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Abstract. The epistemic conditions of “rationality and common belief of ra-
tionality” and “rationality and common assumption of rationality” in a game

are characterized by the solution concepts of a “best-response set” (Pearce [26,
1984]) and a “self-admissible set” (Brandenburger, Friedenberg, and Keisler

[13, 2008]), respectively. We characterize each solution concept as the set of

fixed points of a map on the lattice of rectangular subsets of the product of
the strategy sets. Of note is that both maps we use are non-monotone.

1. Introduction

Topological fixed-point arguments have a long tradition in game theory. von
Neumann’s [28, 1928] proof of his famous Minimax Theorem made use of a topo-
logical fixed-point argument. Nash’s existence proof for his equilibrium concept
is also a topological fixed-point argument—using Brouwer’s Theorem ([14, 1910])
in [23, 1950] and [25, 1951] and Kakutani’s Theorem ([17, 1941]) in [24, 1950].
Subsequently, the Brouwer and Kakutani theorems became the standard tools in
existence arguments in game theory.

Order-theoretic fixed-point arguments also have a role in game theory. These
arguments are prominent in epistemic game theory (EGT). The purpose of this
note is to explain the role of order-theoretic fixed-point arguments in EGT.

This note focuses on two solution concepts that arise from the EGT approach:
best-response sets and self-admissible sets. The treatment is in finite games. (The
definitions of these concepts will be laid out later.) We will characterize these
solution concepts as arising from fixed points of certain non-monotone maps.

There is an important stream of papers that treats iterated dominance concepts
in general infinite games. See, e.g., Apt [2, 2007a], [3, 2007b], [4, 2007c], and Apt
and Zvesper [5, 2007]. The main focus in this stream of papers is on the case of
monotonicity, but non-monotonic maps also arise.

Mathematical logic, theoretical computer science, and lattice theory are other
areas where order-theoretic fixed point methods are commonly employed. See
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Moschovakis [22, 1974], Libkin [18, 2010], Abramsky and Jung [1, 1994], and
Davey and Priestley [15, 2002] for standard presentations. The order-theoretic
maps most often used there are monotonic, but non-monotonic maps also arise. A
notable instance of the non-monotone case is Martin’s [19, 2000] theory of mea-
surements on domains. It would be very interesting to investigate whether what is
known in other areas about the non-monotone case could be applied to EGT. We
leave this to future work.

2. Epistemic Game Theory

We now give a very brief sketch of the EGT approach. The classical description
of the strategic situation consists of a game matrix or game tree. The idea is that
players may face uncertainty about how others play the game. Under the EGT
approach, this uncertainty is part of the description of the strategic situation. That
is, the description consists of a game (matrix or tree) and beliefs about the play
of the game. These “beliefs about the play of the game” are, in fact, the so-called
“hierarchies about the play of the game,” i.e., what each player thinks about “the
strategies other players select,” what each player thinks about “what others think
about ‘the strategies others select,’ ” etc.1

Figure 2.1

Harsanyi [16, 1967] introduced a type structure model to describe these
hierarchies. Formally, this adds types for each player, where the type describes
what that player thinks, think other players think, . . . . The Appendix provides a
formal treatment of this step, in a baseline case. (See Siniscalchi [27, 2008] for a
survey of the relevant literature.)

Figure 2.1 depicts the set-up in the two-player case. The starting point is the
strategy-type pairs for Ann and Bob, given by the left-hand and right-hand panels.
We then impose epistemic conditions. These correspond to the shaded sets in the
left-hand and right-hand panels. The idea is that the epistemic conditions corre-
spond to “strategic reasoning.” For example, we might consider those strategy-type
pairs for Ann that satisfy the condition that Ann is rational—i.e., that her strat-
egy is optimal for her given what, according to her type, she thinks Bob will play.
(Ann’s remaining strategy-type pairs satisfy the condition that she is irrational.
Below, we will be more precise about what “thinks” means.) A basic epistemic
condition is that Ann is rational, thinks Bob is rational, and so on. In this case,

1This discussion presumes that the structure of the game (e.g., payoff functions) is “trans-

parent” among the players. If it is not, then the description consists of the game and beliefs about
both the structure of the game and the play of the game.
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we take the shaded set in the left-hand panel to be the strategy-type pairs for Ann
that satisfy this condition. Likewise, we take the shaded set in the right-hand panel
to be the strategy-type pairs for Bob that are rational, think Ann is rational, and
so on.

The characterization question is whether we can identify the strategies that
can be played under such epistemic conditions, by looking only at the game (matrix
or tree). That is, can we identify the projections of the shaded sets into the strategy
sets, as depicted in the middle panel, without reference to the type structure model?
There are several such characterization results in EGT. They differ according to how
the terms “rationality” and “thinks” are formalized. The different formalizations,
in turn, reflect different concepts of “strategic reasoning” (i.e., different epistemic
conditions) that we the analysts can impose on games.

The remainder of this section formalizes the epistemic descriptions and the
epistemic conditions. Section 4 returns to the question of characterization.

Fix a two-player finite strategic-form game 〈Sa, Sb, πa, πb〉, where Sa and Sb

are finite strategy sets for Ann and Bob, and πa : Sa×Sb → R and πb : Sa×Sb → R
are their payoff functions.2

Begin with the most basic formalization. Append Polish spaces T a and T b of
types for Ann and Bob. Here, a type ta for Ann is associated with a probability
measure on the Borel subsets of Sb × T b. A strategy-type pair (sa, ta) ∈ Sa × T a

for Ann is rational if sa maximizes her expected payoff, under the marginal on
Sb of the probability measure associated with ta. In this case, “thinks” means
“belief.” Say Ann believes Eb ⊆ Sb × T b if Eb is Borel and the probability
measure associated with type ta assigns probability 1 to Eb. These and subsequent
definitions have counterparts with Ann and Bob interchanged.

A second formalization follows Brandenburger, Friedenberg, and Keisler [13,
2008]. Again, append Polish spaces T a and T b of types for Ann and Bob. Here, a
type ta for Ann is associated with a lexicographic probability system on the Borel
subsets of Sb×T b. A lexicographic probability system (Blume, Brandenburger, and
Dekel [10, 1991]) is a finite sequence of mutually singular probability measures. It
is to be thought of as a sequence of hypotheses—a primary hypothesis, a secondary
hypothesis, . . . ,—held by Ann about Bob’s strategy and type. A strategy-type pair
(sa, ta) ∈ Sa × T a for Ann is (lexicographically) rational if sa lexicographically
maximizes her sequence of expected payoffs, calculated under the marginals on Sb

of the sequence of probability measures associated with ta. In this case, “thinks”
means “assumption.” If T b is finite, say Ann assumes Eb if each point in Eb

receives positive probability under an earlier probability measure in the sequence
than does any point not in Eb. Alternatively put, the event Eb is “infinitely more
likely” than the event not-Eb. See [13, 2008, Section 5] for a general treatment
(i.e., in the case of infinite T b).

For the purposes of this note, we will need one key property of both “belief”
and “assumption.” Return to the general term “thinks,” in order to subsume both
cases. Define a thinking operator Ca from the family of Borel subsets of Sb × T b

to T a by

Ca(Eb) = {ta ∈ T a : ta thinks Eb is true}.

2We restrict attention to two-player games for notational simplicity, but our analysis imme-
diately extends to games with three or more players.
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Axiom 2.1 (Conjunction). Fix a type ta ∈ T a and Borel sets Eb
1, E

b
2, . . . in

Sb × T b. Suppose, for each m, that ta ∈ Ca(Eb
m). Then ta ∈ Ca(

⋂
mEb

m).

In words, this says that if Ann thinks that each event Eb
m is true, then she

thinks the joint event
⋂

mEb
m is true. It is immediate from the rules of probability

that “belief” satisfies this conjunction property. For the case of “assumption,” see
([13, 2008, Property 6.3]).

Given Borel sets Ea ⊆ Sa × T a and Eb ⊆ Sb × T b, define Ea
1 = Ea, Eb

1 = Eb,
and for m ≥ 1,

Ea
m+1 = Ea

m ∩ [Sa × Ca(Eb
m)].

(For this to be well-defined, the sets Ea
m and Eb

m must be Borel.)

Definition 2.1. The event that Ea×Eb is true and commonly thought is⋂∞
m=1

Ea
m ×

⋂∞
m=1

Eb
m.

In the situations we study in this note, Ea×Eb is the event that Ann and Bob
are rational. Thus, the event

⋂∞
m=1E

a
m ×

⋂∞
m=1E

b
m is either the event that there

is rationality and common belief of rationality (RCBR) or the event that
there is rationality and common assumption of rationality (RCAR).

3. Epistemic Fixed Points

Given two Polish spaces P a, P b, let B(P a, P b) be the set of all rectangles Ea×Eb

where Ea is a Borel subset of P a and Eb is a Borel subset of P b. Proposition 3.2
below will show that each of the events RCBR and RCAR is a fixed point of a
mapping Γ from B(Sa × T a, Sb × T b) to itself. This suggests that we should be
able to describe the strategies playable under RCBR or RCAR via fixed points
of mappings from B(Sa, Sb) to itself. Section 5 will show that this is indeed the
case. In sum: This section is about epistemic fixed points, i.e., fixed points in
B(Sa × T a, Sb × T b). Section 5 will be about fixed points in the game matrix, i.e.,
fixed points in the smaller space B(Sa, Sb) where the type structure plays no part.

Define a mapping Γ from B(Sa × T a, Sb × T b) to itself, as follows. Given
Ea × Eb ∈ B(Sa × T a, Sb × T b), set

Γ(Ea × Eb) = (Ea × Eb) ∩ ([Sa × Ca(Eb)]× [Sb × Cb(Ea)]).

Note that the mapping Γ depends on Ca and Cb. In words, Γ maps an event
Ea×Eb to the event that Ea×Eb is true, and Ann and Bob think their respective
components of Ea × Eb are true. The next lemma is immediate:

Lemma 3.1. The event Ea×Eb is a fixed point of Γ, i.e. Γ(Ea×Eb) = Ea×Eb,
if and only if

Ea ⊆ Sa × Ca(Eb),

Eb ⊆ Sb × Cb(Ea).

When Ca stands for belief, Lemma 3.1 says the fixed points of Γ are the so-called
“self-evident events.” (The concept of a self-evident event is due to Monderer-Samet
[21, 1989].) Lemma 3.1 is used in the proofs of the following two propositions.

Proposition 3.2. Fix Ea × Eb ∈ B(Sa × T a, Sb × T b). The event⋂∞
m=1

Ea
m ×

⋂∞
m=1

Eb
m

is a fixed point of Γ.
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Proof. Using the definitions,⋂∞
m=1

Ea
m = Ea

1 ∩
⋂∞

m=1
[Sa × Ca(Eb

m)] ⊆
⋂∞

m=1
[Sa × Ca(Eb

m)] =

Sa ×
⋂∞

m=1
Ca(Eb

m) ⊆ Sa × Ca(
⋂∞

m=1
Eb

m),

where the last inclusion relies on conjunction (Axiom 2.1). �

Proposition 3.2 says that the event RCBR (resp. RCAR) is a fixed point of the
map Γ when Ca, Cb correspond to belief (resp. assumption). We also have:

Proposition 3.3. Suppose Ea × Eb ∈ B(Sa × T a, Sb × T b) is a fixed point of
Γ. Then Ea

m = Ea and Eb
m = Eb for all m.

Proof. This is immediate for m = 1, so suppose it is true for m. We have

Ea
m+1 = Ea

m ∩ [Sa × Ca(Eb
m)] = Ea ∩ [Sa × Ca(Eb)],

using the induction hypothesis. But since Ea × Eb is a fixed point,

Ea ∩ [Sa × Ca(Eb)] = Ea,

and so Ea
m+1 = Ea, as required. �

An important reference on fixed points on epistemic structures is Barwise [7,
1988].

4. Best-Response Sets and Self-Admissible Sets

We now turn to fixed-point characterizations of the strategies playable under
RCBR and RCAR. We undertake these characterizations in two steps. First, we
review the existing strategic characterizations of RCBR and RCAR. These are
couched in terms of best-response sets (Pearce [26, 1984]) and self-admissible sets
(Brandenburger, Friedenberg, and Keisler [13, 2008]). Then, we point to fixed-point
characterizations of these sets.

Throughout, we treat RCBR and RCAR in parallel rather than in sequence.
The reason is that certain mathematical techniques that are typically associated
with self-admissible sets (and so RCAR) will be useful in our fixed-point character-
ization of best-response sets.3

We begin with some preliminary definitions and lemmas. Given a finite set Ω,
let M(Ω) denote the set of all probability measures on Ω. Write Suppσ for the
support of σ ∈M(X).

The definitions to come all have counterparts with a and b reversed. Extend
πa to M(Sa) ×M(Sb) by taking πa(σa, σb), for σa ∈ M(Sa), σb ∈ M(Sb), to be
the expectation of πa under σa ⊗ σb:

πa(σa, σb) =
∑

(sa,sb)∈Sa×Sb

σa(sa)σb(sb)πa(sa, sb).

Definition 4.1. Fix X × Y ⊆ Sa × Sb with Y 6= ∅, and σb ∈ M(Sb). A
strategy sa ∈ X is σb-justifiable with respect to X × Y if σb(Y ) = 1 and
πa(sa, σb) ≥ πa(ra, σb) for every ra ∈ X. Say sa is justifiable with respect to
X × Y if sa is σb-justifiable with respect to X × Y for some σb.

3We are grateful to a referee for asking us to emphasize this point.
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Definition 4.2. Fix Qa×Qb ⊆ Sa×Sb. The set Qa×Qb is a best-response
set (BRS) if for each sa ∈ Qa there is a σb ∈M(Sb) such that:

(i) sa is σb-justifiable with respect to Sa ×Qb;
(ii) if ra is also σb-justifiable with respect to Sa ×Qb, then ra ∈ Qa;

and likewise for each sb ∈ Qb.

The original definition of a BRS is due to Pearce [26, 1984]. Definition 4.2 is
from Battigalli and Friedenberg [8, 2011]. It differs from Pearce’s definition in two
ways: players choose only pure (not mixed) strategies, and condition (ii) is new.4

Condition (ii) is important in the epistemic characterization; see the statement at
the beginning of Section 5.

Definition 4.3. Fix X × Y ⊆ Sa × Sb with Y 6= ∅. A strategy sa ∈ X is
strongly dominated with respect to X × Y if there is a σa ∈ M(Sa), with
σa(X) = 1, such that πa(σa, sb) > πa(sa, sb) for every sb ∈ Y . Otherwise, say sa

is undominated with respect to X × Y .

The following equivalence is standard. (Necessity is immediate. Sufficiency is
proved via the supporting hyperplace theorem.)

Lemma 4.4. Fix X ×Y ⊆ Sa×Sb with Y 6= ∅. A strategy sa ∈ X is justifiable
with respect to X × Y if and only if it is undominated with respect to X × Y .

The next definition picks out a notable BRS.

Definition 4.5. Set Si
0 = Si for i = a, b, and define inductively

Si
m+1 = {si ∈ Si

m : si is undominated with respect to Sa
m × Sb

m}
A strategy si ∈ Si

m is called m-undominated. A strategy si ∈
⋂∞

m=0 S
i
m is called

iteratively undominated (IU).

By finiteness, there is a (first) number M such that
⋂∞

m=0 S
i
m = Si

M 6= ∅ for
i = a, b. It is easy to check that the IU set is a BRS and every BRS is contained in
the IU set.

We now repeat this development for self-admissible sets.

Definition 4.6. Fix X×Y ⊆ Sa×Sb with Y 6= ∅. A strategy sa ∈ X is weakly
dominated with respect to X × Y if there is a σa ∈ M(Sa), with σa(X) = 1,
such that πa(σa, sb) ≥ πa(sa, sb) for every sb ∈ Y , and πa(σa, sb) > πa(sa, sb) for
some sb ∈ Y . Otherwise, say sa is admissible with respect to X × Y .

Definition 4.7. Fix Y ⊆ Sb with Y 6= ∅. Say ra supports sa with respect
to Y if there is a σa ∈ M(Sa) with ra ∈ Suppσa and πa(σa, sb) = πa(sa, sb) for
all sb ∈ Y b. If ra supports sa with respect to Sb, say simply ra supports sa.

Definition 4.8 (Brandenburger, Friedenberg, and Keisler [13, 2008]). Fix
Qa ×Qb ⊆ Sa × Sb. The set Qa ×Qb is a self-admissible set (SAS) if:

(i) each sa ∈ Qa is admissible with respect to Sa × Sb;
(ii) each sa ∈ Qa is admissible with respect to Sa ×Qb;

(iii) if ra ∈ Sa supports some sa ∈ Qa, then ra ∈ Qa;

and likewise for each sb ∈ Qb.

4David Pearce (private communication) told one of us that he was aware of this condition,
but to keep things simple did not include it in his definition in [26, 1984].
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The next equivalence is a special case of a classic result in convex analysis due
to Arrow, Barankin, and Blackwell [6, 1953].

Lemma 4.9. Fix X×Y ⊆ Sa×Sb with Y 6= ∅. A strategy sa ∈ X is admissible
with respect to X×Y if and only if there is a σb ∈M(Sb), with Suppσb = Y , such
that sa is σb-justifiable with respect to X × Y .

The next lemma rewrites Definition 4.8 in a way that brings out the comparison
with BRS’s.

Lemma 4.10. A set Qa ×Qb is an SAS if and only if:

(i) for each sa ∈ Qa, there is a σb ∈M(Sb), with Suppσb = Sb, such that:
• sa is σb-justifiable with respect to Sa × Sb,
• if ra ∈ Sa is also σb-justifiable with respect to Sa×Sb, then ra ∈ Qa;

(ii) for each sa ∈ Qa, there is a ρb ∈ M(Sb), with Supp ρb = Qb, such that
sa is ρb-justifiable with respect to Sa ×Qb;

and likewise for each sb ∈ Qb.

To show that an SAS satisfies the conditions in this Lemma, use Lemma D.4 in
Brandenburger, Friedenberg, and Keisler [13, 2008]. For the converse, use Lemma
D.2 in Brandenburger, Friedenberg, and Keisler [13, 2008].

The next definition picks out a notable SAS.

Definition 4.11. Set S
i

0 = Si for i = a, b, and define inductively

S
i

m+1 = {si ∈ Si

m : si is admissible with respect to S
a

m × S
b

m}.

A strategy si ∈ S
i

m is called m-admissible. A strategy si ∈
⋂∞

m=0 S
i

m is called
iteratively admissible (IA).

By finiteness, there is a (first) number N such that
⋂∞

m=0 S
i

m = S
i

N 6= ∅
for i = a, b. The IA set is an SAS (Brandenburger and Friedenberg [12, 2010,
Proposition 5.1]). But, unlike the case with IU and BRS’s, it need not be the case
that every SAS is contained in the IA set. See Example 5.9 to come.

5. Fixed-Point Characterizations

BRS’s characterize the epistemic condition of RCBR: Fix a game 〈Sa, Sb, πa, πb〉
and an associated type structure, where each type is mapped to a (single) proba-
bility measure. Define “believes” and “rationality” as before. Then, the projection
to Sa × Sb of the RCBR event (which lies in Sa × T a × Sb × T b) constitutes a
BRS of the game. Conversely, every BRS of 〈Sa, Sb, πa, πb〉 arises in this way, for a
suitable choice of type structure. This follows from Battigalli and Friedenberg [8,
2011, Theorem 5.1].

Likewise, SAS’s characterize the epistemic conditions of RCAR: Fix a game
〈Sa, Sb, πa, πb〉 and an associated type structure, where each type is now mapped
to a lexicographic probability system. Define “assumes” and “(lexicographic) ra-
tionality” as before. Then, the projection to Sa×Sb of the RCAR event constitutes
an SAS of the game. Conversely, every SAS of 〈Sa, Sb, πa, πb〉 arises in this way,
for a suitable choice of type structure. This is Theorem 8.1 in Brandenburger,
Friedenberg, and Keisler [13, 2008].
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So, to deliver on our promised fixed-point characterizations of RCBR and
RCAR in terms of strategies played, it remains to provide fixed-point characteriza-
tions of BRS’s and SAS’s.

Fix X × Y ⊆ Sa × Sb with Y 6= ∅. The next two lemmas are standard.

Lemma 5.1. A strategy sa ∈ X is σb-justifiable with respect to X × Y if and
only if sa is admissible with respect to X × Suppσb.

Lemma 5.2. Fix sa ∈ X and σb ∈M(Sb) such that πa(sa, σb) ≥ πa(qa, σb) for
all qa ∈ X. If ra supports sa, then πa(ra, σb) ≥ πa(qa, σb) for all qa ∈ X.

Lemma 5.3. Suppose sa ∈ Sa is undominated (resp. admissible) with respect to
X × Y . If ra supports sa, then ra is undominated (resp. admissible) with respect to
X × Y .

Proof. By Lemma 4.4 (resp. Lemma 4.9), there is a σb ∈ M(Sb), with
σb(Y ) = 1 (resp. Suppσb = Y b) such that πa(sa, σb) ≥ πa(qa, σb) for all qa ∈ X.
By Lemma 5.2, ra is then undominated (resp. admissible) with respect to X × Y .

�

Given σb ∈ M(Sb), write J (σb) for the set of strategies sa ∈ Sa that are
σb-justifiable.

Definition 5.4. Say that σb minimally justifies sa with respect to X×Y
if sa is σb-justifiable with respect to X × Y and, for each ρb ∈M(Sb) such that sa

is ρb-justifiable with respect to X × Y , we have J (σb) ⊆ J (ρb).

Lemma 5.5. If sa is justifiable with respect to Sa × Y , there is a σb that mini-
mally justifies sa with respect to Sa × Y .

Proof. Suppose sa is justifiable with respect to Sa×Y . Then, by Lemma 5.1,
there is ∅ 6= Zk ⊆ Y such that sa is admissible with respect to Sa × Zk. Let Z be
the union of all such Zk. Then, sa is admissible with respect to Sa×Z. To see this,
suppose not, i.e., suppose there is σa ∈M(Sa) with πa(σa, sb) ≥ πa(sa, sb) for every
sb ∈ Z, and πa(σa, sb) > πa(sa, sb) for some sb ∈ Z. Then, we can find some Zk ⊆ Z
such that πa(σa, sb) ≥ πa(sa, sb) for every sb ∈ Zk, and πa(σa, sb) > πa(sa, sb) for
some sb ∈ Zk. This contradicts the fact that sa is admissible with respect to each
Sa × Zk.

We have established that sa is admissible with respect to Sa×Z. By Lemma D.4
in Brandenburger, Friedenberg, and Keisler [13, 2008], there is then a σb ∈M(Sb),
with Suppσb = Z, such that J (σb) is the set of strategies that support sa with
respect to Sa × Z. We will show that σb minimally justifies sa with respect to
Sa × Y .

Fix ρb ∈ M(Sb) that justifies sa with respect to Sa × Y . We show that
J (σb) ⊆ J (ρb). Fix ra ∈ J (σb). Then ra supports sa with respect to Sa × Z.
Note that Supp ρb ⊆ Z, so that ra also supports sa with respect to Sa × Supp ρb.
It follows from Lemma 5.2 that ra ∈ J (ρb) as required. �

Now consider the complete lattice Λ = B(Sa, Sb). (The join of two subsets is
the component-by-component union. The meet is the intersection.) We will define
a map Φ : Λ → Λ so that the fixed points of Φ are the BRS’s. Specifically, for
Qa × Qb ∈ B(Sa, Sb), set (sa, sb) ∈ Φ(Qa × Qb) if either: (a) sa ∈ Qa and sa is
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justifiable with respect to Sa ×Qb, or (b) sa ∈ J (σb) for some σb that minimally
justifies some ra ∈ Qa with respect to Sa × Qb. (The analogous conditions must
hold for sb.)

Proposition 5.6. If Qa × Qb is a BRS, then it is a fixed point of Φ, i.e.,
Φ(Qa ×Qb) = Qa ×Qb. Conversely, if Qa ×Qb is a fixed point of Φ, then it is a
BRS.

Proof. Fix a BRS Qa ×Qb. We will show that it is a fixed point of Φ. First,
fix (sa, sb) ∈ Φ(Qa × Qb). We will show that (sa, sb) ∈ Qa × Qb. Indeed, suppose
that sa /∈ Qa. Then there is an ra ∈ Qa such that ra is justifiable with respect
to Sa × Qb and, for any σb such that ra is σb-justifiable with respect to Sa × Qb,
sa ∈ J (σb). It follows from condition (ii) of the definition of a BRS that sa ∈ Qa,
a contradiction. Likewise, we reach a contradiction if we suppose that sb /∈ Qb,
so we conclude that Φ(Qa × Qb) ⊆ Qa × Qb. Next, fix (sa, sb) ∈ Qa × Qb. By
condition (i) of the definition of a BRS and condition (a) of the definition of Φ, we
get (sa, sb) ∈ Φ(Qa ×Qb), establishing that Qa ×Qb ⊆ Φ(Qa ×Qb).

For the converse, suppose Qa ×Qb = Φ(Qa ×Qb). Fix sa ∈ Qa and note that,
by condition (a) of the definition of Φ, there is a σb ∈M(Sb) that justifies sa with
respect to Sa ×Qb. By Lemma 5.5, we can choose σb to minimally justify sa with
respect to Sa × Qb. Then, by condition (b) of the definition of Φ, we get that sa

satisfies conditions (i)-(ii) of a BRS (using the measure σb). We can make the same
argument for each sb ∈ Qb. This establishes that Qa ×Qb is a BRS. �

Example 5.7. The map Φ is not monotone (increasing). Consider the game
in Figure 5.1. We have Φ({(U,L)}) = {U,D} × {L,R} but Φ({U} × {L,R}) =
{U} × {L,R}.

Figure 5.1

Next, we define a map Ψ : Λ→ Λ so that the fixed points of Ψ are the SAS’s.
Specifically, set (sa, sb) ∈ Ψ(Qa×Qb) if either: (a) sa ∈ Qa and satisfies conditions
(i)-(ii) of the definition of an SAS; or (b) sa supports an ra ∈ Qa that satisfies these
conditions. (The analogous conditions must hold for sb.)

Here is the analog to Proposition 5.6:

Proposition 5.8. If Qa × Qb is an SAS, then it is a fixed point of Ψ. Con-
versely, if Qa ×Qb is a fixed point of Ψ, then it is an SAS.

Proof. Fix an SAS Qa × Qb. If sa ∈ Qa, then sa satisfies condition (a) for
Ψ. Likewise for sb. Thus Qa ×Qb ⊆ Ψ(Qa ×Qb). Next, fix (sa, sb) ∈ Ψ(Qa ×Qb).
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We need to show that sa ∈ Qa. If sa /∈ Qa then sa supports ra for some ra ∈ Qa.
But then condition (iii) of an SAS implies sa ∈ Qa, a contradiction.

For the converse, fix (sa, sb) ∈ Qa ×Qb = Ψ(Qa ×Qb). If sa satisfies condition
(a) for Ψ, then it satisfies conditions (i) and (ii) of an SAS. Next suppose sa fails
condition (a) for Ψ, i.e., is inadmissible with respect to Sa × Sb, or Sa × Qb, or
both. But then sa must satisfy condition (b) for Ψ, i.e. sa supports ra for some
ra ∈ Qa satisfying conditions (i) and (ii) of an SAS. By Lemma 5.3, sa is then
admissible with respect to both Sa × Sb and Sa × Qb, a contradiction. Finally,
suppose qa supports sa. We just saw that sa satisfies condition (a) for Ψ, so qa

satisfies condition (b) for Ψ. Thus qa ∈ projSa Ψ(Qa ×Qb) = Qa. This establishes
condition (iii) of an SAS. �

Example 5.9. Like Φ, the map Ψ is non-monotone. Consider the game in
Figure 5.2. We have Ψ({U} × {L,R}) = {U} × {L,R} but Ψ({U,D} × {L,R}) =
{(U,R)}. Note also that the fixed points of Ψ are {U} × {L,R}, {(U,R)}, and
{(M,L)}. The SAS {(M,L)} is the IA set. We see that, different from BRS
vs. IU, the SAS’s need not be contained in the IA set.

Figure 5.2

Appendix A. From Types to Hierarchies

In this appendix, we focus on the basic formalization, where a type of Ann is
associated with a probability measure on the Borel subsets on the strategies and
types of Bob. We show how, in this case, types naturally induce hierarchies of
beliefs.5 For this construction, it may not be immediately clear how to generalize
from the two-player case, so we prefer to treat the n-player case explicitly.

Given a Polish space Ω, write B(Ω) for the Borel σ-algebra on Ω. Also, extend
our earlier notation to write M(Ω) for the space of all Borel probability measures
on Ω, where M(Ω) is endowed with the topology of weak convergence (and so is
again Polish). Given sets X1, . . . , Xn, write X−i =

∏
j 6=iX

j .

Fix an n-player strategic-form game 〈S1, . . . , Sn;π1, . . . , πn〉, where Si is the
finite set of strategies for player i and πi : S → R is i’s payoff function. An

5This presentation is repeated from Brandenburger and Friedenberg [11, 2008, Section 8],
which itself closely follows Mertens-Zamir [20, 1985, Section 2] and Battigalli-Siniscalchi [9, 2002,

Section 3].
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(S1, . . . , Sn)-based type structure is a structure

〈S1, . . . , Sn;T 1, . . . , Tn;λ1, . . . , λn〉,

where each T i is a Polish space and each λi : T i → M(S−i × T−i) is continuous.
Members of T i are called types for player i.

Associated with each type ti for each player i in a type structure is a hierarchy
of beliefs about the strategies chosen. To see this, inductively define sets Y i

m, by
setting Y i

1 = S−i and

Y i
m+1 = Y i

m ×
∏

j 6=i
M(Y j

m).

Define continuous maps ρim : S−i × T−i → Y i
m inductively by

ρi1(s−i, t−i) = s−i,

ρim+1(s−i, t−i) = (ρim(s−i, t−i), (δjm(tj))j 6=i),

where δjm = ρj
m
◦ λj and, for each µ ∈M(S−j × T−j), ρj

m
(µ) is the image measure

under ρjm.
Standard arguments (see [11, 2008, Appendix B] for details) show that these

maps are indeed continuous, and so are well-defined. Define a continuous map
δi : T i →

∏∞
m=1M(Y i

m) by δi(ti) = (δi1(ti), δi2(ti), . . .). (Again, see [11, 2008,
Appendix B] for details.) Then δi(ti) is the hierarchy of beliefs about strategies
induced by type ti.
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