until very recently, probability theory could have been
defined to be the investigation of the concept of independence. This concept continues to provide new
problems. Also it has originated and continues to originate most of the problems where independence
is not assumed.”

3For example, after the 1994 Northridge earthquake in California, USA, nearly all insurance compa-
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Given the basic nature of the concept of independence in probability theory and the

relevance of the law of large numbers to insurance, it will be both mathematically and

empirically interesting to study converse laws of large numbers. That is, to derive some

independence assumptions which are both necessary and sufficient for the law of large

numbers to hold. One such assumption is asymptotic independence (see Definition 4

below), which is a version of the usual notions of weak dependence such as the mixing

conditions of the type discussed in [4]; see the discussion in Section 2.

The classical weak law of large numbers shows that for any sequence {gn}∞n=1

of independent identically distributed random variables with mean r,
∑n

t=1 gt(ω)/n

converges in probability to r as n → ∞. It follows that for any subsequence {gkn}∞n=1,∑n
t=1 gkt(ω)/n also converges in probability to r as n → ∞. Each sequence {gn}∞n=1

of random variables gives rise to a triangular array of random variables {fn}∞n=1 where

fn = (g1, . . . , gn) as described in Definition 2. To consider converse laws of large numbers,

we will work directly with triangular arrays of random variables with a given growth rate

as described in Definition 3.

Broadly speaking, a law of large numbers for a triangular array {fn}∞n=1 is a property

that says that under some independence (uncorelatedness) condition, the empirical

distribution (or the sample mean) of the finite collection of random variables in fn gets

close to something that depends only on n, rather than on (n, ω), as n→∞.

In Theorem 1 of this paper we show the following necessity result: for a given

triangular array of random variables taking values in a general Polish space4 and a fixed

growth rate whose upper asymptotic density is less than one, if the empirical distributions

converge for all sub-arrays with the given growth rate, then the triangular array of

nies completely stopped writing homeowners’ insurance policies altogether in the state, because under
California law (the “mandatory offer law”), companies offering homeowners’ insurance must also offer
earthquake insurance; see the Wikipedia entry https://en.wikipedia.org/wiki/Earthquake insurance.
Another example is that private war risk insurance policies for aircraft were temporarily cancelled
following the September 11, 2001 attacks and later reinstated with substantially lower indemnities; see
the Wikipedia entry https://en.wikipedia.org/wiki/War risk insurance.

4In probability theory, the term “random variable” is usually used to represent a measurable function
from a probability space to the space of real numbers. Here we still use it to refer to a measurable function
from a probability space to a general Polish space.
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random variables is asymptotically independent. Thus we have a single condition on a

triangular array, asymptotic independence, that is necessary for the law of large numbers

with respect to empirical distributions to hold for all sub-arrays with the given growth

rate.

Theorem 1 goes significantly beyond an earlier result5, Proposition 9.4 of [23], by

giving a necessity result for a fixed growth rate (even for the case with zero asymptotic

density) of random variables taking values in a general Polish space, instead of all

sub-arrays of real-valued random variables with positive lower asymptotic density.

We also extend the sufficiency from the real case to the general case–if a triangular

array of random variables taking values in a general Polish space is asymptotically

independent, then the empirical distributions converge for every sub-array with positive

lower asymptotic density. It follows as a corollary that a triangular array of random

variables is asymptotically independent if and only if the empirical distributions converge

for any sub-arrays with a given growth rate whose upper and lower asymptotic densities

are in (0, 1). Thus, we know that for a fixed number q with 0 < q < 1, the condition

of asymptotic independence for a triangular array of random variables is both necessary

and sufficient for the convergence of the empirical distributions for all sub-arrays with

asymptotic density q. Intuitively, the necessity part means that if the risks for a large

underlying population are not approximately independent, then one can form a firm

with a sufficient number of customers6 so that the firm cannot balance its budget

approximately by charging the expected losses to the sub-population.

Nonstandard analysis has been successfully applied to various areas of mathematics;

see Chapters 1–3 of [17] for basic nonstandard analysis, and Chapters 4–11 of [17] for

applications. The construction of Loeb probability spaces is key to such applications.

Example applications in probability theory include the construction of Poisson processes

5The earlier result says that for a triangular array of real-valued random variables, the empirical
distributions converge for all sub-arrays with positive lower asymptotic density, if and only if the
triangular array of random variables is asymptotically independent.

6By Theorem 1 (1), one can take this subset of agents to have a fraction q of the entire population,
or even to grow at a much slower rate than the total population – corresponding to the case of zero
asymptotic density.
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in [16], the representation of Brownian motion and Itô integral in [2], new existence

results for stochastic differential equations in [13], the theory of local time and super-

Brownian motion in [20] and [21], the Wiener sphere and Wiener measure in [8], and

more recently ergodicity of Markov processes in [9].

We shall use the method of nonstandard analysis to prove our Theorem 1. By

transferring a triangular array of random variables to a nonstandard model, one naturally

gets a process based on a Loeb product probability space. Since the limiting behaviors of

triangular arrays of random variables can be captured by processes on the Loeb product

spaces, the study of such processes can be viewed as a way of studying general triangular

arrays of random variables through the systematic applications of some measure-theoretic

techniques. The approximate condition of asymptotic independence for a triangular array

corresponds to the “exact” condition of essentially pairwise independence for a process

on a Loeb product space.7 Propositions 4 – 6 present exact results that give necessary

and sufficient conditions for essentially pairwise independence. Each of these conditions

involves constancy of sample distributions on a Loeb product space. Theorem 1 then

follows from these results for Loeb product spaces via the routine procedures of lifting

and transfer in nonstandard analysis.8

In Theorem 2, we give an analog of Theorem 1 by showing that the condition

of asymptotic uncorrelatedness for a triangular array of random variables is both

necessary and sufficient for the convergence of the sample means for all sub-arrays with

a given asymptotic density.9 Being asymptotically uncorrelated for a triangular array

corresponds to being essentially uncorrelated for a process on a Loeb product space. The

7In the discrete setting of triangular arrays of random variables, we often work with approximate
conditions such as asymptotic independence, asymptotic uncorrelatedness, convergence of empirical
distributions to a non-random distribution, and convergence of sample means to a non-random quantity.
The corresponding notions in the setting of processes on Loeb product probability spaces are the
exact conditions of essentially pairwise independence, essential uncorrelatedness, constancy of sample
distributions, and constancy of sample means. In the context of this paper, by an exact result, we mean a
result concerning exact conditions on Loeb product probability spaces in comparison with corresponding
asymptotic results involving triangular arrays.

8From a logical point of view, the use of external objects such as Loeb measure spaces does give
additional proof-theoretic power for nonstandard analysis; see the work of Henson and Keisler in [11].

9Theorem 2 goes beyond Proposition 9.2 in [23] by working with a fixed growth rate (even for the
case with zero asymptotic density) instead of all sub-arrays with positive lower asymptotic density.
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corresponding exact results for Loeb product spaces are Propositions 1 – 3.

The rest of the paper is organized as follows. The main (asymptotic) results are

stated as Theorems 1 in Subsection 2.1 and Theorem 2 in Subsection 2.2. The proof

of Theorem 2, which is simpler, is given before the proof of Theorem 1. The proof of

Theorem 2 and the corresponding exact results, Propositions 1 – 3, are in Subsection

3.1. The proof of Theorem 1 and the corresponding exact results, Propositions 4 – 6,

are in Subsection 3.2. Extensions to the case with a large number of stochastic processes

are considered in Subsection 3.3.

2 Main results

Let (Ω,F , P ) be a fixed probability space which will be used as the common sample space

of the random variables to be considered, and X a fixed complete separable metric space

(Polish space) as the value space of the random variables. We first define a triangular

array/sub-array of random variables.

Definition 1. Let {mn}∞n=1 be a sequence of positive integers such that limn→∞mn =∞.

For each n ≥ 1, let xn,1, xn,2, · · · , xn,mn be random variables from the sample space

(Ω,F , P ) to X. Let (Tn, Tn, λn) be the finite probability space with Tn = {1, 2, · · · ,mn},

where λn is the uniform probability measure defined on the power set Tn of Tn. So

integration on (Tn, Tn, λn) is just the arithmetic average.

(1) Define a process fn on Tn × Ω by letting fn(t, ω) = xn,t(ω). Such a sequence of

processes {fn}∞n=1 is usually called a triangular array of random variables.

(2) For each n ≥ 1, let An be a nonempty subset of Tn, where An is endowed with the

uniform probability measure λAn
n . A triangular sub-array {fAn

n }∞n=1 is defined by

restricting fn to An × Ω for each n ≥ 1.

We now define the triangular array corresponding to {mn}∞n=1 and a given sequence

of random variables.
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Definition 2. Let {gt}∞t=1 be a sequence of random variables from (Ω,F , P ) to X. The

corresponding triangular array of random variables is the sequence {fn}∞n=1 where fn is

the process on Tn × Ω such that fn(t, ω) = gt(ω) for (t, ω) ∈ Tn × Ω.

Next, we define a growth rate, a sub-array with a given growth rate, and asymptotic

densities.

Definition 3. By a growth rate we will mean a sequence of positive integers {kn}∞n=1

with limn→∞ kn =∞ and kn ≤ mn for each n ≥ 1. By a sub-array with the growth rate

{kn}∞n=1, we mean a triangular sub-array {fAn
n }∞n=1 such that An ⊆ Tn and the cardinality

|An| = kn for all n ≥ 1. The limits lim supn→∞(kn/mn) and lim infn→∞(kn/mn) are

called the upper asymptotic density and the lower asymptotic density respectively.

When both limits have the same value, the common value is simple called the asymptotic

density.

For the sake of clarity, we shall state the main results in two separate subsections.

Subsection 2.1 provides a characterization of asymptotic independence by the conver-

gence of empirical distributions for all sub-arrays of a given asymptotic density, while

Subsection 2.2 considers a similar characterization for asymptotic uncorrelatedness.

2.1 Characterization of asymptotic independence

For a Polish space X, ρ denotes the Prohorov distance on the space of distributions on

X, and ρ2 denotes the Prohorov distance on the space of distributions on X ×X (see [4]

for the definition of the Prohorov distance). The product of two probability measures

µ, ν is denoted by µ ⊗ ν. Let {fn}∞n=1 be a triangular array of random variables from

(Ω,F , P ) to X.

Notions of weak dependence (such as the mixing conditions in [4, Section 19]) are

widely used in probability theory and statistics to allow some correlations so that the

conclusions of classical limit theorems such as the law of large numbers or central limit

theorem continue to hold. It often means that any random variable in a given large

7



collection of random variables is approximately independent in some sense to most other

random variables in the collection. In the following definition, we formalize the notion

of asymptotic independence mentioned in the Introduction as a general version of weak

dependence.

Definition 4. For any s, t ∈ Tn, let µs
n, µ

t
n, µ

s,t
n , be the distributions of the random

variables fn(s, ·), fn(t, ·), (fn(s, ·), fn(t, ·)) on (Ω,F , P ) respectively. For any ε > 0,

define

Vn(ε) =
{

(s, t) ∈ Tn × Tn : ρ2(µs,t
n , µ

s
n ⊗ µt

n) < ε
}
.

The triangular array {fn}∞n=1 is said to be asymptotically independent if limn→∞(λn⊗

λn) (Vn(ε)) = 1 for any ε > 0.

A sequence of random variables {gn}∞n=1 from (Ω,F , P ) to X is said to be asymptot-

ically independent if its corresponding triangular array of random variables is so.

Definition 5. Fix a sequence of nonempty sets An ⊆ Tn, n ≥ 1. Let {fAn
n }∞n=1 be

the corresponding triangular sub-array of random variables. For each ω ∈ Ω, let νAn
ω

be the empirical distribution induced by fAn
n (·, ω) on An (endowed with the uniform

probability measure).10 Let νAn be the distribution of fAn
n , viewed as a random variable

on An×Ω. We say that the empirical distributions converge for the sub-array fAn
n

if the Prohorov distance ρ(νAn
ω , νAn) converges to zero in probability as n goes to infinity.

Remark 1. When the triangular array of random variables {fn}∞n=1 is real-valued, we can

use the Lévy metric on distribution functions (see [18, p. 228]) instead of the Prohorov

metric on probability distributions in the above definition.

The following theorem shows that for a triangular array of random variables,

asymptotic independence is necessary and sufficient for an asymptotic version of the

law of large numbers to hold in terms of empirical distribution convergence for all sub-

arrays with a fixed growth rate.

10For any given ω ∈ Ω and any Borel set B in X, νAn
ω (B) is the average of the occurrences of fn(t, ω)

in B for t ∈ An in the n-th row of the sub-array of random variables.
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Theorem 1. Let {fn}∞n=1 be a triangular array of random variables from a sample

probability space (Ω,F , P ) to a complete separable metric space X. Assume that the

collection of distributions induced by all the fn, n ≥ 1 on X (viewed as random variables

on Tn × Ω) is tight.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the empirical

distributions converge for every sub-array fAn
n of size kn, then the triangular array

{fn}∞n=1 is asymptotically independent.11

(2) If the triangular array {fn}∞n=1 is asymptotically independent, then for any growth

rate {kn}∞n=1 with lim infn→∞(kn/mn) > 0, the empirical distributions converge for

every sub-array fAn
n of size kn.

(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically indepen-

dent if and only if the empirical distributions converge for every sub-array fAn
n of

size kn.

(4) For a fixed number p with 0 < p < 1, the condition of asymptotic independence for

the triangular array {fn}∞n=1 is both necessary and sufficient for the convergence of

the empirical distributions for all sub-arrays with asymptotic density p.

The following example shows that the convergence of the empirical distributions for

all sub-arrays of a triangular array with asymptotic density one cannot imply asymptotic

independence.

Example 1. Let mn = n for each n ≥ 1, and let ϕ be a random variable from the

probability space (Ω,F , P ) to the set {−1, 1} such that ϕ has equal distribution on the

two points. Define a triangular array of random variables {fn}∞n=1 from (Ω,F , P ) to

{−1, 1} such that fn(t, ω) = (−1)tϕ(ω) for any (t, ω) ∈ Tn×Ω. Then, it is clear that the

11The result still holds without the assumption that kn approaches infinity. The reason we make this
assumption is to avoid the trivial case that there is a positive integer m such that kn = m for infinitely
many n’s. Consider the case that kn = m for all n. If the empirical distributions converge for every
sub-array fAn

n of size m, then one can easily obtain that the random variables in fn are asymptotically
constant, and hence trivially asymptotically independent. A similar remark applies to Theorem 2 (1).
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triangular array {fn}∞n=1 is not asymptotically independent. On the other hand, for any

nonempty subset B of {−1, 1} and any ω ∈ Ω, 1B (ϕ(ω)) + 1B (−ϕ(ω)) = 2P (ϕ ∈ B),

which implies that for any growth rate {kn}∞n=1 with limn→∞(kn/mn) = 1, the empirical

distributions converge for every sub-array fAn
n of size kn.

The next example shows that the condition of asymptotic independence for a

triangular array of random variables cannot imply the convergence of the empirical

distributions for all sub-arrays with asymptotic density zero.

Example 2. For each n ≥ 1, let mn = n2, and {ϕn}∞n=1 be a sequence of independent

random variables from the probability space (Ω,F , P ) to the set {−1, 1} such that each

random variable ϕn has equal distribution on the two points. Define a triangular array

of random variables {fn}∞n=1 from (Ω,F , P ) to {−1, 1} such that for any t ∈ Tn =

{1, 2, . . . , n2} with t = q ·n+ r and 1 ≤ r ≤ n, fn(t, ω) = ϕr(ω) for any ω) ∈ Ω. Then, it

is clear that the triangular array {fn}∞n=1 is asymptotically independent. For any n ≥ 1,

let kn = n, and An = {(q − 1) · n + 1}nq=1 with size kn. The sub-array {fAn
n }∞n=1 is of

asymptotic density zero, and for each n ≥ 1, fAn
n (t, ω) = ϕ1(ω) for all t ∈ An and ω ∈ Ω.

Hence, the empirical distributions do not converge for the sub-array {fAn
n }∞n=1.

The following is an obvious corollary of Theorem 1 in the case of a sequence of random

variables with identical distribution.

Corollary 1. Let {gn}∞n=1 be a sequence of random variables with the same distribution

µ on X, and {fn}∞n=1 be the corresponding triangular array of random variables.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the empirical

distributions converge to the theoretical distribution µ for every sub-array fAn
n of

size kn, then the sequence {gn}∞n=1 is asymptotically independent.

(2) If the sequence {gn}∞n=1 is asymptotically independent, then for any growth rate

{kn}∞n=1 with lim infn→∞(kn/mn) > 0, the empirical distributions converge to µ for

every sub-array fAn
n of size kn.
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(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically indepen-

dent if and only if the empirical distributions converge to µ for every sub-array fAn
n

of size kn.

(4) For a fixed number p with 0 < p < 1, the condition of asymptotic independence

for the sequence {gn}∞n=1 is both necessary and sufficient for the convergence of the

empirical distributions to µ for all sub-arrays of {fn}∞n=1 with asymptotic density p.

2.2 Characterization of asymptotic uncorrelatedness

In this subsection, we consider the characterization of the convergence of sample means

in terms of asymptotic uncorrelatedness. Let {fn}∞n=1 be a triangular array of random

variables from (Ω,F , P ) to the real line R. We first define the concept of uniform square

integrability.

Definition 6. The triangular array {fn}∞n=1 is said to be uniformly square integrable

if

lim
m→∞

sup
1≤n<∞

∫
|fn|>m

(fn)2d(λn ⊗ P ) = 0.

Next, we define the notion of asymptotic uncorrelatedness.

Definition 7. For any ε > 0, define

Un(ε) =

{
(s, t) ∈ Tn × Tn :

∣∣∣∣∫
Ω

fn(s, ω)fn(t, ω)dP (ω)

−
∫

Ω

fn(s, ω)dP (ω)

∫
Ω

fn(t, ω)dP (ω)

∣∣∣∣ < ε

}

The triangular array {fn}∞n=1 is said to be asymptotically uncorrelated if limn→∞(λn⊗

λn) (Un(ε)) = 1 for any ε > 0.

A sequence of real-valued random variables {gn}∞n=1 on (Ω,F , P ) is said to be

asymptotically uncorrelated if its corresponding triangular array of random variables is

so.
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The following definition formalizes the notion of sample mean convergence for a

triangular sub-array of random variables.

Definition 8. Fix a sequence of nonempty sets An ⊆ Tn, n ≥ 1. Let {fAn
n }∞n=1 be

the corresponding triangular sub-array of real-valued random variables. We say that

the sample means converge for the sub-array fAn
n if the sample average

∑
t∈An

fn(t)

|An|

converges to
∫
An×Ω

fnd(λAn
n ⊗ P ) in P -probability.

The following theorem shows that for a triangular array of random variables,

asymptotic uncorrelatedness is necessary and sufficient for an asymptotic version of the

law of large numbers to hold in terms of sample mean convergence for all sub-arrays with

a fixed growth rate.

Theorem 2. Let {fn}∞n=1 be a triangular array of real valued random variables on

(Ω,F , P ). Assume that {fn}∞n=1 is uniformly square integrable.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the sample means

converge for every sub-array fAn
n of size kn, then the triangular array {fn}∞n=1 is

asymptotically uncorrelated.

(2) If the triangular array {fn}∞n=1 is asymptotically uncorrelated, then for any growth

rate {kn}∞n=1 with lim infn→∞(kn/mn) > 0, the sample means converge for every

sub-array fAn
n of size kn.

(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically uncorre-

lated if and only if the sample means converge for every sub-array fAn
n of size kn.

(4) For a fixed number p with 0 < p < 1, the condition of asymptotic uncorrelatedness

for the triangular array {fn}∞n=1 is both necessary and sufficient for the convergence

of the sample means for all sub-arrays with asymptotic density p.

Remark 2. Example 1 (Example 2) can still be used to show that the necessity

(sufficiency) part of Theorem 2 (4) fails for p = 1 (for p = 0).
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The following result on a sequence of random variables with identical mean follows

immediately from Theorem 2.

Corollary 2. Let {gn}∞n=1 be a sequence of real-valued random variables with the same

mean r, and {fn}∞n=1 be the corresponding triangular array of random variables.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the sample means

converge to the common mean r for every sub-array fAn
n of size kn, then the sequence

{gn}∞n=1 is asymptotically uncorrelated.

(2) If the sequence {gn}∞n=1 is asymptotically uncorrelated, then for any growth rate

{kn}∞n=1 with lim infn→∞(kn/mn) > 0, the sample means converge to r for every

sub-array fAn
n of size kn.

(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically uncorre-

lated if and only if the sample means converge to r for every sub-array fAn
n of size

kn.

(4) For a fixed number p with 0 < p < 1, the condition of asymptotic uncorrelatedness

for the sequence {gn}∞n=1 is both necessary and sufficient for the convergence of the

sample means to r for all sub-arrays of {fn}∞n=1 with asymptotic density p.

3 Proofs of Theorems 1 and 2

In this section, we use the method of nonstandard analysis to prove Theorems 1 and

2. The reader is referred to the recent book [17] for terminologies and basic results of

nonstandard analysis. We shall work with two atomless Loeb probability spaces, (T, T , λ)

as an index space, and (Ω,F , P ) as a sample space. Let (T ×Ω, T ⊗ F , λ⊗ P ) be their

usual product probability space. There is another product space, (T ×Ω, T �F , λ�P )

(called the Loeb product space), which is the Loeb space of the internal product of any

two internal probability spaces corresponding respectively the Loeb probability spaces
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(T, T , λ) and (Ω,F , P ).12 A T �F -measurable function from T ×Ω to some Polish space

will be called a process. Though Proposition 6.6 in [23] indicates that (T×Ω, T �F , λ�P )

is always a strict extension of the usual product (T × Ω, T ⊗ F , λ ⊗ P ),13 the Fubini

property still holds for T � F -measurable functions (see [13] and Section 6.3.6 in [17]).

We will often use that fact, and state it here for convenience.

Fact 1. (Fubini property) If f : T × Ω→ R is T � F-integrable, then:

For almost all ω ∈ Ω, f(·, ω) is T -integrable.∫
Ω
f(t, ω)dP is T -integrable.

For almost all t ∈ T , f(t, ·) is F-integrable.∫
T
f(t, ω)dλ is F-integrable. And

∫
T×Ω

f(t, ω)dλ� P =

∫
T

∫
Ω

f(t, ω)dPdλ =

∫
Ω

∫
T

f(t, ω)dλdP.

When a triangular array of random variables is transferred to the nonstandard model,

it naturally leads to a hyperfinite collection of random variables, and a process defined on

a Loeb probability space. By applying the routine procedures of pushing-down, lifting

and transfer in nonstandard analysis, the study of such processes can be viewed as a

way of studying general triangular arrays of random variables. In particular, we begin

with the uncorrelatedness results in Subsection 3.1, because they are somewhat easier

than the independence results. First, Proposition 1 states a result in [23] that essential

uncorrelatedness is necessary and sufficient for a process on a Loeb product space to have

constant sample means for any sub-collection of random variables. The necessity part of

the result is then relaxed in Proposition 2 to any sub-collection of random variables with

a fixed measure p in (0, 1). The latter result is further extended in Proposition 3 to allow

one to consider sub-collections of random variables with zero measure. Theorem 2 then

12It is shown in [14] that the Loeb product is well-defined, that is, it depends only on the two given
Loeb probability spaces, and not on the internal spaces which generate these Loeb spaces.

13It was already noted in [2] that (T × Ω, T � F , λ� P ) extends (T × Ω, T ⊗ F , λ⊗ P ). Hoover and
D. Norman provided a specific example where the Loeb product space is a strict extension (see [1, p.
74]). In that example, T is a hyperfinite set, Ω is the internal power set on T , and both T and Ω are
endowed with the Loeb counting probability measures. Besides the general result on proper extension
in Proposition 6.6 in [23], the Loeb product is shown in [3] to be much richer than the usual product
even on null sets.
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follows from Propositions 1 and 3 by using the procedures of pushing-down, lifting and

transfer. Based on the uncorrelatedness results, the case of independence is considered

in Subsection 3.2. In Subsection 3.3, the result in Proposition 5 of Subsection 3.2 that

essentially pairwise independence is necessary for a process on a Loeb product space

to have constant sample distributions for any sub-collection of random variables with a

given measure in (0, 1) is extended to the case of hyperprocesses.14

3.1 Necessity of uncorrelatedness

In this subsection, we shall work with a real-valued process f on the Loeb product space

(T ×Ω, T �F , λ� P ). The process f is always assumed to be measurable with respect

to T � F . We will use the notation fω for the function f(·, ω) with domain T , and ft

for the function f(t, ·) with domain Ω. A real-valued F -measurable function g is said to

be essentially constant (on Ω) if there is a constant c such that g(ω) is defined and

g(ω) = c for P -almost all ω ∈ Ω. If g : Ω → R is F -integrable, then g is essentially

constant if and only if g(ω) =
∫

Ω
g dP for P -almost all ω ∈ Ω. A real-valued square

integrable process f on (T ×Ω, T �F , λ�P ) is said to have essentially uncorrelated

random variables if for (λ� λ)-almost all (s, t) ∈ T × T , fs and ft are uncorrelated, i.e.,∫
Ω

(fsft) dP = (
∫

Ω
fs dP ) (

∫
Ω
ft dP ).

We will use the following result which is proved in [23] (and also stated in [22, Theorem

2]).

Proposition 1. Let f be a real-valued square integrable process on the Loeb product space

(T × Ω, T � F , λ� P ). Then the following are equivalent.

(i) For any set A ∈ T with λ(A) > 0,
∫
A
fω dλ is essentially constant.

(ii) The process f has essentially uncorrelated random variables.

We now show that condition (i) of Proposition 1 can be weakened by taking the

measurable set A to have any fixed measure p from the open unit interval (0, 1).

14The results in Propositions 2, 5 and 7, which are stated on Loeb product spaces, can be
straightforwardly extended to the more general framework of a Fubini extension as considered in [24].
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Proposition 2. Let f be a real-valued square integrable process on the Loeb product

space (T × Ω, T � F , λ � P ). Let p be a real number in (0, 1). Then the following are

equivalent.

(i’) For any set A ∈ T with λ(A) = p,
∫
A
fω dλ is essentially constant.

(ii) The process f has essentially uncorrelated random variables.

Proof. By Proposition 1, it suffices to prove that condition (i) of Proposition 1 is

equivalent to condition (i’). It is trivial that (i) implies (i’). We prove that (i’) implies

(i). Since 0 < p < 1, one can choose a positive integer k > 1 such that p < k/(k + 1).

We first show that for any B ∈ T with λ(B) = p/k,
∫
B
fω dλ is essentially constant. Let

A1 = B. Since (k + 1)(p/k) < 1 and (T, T , λ) is atomless, there are sets A2, . . . , Ak+1 in

T such that A1, A2, . . . , Ak+1 are disjoint and λ(Ai) = p/k for all i.

Let C =
⋃k+1

i=1 Ai, and for each 1 ≤ j ≤ k + 1, let Cj = C \ Ai. Then λ(Cj) = p. By

the main assumption,
∫
Cj
fω dλ is essentially constant, and thus,

∫
C

fω dλ−
∫
Aj

fω dλ

is essentially constant. Hence, by summation, we obtain that

k+1∑
j=1

(∫
C

fω dλ−
∫
Aj

fω dλ

)
= k

∫
C

fω dλ

is essentially constant. This means that
∫
C
fω dλ is essentially constant. Therefore, the

fact that ∫
B

fω dλ =

∫
C

fω dλ−
∫
C1

fω dλ

implies that
∫
B
fω dλ is essentially constant.

Next, by induction, one can see that
∫
B
fω dλ is essentially constant for any B ∈ T

whose measure is of the form mp/kl for some positive integers l,m.

Now consider an arbitrary set B ∈ T such that 0 < λ(B) < 1. It suffices to show that∫
B
fω dλ is essentially constant. Let q = λ(B). We can express q/p as [q/p ]+

∑∞
i=1 di/k

i,
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where [q/p ] is the integer part of q/p and 0 ≤ di ≤ k − 1. Since (T, T , λ) is atomless,

there is a sequence of disjoint sets D0, D1, . . . , Di, . . . in T that forms a partition of B

with λ(D0) = [q/p ]p, and λ(Di) = dip/k
i for all i ≥ 1. For each n ≥ 0, let En = ∪ni=0Di.

Then B is the increasing union of the sets En.

It is clear that λ(En) is of the form mp/kl. Thus,
∫
En
fω dλ is essentially constant,

and hence ∫
En

fω dλ =

∫
Ω

∫
En

fω dλ dP =

∫
En×Ω

fd(λ� P )

for P -almost all ω ∈ Ω. By grouping countably many P -null sets together, there exists

a P -null set N such that for all ω /∈ N , fω is λ-integrable and

∫
En

fω dλ =

∫
En×Ω

fd(λ� P )

holds for all natural numbers n.

Hence, for each ω /∈ N ,

∫
T

1Enfω dλ =

∫
T×Ω

1En×Ωfd(λ� P )

holds for all n. Since 1Enfω is dominated by the integrable function fω and the limit of

1Enfω is 1Bfω as n goes to infinity, the Dominated Convergence Theorem implies that

lim
n→∞

∫
En

fω dλ =

∫
B

fω dλ.

Similarly, we have

lim
n→∞

∫
En×Ω

fd(λ� P ) =

∫
B×Ω

fd(λ� P ).

Therefore, ∫
B

fω dλ =

∫
B×Ω

fd(λ� P ).

Thus
∫
B
fω dλ is essentially constant, and the proof is complete.

Remark 3. Let ϕ be a random variable from the probability space (Ω,F , P ) to the set
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{−1, 1} such that it has equal distribution on the two points. Define a real-valued process

g on the Loeb product space (T × Ω, T � F , λ � P ) such that g(t, ω) = ϕ(ω) for all

(t, ω) ∈ T ×Ω. It is clear that when p = 0, (i’) holds but (ii) fails for the process g; that

is, (i’) =⇒ (ii) in Proposition 2 fails for p = 0.

Let ψ be a measurable mapping from (T, T , λ) to the set {−1, 1} such that it has equal

distribution on the two points. Define a real-valued process f on the Loeb product space

(T × Ω, T � F , λ� P ) such that f(t, ω) = ψ(t)ϕ(ω) for all (t, ω) ∈ T × Ω. As noted in

Example 3.18 of [23, p. 44], (i’) =⇒ (ii) in Proposition 2 also fails (for the process f)

when p = 1.

If T is a hyperfinite set, let (T, T , λ) denote the Loeb counting probability space on T

(generated by the internal hyperfinite counting probability measure). For each nonempty

internal set A ⊆ T let (A,A, λA) be the Loeb counting probability space on A.

The next result shows that when the index set T is hyperfinite, one can specify not

only the measure of the set A ⊆ T , but also the exact internal cardinality of A. Moreover,

the hypothesis that A has positive measure is removed.

Proposition 3. Let H be a positive infinite hyperinteger, and let T = {1, . . . , H}. Let

f be a real-valued square integrable process on (T ×Ω, T �F , λ�P ). The following are

equivalent.

(i”) There exists K ∈ T such that o(K/H) < 1 and for every internal set A ⊆ T with

internal cardinality |A| = K such that
∫
A×Ω

f d(λA�P ) exists,
∫
A
fω d(λA) is essentially

constant.

(ii) The process f has essentially uncorrelated random variables.

Proof. By Proposition 2, (ii) implies (i’). It is trivial that (i’) implies (i”), so it suffices

to assume (i”) and prove (ii).

Suppose first that p = o(K/H) > 0. Then for every set B ∈ T with λ(B) = p, there is

an internal set A ⊆ T such that its internal cardinality |A| is K, and λ(A∆B) = 0. Since∫
A
fω d(λA) is essentially constant,

∫
A
fω dλ and hence

∫
B
fω dλ are essentially constant,
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and the result follows by Proposition 2.

Now suppose that K/H ' 0. Consider any set B ∈ T such that λ(B) > 0. One

can then find an internal family of pairwise disjoint sets Ai, i ∈ I such that Ai ⊆ T and

|Ai| = K for each i ∈ I, and λ(C∆B) = 0, where C =
⋃

i∈I Ai. Let µ be the Loeb

counting probability measure on the hyperfinite set I.

We may view C as a product C = I × J with |J | = K; let ν be the Loeb counting

probability measure on J . In this case, one can also view Ai as {i} × J , λAi as ν, and

the restriction of f to C ×Ω as a function on I × J ×Ω. Since λC is the Loeb counting

probability measure on C, λC is the same as the Loeb product measure µ � ν. By

the fact in [14] that the Loeb product depends only on the two given Loeb probability

spaces, and not on the internal spaces which generate these Loeb spaces, it is easy to see

that the Loeb product measures (µ� ν) � P and µ� (ν � P ) are the same. Since f is

λC � P -integrable on C × Ω, f is also µ � (ν � P )-integrable on I × (A × Ω). By the

Fubini property for the Loeb product measure µ � (ν � P ), we know that for µ-almost

all i ∈ I,
∫
J×Ω

f (i, j, ω) d(ν � P ) exists, and

∫
I

∫
J×Ω

f (i, j, ω) d(ν � P ) dµ =

∫
C×Ω

f d(λC � P ). (1)

For µ-almost all i ∈ I, the existence of the integral
∫
J×Ω

f (i, j, ω) d(ν � P ) and the

hypothesis imply that
∫
J
f (i, j, ω) dν is essentially constant, and hence

∫
J

f (i, j, ω) dν =

∫
J×Ω

f (i, j, ω′) d(ν � P )(j, ω′) (2)

holds for P -almost all ω ∈ Ω. By the Fubini property of the Loeb product measure

µ � P , for P -almost all ω ∈ Ω, Equation (2) holds for µ-almost all i ∈ I. Hence, for

P -almost all ω ∈ Ω, Equation (2) implies that

∫
I

∫
J

f (i, j, ω) dν dµ =

∫
I

∫
J×Ω

f d(ν � P ) dµ.
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It follows from the Fubini property and Equation (1) that

∫
C

fω d(λC) =

∫
C×Ω

f d(λC � P )

for P -almost all ω ∈ Ω. Therefore

∫
B

fω dλ =

∫
B×Ω

f d(λ� P )

for P -almost all ω ∈ Ω. By the arbitrary choice of B ∈ T with λ(B) > 0, it follows from

Proposition 1 that the process f has essentially uncorrelated random variables.

We are now ready to present a

Proof of Theorem 2. Let {fn}∞n=1 be a triangular array of real valued and uniformly

square integrable random variables on a probability space (Ω,F , P ), and {kn}∞n=1 a

growth rate.

We transfer the given sequence to the nonstandard universe, to obtain a sequence

{∗fn}n∈∗N of internal processes on the associated sequence

{(∗Tn × ∗Ω, ∗Tn ⊗ ∗F , ∗λn ⊗ ∗P ) : n ∈ ∗N}

of internal probability spaces, and an internal growth rate {∗kn}n∈∗N.

The assumption of uniform square integrability on the processes {fn}∞n=1 implies

that for each n ∈ ∗N, ∗fn and ∗f 2
n are S-integrable on the internal product probability

space (∗Tn × ∗Ω, ∗Tn ⊗ ∗F , ∗λn ⊗ ∗P ) (see [2] and [17, Chapter 6]). Thus, the standard

part of ∗fn(t, ω) exists for almost all (t, ω) ∈ ∗Tn × ∗Ω (under the corresponding Loeb

measure), and the standard parts of the respective internal integrals of ∗fn and ∗f 2
n

on (∗Tn × ∗Ω, ∗Tn ⊗ ∗F , ∗λn ⊗ ∗P ) are the integrals of the respective standard parts of

∗fn(t, ω) and ∗f 2
n(t, ω) on the corresponding Loeb product space.

The definition of a growth rate insures that ∗kn ≤ |∗Tn| and that for all infinite

n ∈ ∗N, ∗kn is infinite.
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(1): Assume that lim supn→∞(kn/mn) < 1, and the sample means converge for every

sub-array fAn
n of size kn. Thus, for any positive number ε ∈ R+, limn→∞ P (LAn(ε)) = 1,

where

LAn(ε) =

{
ω ∈ Ω :

∣∣∣∣∫
An

fn(t, ω)dλn(t)−
∫
An×Ω

fnd(λn ⊗ P )

∣∣∣∣ < ε · λn(An)

}
.

By transfer and overspill, this means that for any infinite n ∈ ∗N, o(∗kn/|∗Tn|) < 1, and

for any internal An ⊆ ∗Tn with |An| = ∗kn, there is a positive infinitesimal δ such that

∗P (∗LAn(δ)) > 1− δ, where

∗LAn(δ) =

{
ω ∈ ∗Ω :

∣∣∣∣∫
An

∗fn(t, ω)d
(∗λAn

n

)
(t)−

∫
An×∗Ω

∗fnd(∗λAn
n ⊗ ∗P )

∣∣∣∣ < δ

}
.

Fix any infinite n ∈ ∗N. Denote ∗mn by H, ∗kn by K, the Loeb space of (∗Tn,
∗Tn, ∗λn)

by (T, T , λ), and the Loeb space of (∗Ω, ∗F , ∗P ) by (Ω′,F ′, P ′). Let g(t, ω) be the

standard part of ∗fn(t, ω), and

E = {(t, ω) ∈ T × Ω′ : ◦ [∗fn(t, ω)] = g(t, ω)} .

Then, (λ�P ′)(E) = 1, and g is square integrable on the Loeb product space (T×Ω′, T �

F ′, λ � P ′). For any internal A ⊆ T with |A| = K, since ∗P (LA(ε)) ' 1, we know that

for P ′-almost all ω ∈ Ω′,

∫
A

∗fn(t, ω)d
(∗λAn ) (t) '

∫
A×∗Ω

∗fnd(∗λAn ⊗ ∗P ). (3)

Assume that p = ◦(K/H) > 0 and fix any internal set A ⊆ T with internal cardinality

K. Then, 0 < λ(A) = p < 1, and
∫
A×Ω′

g d(λA � P ′) exists. We also know that

(λA � P ′) (E ∩ (A× Ω′)) = 1, the restriction ∗fn to A × Ω′ is S-integrable with the

restriction of g to A× Ω′ as its standard part, which implies that

∫
A×∗Ω

∗fnd(∗λAn ⊗ ∗P ) '
∫
A×Ω′

g d(λA � P ′). (4)
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By the Fubini property for Loeb product measure λA � P ′, we know that for P ′-almost

all ω ∈ Ω′, the restriction (∗fn)ω to A is S-integrable with the restriction of gω to A as

its standard part, and

∫
A

∗fn(t, ω)d
(∗λAn ) (t) '

∫
A

gω d(λA). (5)

By combining Equations (3) – (5),

∫
A

gω d(λA) =

∫
A×Ω′

g d(λA � P ′), (6)

holds for P ′-almost all ω ∈ Ω′. By Proposition 3, the process g has essentially

uncorrelated random variables.

Next, assume that K/H ' 0. In this case, we cannot apply the statement of

Proposition 3 directly. It may happen that for some internal set A ⊆ T with internal

cardinality K,
∫
A×Ω′

g d(λA � P ′) exists while the standard part of the restriction ∗fn to

A× Ω′ is not the restriction of g to A× Ω′. Note that λ(A) = 0. We may not have any

control on the standard part of a function on a null set. Thus, Equations (4) – (5) may

not hold for us to show the validity of Equation (6). However, the same method in the

proof of Proposition 3 can still be applied here.

As shown in the proof of Proposition 3, in order to show that the process g has

essentially uncorrelated random variables, we only need to check the essential constancy

of
∫
C
gω d(λC) for any set C ∈ T with λ(C) > 0 such that C can be viewed as an internal

product C = I × J with |J | = K. Let µ̄ (µ) and ν̄ (ν) be the internal (Loeb) counting

probability measures on the hyperfinite sets I and J respectively. Then, λC is the same

as the Loeb product measure µ � ν. For each i ∈ I, {i} × J is an internal subset of C

with internal cardinality K; Equation (3) can be rewritten using the new notation as

follows: that for P ′-almost all ω ∈ Ω′,

∫
J

(∗fn)i ω dν̄ '
∫
J×Ω′

(∗fn)i d(ν̄ ⊗ ∗P ). (7)
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It is clear that the restriction ∗fn to I×J ×Ω′ is still S-integrable with the restriction of

g to I × J × Ω′ as its standard part. By the Fubini property for Loeb product measure

µ� ν � P ′, we have the following properties:

(a) for µ-almost all i ∈ I, (∗fn)i is S-integrable on J ×Ω′ with gi as its standard part on

J × Ω′, and ∫
J×Ω′

(∗fn)i d(ν̄ ⊗ ∗P ) '
∫
J×Ω′

gi d(ν � P ′); (8)

(b) for P ′-almost all ω ∈ Ω′ and µ-almost all i ∈ I, (∗fn)i ω is S-integrable on J with gi ω

as its standard part on J , and

∫
J

(∗fn)i ω dν̄ '
∫
J

gi ω dν. (9)

It follows from Equations (7) – (9) that for P ′-almost all ω ∈ Ω′ and µ-almost all i ∈ I,

∫
J

gi ω dν =

∫
J×Ω′

gi d(ν � P ′), (10)

which implies that for P ′-almost all ω ∈ Ω′,

∫
I×J

gω d(µ� ν) =

∫
I×J×Ω′

g d(µ� ν � P ′). (11)

That is,
∫
C
gω d(λC) is essentially constant.

Hence, we have shown that the process g has essentially uncorrelated random

variables whether ◦(K/H) is positive or zero. That is,

(λ� λ)

({
(s, t) ∈ T × T :

∫
Ω′
gsgt dP

′ =

∫
Ω′
gs dP

′
∫

Ω′
gt dP

′
})

= 1. (12)

Since ∗f 2
n are S-integrable on T×Ω′, the Fubini property for Loeb product measure λ�P ′

implies that for λ-almost all t ∈ T , (∗f 2
n)t is S-integrable. Hence, for (λ� λ)-almost all

(s, t) ∈ T × T , the product function (∗fn)s (∗fn)t is also S-integrable with its standard
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part gsgt. Therefore, we obtain that for (λ� λ)-almost all (s, t) ∈ T × T ,

∫
Ω′

(∗fn)s (∗fn)t d
∗P '

∫
Ω′
gsgt dP

′. (13)

It is also clear that for λ-almost all t ∈ T , (∗fn)t is S-integrable with its standard part

gt, and ∫
Ω′

(∗fn)t d
∗P '

∫
Ω′
gt dP

′. (14)

Fix an ε ∈ R+. Equations (12) – (14) imply that the internal measure under (∗λn⊗ ∗λn)

for the internal set

{
(s, t) ∈ ∗Tn × ∗Tn :

∣∣∣∣∫
∗Ω

(∗fn)s (∗fn)t d
∗P −

∫
∗Ω

(∗fn)s d
∗P

∫
∗Ω

(∗fn)t d
∗P

∣∣∣∣ < ε

}

is infinitely close to one.

The above paragraph shows that (∗λn⊗ ∗λn)(∗Un(ε)) ' 1 for any infinite n ∈ ∗N, and

therefore limn→∞(λn ⊗ λn)(Un(ε)) = 1. This shows that the triangular array {fn}∞n=1 is

asymptotically uncorrelated.

(2): Assume that lim infn→∞(kn/mn) > 0, and the triangular array {fn}∞n=1 is

asymptotically uncorrelated. Then for any ε ∈ R+, limn→∞(λn ⊗ λn)(Un(ε)) = 1.

As in the proof of Part (1), fix any infinite n ∈ ∗N. Denote the Loeb space

of (∗Tn,
∗Tn, ∗λn) by (T, T , λ), the Loeb space of (∗Ω, ∗F , ∗P ) by (Ω′,F ′, P ′), and

the standard part of ∗fn(t, ω) by g(t, ω). By transfer and overspill, we know that

o(∗kn/|T |) > 0, and there is a positive infinitesimal δ such that (∗λn ⊗ ∗λn)(∗Un(δ)) ' 1.

Hence, the process g has essentially uncorrelated random variables. Proposition 1 implies

that for any internal set A ⊆ T with |A| = ∗kn,
∫
A
gωdλ =

∫
A×Ω′

gd(λ � P ′) holds for

P ′-almost all ω ∈ Ω′. Hence, Equations (4) and (5) imply that for any fixed ε ∈ R+, the

∗P -measure of the set

{
ω ∈ ∗Ω :

∣∣∣∣∫
A

(∗fn)ω d
(∗λAn )− ∫

A×∗Ω

∗fnd(∗λAn ⊗ ∗P )

∣∣∣∣ < ε

}
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is infinitely close to one.

Thus, for any infinite n ∈ ∗N, and any internal set An ⊆ T with |An| = ∗kn,

∗P (LAn(ε)) ' 1. Therefore, for every sub-array fAn
n (with size kn) of the triangular

array {fn}∞n=1, we have limn→∞ P (LAn(ε)) = 1.

(3) and (4) follow from (1) and (2).

3.2 Necessity of independence

In this subsection we let f be a process from the Loeb product space (T×Ω, T �F , λ�P )

to a Polish space X. The process f is said to have essentially pairwise independent

random variables if for (λ� λ)-almost all (s, t) ∈ T × T , the random variables fs and ft

are independent.

For each set A ∈ T with λ(A) > 0, we may form the probability space (A,A, λA)

where A is the collection of T -measurable subsets of A and λA = λ/λ(A). For each

ω, fA
ω denotes the restriction of fω to A. For P -almost all ω ∈ Ω, fA

ω is measurable

on (A,A, λA). The restriction of f to A × Ω is denoted by fA, which can be viewed

as a random variable on (A × Ω,A � F , λA � P ). fA
ω and fA induce Borel probability

measures λA(fA
ω )−1 and (λA � P )(fA)−1 on X.

We will use the following result which is proved in [23] (and also stated in [22, Theorem

4]).

Proposition 4. The following are equivalent.

(i) For any set A ∈ T with λ(A) > 0, λA(fA
ω )−1 = (λA�P )(fA)−1 holds for P -almost

all ω ∈ Ω.

(ii) The process f has essentially pairwise independent random variables.

Similar to Proposition 2, the next result shows that condition (i) above can be

weakened by taking the measurable set A to have any fixed measure p from the open

unit interval (0, 1).

Proposition 5. Let p be a real number in (0, 1). The following are equivalent.
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(i’) For any set A ∈ T with λ(A) = p, λA(fA
ω )−1 = λA �P (fA)−1 holds for P -almost

all ω ∈ Ω.

(ii) The process f has essentially pairwise independent random variables.

Proof. By Proposition 4, it suffices to prove that condition (i) of Proposition 4 is

equivalent to condition (i’). It is trivial that (i) implies (i’). We assume (i’) and prove

(i). Fix a countable open base {On}∞n=0 for X which is closed under finite intersections.

Fix any n ∈ N and A ∈ T with λ(A) = p. By hypotheses,

λA
(
(fA

ω )−1(On)
)

= (λ� P )A
(
(fA)−1(On)

)
holds for P -almost all ω ∈ Ω. This means that

∫
A

1On(fω) dλ =

∫
A×Ω

1On(f)d(λ� P ) (15)

holds for P -almost all ω ∈ Ω.

Next, take an arbitrary A ∈ T with λ(A) > 0. Propositions 1 and 2 imply that

Equation (15) holds for P -almost all ω ∈ Ω.

Now, by grouping countably many P -null sets together, it follows that there exists a

P -null set Ω0 such that Equation (15) holds for all n ∈ N and all ω /∈ Ω0. This means

that for any ω /∈ Ω0, the probability measures λA(fA
ω )−1 and (λ�P )A(fA)−1 agree on all

the sets On. Since the class of all the On generates the Borel algebra on X, and is also

closed under finite intersections, it follows from the result on the uniqueness of measures

(see [7], p. 45) that λA(fA
ω )−1 = (λ� P )A(fA)−1, as required.

Remark 4. When p = 1, the process f in Remark 3 also shows that (i’) =⇒ (ii) in

Proposition 5 fails.

We now prove the analogue of Proposition 3.

Proposition 6. Let H be a positive infinite hyperinteger, and let T = {1, . . . , H}. Let

(T, T , λ) be the Loeb counting probability space on T , and (A,A, λA) the Loeb counting
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probability space on A for any nonempty internal set A ⊆ T . The following are

equivalent.

(i”) There exists K ∈ T such that o(K/H) < 1 and for every internal set A ⊆ T

with internal cardinality K and where fA is measurable on (A × Ω,A � F , λA � P ),

λA(fA
ω )−1 = λA � P (fA)−1 holds for P -almost all ω ∈ Ω.

(ii) The process f has essentially pairwise independent random variables.

Proof. By Proposition 5, (ii) implies (i’). It is trivial that (i’) implies (i”), so it suffices

to assume (i”) and prove (ii).

Suppose first that p = o(K/H) > 0. As in the proof of Proposition 3, for every set

B ∈ T with λ(B) = p, there is an internal set A ⊆ T such that its internal cardinality |A|

is K, and λ(A∆B) = 0. It is obvious that fA is measurable on (A×Ω,A�F , λA � P ).

By hypothesis, for P -almost all ω ∈ Ω, λA(fA
ω )−1 = λA � P (fA)−1, which also means

that λB(fB
ω )−1 = λB � P (fB)−1. The result then follows from Proposition 5.

Now suppose that K/H ' 0. For any given internal set B ∈ T with λ(B) > 0, there

is an internal family of pairwise disjoint sets Ai, i ∈ I such that Ai ⊆ T and |Ai| = K

for each i ∈ I, and λ(C∆B) = 0, where C =
⋃

i∈I Ai. As in the proof of Proposition

3, the set C can be viewed as an internal product C = I × J with |J | = K. Let µ̄ (µ)

and ν̄ (ν) be the internal (Loeb) counting probability measures on the hyperfinite sets I

and J respectively. Then, λC is the same as the Loeb product measure µ � ν, and the

restriction of f to C×Ω is a function on I×J ×Ω. By the Fubini property for the Loeb

product measure µ� ν � P , we know that for µ-almost all i ∈ I, fi is Loeb measurable

on J × Ω. Since {i} × J is an internal subset of C with internal cardinality K, the

hypothesis indicates that for µ-almost all i ∈ I, νf−1
i ω = ν �Pf−1

i holds for P -almost all

ω ∈ Ω. By the Fubini property for the Loeb product measure µ � ν, we know that for

P -almost all ω ∈ Ω, νf−1
i ω = ν � Pf−1

i holds for µ-almost all i ∈ I. Thus, for P -almost

all ω ∈ Ω and any Borel set O in X, it follows from the Fubini property for the Loeb
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product measures µ� ν and µ� ν � P that

(µ� ν)
(
f−1
ω (O)

)
=

∫
I

ν
(
f−1
i ω (O)

)
dµ =

∫
I

(ν � P )
(
f−1
i (O)

)
dµ = (µ� ν � P )

(
f−1(O)

)
,

which implies (µ� ν)f−1
ω = (µ� ν�P )f−1. Hence, for P -almost all ω ∈ Ω, λC(fC

ω )−1 =

λC � P (fC)−1, and λB(fB
ω )−1 = λB � P (fB)−1. By Proposition 4, the process f has

essentially pairwise independent random variables.

Before proving Theorem 1, we present a simple lemma.

Lemma 1. Let X be a Polish space with its Borel σ-algebra BX , (I, Ī, µ̄) an internal

probability space with (I, I, µ) as its Loeb space, and h̄ an internal function from I to

∗X with its standard part h from I to X. Assume that h̄−1(E) ∈ Ī for any E ∈ ∗ (BX)

and let µ̄h̄−1 denote the internal distribution on ∗ (BX) induced by h̄ on (I, Ī, µ̄). Then

µ̄h̄−1 is near standard to the Borel probability measure on X defined by µh−1 under the

topology of weak convergence of Borel probability measures.

Proof. By the definition of h, we have h̄(i) ' h(i) for µ-almost all i ∈ I. Fix any bounded

continuous function ϕ on X. We know that for µ-almost all i ∈ I, ∗ϕ
(
h̄(i)

)
' ϕ (h(i)),

which means that ∗ϕ
(
h̄
)

is an internal lifting of ϕ (h). Hence,

∫
∗X

∗ϕd
(
µ̄h̄−1

)
=

∫
I

∗ϕ
(
h̄(i)

)
dµ̄ '

∫
I

ϕ (h(i)) dµ =

∫
X

ϕd
(
µh−1

)
,

which implies that the standard part of µ̄h̄−1 under the topology of weak convergence of

Borel probability measures is µh−1.

We are now ready to present a

Proof of Theorem 1. As in the proof of Theorem 2, we transfer the given sequences to

the nonstandard universe, to obtain a sequence {∗fn}n∈∗N of internal processes from the

associated sequence {(∗Tn × ∗Ω, ∗Tn ⊗ ∗F , ∗λn ⊗ ∗P ) : n ∈ ∗N} of internal probability

spaces to ∗X, and an internal growth rate {∗kn}n∈∗N.
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The tightness assumption on the processes fn implies that for each infinite n ∈ N,

the standard part of ∗fn(t, ω) exists in X for almost all (t, ω) ∈ ∗Tn × ∗Ω (under the

corresponding Loeb measure); let gn be the standard part of ∗fn on ∗Tn × ∗Ω.

(1): Assume that lim supn→∞(kn/mn) < 1, the empirical distributions converge for

every sub-array fAn
n of size kn. By transfer and overspill, this means that for any infinite

n ∈ ∗N, and any internal An ⊆ ∗Tn with |An| = ∗kn, there is a positive infinitesimal

δ > 0 such that

∗P
({
ω ∈ ∗Ω : ∗ρ

(
∗λAn

n

(∗fAn
n

)−1

ω
, ∗λAn

n ⊗ ∗P
(∗fAn

n

)−1
)
< δ
})

> 1− δ. (16)

Fix any infinite n ∈ ∗N. As before, we denote ∗mn by H, ∗kn by K, the Loeb space

of (∗Tn,
∗Tn, ∗λn) by (T, T , λ), and the Loeb space of (∗Ω, ∗F , ∗P ) by (Ω′,F ′, P ′). The

standard part of ∗fn will also be denoted by g instead of gn.

Assume that p = ◦(K/H) > 0 and fix any internal set A ⊆ T with internal cardinality

K. It is obvious that gA is the standard part of ∗fA
n , and for P ′-almost all ω ∈ Ω′, gAω is

the standard part of
(∗fA

n

)
ω
. By Lemma 1, we know that

∗ρ
(
∗λAn

(∗fA
n

)−1

ω
, λA

(
gAω
)−1
)
' 0, (17)

∗ρ
(
∗λAn ⊗ ∗P

(∗fA
n

)−1
, λA ⊗ P ′

(
gA
)−1
)
' 0. (18)

By Equations (16) – (18), we obtain that for P ′-almost all ω ∈ Ω′, λA
(
gAω
)−1

= λA ⊗

P ′
(
gA
)−1

. By Proposition 6 (recall that p < 1), the process g has essentially pairwise

independent random variables.

Next assume that ◦(K/H) = 0. As shown in the last paragraph in the proof of

Proposition 6, in order to show that the process g has essentially pairwise independent

random variables, we only need to check the essential validity of λC
(
gCω
)−1

= λC �

P ′
(
gC
)−1

for any set C ∈ T with λ(C) > 0 such that C can be viewed as an internal

product C = I × J with |J | = K. Let µ̄ (µ) and ν̄ (ν) be the internal (Loeb) counting

probability measures on the hyperfinite sets I and J respectively. Then, λC is the same
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as the Loeb product measure µ � ν. The restrictions of ∗fn and its standard part g to

C × Ω will be viewed as functions on I × J × Ω′. For each i ∈ I, {i} × J is an internal

subset of C with internal cardinality K; it follows from Equation (16) that for P ′-almost

all ω ∈ Ω′,

∗ρ
(
ν̄ (∗fn)−1

i ω , ν̄ ⊗
∗P (∗fn)−1

i

)
' 0. (19)

By the Fubini property for Loeb product measure µ � ν � P ′, we obtain that

(a) for µ-almost all i ∈ I, gi is the standard part of (∗fn)i on J × Ω′, and

∗ρ
(
ν̄ ⊗ ∗P (∗fn)−1

i , ν � P ′g−1
i

)
' 0 by Lemma 1; (b) for P ′-almost all ω ∈ Ω′ and µ-

almost all i ∈ I, gi ω is the standard part of (∗fn)i ω, ∗ρ
(
ν̄ (∗fn)−1

i ω , νg
−1
i ω

)
' 0 by Lemma

1. Hence, it follows from Equation (19) that for P ′-almost all ω ∈ Ω′, νg−1
i ω = ν � P ′g−1

i

holds for µ-almost all i ∈ I. By following the rest of the proof of Proposition 6, we can

also claim that the process g has essentially pairwise independent random variables.

Now fix any ε ∈ R+. We know that

(λ� λ)
({

(s, t) ∈ T × T : ρ2

(
P ′(gs, gt)

−1, P ′g−1
s ⊗ P ′g−1

t

)
< ε
})

= 1. (20)

The Fubini property for Loeb product measure λ�P ′ implies that for λ-almost all t ∈ T ,

gt is the standard part of (∗fn)t; and for (λ� λ)-almost all (s, t) ∈ T × T , (gs, gt) is the

standard part of ((∗fn)s , (
∗fn)t). By Lemma 1 and Equation (20), we know that the

internal measure under (∗λn ⊗ ∗λn) for the internal set

{
(s, t) ∈ ∗Tn × ∗Tn : ∗ρ2

(∗P ((∗fn)s , (
∗fn)t)

−1 , ∗P (∗fn)−1
s ⊗

∗P (∗fn)−1
t

)
< ε
}

is infinitely close to one.

The above paragraph shows that (∗λn⊗ ∗λn)(∗Vn(ε)) ' 1 for any infinite n ∈ ∗N, and

therefore limn→∞(λn ⊗ λn)(Vn(ε)) = 1. This shows that the triangular array of random

variables {fn}∞n=1 is asymptotically independent.

(2): Assume that lim infn→∞(kn/mn) > 0, and the triangular array {fn}∞n=1 is

asymptotically independent. Then for any ε ∈ R+, limn→∞(λn ⊗ λn)(Vn(ε)) = 1. As in
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the proof of Part (1), fix any infinite n ∈ ∗N. Denote the Loeb space of (∗Tn,
∗Tn, ∗λn)

by (T, T , λ), the Loeb space of (∗Ω, ∗F , ∗P ) by (Ω′,F ′, P ′), and the standard part of

∗fn(t, ω) by g(t, ω). By transfer and overspill, we know that o(∗kn/|T |) > 0, and there

is a positive infinitesimal δ such that (∗λn ⊗ ∗λn)(∗Vn(δ)) ' 1. Hence, the process g has

essentially independent random variables. Proposition 4 implies that for any internal

set A ⊆ T with |A| = ∗kn, λA
(
gAω
)−1

= λA ⊗ P ′
(
gA
)−1

holds for P ′-almost all ω ∈ Ω′.

Hence, Equations (17) – (18) imply that for any fixed ε ∈ R+,

∗P
({
ω ∈ ∗Ω : ∗ρ

(
∗λAn

n

(∗fAn
n

)−1

ω
, ∗λAn

n ⊗ ∗P
(∗fAn

n

)−1
)
< ε
})
' 1.

Therefore, for every sub-array fAn
n of size kn with n ∈ N,

lim
n→∞

P
({
ω ∈ Ω : ρ

(
λAn
n

(
fAn
n

)−1

ω
, λAn

n ⊗ P
(
fAn
n

)−1
)
< ε
})

= 1.

(3) and (4) follow from (1) and (2).

3.3 Extension to the dynamic case

Many applied probabilistic models in social sciences involve not only uncertainty and

large number of participants but also time parameters. For example, a large society

consists of many economic agents who need to make decisions about consumptions,

savings and investments in a dynamic situation. To study such mass phenomena in

a mathematical model, one is naturally led to the consideration of a continuum of

(independent) stochastic processes with time and sample parameters (to be called a

hyperprocess). As illustrated in Section 8 of [23] (and also Subsection 2.4 of [24]), many

results involving a continuum of independent random variables can be easily extended

to the corresponding dynamic case.

As in the previous part of this section, we shall work with two atomless Loeb

probability spaces, (T, T , λ) as an index space, (Ω,F , P ) as a sample space, and their

Loeb product probability space (T ×Ω, T �F , λ�P ). Let I be a set of time parameters,
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which is assumed to be the set of Z+ of positive integers or an interval (starting from 0)

in the set R+ of non-negative real numbers. Let BI be the power set of I when I is the

countable set Z+, and the Borel σ-algebra on I when I is an interval.

We shall follow the presentation in Subsection 2.4 of [24]. Let F be a real-valued

measurable function on the mixed product measurable space (T ×Ω× I, (T �F)⊗BI),

which is the usual product of the measurable space (T × Ω, T � F) with (I,BI). For

any t ∈ T , let Ft be the function on Ω× I with Ft(ω, i) = F (t, ω, i); and for any ω ∈ Ω,

let Fω be the function on T × I with Fω(t, i) = F (t, ω, i). It is clear that both Ft and

Fω are measurable stochastic processes. Thus, F can be viewed as a family of stochastic

processes, Ft, t ∈ T , with a sample space (Ω,F , P ) and a time parameter space I. For

ω ∈ Ω, Fω is called an empirical process with the index space (T, T , λ) as the sample

space. The function F itself can also be viewed as a stochastic process with sample

space T × Ω and time parameter space I. For each set A ∈ T with λ(A) > 0, let

(A,A, λA) be the probability space rescaled from (T, T , λ), and FA the restriction of F

to A×Ω× I (which can be viewed as a stochastic process with sample probability space

(A× Ω,A� F , λA � P ) and time parameter space I).

The following are the formal definitions on the independence and finite dimensional

distributions of stochastic processes.

Definition 9. (1) Two real-valued stochastic processes ϕ and ψ on the same sample

space with time parameter space I are said to be independent, if, for any positive integers

m,n, and for any i11, · · · , i1m in I, and i21, · · · , i2n in I, the random vectors (ϕi11
, · · · , ϕi1m

)

and (ψi21
, · · · , ψi2n

) are independent.

(2) We say that the stochastic processes {Ft, t ∈ T} are essentially pairwise

independent, if, for λ-almost all s ∈ T , λ-almost all t ∈ T , the stochastic processes

Fs and Ft are independent.

Definition 10. (1) Two real-valued stochastic processes ϕ and ψ on some (possibly

different) sample spaces with time parameter space I are said to have the same finite

dimensional distributions, if, for any i1, · · · , in ∈ I, the random vectors (ϕi1 , · · · , ϕin)
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and (ψi1 , · · · , ψin) have the same distribution.

(2) We say that the stochastic processes {Ft, t ∈ T} have essentially the same finite

dimensional distributions if there is a real-valued stochastic process G with time parameter

space I such that for λ-almost all t ∈ T , the stochastic processes Ft and G have the same

finite dimensional distributions.

When the time space I is discrete, a real-valued discrete parameter stochastic process

can be viewed as a random variable taking values in R∞. Thus, Proposition 5 can be

used to obtain a converse exact law of large numbers for a continuum of discrete time

processes. Similarly, for the case that I is an interval and for a stochastic process whose

paths come from some function space with a complete separable metric (for example,

the continuous function space on I or the Skorokhod space as in [10]), it can be regarded

as a random variable in the function space. Proposition 5 still applies.

To consider more general continuous time processes, we follow a technique used in [12,

p. 172] that relates a continuous time process to a discrete time process. In particular, it

is shown that for a continuous time process x on (Λ×I,A⊗BI) with a probability measure

ν on (Λ,A), there exists a sequence {in}∞n=1 in I and a Borel function ψ : R∞ × I → R,

such that for any i ∈ I, x(q, i) = ψ({x(q, in)}∞n=1, i) for ν-almost all q ∈ Λ.

Since a real-valued measurable function F on the mixed product measurable space

(T×Ω×I, (T �F)⊗BI) can be viewed as a stochastic process with sample space Λ = T×Ω

and time parameter space I, we can find a sequence {in}∞n=1 in I and a Borel function

ψ : R∞×I → R such that for all i ∈ I, F (t, ω, i) = ψ({F (t, ω, in)}∞n=1, i) for λ�P -almost

all (t, ω) ∈ T ×Ω. By modifying its values on λ� P -null sets in T ×Ω, we shall assume

from now on that for λ� P -almost all (t, ω) ∈ T × Ω, F (t, ω, i) = ψ({F (t, ω, in)}∞n=1, i)

for all i ∈ I.

The following proposition extends Proposition 5 to the dynamic case.15

15For simplicity, we only state the result in this proposition (as well as that in Proposition 8) for a
continuum of stochastic processes taking valued in the space of real numbers. The same proof works for
Polish space valued stochastic processes. We also omit the corresponding asymptotic results for a large
number of stochastic processes, which will be quite messy to be stated precisely.
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Proposition 7. Let F be a real-valued measurable function on the mixed product

measurable space (T ×Ω× I, (T �F)⊗BI), and p a positive real number less than one.

Then, the stochastic processes Ft, t ∈ T are essentially pairwise independent if and only

if for any set A ∈ T with λ(A) = p, and for P -almost all ω ∈ Ω, the empirical process

FA
ω on A × I and FA viewed as a stochastic process have the same finite dimensional

distributions.

Proof. Define a process G from T × Ω into R∞ by letting G(t, ω) = {F (t, ω, in)}∞n=1.

Then, for λ� P -almost all (t, ω) ∈ T × Ω, F (t, ω, i) = ψ(G(t, ω), i) for all i ∈ I.

Based on the fact that the Borel algebra on R∞ is generated by the cylinders of a

finite product of Borel sets in R with infinitely many copies of R, it is easy to see that

the stochastic processes Ft, t ∈ T are essentially pairwise independent if and only if the

process G has essentially pairwise independent random variables.

Fix any A ∈ T with λ(A) = p; let GA be the restriction of G to A × Ω. If for P -

almost all ω ∈ Ω, the stochastic processes FA
ω and FA have the same finite dimensional

distributions, it is easy to claim that λA
(
GA

ω

)−1
= (λA � P )

(
GA
)−1

holds for P -almost

all ω ∈ Ω by working with the time sequence {in}∞n=1 in I.

Next, assume that for P -almost all ω ∈ Ω, λA
(
GA

ω

)−1
= λA�

(
GA
)−1

. Choose D ∈ F

with P (D) = 1 such that ω ∈ D, FA(t, ω, i) = ψ(GA(t, ω), i) holds for λ-almost t ∈ A

and all i ∈ I, and λA
(
GA

ω

)−1
= λA �

(
GA
)−1

. Fix any ω ∈ D and any time points

j1, · · · , jn from I. For any bounded continuous functions φ on Rn, we have

∫
A×Ω

φ(FA
j1
, · · · , FA

jn)dλA � P =

∫
A×Ω

φ(ψ(GA(·, ·), j1), · · · , ψ(GA(·, ·), jn))dλA � P

=

∫
y∈R∞

φ(ψ(y, j1), · · · , ψ(y, jn))d(λA � P )
(
GA
)−1

=

∫
y∈R∞

φ(ψ(y, j1), · · · , ψ(y, jn))dλA
(
GA

ω

)−1

=

∫
A

φ(ψ(GA
ω (·), j1), · · · , ψ(GA

ω (·), jn))dλA

=

∫
A

φ(FA
ωj1
, · · · , Fωjn)dλA
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Hence the stochastic processes FA
ω and FA have the the same finite dimensional

distributions.

The desired equivalence result then follows from Proposition 5.

The final result extends Proposition 6 to the dynamic case. It can be proved by using

the method in the proof of Proposition 7, based on the result in Proposition 6. The

proof is omitted.

Proposition 8. Let H be a positive infinite hyperinteger, T = {1, . . . , H}, and K ∈

T with o(K/H) < 1. Let (T, T , λ) be the Loeb counting probability space on T , and

(A,A, λA) the Loeb counting probability space on A for any nonempty internal set A ⊆ T .

Let F be a real-valued measurable function on the mixed product measurable space (T ×

Ω× I, (T �F)⊗BI). Suppose that for every internal set A ⊆ T with internal cardinality

K such that FA is measurable on (A×Ω× I, (A�F)⊗BI), the empirical process FA
ω on

A×I and FA viewed as a stochastic process have the same finite dimensional distributions

for P -almost all ω ∈ Ω. Then, the stochastic processes Ft, t ∈ T are essentially pairwise

independent.
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