
Expressive Power of Unary Counters

Michael Benedikt1 H. Jerome Keisler2

1 Bell Laboratories, 1000 East Warrenville Rd., Naperville, IL 60566, USA, Email:
benedikt@bell-labs.com

2 University of Wisconsin, Madison Wisconsin 50375, Email: keisler@math.wisc.edu

Abstract. We compare the expressive power on finite models of two
extensions of first order logic L with equality. L(Ct) is formed by adding
an operator count{x : ϕ}, which builds a term of sort N that counts the
number of elements of the finite model satisfying a formula ϕ. Our main
result shows that the stronger operator count{t(x) : ϕ}, where t(x) is
a term of sort N, cannot be expressed in L(Ct). That is, being able to
count elements does not allow one to count terms.
This paper also continues our interest in new proof techniques in database
theory. The proof of the unary counter combines a number of model-
theoretic techniques that give powerful tools for expressivity bounds: in
particular, we discuss here the use of indiscernibles, the Paris-Harrington
form of Ramsey’s theorem, and nonstandard models of arithmetic.

1 Introduction

Most database query languages are based on some version of first-order logic.
However, practical query languages such as SQL generally supplement their pure
first-order component with certain primitives, among them the ability to count
over the database. An active line of research in database theory has been to
model the impact of counting on a database language by studying extensions of
first-order logic by counting quantifiers [18] [12]. The goal is to characterize the
expressive power of various counting languages, and to identify those with and
without good analytical and computational properties.

In [18] logics with n-ary counters FO + Cn are introduced. A method of
proving upper bounds on the complexity of these languages is introduced, relying
on an Ehrenfeucht-Fraisse game construction for counting (see also [19]). This
technique is used to prove a hierarchy theorem for this sequence of logics, in the
case of unnested counters.

Ehrenfeucht-Fraisse games are also exploited in [11] and [12] to get complexity
bounds for languages allowing counting quantifiers of the form ∃i.

As opposed to the works cited above, we will consider languages with count-
ing constructs that can interact with arbitrary expressions over the integers.
We shall consider three extensions of first order logic formed by adding term-
building operators which count the number of elements satisfying a formula.
The smallest of these is a first-order logic with unary counters, like the language
FO + C1 considered in [18], but with arbitrary integer predicates applicable



to the counters. This language is more similar in spirit to the rich two-sorted
languages considered in [15] then to the more restricted ones of [12] and [11].
Although this language is extremely large, we will show some interesting limits
on its expressive power by displaying two counting languages with more expres-
sive power. In particular, we will show that it is impossible to count the number
of equivalence classes of a binary relation in the language of unary counters,
and it is impossible to count the number of connected components of a graph.
Our results also serve to show that the ability to count the number of elements
satisfying a property does not suffice to count the number of terms.

In the process, we will introduce modifications to the Ehrenfeucht-Fraisse
argument that we believe are interesting in its own right. We will make use of
two model-theoretic techniques: nonstandard universes and indiscernibles. In-
discernibles and nonstandard models have shown up either implicitly or explic-
itly in several recent works in database theory [31] [5]. These techniques were
recently used to settle a number of other problems concerning the expressive
power of query languages [4], and we believe they can be used to simplify the
bookkeeping involved in many Ehrenfeucht-Fraisse arguments. We believe these
techniques can be particularly helpful for proving expressivity bounds for lan-
guages involving aggregates.

As mentioned before, one of the principle reasons for studying the expressive
power of query languages is to give insight into the design of languages with
desirable properties. At the end of this paper we will apply our main theorem to
show that a particular desirable property—the weakest precondition property—
fails for a natural database language with unary counters.

Organization: The first section gives the definition of the languages we
will deal with in this paper. Section 3 describes the nonstandard framework we
use to analyze expressivity of queries, and gives some introductory examples of
its usefulness. Section 4 outlines the proof of the main result. Section 5 gives
a version of this result for a language similar to the tuple relational calculus
with range-restriction, and gives an application of these results to the weakest
precondition problem for this language.

2 Preliminaries

We give the notation for first-order logic and several counting languages.
Let L be a first-order language with equality and finitely many relation,

function and constant symbols. Let U be an infinite set. When we talk about
finite L-structures, we will mean structures whose domain is a finite subset of
U. Let Λ be a countable set of relations and functions on the set N of natural
numbers which contains at least equality and a constant for each n ∈ N, and
remains fixed throughout our discussion.

Our first extension of L, denoted by L(Ct), adds to L the term building
operator

count{x : ϕ(x, . . .)}



which bounds the variable x, and has a symbol for every element of Λ. The
models for L(Ct) are finite structures A = 〈A, . . .〉 with vocabulary L, and the
count operator is interpreted in A as the cardinality of the set of all elements
x ∈ A which satisfy the formula ϕ in A. Similarly, the term

τ(y) = count{x : ϕ(x, y)}

defines a function that for each y returns the cardinality of elements in A
satisfying ϕ(x, y)

More precisely, the language L(Ct) has terms of the two sorts U and N. The
terms of sort U are the same as for first order logic; in particular, the variables
are of sort U . L(Ct) has the usual first order rules for building formulas, and
two additional rules:

– For each formula ϕ and variable x, count{x : ϕ} is a term of sort N.
– If t1, . . . , tn are terms of sort N, then f(t1, . . . , tn) is a term of sort N for each

n-ary function f ∈ Λ, and r(t1, . . . , tn) is a formula for each n-ary relation
r ∈ Λ.

Our second extension of L, denoted by L(Tm), adds to L(Ct) the more
general term-building operator

count{t(x, . . .) : ϕ(x, . . .)}

where ϕ is a formula and t(x, . . .) is a term of sort N. In a model A, it counts
the number of distinct values of t(x, . . .) such that x satisfies ϕ in A. Thus we
always have

count{t(x, . . .) : ϕ(x, . . .)} ≤ count{x : ϕ(x, . . .)}.

Our third extension, L(Ct,N), adds to L(Ct) variables of sort N and quan-
tifiers over variables of sort N. The language L(Ct,N) was considered in [18].
The main object of study in that paper was a language like L(Ct,N) which had
counts over n-tuples of variables of sort U , but did not allow nesting of counts.

In this paper we shall show that L(Tm) and L(Ct,N) are proper extensions
of L(Ct).

We remark that quantifiers of sort U can be eliminated from each of the lan-
guages L(Ct), L(Tm), and L(Ct,N). An existential quantifier can be eliminated
by replacing a formula ∃xϕ(x, . . .) by ¬count{x : ϕ(x, . . .)} = 0.

In a vocabulary L with function symbols, one might also consider the term
builder

count{s(x, . . .) : ϕ(x, . . .)}

where the term s is of sort U . This term builder is already definable in L(Ct),
because the equation

count{s(x, . . .) : ϕ(x, . . .)} = count{z : ∃x(z = s(x, . . .) ∧ ϕ(x, . . .))}

holds in all finite models.



3 Model-theoretic techniques and expressive bounds

We discuss here some model-theoretic techniques that are helpful for giving
expressive bounds, and which will be used in the main result of Section 4.

3.1 Nonstandard Models

The work in [4] made use of nonstandard models and indiscernibles as techniques
for analyzing expressivity bounds. In this paper we will discuss these techniques
in more detail.

The naive approach to showing that a property Q is not expressible in some
language L is to get two models that agree on all sentences of L, but disagree on
Q. The problem immediately encountered in applying this technique in finite-
model theory is the following: Any two finite models which satisfy the same
sentences of a first order language L are isomorphic, and thus satisfy the same
sentences of any reasonable logic, including L(Ct), L(Tm), and L(Ct,N). The
standard technique for circumventing this problem is via Ehrenfeucht-Fraisse
games ([10], [9]). One decomposes the sentences of the logic into countably many
fragments Ln, and then constructs for each n two finite models Mn and Nn

agreeing on fragment Ln but disagreeing on Q.
Here, we give an alternative to this construction. Inexpressibility bounds

are obtained by constructing two hyperfinite (meaning, informally for now, “in-
finitely large finite”) models M and N agreeing on all queries in L, but dis-
agreeing on Q. The first virtue of this technique is as a way of abstracting away
from the bookkeeping involved in Ehrenfeucht-Fraisse constructions. For exam-
ple, if one is interested in showing the inexpressibility of connectivity within pure
first-order logic, one need only look at the two hyperfinite graphs G1 and G2,
where G1 is a single hyperfinite cycle, while G2 is the union of two hyperfinite
cycles. A single game argument shows these two to be elementarily equivalent in
first-order logic, but only one is connected, hence connectivity is not first-order
definable.

The above example may appear to make the technique of nonstandard models
useful more as a convenience than as an essential tool. However, the technique
becomes particularly useful when dealing with expressivity results for higher-
order logics. We will defer a more detailed discussion of the use of nonstandard
models in higher-order languages to the full paper. The use of nonstandard uni-
verses (as opposed to elementary extensions) allows one to work with hyperfinite
extensions of traditional aggregates constructs such as Counts, Sums, and set
formers. For example, consider the query Q over complex objects (see [6],[30],
[23], [21]) asking whether a given set of sets A contains two sets of differing par-
ity. One can show this query to be inexpressible in the nested relational algebra
[23], a higher-order analog of the relational algebra, by considering a natural
counterexample: two hyperfinite structures S1 and S2, the first consisting of two
hyperfinite sets of differing parity, the second consisting of two hyperfinite sets of
the same parity. This argument can be formalized in a straightforward way us-
ing the definitions below, and can be easily generalized to higher-order queries.



Arguments such as this are difficult to formalize using the ‘flat’ ultraproduct
or elementary extension constructions. On the other hand, direct constructions
using ultraproducts, when available, are often more concrete and more accessi-
ble in terms of exposition than the use of a nonstandard universe(compare, for
example [4] and [29]).

In the previous paragraph, we spoke informally of hyperfinite structures. We
now give some formal definitions, following the exposition in [4]:

For any set S, the superstructure V (S) over S is defined as V (S) =
⋃

n<ω Vn(S) where V1(S) = S, and Vn+1(S) = Vn(S) ∪ {X | X ⊂ Vn(S)}.
We will work with the structure 〈V (S),∈〉 considered as a structure for the

first-order language for the epsilon relation. A bounded-quantifier formula
in this language is a formula built up from atomic formulas by the logical con-
nectives and the quantification: ∀X ∈ Y , ∃X ∈ Y , where X and Y are variables.

A nonstandard universe consists of a pair of superstructures V (S) and
V (Y ) and a mapping ∗ : V (S) → V (Y ) which is the identity when restricted to
S (i.e. ∗x = x for each x in S) and which satisfies

1. Y = ∗S.
2. (Transfer Principle) For any bounded quantifier formula φ(v1, . . . , vn) and

any list a1, . . . , an of elements from V (S), φ(a1, . . . , an) is true in V (S) if
and only if φ(∗a1, . . . , ∗an) is true in V (Y ).

An element of V (Y ) is standard if it is in the image of the ∗-map. An element
of V (Y ) is internal if it is in the downward transitive closure of the standard
sets under ∈. Elements of V (Y ) that are not internal are called external. An
internal map is a map whose graph is an internal set.

We will assume that our universe also satisfies the following

3. (Countable Saturation Principle) For every standard A, and every countable
collection Σ(x, v) of bounded-quantifier formulas, and for every vector c of
internal sets, if every finite subset of Σ(x, c/v) is satisfied in V (Y ) by some
element of A, then Σ(x, c/v) is satisfied by an element of A.

We will often omit the ∗ when convenient: for example, if < is an ordering
on a set A, x1 and x2 are elements of ∗A, then we will write x1 < x2 rather than
x1
∗< x2. Similarly, if Q is a query on schema SC, and M is a ∗-database (an

element of the set ∗DB , where DB is the set of databases for SC), then we will
refer to q(M) rather than ∗q(M).

For our proofs we almost always take the base set S of our superstructure
V (S) to be the disjoint union of the domain U from which our finite structures
are taken and N.

By a ∗-finite set we mean any set in the ∗-image of the collection of finite
subsets of some standard set. Equivalently, an internal set B is ∗-finite if there
is an internal bijection of B onto an initial segment of ∗N. In particular, we can
talk about ∗-finite structures, which will have their underlying domains being
contained in the ∗-image of the finite powerset of U. By the transfer principle,
such sets B have a well-defined cardinality, which is a (possibly nonstandard)



positive integer, as well as a well-defined parity, sum, etc. By a hyperfinite set,
we mean a ∗-finite set whose cardinality is not a standard integer. We similarly
talk about hyperfinite structures, orderings etc. to mean those whose cardinality
is a nonstandard integer.

We can now talk formally about hyperfinite structures. However, we cannot
assume in general that the semantic function for a given logic will agree with
the semantics obtained by considering the structure “externally”. However, for
first-order logic, we have the following result:

Proposition 1. [4] Let L be a language for which each symbol is internal, and
let M be an L-structure such that the domain of M is internal and the inter-
pretation of each symbol in L is internal. Let φ(x) be a formula of L that has
standard finite cardinality (i.e. number of symbols). Then the internal satisfac-
tion predicate ∗|= agrees with the external satisfaction predicate |= on φ. That is,
if c is a finite sequence of parameters from M , then M ∗|= φ(c) iff M |= φ(c).

Given the above proposition we will not distinguish the two kinds of satis-
faction predicates when we are dealing with finitary first-order φ’s.

The nonstandard technique is now based on the following simple proposition:

Proposition 2. [4] The following are equivalent for any boolean query Q on
finite structures:

– There are two hyperfinite ∗ − structures that agree on every query in the
first-order language L but disagree on ∗Q

– Q is not expressible in L

Given this proposition, it is easy to formalize the inexpressibility arguments
mentioned in the beginning of this section: We can form, for example, a graph
consisting of two hyperfinite chains (such a graph exists by transfer plus satu-
ration), and show, by a single Ehrenfeucht game, that this graph , considered
as an infinite structure, is elementarily equivalent to any graph consisting of a
single hyperfinite cycle. The inexpressibility result now follows from Proposition
2.

3.2 Indiscernibles

Although the use of nonstandard models eliminates the need to construct count-
ably many counterexample models, and relieves some of the combinatorial bur-
den in a game argument, it may still be difficult to reason about elementary
equivalence in an arbitrary hyperfinite structure.

To relieve the amount of analysis necessary in analyzing elementary equiv-
alence, we will often want to restrict our attention to models whose algebraic
structure is “as simple as possible”. Indiscernibility is a method for capturing the
intuition that the domain of our structures should have no unnecessary algebraic
dependencies among its elements. This idea is implicit in many of the Ramsey-
theoretic constructions used in Ehrenfeucht-Fraisse constructions [24],[31].



We now define indiscernibles formally. Let I be any ordered set. A sequence
B = 〈Bi〉i∈I , whose elements come from an infinite L-structure M is indis-
cernible if for every formula φ(x), φ is satisfied in M by either every increasing
(in the order on I) subsequence of B or by no increasing subsequence of B.
Indiscernibles are discussed at length in [8].

Within an indiscernible set, the logical structure of the model reduces to
a simple ordering. Indiscernibles were used in algorithms for eliminating con-
straints from constraint queries in [4] [31] and [24].

An infinite set of indiscernibles need not exist in an arbitrary infinite struc-
ture. For example, considering the structure M = 〈N, +, <〉, we easily see that
there can be no indiscernible set of size bigger than 1! However, it is easy to show,
using saturation, that for any infinite structure, there is an infinite set of indis-
cernibles in the nonstandard extension ∗M : this makes the use of indiscernibles
particularly powerful in conjunction with nonstandard methods.

In this work, we will consider the use of indiscernibles in collapsing logics
with counting quantifiers to first-order logics. The construction in the next sec-
tion will give an example of the use of indiscernibles to reduce every formula in
the language L(Ct) to a first-order formula. Since several previous expressibility
bounds on aggregates make use of some sort of “Count Elimination” [21],[22], we
hope to investigate this eliminability phenomenon in more generality in forth-
coming work.

4 Nonstandard Models and Unary Counters

Consider the logics L(Ct), L(Tm), and L(Ct,N) defined in Section 2. We are
interested in investigating the relative expressive powers of these languages, using
the techniques mentioned above. In particular, we wish to show that L(Ct)
cannot express important properties expressible in L(Tm), and L(Ct,N).

Our plan, of course, will be to find two nonstandard models which satisfy the
same sentences of L(Ct) but do not satisfy the same sentences of L(Tm) or of
L(Ct,N).

Our first result will show that the language of unary counters L(Ct) can-
not count the number of equivalence classes in an equivalence relation, while
L(Ct,N) can express this. We will now fix a particular first-order language L0

in what follows.

Definition 1. Let the language L0 have one unary predicate symbol S and one
binary predicate symbol E. Let θ be the sentence

count{count{y : E(x, y)} : x = x} = count{z : S(z)}

of L0(Tm).

If E is an equivalence relation, θ says that the number of distinct sizes of
equivalence classes of E is equal to the number of elements of S.



Definition 2. Let θ+ be the following sentence of L0(Ct,N):

∀i[∀j(Bit(j, i) ⇔ ∃x count{y : E(x, y)} = j) ⇒ Setcard(i) = count{z : S(z)}],

where i, j are variables of sort N, Bit(j, i) is true exactly when the jth bit of
the binary representation of i is set, and Setcard(i) is the cardinality of the set
coded by the binary representation of i.

Since our arithmetic permits arbitrary functions on the integers, the predi-
cates Bit and Setcard are certainly expressible. Note that θ+ expresses the same
property as θ, that is, for every finite model C for L0, C satisfies θ if and only if
it satisfies θ+. The sentence θ+ does not have nested counts.

We shall prove the following theorem, which shows that neither θ nor θ+ is
expressible in L0(Ct), so that both L(Tm) and L(Ct,N) are proper extensions
of L(Ct).

Theorem 1. For every sentence ϕ of L0(Ct) there is a finite model C in which
θ is not equivalent to ϕ: i.e., the unary counter language cannot express θ.

As mentioned above, our plan will be to find two nonstandard models which
satisfy the same sentences of L0(Ct) but do not satisfy the same sentences of
L0(Tm) or of L0(Ct,N).

We let N be the structure with universe set N and a symbol for +, ×, and
every relation and function in the set Λ. For each ∗finite model A for L, each
term t and formula ϕ of L(Tm) is interpreted in the natural way, using the
functions and relations on the extension ∗N . Terms of sort N are interpreted as
functions with values in ∗N.

Our goal is to prove the following.

Theorem 2. There exist ∗finite models A and B which satisfy the same sen-
tences of L0(Ct) such that θ is false in A but true in B.

Given this theorem, the inexpressibility of θ in L0(Ct) now follows from the
general results of the previous section.

The proof of this theorem will give a canonical example of the use of indis-
cernibles and nonstandard universes together. We will first show that a special
set of indiscernibles exists, and then make use of them to prove Theorem 2.

We use the usual notation for intervals in ∗N; for example,

(J,K] = {x ∈ ∗N : J < x and x ≤ K}.

By a ∗finite sequence in ∗N we mean an an element of the star-image of the
finite sequences in N. By the transfer principle, each ∗finite sequence in ∗N is a
function d = 〈d1, . . . , dH〉 from the interval (0, H] into ∗N for some hyperinteger
H ∈ ∗N.

Lemma 1. There is a strictly increasing ∗finite sequence d = 〈d1, . . . , dH〉 in
∗N such that 0 < d1 < H and d is indiscernible in ∗N ; that is, any two finite
increasing subsequences of d satisfy the same first order formulas in ∗N .



Corollary 1. H and d1 are infinite, and dJ
dJ−1

is infinite for each J ∈ (1,H]
(i.e. for each standard integer n, dJ > n · dJ−1) for each J ∈ (1,H]).

The proofs are in the appendix.
We now define the ∗finite structures A and B for L0.

Definition 3. Let A = 〈A,E, S〉 where A = (0, dH ], E is the equivalence rela-
tion on A with equivalence classes (dJ−1, dJ ], J ∈ (0,H], and S = (0, d1]. Let
K = d1, and let B = 〈B, F, S〉 where B = (0, dK ], F = E ∩ B × B, and S is as
before.

Lemma 2. The sentence θ is false in A and true in B .

Proof: by inspection.

Lemma 3. A and B satisfy the same sentences of L0(Ct).

The proof is quite involved, and can be found in the appendix.

5 Applications to weakest preconditions

We now outline a version of the previous results for a language L′ whose concrete
syntax is closer to existing database languages. The description we give below
is based on the tuple relational calculus with range restriction [1], and on our
analysis of the PRL constraint language [16] [17].

We have a signature {R1, . . . , Rn}, and for each i ≤ n a finite set of attribute
symbols Ai. The arity of Ri is the cardinality of Ai. For each Ri we also fix
an infinite set Ui. We now define our language L′:

We have variables of sort i for each i ≤ n , and an integer sort. A formula
will be built out of atomic formulas of the form:

– x.a = y.b where x and y are variables of the same sort i, and a and b are
symbols in Ai, or of the form

– P (τ1, . . . , τn), where P is an integer predicate and the τj are terms of type
integer.

Formulae are built up by the logical connectives and quantifications:

– ∀x ∈ Ri φ(x)
– ∃x ∈ Ri φ(x), where x has sort i

Terms are built up via composition from atomic terms, which are of one of
the forms:

1. f(x),
where f is a symbol for some function from tuples of integers to integers,and
x is a tuple of variables of integer sort. The corresponding language L′(Ct)
adds the ability to form terms from formulas via the rule:



2. Count{x ∈ Ri : φ(x)},
where x has sort i and φ is a formula.

The language L′(Tm) further supplements this by permitting

3. Count{τ(x) : x ∈ Ri ∧ φ(x)}
where τ is a term.

A structure for L′ consists of an assignment to each relational variable Ri of a
finite collection of elements of the set of functions UAi

i (i.e. tuples). Satisfaction
relative to an assignment of variables is defined exactly as in the language L(Ct)
above.

Let our signature have two relations R and S, and let R have attributes a
and b, while S has attributes c and d . Then we have that:

Theorem 3. The L′(Tm) sentence θ′ given by
count{x.a : x ∈ R ∧ x = x} = count{z ∈ S : z = z}
is not expressible in L′(Ct).

The proof is found in the appendix.

5.1 Preconditions and Definable transactions

Let L be any of the standard logical languages (first-order logic, infinitary logic,
etc.). We let s(L) denote the sentences of L. We will talk about a database (that
is, a finite structure as in the previous section) satisfying a sentence or open
formula of L: we mean this in the usual sense. By a transaction on databases,
we mean simply any function mapping databases to databases. In the following
discussion, we will let D range over databases for a particular signature, and
T denote the set of database transactions for this signature. We let TERM(L)
denotes the set of terms of L and for Γ a collection of terms and D a database,
we let Γ (D) denote all elements obtained from applying terms in Γ to elements
in the underlying set of D. That is:

Γ (D) = {τ(y) : y ⊂ D and τ ∈ Γ}

We now discuss two classes of transactions on finite models associated with
L. The definitions are taken from [3].

The class WPC(L) (transactions with weakest preconditions with respect to
L) is defined as

{T ∈ T | ∃ recursive fT : s(L) → s(L) s.t.
∀D ∀α ∈ s(L) : T (D) |= α ⇔ D |= fT (α)}

A transaction T has weakest preconditions for L if we can statically determine
whether the database resulting from T will satisfy a constraint in L.



The set of L-definable transactions is the collection

DEF(L) = {T | ∀R ∃ L formula βR(x)
∃ Γ ⊂ TERM(L) such that
∀D : ∀t ⊂ Γ (D) D |= βR(t) ⇔ T (D) |= R(t)}

The class of definable transactions are those that can be expressed using a
finite set of L terms and L formulae.

In [3] it is observed that for first-order languages, we have containment,
DEF(L) ⊂ WPC(L). That is, definable transactions all admit weakest precondi-
tions. This is a desirable closure property for a query language to possess. [3]
investigates weakest preconditions over a number of logics, and over a number of
transaction languages. In [17],[3], and [16] applications of weakest precondition
closure to database integrity maintenance are discussed.

Given the importance of weakest precondition closure for database query
languages, it is important to see if natural extensions of the relational calculus,
such as L′(Ct), posess this closure property. It follows from the main result of
this paper that containment does NOT hold for the language L′(Ct).

Corollary 2. There are L′(Ct)-definable transactions that do not posess weak-
est preconditions over L′(Ct).

The proof of the corollary is in the appendix.

6 Conclusions and future work

Languages with aggregate constructs are not nearly so well understood as the
relational calculus. In particular, issues of optimization, complexity, safety, and
expressiveness remain open for many models of aggregation. We are interested in
developing a usable set of rewrite-rules for simplifying languages such as L(Ct)
and L(Tm), and getting semantic characterizations of the definable transactions
that are available (along the lines of Gaifman’s locality theorem [13] or the
bounded degree property of [21]).

We are interested in studying the relationship of the language L(Tm) to
various other counting languages (those discussed, for example, in [18]). In par-
ticular, it would be helpful to know whether languages with binary counters can
express all sentences of L(Tm), and similarly for n-ary counters.

Techniques for proving expressiveness bounds on query languages are hard to
come by. We’ve presented here one technique for analyzing expressivity of query
languages, based on the use of indiscernibles and nonstandard models, that we
believe can be useful outside of the context of aggregates. In particular, we hope
to investigate the interaction of these techniques with the use of Ehrenfeucht
games for logics with counting [18] [14].

Questions in this work were motivated by considering the closure under weak-
est preconditions of various extensions of first-order logic. The closure of a spec-
ification language under weakest-preconditions of definable transactions is help-
ful for integrity constraint maintenance [3],[26],[27]. It is therefore important to



find logics that include aggregate operators that have this closure property, are
of manageable complexity, and allow for optimization and analysis. The results
of this paper show that L(Ct) is not closed under weakest-preconditions, and
we suspect that the same is true for L(Tm). We would like to discover natural
weakest-precondition closed logics containing these languages.

References

1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. J. Barwise (Ed.) Handbook of Mathematical Logic. North-Holland Elsevier 1977.
3. M. Benedikt, T. Griffin, and L. Libkin Verifiable Properties of Database Transac-

tions In Proceedings of 15th ACM Symposium on Principles of Database Systems,
pages 117–128, Montreal Canada, June 1996.

4. M. Benedikt, G. Dong, L. Libkin, L. Wong. Relational Expressive Power of Con-
straint Query Languages. In Proceedings of 15th ACM Symposium on Principles
of Database Systems, pages 5–17, Montreal Canada, June 1996.

5. M. Benedikt and L. Libkin. On the Structure of queries in constraint query lan-
guages. In Proceedings of 11th IEEE Symposium on Logic in Computer Science,
New Brunswick, New Jersey 1996.

6. P. Buneman, S. Naqvi, V. Tannen, L. Wong. Principles of programming with
complex objects and collection types. Theoretical Computer Science, 149(1):3–48,
September 1995.

7. A. Calò and J. Makowsky. The Ehrenfeucht-Fräıssé Games for Transitive Closure
Logic. Manuscript, 1991

8. C. C. Chang and H. Jerome Keisler. Model Theory, Third Edition. North-Holland
Elsevier 1990.

9. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
10. A. Ehrenfeucht. An application of games to the completeness problem for formal-

ized theories. Fundamentae Mathematicae, 49:129–141, 1961.
11. K. Etessami. Counting Quantifiers, Successor Relations, and Logarithmic Space.

In Proceedings of 10th IEEE Conference on Structure in Complexity Theory, May
1995, pages 2–11.

12. K. Etassami and N. Immerman. Tree Canonization and Transitive Closure. Tenth
Annual IEEE Symposium on Logic in Computer Science. 1995.

13. H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium
’81, pages 105–135. North -Holland, 1982.

14. Gradel, E. and Otto, M. Inductive Definability with Counting on Finite Structures.
In E. Borger (ed.), Computer Science Logic,Selected Papers from CSL ’92 LNCS
702 Springer (1993), 231-247.

15. Erich Gradel and Yuri Gurevich. Metafinite Model Theory In Logic and Compu-
tational Complexity, International Workshop LCC’94 Indianapolis, IN,313-366.

16. T. Griffin and H. Trickey. Integrity Maintenance in a Telecommunications Switch.
In IEEE Data Engineering Bulletin V. 17, No. 2., June 1994

17. T. Griffin, H. Trickey, and C. Tuckey. Update Constraints for Relational Databases.
Technical Memorandum AT&T Bell Laboratories, 1992

18. S. Grumbach and C. Tollu. On the Expressive Power of Counting. Fourth Inter-
national Conference on Database Theory. 1992.



19. N. Immerman and E.S. Lander. Describing graphs: a first-order approach to graph
canonization. In A. Selman, editor, Complexity Theory Retrospective, pages 59-81.
Springer-Verlag, 1990.

20. C. Karp. Finite Quantifier Equivalence. In The Theory of Models, edited by J.
Addison, L. Henkin, and A. Tarski, North-Holland 1965, 407-412.

21. L. Libkin and L. Wong. New techniques for studying set languages, bag languages
and aggregate functions. In Proceedings of the 13th Conference on Principles of
Database Systems, Minneapolis MN, May 1994, pages 155–166.

22. L. Libkin and L. Wong. On representation and querying incomplete information
in databases with bags Information Processing Letters 56 (1995) 209-214

23. G. Ozsoyoglu, Z. M. Ozsoyoglu, V. Matos. Extending relational algebra and rela-
tional calculus with set-valued attributes and aggregate functions, ACM Transac-
tions on Database Systems 12, No. 4 (1987), 566–592.

24. J. Paredaens, J. Van den Bussche, and D. Van Gucht. First-order queries on finite
structures over the reals. In Proceedings of 10th IEEE Symposium on Logic in
Computer Science, San Diego, California, pages 79–87, 1995.

25. J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions
into flat algebra expressions. ACM Transaction on Database Systems, 17(1):65–93,
March 1992.

26. X. Qian. An effective method for integrity constraint simplification. In Fourth
International Conference on Data Engineering, 1988.

27. X. Qian. The Deductive Synthesis of Database Transactions. PhD thesis, Stanford
University, 1989.

28. N. Rescher Plurality quantification. Journal of Symbolic Logic, vol. 27 (1962)
373-374.

29. O.Belagradek, A. Stolboushkin, M. Tsaitlin. On order-generic queries. Manuscript.
To appear.

30. V. Tannen, Tutorial: Languages for collection types, in “Proceedings of 13th
Symposium on Principles of Database Systems,” Minneapolis, May 1994.

31. J. Van Den Bussche and M. Otto. First-order queries on databases embedded in
an infinite. structure Technical Report, University of Antwerp, October 1995.

32. L. Wong. Normal forms and conservative properties for query languages over col-
lection types. in “Proceedings of 12th ACM Symposium on Principles of Database
Systems,” Washington D. C., May 1993.



APPENDIX
Proofs

We will prove the remaining lemmas used to prove Theorem 2.

Hereafter we let d = 〈d1, . . . , dH〉 be as in Lemma 1, and put d0 = 0.

A Proof of corollary 1

By indiscernibility, d1 is infinite, and thus H is infinite. Since d is strictly in-
creasing and d1 < H, we have 2d1 ≤ dH . By indiscernibility, 2dJ−1 ≤ dJ for
each J ∈ (1,H], and by indiscernibility again, 2ndJ−1 ≤ dJ for each J and each
finite n. 2

B Proof of lemma 3

We have count{x : S(x)} = d1 in both A and B. In A,

count{count{y : E(x, y)} : x = x} = H > d1,

so θ fails in A. In B,

count{count{y : E(x, y)} : x = x} = d1,

so θ holds in B. 2

It remains to show thatA and B satisfy the same sentences of L0(Ct). In order
to do this we introduce an auxiliary first order vocabulary L1 and corresponding
models A1 and B1.

Definition 4. Let f : A → (0,H] be the function such that f(x) = J whenever
J ∈ (0,H] and x ∈ (dJ−1, dJ ]. Let L1 be a first order vocabulary with countably
many unary relations minn(x), maxn(x) for n ∈ N and countably many binary
relations x �n y for n ∈ N. Let A1 be the model for L1 with universe A such
that

– A1 |= minn(x) iff f(x) ≤ n,
– A1 |= maxn(x) iff H − n ≤ f(x),
– A1 |= x �n y iff f(x) + n ≤ f(y).

Let B1 be the model for L1 with universe B such that

– B1 |= minn(x) iff f(x) ≤ n,
– B1 |= maxn(x) iff K − n ≤ f(x),



– B1 |= x �n y iff f(x) + n ≤ f(y).

Lemma 4. For every formula ϕ(x) of L0(Ct) there is a formula ϕ1(x) of
L1(Ct) such that for all a in A, A |= ϕ[a] if and only if A1 |= ϕ1[a], and
for all b in B, B |= ϕ[b] if and only if B1 |= ϕ1[b].

Proof: Put
(x = y)1 = (x = y),

E(x, y)1 = (x �0 y ∧ y �0 x),

S(x)1 = min1(x).

Then use the formation rules in the obvious way to define ϕ1 for arbitrary ϕ. 2

Definition 5. Let a ≡0 b mean that |a| = |b| and (A1, a) and (B1, b) satisfy
the same atomic formulas of L1. We use a similar notation for pairs of tuples
which are both in A or in B.

Lemma 5. A1 and B1 satisfy the same sentences of L1. In fact, a ≡0 b if and
only if (A1, a) and (B1, b) satisfy the same formulas of L1.

Proof: Using the fact that we have �n as an atomic relation in the language
for each n, and the fact that A1 and B1 are countably saturated, we derive that
the relation a ≡0 b has the back and forth property. It follows that whenever
a ≡0 b, player ∃ has a winning strategy in the Ehrenfeucht-Fraisse game with
ω moves between (A1, a) and (B1, b). In addition, we have that the empty se-
quences from each model are ≡0-equivalent, since there are no atomic sentences
in L1. Thus (A1, a) and (B1, b) are elementarily equivalent by Karp’s theorem
in [20]. 2

The argument in the above lemma can also be used to show that the complete
first order theory of A1 and B1 admits elimination of quantifiers, but we shall
not need that fact.

Lemma 6. Let Γ (x) be a set of quantifier-free formulas of L1 maximal consis-
tent with the theory of A1 and let ψ(x, y) be a quantifier-free formula in L1. Let
s = domain(vecx) ∪ {min,max}. There exist

α1, . . . , αm ∈ s, β1, . . . , βm ∈ {−1, 1}, γ1, . . . , γm ∈ Z, δ ∈ Z

such that whenever (A1, a) satisfies Γ (x),

count{y : ψ(a, y)} = δ +
m

∑

j=1

βjdf(aαj )+γj , (1)

and whenever (B1, b) satisfies Γ (x),

count{y : ψ(b, y)} = δ +
m

∑

j=1

βjdf(bαj )+γj , (2)



with the convention that f(amin) = f(bmin) = 0, f(amax) = H, and f(bmax) =
K.

Proof: Given Γ (x), any quantifier-free formula ψ(x, y) of L1 says that either
y belongs to a subset of {xi : i < |x|}, or y /∈ {xi : i < |x|} and f(y) belongs
to a finite union of disjoint “intervals” with endpoints at a finite distance from
elements of

{f(xi) : i ∈ s}.

In the model (A,a), such an interval will have the form (u + γ, u′ + γ′] where
γ, γ′ ∈ Z and u, u′ belong to {f(xi) : i ∈ s}. The number of elements y of A such
that f(y) belongs to such an interval is equal to the difference du′+γ′ − du+γ . A
similar computation holds for (B, b). 2

We now prove our main lemma, which shows that in the models A1 and B1

both quantifiers and counts can be eliminated.

Lemma 7. For each formula ϕ of L1(Ct) there is a quantifier-free formula ϕ1

of L1 such that
A1 |= ϕ ⇔ ϕ1, B1 |= ϕ ⇔ ϕ1.

Proof: We argue by induction on the complexity of ϕ. As remarked earlier,
we may assume without loss of generality that ϕ has no quantifiers, because the
existential quantifier ∃xψ(x, . . .) may be replaced by ¬count{x : ψ(x, . . .)} = 0.
The hard case of the induction is the case where ϕ has the form

r(count{y : ψi(x, y)} : i ≤ j)

for some j-ary relation r on N. For simplicity we let j = 1, so that

ϕ = r(count{y : ψ(x, y)}).

By inductive hypothesis we have a quantifier-free formula ψ1(x, y) of L1 which
is equivalent to ψ in both models.

Claim 1. Suppose a ≡0 b. Then (A1, a) |= ϕ if and only if (B1, b) |= ϕ.
Proof of Claim 1: By the preceding lemma, (A1, a) satisfies equation (1) and

(B1, b) satisfies the corresponding equation (2). The claim now follows by the
indiscernibility of the sequence d in ∗N .

Claim 2. There is a quantifier-free formula ϕ1(x) of L1 such that A1 |= ϕ ⇔
ϕ1.

Proof of Claim 2: Let Σ(x) be the set of all quantifier-free formulas σ(x) of
L1 such that A1 |= ϕ ⇒ σ. Suppose A1 |= Σ[a]. Then the set of formulas

{ϕ(x)} ∪ {η(x) : η is quantifier-free in L1 and A1 |= η[a]}

is finitely satisfiable inA1. Since ∗N is saturated, this set of formulas is satisfiable
in A1 by some tuple c. Then A1 |= ϕ[c] and a ≡0 c. By Lemma 5 and the
saturation of ∗N , there exists b in B such that a ≡0 b ≡0 c. By Claim 1,
(B1, b) |= ϕ and (A1,a) |= ϕ. Thus every tuple which satisfies Σ in A1 satisfies



ϕ. Since ∗N is saturated, there is a finite conjunction ϕ1(x) of formulas in Σ(x)
such that A1 |= ϕ ⇔ ϕ1, and the claim is proved.

Now let b be a tuple in B. By Lemma 5 and the saturation of ∗N , there
exists a in A such that a ≡0 b. By Claim 2, A1 |= (ϕ ⇔ ϕ1)[a]. By Claim 1,
B1 |= (ϕ ⇔ ϕ1)[b]. 2

Corollary 3. A1 and B1 satisfy the same sentences of L1(Ct). Moreover, A
and B satisfy the same sentences of L0(Ct).

This completes the proof of Lemma 3, and hence Theorem 2.

C Proof of Theorem 3

Proof: Fix some bijection K from the universe for tuples of S to the universe of
R. Let M be the class of L′ models of the form M ′ = 〈R, S〉 which satisfy

– the sets {x.a : x ∈ R}, {x.b : x ∈ R}, {x.c : x ∈ S}, are pairwise disjoint.
– x.c = x.d for each x ∈ S
– x.c 6= y.c for distinct x, y in S.
– For each x in S, K(x.c) is in R

We define a mapping F that maps M to models for the language L0 defined
previously. F (M ′) is defined to have domain equal to R, the predicate S is
interpreted by the K-image of the attributes of the relation S in M ′ , and the
interpretation of the binary predicate E is defined by

xEy ↔ x.a = y.a
We also define a mapping G from formulae and terms of L(Ct) to formulae

and terms (respectively) of L′(Ct) as follows:
G(x.a = y.a) = xEy, where x and y are any two variables of sort R, (not

necessarily distinct).
G(x.c = y.c) = G(x.d = y.d) = G(x.c = y.d) = G(x.d = y.c) = x = y , where

x, y have sort S.
G(x.att1 = y.att2) = false, for all attribute/sort combinations not listed

above.
G(P (τ1, . . . , τn)) = P (G(τ1), . . . , G(τn))
G(∀x ∈ R φ(x)) = ∀x G(φ(x))
G(∃x ∈ R φ(x)) = ∃x G(φ(x))
G(∀x ∈ S φ(x)) = ∀x S(x) ∧ G(φ(x))
G(∃x ∈ S φ(x)) = ∃x S(x) ∧ G(φ(x))
G(f(x)) = f(x),
G(Count{x ∈ R : φ(x)}) = Count{x : G(φ(x))},

Proposition 3.

– The maps F and G are surjections.
– M ′ |= φ(x) ⇔ F (M ′) |= G(φ(x))



Proof: 1) is proved by inspection. 2) is proved by straightforward induction
on complexity.

Theorem 3 now follows, since if there were a formula of L′(Ct) expressing
exactly those models that satisfy θ′, then by applying the inverse of G to this
formula we would get a sentence of L(Ct) expressing exactly those models sat-
isfying θ , contradicting the main theorem of the previous section.

D Proof of Corollary 2

Consider the transaction T on structures for the signature SC defined above as
follows:

R ⇐ Πa(R)
S ⇐ S
Then T is clearly L(Ct)-definable.
The precondition of the L′(Ct)-sentence:
count{y ∈ R : y = y} = count{z : S(z)}
is exactly the sentence θ′ of Theorem 3 cited above, which is not expressible

in L′(Ct).


