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Abstract

Given a triangular array of random variables and a growth rate without a full
upper asymptotic density, if the empirical distributions converge for any sub-arrays
with the same growth rate, then the triangular array is asymptotically independent.
This provides a converse law of large numbers by deriving asymptotic independence
from a sample stability condition. It follows that a triangular array of random
variables is asymptotically independent if and only if the empirical distributions
converge for any sub-arrays with a given asymptotic density in (0, 1). Our proof
uses the method of nonstandard analysis, and Loeb measure spaces in particular.
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1 Introduction

The law of large numbers says that the average of a large number of “independent”

random events is guaranteed to be approximately stable. Such an idea could

be traced back to the Italian mathematician Cardano in the 16th century.1

The corresponding mathematical result, such as the Bernoulli weak law of large

numbers, appeared in 1713. The rigorous formulation and proof of the strong law

of large numbers for a sequence of independent and identically distributed random

variables came much later (the zero-one valued case by Borel in 1909 in [5] and the

general case by Kolmogorov in 1933 in [12]).

The key assumption in the statement of the law of large numbers is the concept

of independence. Indeed, as noted in [4, page 54], “Independence may be considered

the single most important concept in probability theory,2 demarcating the latter

from measure theory and fostering an independent development. In the course of

1See the Wikipedia entry http://en.wikipedia.org/wiki/Law of large numbers#History, or the
Appendix of [16] / Preface of [4].

2This is also emphasized in [15, page 233]: “Until very recently, probability theory could have been
defined to be the investigation of the concept of independence. This concept continues to provide new
problems. Also it has originated and continues to originate most of the problems where independence
is not assumed.”
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this evolution, probability theory has been fortified by its links with the real world,

and indeed the definition of independence is the abstract counterpart of a highly

intuitive and empirical notion.”

The law of large numbers also provides a theoretical foundation for insurance.

It means that if an insurance company has a large number of customers and

the risks being insured are independent, then it can approximately balance its

budget almost surely by charging the expected loss. That is, independent risks

are insurable. On the other hand, intuition suggests that when the risks have

substantial correlations, that kind of insurance will have problems. In practice, a

standard insurance contract may often have a special exclusion clause about large-

scale disasters such as earthquakes, wars, epidemics, etc., since such risks violate

the independence assumption across the underlying population.3

Given the fundamental importance of independence in probability theory and

the key relevance of the law of large numbers to insurance, it is both theoretically

and empirically important to study converse laws of large numbers, that is,

independence assumptions that are necessary for the law of large numbers. One

such assumption is asymptotic independence (see Definition 4 below), which is a

version of the usual notions of weak dependence such as the mixing conditions of

the type discussed in [2]; see the discussion in Section 2.

The classical weak law of large numbers shows that for any sequence {gn}∞n=1 of

independent identically distributed random variables with mean r,
∑n

t=1 gt(ω)/n

converges in probability to r as n → ∞. It follows that for any subsequence

{gkn}∞n=1,
∑n

t=1 gkt(ω)/n also converges in probability to r as n → ∞. Each

sequence {gn}∞n=1 of random variables gives rise to a triangular array of random

variables {fn}∞n=1 where fn = (g1, . . . , gn) as described in Definition 2. To consider

converse laws of large numbers, we will work directly with triangular arrays of

random variables with a given growth rate as described in Definition 3.

Broadly speaking, a law of large numbers for a triangular array {fn}∞n=1 is a

3For example, after the 1994 Northridge earthquake in California, USA, nearly all insurance compa-
nies completely stopped writing homeowners insurance policies altogether in the state, because under
California law (the “mandatory offer law”), companies offering homeowners insurance must also offer
earthquake insurance; see the Wikipedia entry https://en.wikipedia.org/wiki/Earthquake insurance.
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property that says that the empirical distribution (or the sample mean) of the

finite collection of random variables in fn gets close to something that depends

only on n, rather than on (n, ω), as n→∞.

In Theorem 1 of this paper we show the following necessity result: for a given

triangular array of random variables taking values in a general Polish space and a

fixed growth rate whose upper asymptotic density is less than one, if the empirical

distributions converge for all sub-arrays with the given growth rate, then the

triangular array of random variables is asymptotically independent. Thus we have

a single condition on a triangular array, asymptotic independence, that is necessary

for the law of large numbers with respect to empirical distributions to hold for all

sub-arrays with the given growth rate.

Theorem 1 goes significantly beyond an earlier result4, Proposition 9.4 of

[20], by giving a necessity result for a fixed growth rate (even for the case with

zero asymptotic density) of random variables taking values in a general Polish

space, instead of all sub-arrays of real-valued random variables with positive lower

asymptotic density. We also extend the sufficiency from the real case to the general

case–if a triangular array of random variables taking values in a general Polish space

is asymptotically independent, then the empirical distributions converge for every

sub-array with positive lower asymptotic density. It follows as a corollary that a

triangular array of random variables is asymptotically independent if and only if the

empirical distributions converge for any sub-arrays with a given growth rate whose

upper and lower asymptotic densities are in (0, 1). Thus, we know that for a fixed

number q with 0 < q < 1, the condition of asymptotic independence for a triangular

array of random variables is both necessary and sufficient for the convergence of

the empirical distributions for all sub-arrays with asymptotic density q. Intuitively,

the necessity part means that if the risks for a large underlying population are not

approximately independent, then one can form a firm with a fraction q of the

population so that the firm cannot balance its budget approximately by charging

the expected losses to the sub-population.

4The earlier result says that for a triangular array of real-valued random variables, the empirical
distributions converge for all sub-arrays with positive lower asymptotic density, if and only if the
triangular array of random variables is asymptotically independent.
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Nonstandard analysis has been successfully applied to various areas of math-

ematics; see the first three chapters of [14] for basic nonstandard analysis. A

key construction for such applications is the so-called Loeb probability spaces.

Example applications in probability theory include the construction of Poisson

processes in [13], the representation of Brownian motion and Ito integral in [1],

new existence results for stochastic differential equations in [10], the theory of

local time and super-Brownian motion in [17] and [18], and the Wiener sphere

and Wiener measure in [7]. See also [3], [22] and [23] for other recent applications

of Loeb measures to quasirandom groups, Hilbert’s fifth problem, and spending

symmetry respectively.

We shall use the method of nonstandard analysis to prove our Theorem 1. By

transferring a triangular array of random variables to a nonstandard model, one

naturally gets a process based on a Loeb product probability space. Since the

limiting behaviors of triangular arrays of random variables can be captured by

processes on the Loeb product spaces, the study of such processes can be viewed

as a way of studying general triangular arrays of random variables through the

systematic applications of some measure-theoretic techniques. The approximate

condition of asymptotic independence for a triangular array corresponds to the

“exact” condition of essentially pairwise independence for a process on a Loeb

product space.5 Propositions 4 – 6 present exact results that give necessary and

sufficient conditions for essentially pairwise independence. Each of these conditions

involves constancy of sample distributions on a Loeb product space. Theorem 1

then follows from these results for Loeb product spaces via the routine procedures

of lifting and transfer in nonstandard analysis.6

In Theorem 2, we give an analog of Theorem 1 by showing that the condition

5In the discrete setting of triangular arrays of random variables, we often work with approximate
conditions such as asymptotic independence, asymptotic uncorrelatedness, convergence of empirical
distributions to a non-random distribution, and convergence of sample means to a non-random quantity.
The corresponding notions in the setting of processes on Loeb product probability spaces are the
exact conditions of essentially pairwise independence, essential uncorrelatedness, constancy of sample
distributions, and constancy of sample means. In the context of this paper, by an exact result, we mean a
result concerning exact conditions on Loeb product probability spaces in comparison with corresponding
asymptotic results involving triangular arrays.

6From a logical point of view, the use of external objects such as Loeb measure spaces does give
additional proof-theoretic power for nonstandard analysis; see the work of Henson and Keisler in [8].
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of asymptotic uncorrelatedness for a triangular array of random variables is both

necessary and sufficient for the convergence of the sample means for all sub-

arrays with a given asymptotic density.7 Being asymptotically uncorrelated for

a triangular array corresponds to being essentially uncorrelated for a process on a

Loeb product space. The corresponding exact results for Loeb product spaces are

Propositions 1 – 3.

The rest of the paper is organized as follows. The main (asymptotic) results

are stated as Theorems 1 in Subsection 2.1 and Theorem 2 in Subsection 2.2. The

proof of Theorem 2, which is simpler, is given before the proof of Theorem 1. The

proof of Theorem 2 and the corresponding exact results, Propositions 1 – 3, are

in Subsection 3.1. The proof of Theorem 1 and the corresponding exact results,

Propositions 4 – 6, are in Subsection 3.2. Extensions to the case with a large

number of stochastic processes are considered in Subsection 3.3.

2 Main results

Let (Ω,F , P ) be a fixed probability space which will be used as the common sample

space of the random variables to be considered, and X a fixed complete separable

metric space (Polish space) as the value space of the random variables. We first

define a triangular array/sub-array of random variables.

Definition 1. Let {mn}∞n=1 be a sequence of positive integers such that limn→∞mn =

∞. For each n ≥ 1, let xn,1, xn,2, · · · , xn,mn be random variables from the

sample space (Ω,F , P ) to X. Let (Tn, Tn, λn) be the finite probability space with

Tn = {1, 2, · · · ,mn}, where λn is the uniform probability measure defined on the

power set Tn of Tn. So integration on (Tn, Tn, λn) is just the arithmetic average.

(1) Define a process fn on Tn×Ω by letting fn(t, ω) = xn,t(ω). Such a sequence of

processes {fn}∞n=1 is usually called a triangular array of random variables.

(2) For each n ≥ 1, let An be a nonempty subset of Tn, where An is endowed with

the uniform probability measure λAn
n . A triangular sub-array {fAn

n }∞n=1 is

7Theorem 2 goes beyond Proposition 9.2 in [20] by working with a fixed growth rate (even for the
case with zero asymptotic density) instead of all sub-arrays with positive lower asymptotic density.
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defined by restricting fn to An × Ω for each n ≥ 1.

We now define the triangular array corresponding to {mn}∞n=1 and a given

sequence of random variables.

Definition 2. Let {gt}∞t=1 be a sequence of random variables from (Ω,F , P ) to X.

The corresponding triangular array of random variables is the sequence {fn}∞n=1

where fn is the process on Tn × Ω such that fn(t, ω) = gt(ω) for (t, ω) ∈ Tn × Ω.

Next, we define a growth rate, a sub-array with a given growth rate, and

asymptotic densities.

Definition 3. By a growth rate we will mean a sequence of positive integers

{kn}∞n=1 with limn→∞ kn =∞ and kn ≤ mn for each n ≥ 1. By a sub-array with

the growth rate {kn}∞n=1, we mean a triangular sub-array {fAn
n }∞n=1 such that An ⊆

Tn and the cardinality |An| = kn for all n ≥ 1. The limits lim supn→∞(kn/mn)

and lim infn→∞(kn/mn) are called the upper asymptotic density and the lower

asymptotic density respectively. When both limits have the same value, the

common value is simple called the asymptotic density.

For the sake of clarity, we shall state the main results in two separate

subsections. Subsection 2.1 provides a characterization of asymptotic independence

by the convergence of empirical distributions for all sub-arrays of a given

asymptotic density, while Subsection 2.2 considers a similar characterization for

asymptotic uncorrelatedness.

2.1 Characterization of asymptotic independence

For a Polish space X, ρ denotes the Prohorov distance on the space of distributions

on X, and ρ2 denotes the Prohorov distance on the space of distributions on X×X

(see [2] for the definition of the Prohorov distance). The product of two probability

measures µ, ν is denoted by µ ⊗ ν. Let {fn}∞n=1 be a triangular array of random

variables from (Ω,F , P ) to X.

Notions of weak dependence (such as the mixing conditions in [2, Section 19])

are widely used in probability theory and statistics to allow some correlations so
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that the conclusions of classical limit theorems such as the law of large numbers or

central limit theorem continue to hold. It often means that any random variable in

a given large collection of random variables is approximately independent in some

sense to most other random variables in the collection. In the following definition,

we formalize the notion of asymptotic independence mentioned in the Introduction

as a general version of weak dependence.

Definition 4. For any s, t ∈ Tn, let µsn, µ
t
n, µ

s,t
n , be the distributions of the random

variables fn(s, ·), fn(t, ·), (fn(s, ·), fn(t, ·)) on (Ω,F , P ) respectively. For any ε > 0,

define

Vn(ε) =
{

(s, t) ∈ Tn × Tn : ρ2(µs,tn , µ
s
n ⊗ µtn) < ε

}
.

The triangular array {fn}∞n=1 is said to be asymptotically independent if

limn→∞(λn ⊗ λn) (Vn(ε)) = 1 for any ε > 0.

A sequence of random variables {gn}∞n=1 from (Ω,F , P ) to X is said to

be asymptotically independent if its corresponding triangular array of random

variables is so.

Definition 5. Fix a sequence of nonempty sets An ⊆ Tn, n ≥ 1. Let {fAn
n }∞n=1

be the corresponding triangular sub-array of random variables. For each ω ∈ Ω,

let νAn
ω be the empirical distribution induced by fAn

n (·, ω) on An (endowed with

the uniform probability measure). Let νAn be the distribution of fAn
n , viewed as a

random variable on An×Ω. We say that the empirical distributions converge

for the sub-array fAn
n if the Prohorov distance ρ(νAn

ω , νAn) converges to zero in

probability as n goes to infinity.

Remark 1. When the triangular array of random variables {fn}∞n=1 is real-valued,

we can use the Lévy metric on distribution functions (see [15, p. 228]) instead of

the Prohorov metric on probability distributions in the above definition.

The following theorem shows that for a triangular array of random variables,

asymptotic independence is necessary and sufficient for an asymptotic version of

the law of large numbers to hold in terms of empirical distribution convergence for

all sub-arrays with a fixed growth rate.
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Theorem 1. Let {fn}∞n=1 be a triangular array of random variables from a sample

probability space (Ω,F , P ) to a complete separable metric space X. Assume that

the collection of distributions induced by all the fn, n ≥ 1 on X (viewed as random

variables on Tn × Ω) is tight.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the empirical

distributions converge for every sub-array fAn
n of size kn, then the triangular

array {fn}∞n=1 is asymptotically independent.8

(2) If the triangular array {fn}∞n=1 is asymptotically independent, then for any

growth rate {kn}∞n=1 with lim infn→∞(kn/mn) > 0, the empirical distributions

converge for every sub-array fAn
n of size kn.

(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically

independent if and only if the empirical distributions converge for every sub-

array fAn
n of size kn.

(4) For a fixed number p with 0 < p < 1, the condition of asymptotic independence

for the triangular array {fn}∞n=1 is both necessary and sufficient for the

convergence of the empirical distributions for all sub-arrays with asymptotic

density p.

The following example shows that the convergence of the empirical distributions

for all sub-arrays of a triangular array with asymptotic density one cannot imply

asymptotic independence.

Example 1. Let mn = n for each n ≥ 1, and let ϕ be a random variable from

the probability space (Ω,F , P ) to the set {−1, 1} such that ϕ has equal distribution

on the two points. Define a triangular array of random variables {fn}∞n=1 from

(Ω,F , P ) to {−1, 1} such that fn(t, ω) = (−1)tϕ(ω) for any (t, ω) ∈ Tn×Ω. Then,

it is clear that the triangular array {fn}∞n=1 is not asymptotically independent.

8The result still holds without the assumption that kn approaches infinity. The reason we make this
assumption is to avoid the trivial case that there is a positive integer m such that kn = m for infinitely
many n’s. Consider the case that kn = m for all n. If the empirical distributions converge for every
sub-array fAn

n of size m, then one can easily obtain that the random variables in fn are asymptotically
constant, and hence trivially asymptotically independent. A similar remark applies to Theorem 2 (1).
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However, for any growth rate {kn}∞n=1 with limn→∞(kn/mn) = 1, the empirical

distributions converge for every sub-array fAn
n of size kn.

The next example shows that the condition of asymptotic independence for a

triangular array of random variables cannot imply the convergence of the empirical

distributions for all sub-arrays with asymptotic density zero.

Example 2. For each n ≥ 1, let mn = n2, and {ϕn}∞n=1 be a sequence of

independent random variables from the probability space (Ω,F , P ) to the set {−1, 1}

such that each random variable ϕn has equal distribution on the two points. Define

a triangular array of random variables {fn}∞n=1 from (Ω,F , P ) to {−1, 1} such that

for any t ∈ Tn = {1, 2, . . . , n2} with t = q ·n+r and 1 ≤ r ≤ n, fn(t, ω) = ϕr(ω) for

any ω) ∈ Ω. Then, it is clear that the triangular array {fn}∞n=1 is asymptotically

independent. For any n ≥ 1, let kn = n, and An = {(q − 1) · n + 1}nq=1 with size

kn. The sub-array {fAn
n }∞n=1 is of asymptotic density zero, and for each n ≥ 1,

fAn
n (t, ω) = ϕ1(ω) for all t ∈ An and ω) ∈ Ω. Hence, the empirical distributions

do not converge for the sub-array {fAn
n }∞n=1.

The following is an obvious corollary of Theorem 1 in the case of a sequence of

random variables with identical distribution.

Corollary 1. Let {gn}∞n=1 be a sequence of random variables with the same

distribution µ on X, and {fn}∞n=1 be the corresponding triangular array of random

variables.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the empirical

distributions converge to the theoretical distribution µ for every sub-array fAn
n

of size kn, then the sequence {gn}∞n=1 is asymptotically independent.

(2) If the sequence {gn}∞n=1 is asymptotically independent, then for any growth

rate {kn}∞n=1 with lim infn→∞(kn/mn) > 0, the empirical distributions

converge to µ for every sub-array fAn
n of size kn.

(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically

independent if and only if the empirical distributions converge to µ for every

sub-array fAn
n of size kn.
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(4) For a fixed number p with 0 < p < 1, the condition of asymptotic

independence for the sequence {gn}∞n=1 is both necessary and sufficient for the

convergence of the empirical distributions to µ for all sub-arrays of {fn}∞n=1

with asymptotic density p.

2.2 Characterization of asymptotic uncorrelatedness

In this subsection, we consider the characterization of the convergence of sample

means in terms of asymptotic uncorrelatedness. Let {fn}∞n=1 be a triangular array

of random variables from (Ω,F , P ) to the real line R. We first define the concept

of uniform square integrability.

Definition 6. The triangular array {fn}∞n=1 is said to be uniformly square

integrable if

lim
m→∞

sup
1≤n<∞

∫
|fn|>m

(fn)2d(λn ⊗ P ) = 0.

Next, we define the notion of asymptotic uncorrelatedness.

Definition 7. For any ε > 0, define

Un(ε) =

{
(s, t) ∈ Tn × Tn :

∣∣∣∣∫
Ω
fn(s, ω)fn(t, ω)dP (ω)

−
∫

Ω
fn(s, ω)dP (ω)

∫
Ω
fn(t, ω)dP (ω)

∣∣∣∣ < ε

}

The triangular array {fn}∞n=1 is said to be asymptotically uncorrelated if

limn→∞(λn ⊗ λn) (Un(ε)) = 1 for any ε > 0.

A sequence of real-valued random variables {gn}∞n=1 on (Ω,F , P ) is said to

be asymptotically uncorrelated if its corresponding triangular array of random

variables is so.

The following definition formalizes the notion of sample mean convergence for

a triangular sub-array of random variables.

Definition 8. Fix a sequence of nonempty sets An ⊆ Tn, n ≥ 1. Let {fAn
n }∞n=1

be the corresponding triangular sub-array of real-valued random variables. Given
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ε > 0, define

LAn(ε) =

{
ω ∈ Ω :

∣∣∣∣∫
An

fn(t, ω)dλn(t)−
∫
An×Ω

fnd(λn ⊗ P )

∣∣∣∣ < ε · λn(An)

}
.

We say that the sample means converge for the sub-array fAn
n if

limn→∞ P
(
LAn(ε)

)
= 1 for any ε > 0.

The following theorem shows that for a triangular array of random variables,

asymptotic uncorrelatedness is necessary and sufficient for an asymptotic version

of the law of large numbers to hold in terms of sample mean convergence for all

sub-arrays with a fixed growth rate.

Theorem 2. Let {fn}∞n=1 be a triangular array of real valued random variables

on (Ω,F , P ). Assume that {fn}∞n=1 is uniformly square integrable.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the sample

means converge for every sub-array fAn
n of size kn, then the triangular array

{fn}∞n=1 is asymptotically uncorrelated.

(2) If the triangular array {fn}∞n=1 is asymptotically uncorrelated, then for any

growth rate {kn}∞n=1 with lim infn→∞(kn/mn) > 0, the sample means converge

for every sub-array fAn
n of size kn.

(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically

uncorrelated if and only if the sample means converge for every sub-array

fAn
n of size kn.

(4) For a fixed number p with 0 < p < 1, the condition of asymptotic

uncorrelatedness for the triangular array {fn}∞n=1 is both necessary and

sufficient for the convergence of the sample means for all sub-arrays with

asymptotic density p.

Remark 2. Example 1 (Example 2) can still be used to show that the necessity

(sufficiency) part of Theorem 2 (4) fails for p = 1 (for p = 0).

The following result on a sequence of random variables with identical mean

follows immediately from Theorem 2.
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Corollary 2. Let {gn}∞n=1 be a sequence of real-valued random variables with

the same mean r, and {fn}∞n=1 be the corresponding triangular array of random

variables.

(1) Let {kn}∞n=1 be a growth rate with lim supn→∞(kn/mn) < 1. If the sample

means converge to the common mean r for every sub-array fAn
n of size kn,

then the sequence {gn}∞n=1 is asymptotically uncorrelated.

(2) If the sequence {gn}∞n=1 is asymptotically uncorrelated, then for any growth

rate {kn}∞n=1 with lim infn→∞(kn/mn) > 0, the sample means converge to r

for every sub-array fAn
n of size kn.

(3) Let {kn}∞n=1 be a growth rate with 0 < lim infn→∞(kn/mn) and

lim supn→∞(kn/mn) < 1. The triangular array {fn}∞n=1 is asymptotically

uncorrelated if and only if the sample means converge to r for every sub-

array fAn
n of size kn.

(4) For a fixed number p with 0 < p < 1, the condition of asymptotic

uncorrelatedness for the sequence {gn}∞n=1 is both necessary and sufficient

for the convergence of the sample means to r for all sub-arrays of {fn}∞n=1

with asymptotic density p.

3 Proofs of Theorems 1 and 2

In this section, we use the method of nonstandard analysis to prove Theorems

1 and 2. The reader is referred to the recent book [14] for terminologies and

basic results of nonstandard analysis. We shall work with two atomless Loeb

probability spaces, (T, T , λ) as an index space, and (Ω,F , P ) as a sample space.

Let (T×Ω, T ⊗F , λ⊗P ) be their usual product probability space. There is another

product space, (T × Ω, T � F , λ � P ) (called the Loeb product space), which

is the Loeb space of the internal product of any two internal probability spaces

corresponding respectively the Loeb probability spaces (T, T , λ) and (Ω,F , P ).9

A T � F-measurable function from T × Ω to some Polish space will be called a

9It is shown in [11] that the Loeb product is well-defined, that is, it depends only on the two given
Loeb probability spaces, and not on the internal spaces which generate these Loeb spaces.
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process. Though Proposition 6.6 in [20] indicates that (T × Ω, T � F , λ � P ) is

always a strict extension of the usual product (T × Ω, T ⊗ F , λ ⊗ P ), the Fubini

property still holds for T � F-measurable functions (see [10] and Section 6.3.6 in

[14]). We will often use that fact, and state it here for convenience.

Fact 1. (Fubini property) Suppose f : T × Ω → R is T � F-integrable. Then for

almost all ω ∈ Ω, f(·, ω) is T -integrable,
∫

Ω f(t, ω)dP is F-integrable, and

∫
T×Ω

f(t, ω)dλ� P =

∫
T

∫
Ω
f(t, ω)dPdλ =

∫
Ω

∫
T
f(t, ω)dλdP.

When a triangular array of random variables is transferred to the nonstandard

model, it naturally leads to a hyperfinite collection of random variables, and a

process defined on a Loeb probability space. By applying the routine procedures

of pushing-down, lifting and transfer in nonstandard analysis, the study of such

processes can be viewed as a way of studying general triangular arrays of random

variables. In particular, we begin with the uncorrelatedness results in Subsection

3.1, because they are somewhat easier than the independence results. We show in

Proposition 2 that essential uncorrelatedness is necessary for a process on a Loeb

product space to have constant sample means for any sub-collection of random

variables with a given measure in (0, 1). Such a result is extended in Proposition

3 to allow one to consider sub-collections of random variables with zero measure.

Theorem 2 then follows from Propositions 1 and 3 by using the procedures of

pushing-down, lifting and transfer. Based on the uncorrelatedness results, the case

of independence is considered in Subsection 3.2. In Subsection 3.3, the result in

Proposition 5 of Subsection 3.2 that essentially pairwise independence is necessary

for a process on a Loeb product space to have constant sample distributions for

any sub-collection of random variables with a given measure in (0, 1) is extended

to the case of hyperprocesses.10

10The results in Propositions 2, 5 and 7, which are stated on Loeb product spaces, can be
straightforwardly extended to the more general framework of a Fubini extension as considered in [21].
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3.1 Necessity of uncorrelatedness

In this subsection, we shall work with a real-valued process f on the Loeb product

space (T×Ω, T �F , λ�P ). The process f is always assumed to be measurable with

respect to T �F . We will use the notation fω for the function f(·, ω) with domain

T , and ft for the function f(t, ·) with domain Ω. A real-valued F-measurable

function g is said to be essentially constant (on Ω) if there is a constant c such

that g(ω) is defined and g(ω) = c for P -almost all ω ∈ Ω. If g : Ω → R, then

g is essentially constant if and only if g(ω) =
∫

Ω g dP for P -almost all ω ∈ Ω. A

real-valued square integrable process f on (T × Ω, T � F , λ � P ) is said to have

essentially uncorrelated random variables if for (λ�λ)-almost all (s, t) ∈ T×T ,

fs and ft are uncorrelated, i.e.,
∫

Ω(fsft) dP = (
∫

Ω fs dP ) (
∫

Ω ft dP ).

We will use the following result which is proved in [20] (and also stated in [19,

Theorem 2]).

Proposition 1. Let f be a real-valued square integrable process on the Loeb product

space (T × Ω, T � F , λ� P ). Then the following are equivalent.

(i) For any set A ∈ T with λ(A) > 0,
∫
A fω dλ is essentially constant.

(ii) The process f has essentially uncorrelated random variables.

We now show that condition (i) of Proposition 1 can be weakened by taking the

measurable set A to have any fixed measure p from the open unit interval (0, 1).

Proposition 2. Let f be a real-valued square integrable process on the Loeb product

space (T × Ω, T � F , λ� P ). Let p be a real number in (0, 1). Then the following

are equivalent.

(i’) For any set A ∈ T with λ(A) = p,
∫
A fω dλ is essentially constant.

(ii) The process f has essentially uncorrelated random variables.

Proof. By Proposition 1, it suffices to prove that condition (i) of Proposition 1 is

equivalent to condition (i’). It is trivial that (i) implies (i’). We prove that (i’)

implies (i). Since 0 < p < 1, one can choose a positive integer k > 1 such that

p < k/(k + 1). We first show that for any B ∈ T with λ(B) = p/k,
∫
B fω dλ

is essentially constant. Let A1 = B. Since (k + 1)(p/k) < 1 and (T, T , λ) is
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atomless, there are sets A2, . . . , Ak+1 in T such that A1, A2, . . . , Ak+1 are disjoint

and λ(Ai) = p/k for all i.

Let C =
⋃k+1

i=1 Ai, and for each 1 ≤ j ≤ k+1, let Cj = C \Ai. Then λ(Cj) = p.

By the main assumption,
∫
Cj
fω dλ is essentially constant, and thus,

∫
C
fω dλ−

∫
Aj

fω dλ

is essentially constant. Hence, by summation, we obtain that

k+1∑
j=1

(∫
C
fω dλ−

∫
Aj

fω dλ

)
= k

∫
C
fω dλ

is essentially constant. This means that
∫
C fω dλ is essentially constant. Therefore,

the fact that ∫
B
fω dλ =

∫
C
fω dλ−

∫
C1

fω dλ

implies that
∫
B fω dλ is essentially constant.

Next, by induction, one can see that
∫
B fω dλ is essentially constant for any

B ∈ T whose measure is of the form mp/kl for some positive integers l,m.

Now consider an arbitrary set B ∈ T such that 0 < λ(B) < 1. It suffices to

show that
∫
B fω dλ is essentially constant. Let q = λ(B). We can express q/p as

[q/p ]+
∑∞

i=1 di/k
i, where [q/p ] is the integer part of q/p and 0 ≤ di ≤ k−1. Since

(T, T , λ) is atomless, there is a sequence of disjoint sets D0, D1, . . . , Di, . . . in T

that forms a partition of B with λ(D0) = [q/p ]p, and λ(Di) = dip/k
i for all i ≥ 1.

For each n ≥ 0, let En = ∪ni=0Di. Then B is the increasing union of the sets En.

It is clear that λ(En) is of the form mp/kl. Thus,
∫
En
fω dλ is essentially

constant, and hence

∫
En

fω dλ =

∫
Ω

∫
En

fω dλ dP =

∫
En×Ω

fd(λ� P )

for P -almost all ω ∈ Ω. By grouping countably many P -null sets together, there
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exists a P -null set N such that for all ω /∈ N , fω is λ-integrable and

∫
En

fω dλ =

∫
En×Ω

fd(λ� P )

holds for all natural numbers n.

Hence, for each ω /∈ N ,

∫
T

1Enfω dλ =

∫
T×Ω

1En×Ωfd(λ� P )

holds for all n. Since 1Enfω is dominated by the integrable function fω and the

limit of 1Enfω is 1Bfω as n goes to infinity, the Dominated Convergence Theorem

implies that

lim
n→∞

∫
En

fω dλ =

∫
B
fω dλ.

Similarly, we have

lim
n→∞

∫
En×Ω

fd(λ� P ) =

∫
B×Ω

fd(λ� P ).

Therefore, ∫
B
fω dλ =

∫
B×Ω

fd(λ� P ).

Thus
∫
B fω dλ is essentially constant, and the proof is complete.

Remark 3. Let ϕ be a random variable from the probability space (Ω,F , P ) to

the set {−1, 1} such that it has equal distribution on the two points. Define a

real-valued process g on the Loeb product space (T × Ω, T � F , λ � P ) such that

g(t, ω) = ϕ(ω) for all (t, ω) ∈ T ×Ω. It is clear that when p = 0, (i’) holds but (ii)

fails for the process g; that is, (i’) =⇒ (ii) in Proposition 2 fails for p = 0.

Let ψ be a measurable mapping from (T, T λ) to the set {−1, 1} such that it

has equal distribution on the two points. Define a real-valued process f on the

Loeb product space (T × Ω, T � F , λ � P ) such that f(t, ω) = ψ(t)ϕ(ω) for all

(t, ω) ∈ T ×Ω. As noted in Example 3.18 of [20, p. 44], (i’) =⇒ (ii) in Proposition

2 also fails (for the process f) when p = 1.
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If T is a hyperfinite set, let (T, T , λ) denote the Loeb counting probability space

on T (generated by the internal hyperfinite counting probability measure). For each

nonempty internal set A ⊆ T let (A,A, λA) be the Loeb counting probability space

on A.

The next result shows that when the index set T is hyperfinite, one can specify

not only the measure of the set A ⊆ T , but also the exact internal cardinality of

A. Moreover, the hypothesis that A has positive measure is removed.

Proposition 3. Let H be a positive infinite hyperinteger, and let T = {1, . . . ,H}.

Let f be a real-valued square integrable process on (T × Ω, T � F , λ � P ). The

following are equivalent.

(i”) There exists K ∈ T such that o(K/H) < 1 and for every internal set A ⊆ T

with internal cardinality |A| = K such that
∫
A×Ω f d(λA � P ) exists,

∫
A fω d(λA)

is essentially constant.

(ii) The process f has essentially uncorrelated random variables.

Proof. By Proposition 2, (ii) implies (i’). It is trivial that (i’) implies (i”), so it

suffices to assume (i”) and prove (ii).

Suppose first that p = o(K/H) > 0. Then for every set B ∈ T with λ(B) = p,

there is an internal set A ⊆ T such that its internal cardinality |A| is K, and

λ(A∆B) = 0. Since
∫
A fω d(λA) is essentially constant,

∫
A fω dλ and hence

∫
B fω dλ

are essentially constant, and the result follows by Proposition 2.

Now suppose that K/H ' 0. Consider any set B ∈ T such that λ(B) > 0.

One can then find an internal family of pairwise disjoint sets Ai, i ∈ I such that

Ai ⊆ T and |Ai| = K for each i ∈ I, and λ(C∆B) = 0, where C =
⋃

i∈I Ai. Let µ

be the Loeb counting probability measure on the hyperfinite set I.

We may view C as a product C = I × J with |J | = K; let ν be the Loeb

counting probability measure on J . In this case, one can also view Ai as {i} × J ,

λAi as ν, and the restriction of f to C ×Ω as a function on I × J ×Ω. Since λC is

the Loeb counting probability measure on C, λC is the same as the Loeb product

measure µ � ν. By the fact in [11] that the Loeb product depends only on the

two given Loeb probability spaces, and not on the internal spaces which generate

these Loeb spaces, it is easy to see that the Loeb product measures (µ � ν) � P
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and µ � (ν � P ) are the same. Since f is λC � P -integrable on C × Ω, f is also

µ�(ν�P )-integrable on I×(A×Ω). By the Fubini property for the Loeb product

measure µ� (ν �P ), we know that for µ-almost all i ∈ I,
∫
J×Ω f (i, j, ω) d(ν �P )

exists, and

∫
I

∫
J×Ω

f (i, j, ω) d(ν � P ) dµ =

∫
C×Ω

f d(λC � P ). (1)

For µ-almost all i ∈ I, the existence of the integral
∫
J×Ω f (i, j, ω) d(ν�P ) and

the hypothesis imply that
∫
J f (i, j, ω) dν is essentially constant, and hence

∫
J
f (i, j, ω) dν =

∫
J×Ω

f
(
i, j, ω′

)
d(ν � P )(j, ω′) (2)

holds for P -almost all ω ∈ Ω. By the Fubini property of the Loeb product measure

µ � P , for P -almost all ω ∈ Ω, Equation (2) holds for µ-almost all i ∈ I. Hence,

for P -almost all ω ∈ Ω, Equation (2) implies that

∫
I

∫
J
f (i, j, ω) dν dµ =

∫
I

∫
J×Ω

f d(ν � P ) dµ.

It follows from the Fubini property and Equation (1) that

∫
C
fω d(λC) =

∫
C×Ω

f d(λC � P )

for P -almost all ω ∈ Ω. Therefore

∫
B
fω dλ =

∫
B×Ω

f d(λ� P )

for P -almost all ω ∈ Ω. By the arbitrary choice of B ∈ T with λ(B) > 0, it

follows from Proposition 1 that the process f has essentially uncorrelated random

variables.

We are now ready to present a

Proof of Theorem 2. Let {fn}∞n=1 be a triangular array of real valued and uni-

formly square integrable random variables on a probability space (Ω,F , P ), and
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{kn}∞n=1 a growth rate.

We transfer the given sequence to the nonstandard universe, to obtain a

sequence {∗fn}n∈∗N of internal processes on the associated sequence

{(∗Tn × ∗Ω, ∗Tn ⊗ ∗F , ∗λn ⊗ ∗P ) : n ∈ ∗N}

of internal probability spaces, and an internal growth rate {∗kn}n∈∗N.

The assumption of uniform square integrability on the processes {fn}∞n=1

implies that for each n ∈ ∗N, ∗fn and ∗f2
n are S-integrable on the internal product

probability space (∗Tn × ∗Ω, ∗Tn ⊗ ∗F , ∗λn ⊗ ∗P ) (see [1] and [14, Chapter 6]).

Thus, the standard part of ∗fn(t, ω) exists for almost all (t, ω) ∈ ∗Tn × ∗Ω (under

the corresponding Loeb measure), and the standard parts of the respective internal

integrals of ∗fn and ∗f2
n on (∗Tn × ∗Ω, ∗Tn ⊗ ∗F , ∗λn ⊗ ∗P ) are the integrals of the

respective standard parts of ∗fn(t, ω) and ∗f2
n(t, ω) on the corresponding Loeb

product space.

The definition of a growth rate insures that ∗kn ≤ |∗Tn| and that for all infinite

n ∈ ∗N, ∗kn is infinite.

(1): Assume that lim supn→∞(kn/mn) < 1, and the sample means converge

for every sub-array fAn
n of size kn. Then limn→∞ P (LAn(ε)) = 1 for any positive

number ε ∈ R+. By transfer and overspill, this means that for any infinite n ∈ ∗N,

o(∗kn/|∗Tn|) < 1, and for any internal An ⊆ ∗Tn with |An| = ∗kn, there is a positive

infinitesimal δ such that ∗P (∗LAn(δ)) > 1− δ, where

∗LAn(δ) =

{
ω ∈ ∗Ω :

∣∣∣∣∫
An

∗fn(t, ω)d
(∗λAn

n

)
(t)−

∫
An×∗Ω

∗fnd(∗λAn
n ⊗ ∗P )

∣∣∣∣ < δ

}
.

Fix any infinite n ∈ ∗N. Denote ∗mn by H, ∗kn by K, the Loeb space of

(∗Tn,
∗Tn, ∗λn) by (T, T , λ), and the Loeb space of (∗Ω, ∗F , ∗P ) by (Ω′,F ′, P ′). Let

g(t, ω) be the standard part of ∗fn(t, ω), and

E =
{

(t, ω) ∈ T × Ω′ : ◦ [∗fn(t, ω)] = g(t, ω)
}
.

Then, (λ � P ′)(E) = 1, and g is square integrable on the Loeb product space
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(T×Ω′, T �F ′, λ�P ′). For any internal A ⊆ T with |A| = K, since ∗P (LA(ε)) ' 1,

we know that for P ′-almost all ω ∈ Ω′,

∫
A

∗fn(t, ω)d
(∗λAn ) (t) '

∫
A×∗Ω

∗fnd(∗λAn ⊗ ∗P ). (3)

Assume that p = ◦(K/H) > 0 and fix any internal set A ⊆ T with internal

cardinality K. Then, 0 < λ(A) = p < 1, and
∫
A×Ω′ g d(λA � P ′) exists. We also

know that (λA�P ′) (E ∩ (A× Ω′)) = 1, the restriction ∗fn to A×Ω′ is S-integrable

with the restriction of g to A× Ω′ as its standard part, which implies that

∫
A×∗Ω

∗fnd(∗λAn ⊗ ∗P ) '
∫
A×Ω′

g d(λA � P ′). (4)

By the Fubini property for Loeb product measure λA � P ′, we know that for P ′-

almost all ω ∈ Ω′, the restriction (∗fn)ω to A is S-integrable with the restriction

of gω to A as its standard part, and

∫
A

∗fn(t, ω)d
(∗λAn ) (t) '

∫
A
gω d(λA). (5)

By combining Equations (3) – (5),

∫
A
gω d(λA) =

∫
A×Ω′

g d(λA � P ′), (6)

holds for P ′-almost all ω ∈ Ω′. By Proposition 3, the process g has essentially

uncorrelated random variables.

Next, assume that K/H ' 0. In this case, we cannot apply the statement

of Proposition 3 directly. It may happen that for some internal set A ⊆ T with

internal cardinality K,
∫
A×Ω′ g d(λA � P ′) exists while the standard part of the

restriction ∗fn to A×Ω′ is not the restriction of g to A×Ω′. Note that λ(A) = 0.

We may not have any control on the standard part of a function on a null set.

Thus, Equations (4) – (5) may not hold for us to show the validity of Equation

(6). However, the same method in the proof of Proposition 3 can still be applied

here.

As shown in the proof of Proposition 3, in order to show that the process g
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has essentially uncorrelated random variables, we only need to check the essential

constancy of
∫
C gω d(λC) for any set C ∈ T with λ(C) > 0 such that C can be

viewed as an internal product C = I × J with |J | = K. Let µ̄ (µ) and ν̄ (ν) be

the internal (Loeb) counting probability measures on the hyperfinite sets I and J

respectively. Then, λC is the same as the Loeb product measure µ � ν. For each

i ∈ I, {i} × J is an internal subset of C with internal cardinality K; Equation (3)

can be rewritten using the new notation as follows: that for P ′-almost all ω ∈ Ω′,

∫
J

(∗fn)i ω dν̄ '
∫
J×Ω′

(∗fn)i d(ν̄ ⊗ ∗P ). (7)

It is clear that the restriction ∗fn to I × J × Ω′ is still S-integrable with the

restriction of g to I×J ×Ω′ as its standard part. By the Fubini property for Loeb

product measure µ� ν �P ′, we have the following properties: (a) for µ-almost all

i ∈ I, (∗fn)i is S-integrable on J × Ω′ with gi as its standard part on J × Ω′, and

∫
J×Ω′

(∗fn)i d(ν̄ ⊗ ∗P ) '
∫
J×Ω′

gi d(ν � P ′); (8)

(b) for P ′-almost all ω ∈ Ω′ and µ-almost all i ∈ I, (∗fn)i ω is S-integrable on J

with gi ω as its standard part on J , and

∫
J

(∗fn)i ω dν̄ '
∫
J
gi ω dν. (9)

It follows from Equations (7) – (9) that for P ′-almost all ω ∈ Ω′ and µ-almost all

i ∈ I, ∫
J
gi ω dν =

∫
J×Ω′

gi d(ν � P ′), (10)

which implies that for P ′-almost all ω ∈ Ω′,

∫
I×J

gω d(µ� ν) =

∫
I×J×Ω′

g d(µ� ν � P ′). (11)

That is,
∫
C gω d(λC) is essentially constant.

Hence, we have shown that the process g has essentially uncorrelated random
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variables whether ◦(K/H) is positive or zero. That is,

(λ� λ)

({
(s, t) ∈ T × T :

∫
Ω′
gsgt dP

′ =

∫
Ω′
gs dP

′
∫

Ω′
gt dP

′
})

= 1. (12)

Since ∗f2
n are S-integrable on T×Ω′, the Fubini property for Loeb product measure

λ�P ′ implies that for λ-almost all t ∈ T ,
(∗f2

n

)
t

is S-integrable. Hence, for (λ�λ)-

almost all (s, t) ∈ T×T , the product function (∗fn)s (∗fn)t is also S-integrable with

its standard part gsgt. Therefore, we obtain that for (λ�λ)-almost all (s, t) ∈ T×T ,

∫
Ω′

(∗fn)s (∗fn)t d
∗P '

∫
Ω′
gsgt dP

′. (13)

It is also clear that for λ-almost all t ∈ T , (∗fn)t is S-integrable with its standard

part gt, and ∫
Ω′

(∗fn)t d
∗P '

∫
Ω′
gt dP

′. (14)

Fix an ε ∈ R+. Equations (12) – (14) imply that the internal measure under

(∗λn ⊗ ∗λn) for the internal set

{
(s, t) ∈ ∗Tn × ∗Tn :

∣∣∣∣∫∗Ω (∗fn)s (∗fn)t d
∗P −

∫
∗Ω

(∗fn)s d
∗P

∫
∗Ω

(∗fn)t d
∗P

∣∣∣∣ < ε

}

is infinitely close to one.

The above paragraph shows that (∗λn⊗∗λn)(∗Un(ε)) ' 1 for any infinite n ∈ ∗N,

and therefore limn→∞(λn ⊗ λn)(Un(ε)) = 1. This shows that the triangular array

{fn}∞n=1 is asymptotically uncorrelated.

(2): Assume that lim infn→∞(kn/mn) > 0, and the triangular array {fn}∞n=1 is

asymptotically uncorrelated. Then for any ε ∈ R+, limn→∞(λn ⊗ λn)(Un(ε)) = 1.

As in the proof of Part (1), fix any infinite n ∈ ∗N. Denote the Loeb space

of (∗Tn,
∗Tn, ∗λn) by (T, T , λ), the Loeb space of (∗Ω, ∗F , ∗P ) by (Ω′,F ′, P ′),

and the standard part of ∗fn(t, ω) by g(t, ω). By transfer and overspill, we

know that o(∗kn/|T |) > 0, and there is a positive infinitesimal δ such that

(∗λn⊗ ∗λn)(∗Un(δ)) ' 1. Hence, the process g has essentially uncorrelated random

variables. Proposition 1 implies that for any internal set A ⊆ T with |A| = ∗kn,∫
A gωdλ =

∫
A×Ω′ gd(λ � P ′) holds for P ′-almost all ω ∈ Ω′. Hence, Equations (4)
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and (5) imply that for any fixed ε ∈ R+, the ∗P -measure of the set

{
ω ∈ ∗Ω :

∣∣∣∣∫
A

(∗fn)ω d
(∗λAn )− ∫

A×∗Ω

∗fnd(∗λAn ⊗ ∗P )

∣∣∣∣ < ε

}

is infinitely close to one.

Thus, for any infinite n ∈ ∗N, and any internal set An ⊆ T with |An| = ∗kn,

∗P (LAn(ε)) ' 1. Therefore, for every sub-array fAn
n (with size kn) of the triangular

array {fn}∞n=1, we have limn→∞ P (LAn(ε)) = 1.

(3) and (4) follow from (1) and (2).

3.2 Necessity of independence

In this subsection we let f be a process from the Loeb product space (T ×Ω, T �

F , λ�P ) to a Polish space X. The process f is said to have essentially pairwise

independent random variables if for (λ�λ)-almost all (s, t) ∈ T ×T , the random

variables fs and ft are independent.

For each set A ∈ T with λ(A) > 0, we may form the probability space (A,A, λA)

where A is the collection of T -measurable subsets of A and λA = λ/λ(A). For each

ω, fAω denotes the restriction of fω to A. For P -almost all ω ∈ Ω, fAω is measurable

on (A,A, λA). The restriction of f to A × Ω is denoted by fA, which can be

viewed as a random variable on (A×Ω,A�F , λA � P ). fAω and fA induce Borel

probability measures λA(fAω )−1 and (λA � P )(fA)−1 on X.

We will use the following result which is proved in [20] (and also stated in [19,

Theorem 4]).

Proposition 4. The following are equivalent.

(i) For any set A ∈ T with λ(A) > 0, λA(fAω )−1 = (λA � P )(fA)−1 holds for

P -almost all ω ∈ Ω.

(ii) The process f has essentially pairwise independent random variables.

Similar to Proposition 2, the next result shows that condition (i) above can be

weakened by taking the measurable set A to have any fixed measure p from the

open unit interval (0, 1).
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Proposition 5. Let p be a real number in (0, 1). The following are equivalent.

(i’) For any set A ∈ T with λ(A) = p, λA(fAω )−1 = λA � P (fA)−1 holds for

P -almost all ω ∈ Ω.

(ii) The process f has essentially pairwise independent random variables.

Proof. By Proposition 4, it suffices to prove that condition (i) of Proposition 4 is

equivalent to condition (i’). It is trivial that (i) implies (i’). We assume (i’) and

prove (i). Fix a countable open base {On}∞n=0 for X which is closed under finite

intersections. Fix any n ∈ N and A ∈ T with λ(A) = p. By hypotheses,

λA
(
(fAω )−1(On)

)
= (λ� P )A

(
(fA)−1(On)

)
holds for P -almost all ω ∈ Ω. This means that

∫
A

1On(fω) dλ =

∫
A×Ω

1On(f)d(λ� P ) (15)

holds for P -almost all ω ∈ Ω.

Next, take an arbitrary A ∈ T with λ(A) > 0. Propositions 1 and 2 imply that

Equation (15) holds for P -almost all ω ∈ Ω.

Now, by grouping countably many P -null sets together, it follows that there

exists a P -null set Ω0 such that Equation (15) holds for all n ∈ N and all ω /∈

Ω0. This means that for any ω /∈ Ω0, the probability measures λA(fAω )−1 and

(λ � P )A(fA)−1 agree on all the sets On. Since the class of all the On generates

the Borel algebra on X, and is also closed under finite intersections, it follows

from the result on the uniqueness of measures (see [6], p. 45) that λA(fAω )−1 =

(λ� P )A(fA)−1, as required.

Remark 4. When p = 1, the process f in Remark 3 also shows that (i’) =⇒ (ii)

in Proposition 5 fails.

We now prove the analogue of Proposition 3.

Proposition 6. Let H be a positive infinite hyperinteger, and let T = {1, . . . ,H}.

Let (T, T , λ) be the Loeb counting probability space on T , and (A,A, λA) the Loeb
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counting probability space on A for any nonempty internal set A ⊆ T . The

following are equivalent.

(i”) There exists K ∈ T such that o(K/H) < 1 and for every internal set A ⊆ T

with internal cardinality K and where fA is measurable on (A×Ω,A�F , λA�P ),

λA(fAω )−1 = λA � P (fA)−1 holds for P -almost all ω ∈ Ω.

(ii) The process f has essentially pairwise independent random variables.

Proof. By Proposition 5, (ii) implies (i’). It is trivial that (i’) implies (i”), so it

suffices to assume (i”) and prove (ii).

Suppose first that p = o(K/H) > 0. As in the proof of Proposition 3, for every

set B ∈ T with λ(B) = p, there is an internal set A ⊆ T such that its internal

cardinality |A| is K, and λ(A∆B) = 0. It is obvious that fA is measurable on

(A × Ω,A � F , λA � P ). By hypothesis, for P -almost all ω ∈ Ω, λA(fAω )−1 =

λA�P (fA)−1, which also means that λB(fBω )−1 = λB�P (fB)−1. The result then

follows from Proposition 5.

Now suppose that K/H ' 0. For any given internal set B ∈ T with λ(B) > 0,

there is an internal family of pairwise disjoint sets Ai, i ∈ I such that Ai ⊆ T

and |Ai| = K for each i ∈ I, and λ(C∆B) = 0, where C =
⋃

i∈I Ai. As in the

proof of Proposition 3, the set C can be viewed as an internal product C = I × J

with |J | = K. Let µ̄ (µ) and ν̄ (ν) be the internal (Loeb) counting probability

measures on the hyperfinite sets I and J respectively. Then, λC is the same as the

Loeb product measure µ � ν, and the restriction of f to C × Ω is a function on

I × J × Ω. By the Fubini property for the Loeb product measure µ � ν � P , we

know that for µ-almost all i ∈ I, fi is Loeb measurable on J ×Ω. Since {i} × J is

an internal subset of C with internal cardinality K, the hypothesis indicates that

for µ-almost all i ∈ I, νf−1
i ω = ν � Pf−1

i holds for P -almost all ω ∈ Ω. By the

Fubini property for the Loeb product measure µ � ν, we know that for P -almost

all ω ∈ Ω, νf−1
i ω = ν � Pf−1

i holds for µ-almost all i ∈ I. Thus, for P -almost all

ω ∈ Ω and any Borel set O in X, it follows from the Fubini property for the Loeb

product measures µ� ν and µ� ν � P that

(µ�ν)
(
f−1
ω (O)

)
=

∫
I
ν
(
f−1
i ω (O)

)
dµ =

∫
I
(ν�P )

(
f−1
i (O)

)
dµ = (µ�ν�P )

(
f−1(O)

)
,
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which implies (µ � ν)f−1
ω = (µ � ν � P )f−1. Hence, for P -almost all ω ∈ Ω,

λC(fCω )−1 = λC � P (fC)−1, and λB(fBω )−1 = λB � P (fB)−1. By Proposition 4,

the process f has essentially pairwise independent random variables.

Before proving Theorem 1, we present a simple lemma.

Lemma 1. Let X be a Polish space with its Borel σ-algebra BX , (I, Ī, µ̄) an

internal probability space with (I, I, µ) as its Loeb space, and h̄ an internal function

from I to ∗X with its standard part h from I to X. Assume that h̄−1(E) ∈ Ī for any

E ∈ ∗ (BX) and µ̄h̄−1 the internal distribution on ∗ (BX) induced by h̄ on (I, Ī, µ̄).

Then µ̄h̄−1 is near standard to the Borel probability measure on X defined by µh−1

under the topology of weak convergence of Borel probability measures.

Proof. By the definition of h, we have h̄(i) ' h(i) for µ-almost all i ∈ I. Fix

any bounded continuous function ϕ on X. We know that for µ-almost all i ∈ I,

∗ϕ
(
h̄(i)

)
' ϕ (h(i)), which means that ∗ϕ

(
h̄
)

is an internal lifting of ϕ (h). Hence,

∫
∗X

∗ϕd
(
µ̄h̄−1

)
=

∫
I

∗ϕ
(
h̄(i)

)
dµ̄ '

∫
I
ϕ (h(i)) dµ =

∫
X
ϕd
(
µh−1

)
,

which implies that the standard part of µ̄h̄−1 under the topology of weak

convergence of Borel probability measures is µh−1.

We are now ready to present a

Proof of Theorem 1. As in the proof of Theorem 2, we transfer the given sequences

to the nonstandard universe, to obtain a sequence {∗fn}n∈∗N of internal processes

from the associated sequence {(∗Tn× ∗Ω, ∗Tn⊗ ∗F , ∗λn⊗ ∗P ) : n ∈ ∗N} of internal

probability spaces to ∗X, and an internal growth rate {∗kn}n∈∗N.

The tightness assumption on the processes fn implies that for each infinite

n ∈ N, the standard part of ∗fn(t, ω) exists in X for almost all (t, ω) ∈ ∗Tn × ∗Ω

(under the corresponding Loeb measure); let gn be the standard part of ∗fn on

∗Tn × ∗Ω.

(1): Assume that lim supn→∞(kn/mn) < 1, the empirical distributions converge

for every sub-array fAn
n of size kn. By transfer and overspill, this means that for
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any infinite n ∈ ∗N, and any internal An ⊆ ∗Tn with |An| = ∗kn, there is a positive

infinitesimal δ > 0 such that

∗P
({
ω ∈ ∗Ω : ∗ρ

(
∗λAn

n

(∗fAn
n

)−1

ω
, ∗λAn

n ⊗ ∗P
(∗fAn

n

)−1
)
< δ
})

> 1− δ. (16)

Fix any infinite n ∈ ∗N. As before, we denote ∗mn by H, ∗kn by K, the

Loeb space of (∗Tn,
∗Tn, ∗λn) by (T, T , λ), and the Loeb space of (∗Ω, ∗F , ∗P ) by

(Ω′,F ′, P ′). The standard part of ∗fn will also be denoted by g instead of gn.

Assume that p = ◦(K/H) > 0 and fix any internal set A ⊆ T with internal

cardinality K. It is obvious that gA is the standard part of ∗fAn , and for P ′-almost

all ω ∈ Ω′, gAω is the standard part of
(∗fAn )ω. By Lemma 1, we know that

∗ρ
(
∗λAn

(∗fAn )−1

ω
, λA

(
gAω
)−1
)
' 0, (17)

∗ρ
(
∗λAn ⊗ ∗P

(∗fAn )−1
, λA ⊗ P ′

(
gA
)−1
)
' 0. (18)

By Equations (16) – (18), we obtain that for P ′-almost all ω ∈ Ω′, λA
(
gAω
)−1

=

λA ⊗ P ′
(
gA
)−1

. By Proposition 6, the process g has essentially pairwise

independent random variables.

Next assume that ◦(K/H) = 0. As shown in the proof of Proposition 6, in order

to show that the process g has essentially pairwise independent random variables,

we only need to check the essential validity of λC
(
gCω
)−1

= λC ⊗ P ′
(
gC
)−1

for

any set C ∈ T with λ(C) > 0 such that C can be viewed as an internal product

C = I × J with |J | = K. Let µ̄ (µ) and ν̄ (ν) be the internal (Loeb) counting

probability measures on the hyperfinite sets I and J respectively. Then, λC is the

same as the Loeb product measure µ� ν. The restrictions of ∗fn and its standard

part g to C×Ω will be viewed as functions on I×J×Ω′. For each i ∈ I, {i}×J is

an internal subset of C with internal cardinality K; it follows from Equation (16)

that for P ′-almost all ω ∈ Ω′,

∗ρ
(
ν̄ (∗fn)−1

i ω , ν̄ ⊗
∗P (∗fn)−1

i

)
' 0. (19)

By the Fubini property for Loeb product measure µ � ν � P ′, we obtain that
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(a) for µ-almost all i ∈ I, gi is the standard part of (∗fn)i on J × Ω′, and

∗ρ
(
ν̄ ⊗ ∗P (∗fn)−1

i , ν � P ′g−1
i

)
' 0 by Lemma 1; (b) for P ′-almost all ω ∈ Ω′ and

µ-almost all i ∈ I, gi ω is the standard part of (∗fn)i ω, ∗ρ
(
ν̄ (∗fn)−1

i ω , νg
−1
i ω

)
' 0

by Lemma 1. Hence, it follows from Equation (19) that for P ′-almost all ω ∈ Ω′,

νg−1
i ω = ν � P ′g−1

i holds for µ-almost all i ∈ I. By following the rest of the proof

of Proposition 6, we can also claim that the process g has essentially pairwise

independent random variables.

Now fix any ε ∈ R+. We know that

(λ� λ)
({

(s, t) ∈ T × T : ρ2

(
P ′(gs, gt)

−1, P ′g−1
s ⊗ P ′g−1

t

)
< ε
})

= 1. (20)

The Fubini property for Loeb product measure λ�P ′ implies that for λ-almost all

t ∈ T , gt is the standard part of (∗fn)t; and for (λ � λ)-almost all (s, t) ∈ T × T ,

(gs, gt) is the standard part of ((∗fn)s , (
∗fn)t). By Lemma 1 and Equation (20),

we know that the internal measure under (∗λn ⊗ ∗λn) for the internal set

{
(s, t) ∈ ∗Tn × ∗Tn : ∗ρ2

(
∗P ((∗fn)s , (

∗fn)t)
−1 , ∗P (∗fn)−1

s ⊗
∗P (∗fn)−1

t

)
< ε
}

is infinitely close to one.

The above paragraph shows that (∗λn⊗∗λn)(∗Vn(ε)) ' 1 for any infinite n ∈ ∗N,

and therefore limn→∞(λn ⊗ λn)(Vn(ε)) = 1. This shows that the triangular array

of random variables {fn}∞n=1 is asymptotically independent.

(2): Assume that lim infn→∞(kn/mn) > 0, and the triangular array {fn}∞n=1 is

asymptotically independent. Then for any ε ∈ R+, limn→∞(λn ⊗ λn)(Vn(ε)) = 1.

As in the proof of Part (1), fix any infinite n ∈ ∗N. Denote the Loeb space

of (∗Tn,
∗Tn, ∗λn) by (T, T , λ), the Loeb space of (∗Ω, ∗F , ∗P ) by (Ω′,F ′, P ′),

and the standard part of ∗fn(t, ω) by g(t, ω). By transfer and overspill, we

know that o(∗kn/|T |) > 0, and there is a positive infinitesimal δ such that

(∗λn⊗ ∗λn)(∗Vn(δ)) ' 1. Hence, the process g has essentially independent random

variables. Proposition 4 implies that for any internal set A ⊆ T with |A| = ∗kn,

λA
(
gAω
)−1

= λA⊗P ′
(
gA
)−1

holds for P ′-almost all ω ∈ Ω′. Hence, Equations (17)
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– (18) imply that for any fixed ε ∈ R+,

∗P
({
ω ∈ ∗Ω : ∗ρ

(
∗λAn

n

(∗fAn
n

)−1

ω
, ∗λAn

n ⊗ ∗P
(∗fAn

n

)−1
)
< ε
})
' 1.

Therefore, for every sub-array fAn
n of size kn with n ∈ N,

lim
n→∞

P
({
ω ∈ Ω : ρ

(
λAn
n

(
fAn
n

)−1

ω
, λAn

n ⊗ P
(
fAn
n

)−1
)
< ε
})

= 1.

(3) and (4) follow from (1) and (2).

3.3 Extension to the dynamic case

Many applied probabilistic models in social sciences involve not only uncertainty

and large number of participants but also time parameters. For example, a

large society consists of many economic agents who need to make decisions about

consumptions, savings and investments in a dynamic situation. To study such mass

phenomena in a mathematical model, one is naturally led to the consideration of a

continuum of (independent) stochastic processes with time and sample parameters

(to be called a hyperprocess). As illustrated in Section 8 of [20] (and also Subsection

2.4 of [21]), many results involving a continuum of independent random variables

can be easily extended to the corresponding dynamic case.

As in the previous part of this section, we shall work with two atomless Loeb

probability spaces, (T, T , λ) as an index space, (Ω,F , P ) as a sample space, and

their Loeb product probability space (T ×Ω, T �F , λ�P ). Let I be a set of time

parameters, which is assumed to be the set of Z+ of positive integers or an interval

(starting from 0) in the set R+ of non-negative real numbers. Let BI be the power

set of I when I is the countable set Z+, and the Borel σ-algebra on I when I is an

interval.

We shall follow the presentation in Subsection 2.4 of [21]. Let F be a real-valued

measurable function on the mixed product measurable space (T ×Ω×I, (T �F)⊗

BI), which is the usual product of the measurable space (T×Ω, T �F) with (I,BI).

For any t ∈ T , let Ft be the function on Ω × I with Ft(ω, i) = F (t, ω, i); and for

any ω ∈ Ω, let Fω be the function on T × I with Fω(t, i) = F (t, ω, i). It is clear
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that both Ft and Fω are measurable stochastic processes. Thus, F can be viewed

as a family of stochastic processes, Ft, t ∈ T , with a sample space (Ω,F , P ) and

a time parameter space I. For ω ∈ Ω, Fω is called an empirical process with the

index space (T, T , λ) as the sample space. The function F itself can also be viewed

as a stochastic process with sample space T ×Ω and time parameter space I. For

each set A ∈ T with λ(A) > 0, let (A,A, λA) be the probability space rescaled

from (T, T , λ), and FA the restriction of F to A×Ω× I (which can be viewed as a

stochastic process with sample probability space (A×Ω,A�F , λA �P ) and time

parameter space I).

The following are the formal definitions on the independence and finite

dimensional distributions of stochastic processes.

Definition 9. (1) Two real-valued stochastic processes ϕ and ψ on the same sample

space with time parameter space I are said to be independent, if, for any positive

integers m,n, and for any i11, · · · , i1m in I, and i21, · · · , i2n in I, the random vectors

(ϕi11
, · · · , ϕi1m

) and (ψi21
, · · · , ψi2n

) are independent.

(2) We say that the stochastic processes {Ft, t ∈ T} are essentially pairwise

independent, if, for λ-almost all s ∈ T , λ-almost all t ∈ T , the stochastic processes

Fs and Ft are independent.

Definition 10. (1) Two real-valued stochastic processes ϕ and ψ on some (possibly

different) sample spaces with time parameter space I are said to have the same

finite dimensional distributions, if, for any i1, · · · , in ∈ I, the random vectors

(ϕi1 , · · · , ϕin) and (ψi1 , · · · , ψin) have the same distribution.

(2) We say that the stochastic processes {Ft, t ∈ T} have essentially the same

finite dimensional distributions if there is a real-valued stochastic process G with

time parameter space I such that for λ-almost all t ∈ T , the stochastic processes

Ft and G have the same finite dimensional distributions.

When the time space I is discrete, a real-valued discrete parameter stochastic

process can be viewed as a random variable taking values in R∞. Thus, Proposition

5 can be used to obtain a converse exact law of large numbers for a continuum

of discrete time processes. Similarly, for the case that I is an interval and for

31



a stochastic process whose paths come from some function space with a complete

separable metric (for example, the continuous function space on I or the Skorokhod

space as in [2]), it can be regarded as a random variable in the function space.

Proposition 5 still applies.

To consider more general continuous time processes, we follow a technique used

in [9, p. 172] that relates a continuous time process to a discrete time process. In

particular, it is shown that for a continuous time process x on (Λ× I,A⊗BI) with

a probability measure ν on (Λ,A), there exists a sequence {in}∞n=1 in I and a Borel

function ψ : R∞ × I → R, such that for any i ∈ I, x(q, i) = ψ({x(q, in)}∞n=1, i) for

ν-almost all q ∈ Λ.

Since a real-valued measurable function F on the mixed product measurable

space (T ×Ω× I, (T �F)⊗BI) can be viewed as a stochastic process with sample

space Λ = T × Ω and time parameter space I, we can find a sequence {in}∞n=1

in I and a Borel function ψ : R∞ × I → R such that for all i ∈ I, F (t, ω, i) =

ψ({F (t, ω, in)}∞n=1, i) for λ� P -almost all (t, ω) ∈ T × Ω. By modifying its values

on λ � P -null sets in T × Ω, we shall assume from now on that for λ � P -almost

all (t, ω) ∈ T × Ω, F (t, ω, i) = ψ({F (t, ω, in)}∞n=1, i) for all i ∈ I.

The following proposition extends Proposition 5 to the dynamic case.11

Proposition 7. Let F be a real-valued measurable function on the mixed product

measurable space (T ×Ω× I, (T �F)⊗BI), and p a positive real number less than

one. Then, the stochastic processes Ft, t ∈ T are essentially pairwise independent

if and only if for any set A ∈ T with λ(A) = p, and for P -almost all ω ∈ Ω, the

empirical process FA
ω on A × I and FA viewed as a stochastic process have the

same finite dimensional distributions.

Proof. Define a process G from T×Ω into R∞ by letting G(t, ω) = {F (t, ω, in)}∞n=1.

Then, for λ� P -almost all (t, ω) ∈ T × Ω, F (t, ω, i) = ψ(G(t, ω), i) for all i ∈ I.

Based on the fact that the Borel algebra on R∞ is generated by the cylinders

of a finite product of Borel sets in R with infinitely many copies of R, it is easy to

11For simplicity, we only state the result in this proposition (as well as that in Proposition 8) for a
continuum of stochastic processes taking valued in the space of real numbers. The same proof works for
Polish space valued stochastic processes. We also omit the corresponding asymptotic results for a large
number of stochastic processes, which will be quite messy to be stated precisely.
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see that the stochastic processes Ft, t ∈ T are essentially pairwise independent if

and only if the process G has essentially pairwise independent random variables.

Fix any A ∈ T with λ(A) = p; let GA be the restriction of G to A × Ω. If

for P -almost all ω ∈ Ω, the stochastic processes FA
ω and FA have the same finite

dimensional distributions, it is easy to claim that λA
(
GA

ω

)−1
= (λA � P )

(
GA
)−1

holds for P -almost all ω ∈ Ω by working with the time sequence {in}∞n=1 in I.

Next, assume that for P -almost all ω ∈ Ω, λA
(
GA

ω

)−1
= λA�

(
GA
)−1

. Choose

D ∈ F with P (D) = 1 such that ω ∈ D, FA(t, ω, i) = ψ(GA(t, ω), i) holds for

λ-almost t ∈ A and all i ∈ I, and λA
(
GA

ω

)−1
= λA �

(
GA
)−1

. Fix any ω ∈ D and

any time points j1, · · · , jn from I. For any bounded continuous functions φ on Rn,

we have

∫
A×Ω

φ(FA
j1 , · · · , F

A
jn)dλA � P =

∫
A×Ω

φ(ψ(GA(·, ·), j1), · · · , ψ(GA(·, ·), jn))dλA � P

=

∫
y∈R∞

φ(ψ(y, j1), · · · , ψ(y, jn))d(λA � P )
(
GA
)−1

=

∫
y∈R∞

φ(ψ(y, j1), · · · , ψ(y, jn))dλA
(
GA

ω

)−1

=

∫
A
φ(ψ(GA

ω (·), j1), · · · , ψ(GA
ω (·), jn))dλA

=

∫
A
φ(FA

ωj1 , · · · , Fωjn)dλA

Hence the stochastic processes FA
ω and FA have the the same finite dimensional

distributions.

The desired equivalence result then follows from Proposition 5.

The final result extends Proposition 6 to the dynamic case. It can be proved by

using the method in the proof of Proposition 7, based on the result in Proposition

6. The proof is omitted.

Proposition 8. Let H be a positive infinite hyperinteger, T = {1, . . . ,H}, and

K ∈ T with o(K/H) < 1. Let (T, T , λ) be the Loeb counting probability space

on T , and (A,A, λA) the Loeb counting probability space on A for any nonempty

internal set A ⊆ T . Let F be a real-valued measurable function on the mixed product

measurable space (T×Ω×I, (T �F)⊗BI). Suppose that for every internal set A ⊆ T
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with internal cardinality K such that FA is measurable on (A×Ω×I, (A�F)⊗BI),

the empirical process FA
ω on A× I and FA viewed as a stochastic process have the

same finite dimensional distributions for P -almost all ω ∈ Ω. Then, the stochastic

processes Ft, t ∈ T are essentially pairwise independent.
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[5] Emile Borel, Les probabilités dénombrables et leurs applications arithmetique,

Rendiconti del Circolo Matematico di Palermo 27 (1909), 247-271.

[6] Donald L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
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