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Abstract

With a view to quantum foundations, we define the concepts of an empirical model (a
probabilistic model describing measurements and outcomes), a hidden-variable model (an
empirical model augmented by unobserved variables), and various properties of hidden-variable
models, for the case of infinite measurement spaces and finite outcome spaces. Thus, our
framework is general enough to include, for example, quantum experiments that involve spin
measurements at arbitrary relative angles. Within this framework, we use the concept of the
fiber product of measures to prove general versions of two determinization results about
hidden-variable models. Specifically, we prove that: (i) every empirical model can be realized by
a deterministic hidden-variable model; (ii) for every hidden-variable model satisfying locality and
λ-independence, there is a realization-equivalent hidden-variable model satisfying determinism
and λ-independence.

1 Introduction

Hidden variables are extra variables added to the model of an experiment to explain correlations in
the outcomes. Here is a simple example. Alice’s and Bob’s computers have been prepared with the
same password. We know that the password is either p2s4w6r8 or 1a3s5o7d, but we do not know
which it is. If Alice now types in p2s4w6r8 and this unlocks her computer, we immediately know
what will happen when Bob types in one or other of the two passwords. The two outcomes — when
Alice types a password and Bob types a password — are perfectly correlated. Clearly, it would be
wrong to conclude that, when Alice types a password on her machine, this somehow causes Bob’s
machine to acquire the same password. The correlation is purely informational: It is our state of
knowledge that changes, not Bob’s computer. Formally, we can consider an r.v. (random variable)
X for Alice’s password, an r.v. Y for Bob’s password, and an extra r.v. Z. The r.v. Z takes the
value z1 or z2 according as the two machines were prepared with the first or the second password.
Then, even though X and Y will be perfectly correlated, they will also be independent (trivially so),
conditional on the value of Z. In this sense, the extra r.v. Z explains the correlation.
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Of course, even in the classical realm, there are much more complicated examples of hidden-
variable analysis. But, the most famous context for hidden-variable analysis is quantum mechanics
(QM). Having started with von Neumann [20, 1932] and Einstein, Podolosky, and Rosen [11, 1935],
the question of whether a hidden-variable formulation of QM is possible was re-ignited by Bell [2,
1964], whose watershed no-go theorem gave conditions under which the answer is negative. The
correlations that arise in QM — for example, in spin measurements — cannot be explained as
reflecting the presence of hidden variables.

Let us specify a little more what we mean by an experiment. We imagine that Alice can make
one of several measurements on her part of a certain system, and Bob can make one of several
measurements on his part of the system. Each pair of measurements (one by Alice and one by Bob)
leads to a pair of outcomes (one for Alice and one for Bob). We can build an empirical model of
the experiment by choosing appropriate spaces for the sets of possible measurements and outcomes,
and by specifying, for each pair of measurements, a probability measure over pairs of outcomes. An
associated hidden-variable (henceforth h.v.) model is obtained by starting with the empirical
model and then appending to it an extra r.v..

We can define various types of h.v. model, according to what properties we ask of the model. One
property is locality (Bell [2, 1964]), which can be decomposed into parameter independence
and outcome independence (Jarrett [15, 1984], Shimony [17, 1986]). Another property is λ-
independence (the term is due to Dickson [10, 2005]), which says that the choices of measurement
by Alice and Bob are independent of the process determining the values of any h.v.s. Bell [4,
1985, p.95] describes this as the condition that “the settings of instruments are in some sense free
variables.” We will use the term “free variables” below.

Here are two basic types of h.v. question one can ask:

i. The existence question Suppose we are given a certain physical system and an empirical
probability measure e on the observable variables of the system. Can we find an extended
space that includes h.v.s, and a probability measure p on this space, where p satisfies certain
properties (as above) and realizes (via marginalization) the empirical probability measure e?

ii. The equivalence question Suppose we are given an empirical probability measure e on the
observable variables of a system, and an h.v. model, with probability measure p that satisfies
certain properties and realizes e. Can we find another h.v. model, with probability measure q,
where q satisfies other stipulated properties and also realizes e?

Bell’s Theorem is the most famous negative answer to i., obtained when the physical system is
quantum and the properties demanded are locality and λ-independence.

In this paper we will focus on positive results for questions of both types i. and ii. These positive
results involve yet another property of h.v. models: The (strong) determinism property says that
for each player, the h.v.s determine ‘non-probabilistically’ (formally: almost surely) the outcome
of any measurement. As we will see in Section 4, determinism implies locality. We consider the
following positive results on questions i. and ii.:

i. First determinization result Every empirical model (whether generated by a classical or
quantum or even superquantum system) can be realized by an h.v. model satisfying determin-
ism.

ii. Second determinization result Given an h.v. model satisfying locality and λ-independence,
there is a realization-equivalent h.v. model that satisfies determinism and λ-independence.
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Put together, these two results tell us a lot about Bell’s Theorem. The first determinization
result says that for every empirical model, an h.v. model with determinism is possible. It is also
true that for every empirical model, an h.v. model with λ-independence is possible. (This is a trivial
construction, which we note in Remark 5.1.) As usually stated, Bell’s Theorem asks for an h.v. model
satisfying locality and λ-independence. In light of the second determinization result, Bell’s Theorem
can be equivalently stated as asking for determinism and λ-independence. Thus, Bell’s Theorem
teaches us that: It is possible to believe that Nature (in the form of QM) is deterministic, or it is
possible to believe that measurement choices by experimenters are free variables, but it is not possible
to believe both.

The goal of this paper is to prove the two determinization results at a general measure-theoretic
level (Theorems 5.2 and 5.3). Bell [3, 1971] mentioned the idea of the first determinization result.
Fine [12, 1982] produced the first version of the second determinization result. Both results have
been (re-)proved for various formulations in the literature. A notable aspect of our formulation is
that we allow for infinite measurement spaces. Thus, our set-up is general enough to include, for
example, experiments that involve spin measurements at arbitrary relative angles. We assume that
outcome sets are finite (such as spin up or spin down).

Our treatment uses the concept of the fiber product of measures. The construction of these
objects comes from Shortt [18, 1984]. The name “fiber product” is taken from Ben Yaacov and
Keisler [6, 2009], who employed the concept in the context of continuous model theory. Fiber
products of measures turn out to be well suited to the questions in quantum foundations which we
study in this paper.

2 Empirical and Hidden-Variable Models

Alice has a space of possible measurements, which is a measurable space (Ya,Ya), and a space of
possible outcomes, which is a measurable space (Xa,Xa). Likewise, Bob has a space of possible
measurements, which is a measurable space (Yb,Yb), and a space of possible outcomes, which is a
measurable space (Xb,Xb). Throughout, we will restrict attention to bipartite systems. (We will
comment later on the extension to more than two parts.) There is also an h.v. space, which is an
unspecified measurable space (Λ,L). Write

(X,X ) = (Xa,Xa)⊗ (Xb,Xb),
(Y,Y) = (Ya,Ya)⊗ (Yb,Yb),

Ψ = (X,X )⊗ (Y,Y),

Ω = (X,X )⊗ (Y,Y)⊗ (Λ,L).

Definition 2.1 An empirical model is a probability measure e on Ψ.

We see that an empirical model describes an experiment in which the pair of measurements
y = (ya, yb) ∈ Y is randomly chosen according to the probability measure margY e, and y and the
joint outcome x = (xa, xb) ∈ X are distributed according to e.

Definition 2.2 A hidden-variable (h.v.) model is a probability measure p on Ω.

Definition 2.3 We say that an h.v. model p realizes an empirical model e if e = margΨp. We say
that two h.v. models, possibly with different h.v. spaces, are (realization-)equivalent if they realize
the same empirical model.
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An h.v. model is an empirical model which has an extra component, viz., the h.v. space, and
which reproduces a given empirical model when we average over the values of the h.v.. The interest
in h.v. models is that we can ask them to satisfy properties that it would be unreasonable to demand
of an empirical model. Thus, in the example we began with, the property we ask for is conditional
independence — which we would only expect once the extra r.v. Z is introduced. We will come to
other properties in Section 4.

3 Products and Fiber Products of Measures

We first introduce notation and recall some well-known facts about product measures. For back-
ground on the relevant measure theory, see e.g. Billingsley [7, 1995].

Recall that by a product (X,X ) ⊗ (Y,Y) of two measurable spaces (X,X ) and (Y,Y) is meant
the (Cartesian) product space X × Y equipped with the σ-algebra generated by the measurable
rectangles J ×K, where J ∈ X and K ∈ Y. We use the following two conventions. First, when p is
a probability measure on (X,X )⊗ (Y,Y) and q = margXp, then for each J ∈ X we write

p(J) = p(J × Y ) = q(J),

and for each q-integrable f : X → R we write∫
J

f(x) dp =

∫
J×Y

f(x) dp =

∫
J

f(x) dq.

Thus, in particular, a statement holds for p-almost all x ∈ X if and only if it holds for q-almost all
x ∈ X.

Second, when p is a probability measure on a product space (X,X )⊗ (Y,Y)⊗ (Z,Z), J ∈ X , and
z ∈ Z, we write p[J ||Z] for the conditional probability of J given z. Here, we refer to the concept of
conditional probability given a sub σ-algebra; see Billingsley [7, 1995, Section 33] for a presentation.
Formally, p[J ||Z] denotes a function from Z into [0, 1] such that

p[J ||Z]z = p[J × Y × Z|{X × Y, ∅} ⊗ Z](x,y,z).

(Note that {X × Y, ∅} is the trivial σ-algebra over X × Y , so that the right-hand side does not
depend on (x, y).)

We use similar notation for (finite) products with factors to the left of (X,X ) or to the right
of (Z,Z). Note that if q = margX×Zp, then q[J ||Z] = p[J ||Z]. We will also need the concept of
conditional expectation given a sub σ-algebra (Billingsley [7, 1995, Section 34]), and we will use an
analogous notation. Thus, given an integrable function f : X → R, and z ∈ Z, we define E[f ||Z]
by:

E[f ||Z]z = E[f ◦ π|{X × Y, ∅} ⊗ Z](x,y,z),

where we write π for the projection from X × Y × Z to X.

Lemma 3.1 The mapping z 7→ p[J ||Z]z is the p-almost surely unique Z-measurable function f :
Z → [0, 1] such that for each set L ∈ Z,∫

L

f(z) dp = p(J × L).
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Proof. Existence: Let f(z) = p[J ||Z]z. Using the definition of p[J ||Z], we see that∫
L

f(z) dp =

∫
X×Y×L

E[1J×Y×Z |{X × Y, ∅} ⊗ Z] dp =

∫
X×Y×L

1J×Y×Z dp = p((X × Y × L) ∩ (J × Y × Z)) = p(J × L),

as required.
Uniqueness: If p(J) = 0, then f(z) = g(z) = 0 p-almost surely. Suppose p(J) > 0. Let f and g

are two such functions and let L = {z : f(z) < g(z)}. Then L ∈ Z. If p(J × L) > 0, then p(L) > 0,
and

0 <

∫
L

g(z) dp−
∫
L

f(z) dp =

∫
L

g(z)− f(z) dp = 0,

a contradiction. Therefore p(J × L) = 0, so p(L) = 0 and hence f(z) ≥ g(z) p-almost surely.
Similarly, g(z) ≥ f(z) p-almost surely, so f(z) = g(z) p-almost surely.

Corollary 3.2 Let q be the marginal of p on X×Z. Then, for each J ∈ X , we have p[J ||Z] = q[J ||Z]
q-almost surely.

Lemma 3.3 If p[J ||Z] ∈ {0, 1} p-almost surely, then p[J ||Y ⊗ Z] = p[J ||Z] p-almost surely.

Proof. Let L0 = {z ∈ Z : p[J ||Z]z = 0} and L1 = {z ∈ Z : p[J ||Z]z = 1}. Then L0, L1 ∈ Z and
p(L0 ∪ L1) = 1. By Lemma 3.1, ∫

L0

p[J ||Z]z dp = 0 = p(J × L0),

∫
L1

p[J ||Z]z dp = p(L1) = p(J × L1).

By Lemma 3.1 again,∫
Y×L0

p[J ||Y ⊗ Z](y,z) dp = p(J × Y × L0) = p(J × L0) = 0,

so
p[J ||Y ⊗ Z](y,z) = 0 = p[J ||Z]z ∀ (y, z) ∈ Y × L0.

Similarly, ∫
Y×L1

p[J ||Y ⊗ Z](y,z) dp = p(J × Y × L1) = p(J × L1) = p(L1),

so
p[J ||Y ⊗ Z](y,z) = 1 = p[J ||Z]z ∀ (y, z) ∈ Y × L1,

as required.

When x ∈ X, we write p[x||Z]z = p[{x}||Z]z. For the particular case of finite X, we get, by the
properties of probability measures, that

∑
x∈X p[x||Z]z = 1 p-almost surely.

Given probability measures p on (X,X )⊗ (Y,Y) and r on (Y,Y), we say that p is an extension
of r if r = margY p. We say that two probability measures p and q on (X,X )⊗ (Y,Y) agree on Y
if margY p = margY q.
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Given probability spaces (X,X , q) and (Y,Y, r), the product measure p = q ⊗ r is the unique
probability measure p on (X,X )⊗ (Y,Y) such that q and r are independent with respect to p, that
is,

p(J ×K) = q(J)× r(K)

for all J ∈ X and K ∈ Y. Note that p is a common extension of q and r.

Remark 3.4 Let (X,X , q) and (Y,Y, r) be as above and let p be a common extension of q and r on
(X,X )⊗ (Y,Y). The following are equivalent:

(i) p = q ⊗ r.

(ii) The σ-algebras X ⊗ {Y, ∅} and {X, ∅} ⊗ Y are independent with respect to p, that is,

p(J ×K) = p(J)× p(K)

for all J ∈ X and K ∈ Y.

(iii) p[J ||Y]y = p(J) p-almost surely for all J ∈ X .

We next introduce the notion of a fiber product of measures. For the remainder of this section
we let X = (X,X ),Y = (Y,Y),Z = (Z,Z) be measurable spaces.

Definition 3.5 Let q and r be probability measures on X⊗Z and Y⊗Z, respectively. Assume that
q and r have the same marginal s on Z. We say that a probability measure p on X ⊗Y ⊗ Z is a
fiber product of q and r over Z, in symbols p = q ⊗Z r, if

p(J ×K × L) =

∫
L

q[J ||Z]z × r[K||Z]z ds

for all J ∈ X , K ∈ Y, and L ∈ Z.

Intuitively, the fiber product q ⊗Z r is the common extension of q and r with respect to which
q and r are as independent as possible given that they have the same marginal on Z. There are
examples where a fiber product does not exist (see Swart [19, 1996]). But it is easily seen that if a
fiber product q ⊗Z r does exist, then it is unique. Next is a characterization of the fiber product in
terms of conditional probabilities and extensions.

Lemma 3.6 Let q and r be as in Definition 3.5, and let p be a common extension of q, r on X⊗Y⊗Z.
Then the following are equivalent:

(i) p = q ⊗Z r.

(ii) p[J ×K||Z]z = q[J ||Z]z × r[K||Z]z p-almost surely, for all J ∈ X and K ∈ Y.

(iii) p[J ×K||Z]z = p[J ||Z]z × p[K||Z]z p-almost surely, for all J ∈ X and K ∈ Y.

(iv) p[J ||Y ⊗ Z](y,z) = p[J ||Z]z p-almost surely, for all J ∈ X .

Proof. It is clear that (i), (ii), and (iii) are equivalent. Consider any J ∈ X ,K ∈ Y, and L ∈ Z.
Assume (i). To prove (iv), it is enough to show that∫

K×L
p[J ||Z] dp = p(J ×K × L).
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We have ∫
K×L

p[J ||Z] dp =

∫
Y×L

p[J ||Z]× 1K dp.

By the rules of conditional expectations,

E[p[J ||Z]× 1K ||Z] = p[J ||Z]× E[1K ||Z] = p[J ||Z]× p[K||Z].

Therefore ∫
Y×L

p[J ||Z]× 1K dp =

∫
L

p[J ||Z]× p[K||Z] dp =

∫
L

q[J ||Z]× r[K||Z] dp.

By (i), this is equal to p(J ×K × L), which shows that (i) implies (iv).
Now assume (iv). Then

p(J ×K × L) =

∫
K×L

p[J ||Y ⊗ Z] dp =

∫
K×L

p[J ||Z] dp =

∫
Y×L

p[J ||Z]× 1K dp.

As in the preceding paragraph,∫
Y×L

p[J ||Z]× 1K dp =

∫
L

q[J ||Z]× r[K||Z] dp,

and condition (i) is proved.

A version g(J, z) of the conditional probability q[J ||Z]z is regular if g(·, z0) is a probability
measure on X for each fixed z0 ∈ Z. It is well known that when X and Z are both Polish spaces,
then q[J ||Z]z has a regular version. It is also easily seen that when X is finite and Z is any measurable
space, then q[J ||Z]z has a regular version. This is the case we will need in this paper. The next
lemma is from Swart [19, 1996]:

Lemma 3.7 Let q and r be as in Definition 3.5. If q[J ||Z]z has a regular version, then the fiber
product q ⊗Z r exists.

Corollary 3.8 Let q and r be as in Definition 3.5. If the space X is finite, then the fiber product
q ⊗Z r exists.

4 Properties of Hidden-Variable Models

We can now formulate the various properties of h.v. models which we listed in the Introduction (we
will not repeat their sources) and establish some relationships among them. At this point, we adopt:

Assumption: The outcome spaces Xa and Xb are finite, and Xa and Xb are the respective power
sets.

Also, whenever we write an equation involving conditional probabilities, it will be understood to
mean that the equation holds p-almost surely. By the term “measure” we will always mean “prob-
ability measure.” Fix an h.v. model p. We will often make use of the following notation:

pa = margXa×Y×Λp, pb = margXb×Y×Λp,

qa = margXa×Ya×Λp, qb = margXb×Yb×Λp,

r = margY×Λp,

pY = margY p, pΛ = margΛp.
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Λ Λ Λ Λ

Ya Ya Ya Ya YaYb Yb Yb Yb

Xa Xa XaXb

p pa qa r pY

Λ

pΛ

All expressions below which are given for Alice have counterparts for Bob, with a and b inter-
changed.

Definition 4.1 The h.v. model p satisfies locality if for every x ∈ X we have

p[x||Y ⊗ L] = p[xa||Ya ⊗ L]× p[xb||Yb ⊗ L].

Definition 4.2 The h.v. model p satisfies parameter independence if for every xa ∈ Xa we have

p[xa||Y ⊗ L] = p[xa||Ya ⊗ L].

Here is a characterization of parameter independence in terms of fiber products.

Corollary 4.3 p satisfies parameter independence if and only if pa = qa⊗Ya×Λr and pb = qb⊗Yb×Λr.

Proof. By Lemma 3.6, pa = qa ⊗Ya×Λ r if and only if

pa[xa||Y ⊗ L] = pa[xa||Ya ⊗ L]

for all xa ∈ Xa. Since p is an extension of pa, this holds if and only if

p[xa||Y ⊗ L] = p[xa||Ya ⊗ L]

for all xa ∈ Xa. Similarly, pb = qb ⊗Yb×Λ r if and only if

p[xb||Y ⊗ L] = p[xb||Yb ⊗ L]

for all xb ∈ Xb. The result follows.

Definition 4.4 The h.v. model p satisfies outcome independence if for every x = (xa, xb) ∈ X
we have

p[x||Y ⊗ L] = p[xa||Y ⊗ L]× p[xb||Y ⊗ L].

The following corollary characterizes outcome independence in terms of fiber products.

Corollary 4.5 p satisfies outcome independence if and only if p = pa ⊗Y×Λ pb.

Proof. This follows easily from Lemma 3.6.

The next proposition follows Jarrett [15, 1984, p.582].

Proposition 4.6 p satisfies locality if and only if it satisfies parameter independence and outcome
independence.

8



Proof. It is easily seen from the definitions that if p satisfies parameter independence and outcome
independence, then p satisfies locality.

Suppose that p satisfies locality. We have

{xa} ×Xb =
⋃

xb∈Xb

{(xa, xb)},

so
p[xa||Y ⊗ L] = p[{xa} ×Xb||Y ⊗ L] =

∑
xb∈Xb

p[xa, xb||Y ⊗ L] =∑
xb∈Xb

(p[xa||Ya ⊗ L]× p[xb||Yb ⊗ L]) =

p[xa||Ya ⊗ L]×
∑

xb∈Xb

p[xb||Yb ⊗ L] = p[xa||Ya ⊗ L]× 1 = p[xa||Ya ⊗ L].

Similarly,
p[xb||Y ⊗ L] = p[xb||Yb ⊗ L].

It follows that p satisfies parameter independence.
Again, supposing that p satisfies locality, we have

p[xa, xb||Y ⊗ L] = p[xa||Ya ⊗ L]× p[xb||Yb ⊗ L],

and hence
p[xa, xb||Y ⊗ L] = p[xa||Y ⊗ L]× p[xb||Y ⊗ L],

so p satisfies outcome independence.

We immediately get a characterization of locality in terms of fiber products.

Corollary 4.7 p satisfies locality if and only if

p = pa ⊗Y×Λ pb, pa = qa ⊗Ya×Λ r, pb = qb ⊗Yb×Λ r.

Proof. By Proposition 4.6 and Corollaries 4.3 and 4.5.

Definition 4.8 The h.v. model p satisfies λ-independence if for every event L ∈ L,

p[L||Y]y = p(L).

Remark 4.9 We observe:

(i) The λ-independence property for p depends only on r.

(ii) Any h.v. model p such that Λ is a singleton satisfies λ-independence.

By Remark 3.4, we have:

Lemma 4.10 The following are equivalent:

(i) p satisfies λ-independence.

(ii) The measure r is the product pY ⊗ pΛ.
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(iii) The σ-algebras Y and L are independent with respect to p, i.e.,

p(K × L) = p(K)× p(L)

for every K ∈ Y, L ∈ L.

The distinction between strong and weak determinism in the next two definitions is from Bran-
denburger and Yanofsky [9, 2008]. Strong determinism is the notion discussed in the Introduction.

Definition 4.11 The h.v. model p satisfies strong determinism if for each xa ∈ Xa we have

p[xa||Ya ⊗ L](ya,λ) ∈ {0, 1}.

This says that the set Ya ×Λ can be partitioned into sets {Axa : xa ∈ Xa} such that p[xa||Axa ] = 1
for each xa ∈ Xa.

Definition 4.12 The h.v. model p satisfies weak determinism if for each x ∈ X we have

p[x||Y ⊗ L](y,λ) ∈ {0, 1}.

This says that the set Y × Λ can be partitioned into sets {Ax : x ∈ X} such that p[x||Ax] = 1 for
each x ∈ X.

Lemma 4.13 The following are equivalent:

(i) p satisfies weak determinism.

(ii) For each xa ∈ Xa we have
p[xa||Y ⊗ L](y,λ) ∈ {0, 1}.

Proof. It is clear that (ii) implies (i).
Assume (i). Then for p-almost all (y, λ) there is an x ∈ X such that p[x||Y ⊗ L](y,λ) = 1, and

hence
p[xa||Y ⊗ L](y,λ) = 1

for each xa ∈ Xa. Therefore (ii) holds.

Proposition 4.14 If p satisfies strong determinism then it satisfies weak determinism.

Proof. Suppose p satisfies strong determinism. By Lemma 3.3, we have

p[xa||Ya ⊗ L] = p[xa||Y ⊗ L]

p-almost surely, and therefore
p[xa||Y ⊗ L] ∈ {0, 1},

so p satisfies weak determinism by Lemma 4.13(ii).

Proposition 4.15 If p satisfies weak determinism then it satisfies outcome independence.

Proof. Suppose p satisfies weak determinism. By Lemma 4.13, we have

p[xa||Y ⊗ L] ∈ {0, 1}.

Therefore
p[x||Y ⊗ L] = p[xa||Y ⊗ L]× p[xb||Y ⊗ L],

as required.
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Proposition 4.16 p satisfies strong determinism if and only if it satisfies weak determinism and
parameter independence.

Proof. Suppose p satisfies strong determinism. By Lemma 3.3,

p[xa||Ya ⊗ L] = p[xa||Y ⊗ L],

so p satisfies parameter independence. By Proposition 4.14, p satisfies weak determinism.
For the converse, suppose p satisfies weak determinism and parameter independence. Fix xa ∈

Xa. By weak determinism and Lemma 4.13,

p[xa||Y ⊗ L](y,λ) ∈ {0, 1}.

By parameter independence,
p[xa||Y ⊗ L] = p[xa||Ya ⊗ L].

Therefore
p[xa||Ya ⊗ L](y,λ) ∈ {0, 1},

so p satisfies strong determinism.

Corollary 4.17 p satisfies strong determinism if and only if it satisfies weak determinism and
locality.

Proof. By Propositions 4.6, 4.15, and 4.16.

We can summarize the properties we have considered and the relationships among them in the
following Venn diagram.

Outcome Independence 

Parameter 
Independence 

Weak Determinism 

λ-Independence 

Locality 

Strong Determinism 
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5 Determinization Theorems

Given an h.v. model p, we call the probability space (Λ,L, pΛ) the h.v. space of p.

Remark 5.1 Every empirical model e can be realized by an h.v. model p where p satisfies λ-independence
and the h.v. space of p has only one element.

Proof. For every probability space (Λ,L, pΛ), the product measure p = e⊗ pΛ is an h.v. model that
realizes e and satisfies λ-independence. In particular, we can take Λ to be a one-element set and
take (Λ,L, pΛ) to be the trivial probability measure. .

We now state and prove our determinization results.

Theorem 5.2 Every empirical model e can be realized by an h.v. model p where p satisfies strong
determinism and the h.v. space of p is finite.

Proof. Let s = margXe. Build an h.v. space (Λ,L, s) where Λ is a copy of X and L is the power
set of X. Build a probability measure d on X × Λ so that, for each x ∈ X and x′ ∈ Λ,

d(x, x′) =

{
s(x) if x = x′,

0 otherwise.

Note that d is an extension of s.
Let p be the fiber product p = d ⊗X e. Then p is realization-equivalent to e. Since Λ is a copy

of the finite space X, Λ is finite. For each xa ∈ Xa and x′ ∈ Λ, we have

p[xa||x′] = d[xa||x′] ∈ {0, 1}.

By Lemma 3.3, for each xa we have

p[xa||Ya ⊗ L](ya,x′) ∈ {0, 1}

p-almost surely. This shows that p satisfies strong determinism.

Theorem 5.3 Given an h.v. model p satisfying locality and λ-independence, there is a realization-
equivalent h.v. model p̄ that satisfies strong determinism and λ-independence.

Proof. Suppose p satisfies locality and λ-independence. We will construct a new h.v. model p̄ whose
h.v. space (Λ̄, L̄, p̄Λ̄) will be the product of (Λ,L, pΛ) and the Lebesgue unit square

([0, 1]a,Ua, ua)⊗ ([0, 1]b,Ub, ub).

Here, [0, 1]a is a copy of the real unit interval, Ua is the set of Borel subsets of [0, 1]a, and ua is
Lebesgue measure on Ua; similarly for b.

Let Xa = {x1
a, . . . , x

A
a }. For each ya ∈ Ya and λ ∈ Λ, partition [0, 1]a into A consecutive intervals

Ia(x1
a, ya, λ), Ia(x2

a, ya, λ), . . . , Ia(xAa , ya, λ),

where, for each xa ∈ Xa, Ia(xa, ya, λ) has length

ua(Ia(xa, ya, λ)) = p[xa||Ya ⊗ L](ya,λ).

12



Note that the boundary point between the ith and (i + 1)th intervals is the (Ya ⊗ L)-measurable
function ∑n

i=1
p[xia||Ya ⊗ L](ya,λ).

We carry out the same construction with b in place of a.
Let r̄ = r ⊗ ua ⊗ ub. Since p satisfies λ-independence, r = pY ⊗ pΛ, and thus r̄ = pY ⊗ p̄Λ̄. Let

sa be the unique probability measure on

(Xa,Xa)⊗ (Ya,Ya)⊗ (Λ,L)⊗ ([0, 1]a,Ua)

such that for each xa ∈ Xa, Ka ∈ Ya, L ∈ L, and Ua ∈ Ua, we have

sa({xa} ×Ka × L× Ua) =

∫
Ka×L×Ua

1Ia(xa,ya,λ)(α) dr̄,

where we write α for a typical element of [0, 1]a. Define sb in a similar way. Now define p̄a, p̄b, and
p̄ as the fiber products

p̄a = sa ⊗Ya×Λ×[0,1]a r̄, p̄b = sb ⊗Yb×Λ×[0,1]b r̄, p̄ = p̄a ⊗Y×Λ̄ p̄b.

We see that the h.v. model p̄ is a common extension of sa, sb, and r̄. It also satisfies λ-independence
because r̄ = pY ⊗ p̄Λ̄. By Lemma 3.1,

sa[xa||Ya ⊗ L⊗ Ua] = 1Ia(xa,ya,λ) ∈ {0, 1}.

By Lemma 3.3,
sa[xa||Ya ⊗ L̄] ∈ {0, 1}.

Similarly for sb. Therefore p̄ satisfies strong determinism.
It remains to prove that p̄ is an extension of p. By Fubini’s Theorem,

sa({xa} ×Ka × L) =

∫
Ka×L×[0,1]a

1Ia(xa,ya,λ)(α) dr̄ =

∫
Ka×L

∫ 1

0

1Ia(xa,ya,λ)(α) dua dr =

∫
Ka×L

ua(Ia(xa, ya, λ)) dr =∫
Ka×L

qa[xa||Ya ⊗ L](ya,λ) dr = qa({xa} ×Ka × L).

Thus sa is an extension of qa. Similarly, sb is an extension of qb.
Since both p and p̄ satisfy locality, and p̄ extends r̄ = r⊗ ua ⊗ ub, by Fubini’s Theorem we have

p̄({x} ×K × L) =

∫
K×L×[0,1]a×[0,1]b

p̄[x||Y ⊗ L̄] dr̄ =

∫
K×L×[0,1]a×[0,1]b

sa[xa||Ya ⊗ L̄]× sb[xb||Yb ⊗ L̄] dr =

∫
K×L

∫ 1

0

∫ 1

0

sa[xa||Ya ⊗ L̄]× sb[xb||Yb ⊗ L̄] dua dub dr =∫
K×L

qa[xa||Ya ⊗ L]× qb[xb||Yb ⊗ L] dr = p({x} ×K × L).
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Thus p̄ is an extension of p, and hence p̄ is realization-equivalent to p. This completes the proof.

All the results in Section 4 (“Properties of Hidden-Variable Models”), and Theorems 5.2 and 5.3
in this section, extend immediately to multipartite systems. The only adjustment needed is that
parameter independence must now be stated in terms of sets of parts instead of individual parts.
Interestingly, outcome independence and locality do not need to be restated.

6 Endnote

To keep things simple, we assumed in this paper that the outcome spaces Xa and Xb are finite.
However, the only result in this paper that requires this assumption is Theorem 5.2. We show in
[8, 2012] that all of the results in Section 4 hold for arbitrary outcome spaces Xa and Xb, and that
Theorem 5.3 holds assuming only that the outcome spaces have countably generated σ-algebras of
events Xa and Xb.

It would be of interest to extend the methods in this paper to formulate other properties that
have usually been studied only for the case of finite sets of measurements. For finite probability
spaces, Abramsky and Brandenburger [1, 2011] establish a strict hierarchy of three properties: non-
locality (à la Bell) is strictly weaker than possibilistic non-locality (exhibited by the Hardy [14, 1993]
model), which is strictly weaker than strong contextuality (exhibited by the Greenberger, Horne,
and Zeilinger [13, 1989] model). (In this language, the Kochen-Specker Theorem [16, 1967] is a
model-independent proof of strong contextuality.) Extending these latter properties to the general
measure-theoretic setting appears to be an open direction.
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