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Abstract

We study categoricity in power for reduced models of first order logic
without equality.

1 Introduction

The object of this paper is to study categoricity in power for theories in first order
logic without equality. Our results will reveal some surprising differences between
the model theory for logic without equality and for logic with equality.

When we consider categoricity, it is natural to identify elements which are indis-
tinguishable from each other. We will do this by confining our attention to reduced
models, that is, models M such that any pair of elements which satisfy the same
formulas with parameters in M are equal. We also confine our attention to com-
plete theories T in a countable language such that all models of T are infinite. T is
said to be κ-categorical if T has exactly one reduced model of cardinality κ up to
isomorphism.

The classical result about ω-categoricity for logic with equality is the Ryll-
Nardzewski theorem, which says that T is ω-categorical if and only if T has only
finitely many complete n-types for each finite n. This result fails for logic with-
out equality. Another relevant result which fails for logic without equality is the
Löwenheim-Skolem-Tarski theorem, that T has at least one model of every infinite
cardinality. Concerning uncountable categoricity,  Loś [ L] conjectured that if T is
λ-categorical for some uncountable λ, then T is κ-categorical for every uncountable
κ. The  Loś conjecture was proved for logic with equality by Morley [M]. We will
show that this result also holds for logic without equality.

Some basic facts about reduced models are stated in Section 2. Section 3 con-
tains several examples of ω-categorical theories in logic without equality which have
infinitely many complete 1-types or 2-types. The reason for this different behavior
is clarified in Section 4, where we see what happens to the Omitting Types Theorem
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in logic without equality. In Section 5 we apply the Omitting Types Theorem to
study ω-categoricity and the existence of prime models in logic without equality.

Section 3 also contains examples of bounded theories, i.e. theories for which the
class of cardinalities of infinite models is bounded. In Section 6 we show that there
are just three possibilities: All models of T are countable, the maximum cardinality
of a model of T is the continuum, or T has models of all infinite cardinalities (i.e.
T is unbounded). This shows that the Hanf number of first order logic without
equality is (2ω)+. In Section 7 we show that no bounded theory is categorical in
an uncountable cardinal. Finally, the  Loś conjecture for logic without equality is
proved in Section 8.

We thank the National Science Foundation and the Vilas Trust Fund for support
of this research.

2 Preliminaries

Throughout this paper, L will be a countable first order predicate logic without
equality. In considering isomorphisms between models of logic without equality, it
is natural to identify elements which are indistinguishable from each other. That is,
it is natural to restrict attention to models which are reduced in the following sense
(see [BP],[CDJ], [D], [DJ]).

Definition 2.1 A model M for L is said to be reduced if for any pair of elements
a, b ∈ M , we have a = b if and only if for every formula θ(x, ~y) of L,

M |= ∀~u[θ(a, ~u) ⇔ θ(b, ~u)]. (1)

In general, two elements a, b ∈ M are said to be Leibniz congruent, in symbols
a ≡ b, if condition (1) holds for all formulas θ of L. Thus M is reduced if and only if
its Leibniz congruence relation is the equality relation on M . It is well known that
for every model M for L, the quotient structure M/≡ of M modulo its Leibniz
congruence is a reduced model, and the mapping a 7→ a/≡ preserves the truth values
of all formulas of L. Moreover, if condition (1) holds for all atomic formulas θ, then
it holds for all formulas θ. We are primarily interested in the case that the Leibniz
congruence relation is not definable in M.

It follows from the preceding remarks that the compactness and (downward)
Löwenheim-Skolem theorems hold for reduced models. That is,

Proposition 2.2 If Γ is a set of sentences of L and every finite subset of Γ has a
model, then Γ has a reduced model of cardinality at most ω.
2
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For each n, the set of all complete types in a theory T with at most n free
variables (i.e. the Stone space of T in n variables) is denoted by Sn(T ). It is a
compact Hausdorff space whose clopen sets are determined by formulas in n free
variables.

Given a set X ⊆ M , we let LX be the expansion of L obtained by adding a new
constant symbol for each a ∈ X, and let MX be the corresponding expansion of M.
As usual, we say that M is κ-saturated if for each X ⊆ M of cardinality less than
κ, every 1-type in Th(MX) is satisfiable in MX . The following existence theorem
is proved exactly as in the case of logic with equality.

Proposition 2.3 (i) For each infinite cardinal κ, every consistent theory in L has
a κ+-saturated reduced model of cardinality at most 2κ.

(ii) A complete theory T has an at most countable ω-saturated reduced model if
and only if Sn(T ) is finite or countable for each n.
2

We shall say that a theory T in L is κ-categorical if it has exactly one reduced
model of cardinality κ up to isomorphism.

Reduced structures can also be viewed as structures which omit a certain set
of formulas in logic with equality. Given a logic L without equality, we let L= be
the corresponding logic with equality, obtained by adding the equality symbol to
L. Every structure for L, whether or not it is reduced, is also a structure for L=

with the natural interpretation of =. Thus a structure M is reduced if and only if
it omits the following set Λ(x, y) of formulas of L=:

Λ(x, y) = {¬x = y} ∪ {∀~u[θ(x, ~u) ⇔ θ(y, ~u)] : θ is in L}.

We remark that two reduced structures are isomorphic in the sense of L if and
only if they are isomorphic in the sense of L=. However, as we shall see in the next
section, there are reduced structures which are elementarily equivalent in the sense
of L but not in the sense of L=.

Blanket Hypothesis: Hereafter it will be understood that all models mentioned
are reduced. Also, T will always denote a complete theory of L with infinite models.

3 Examples

In this section we give some examples of categorical theories in logic without equality
which behave oddly.
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The theorem of Ryll-Nardzewski (see [V]) shows that for a complete theory T
with infinite models in first order logic with equality, the following three conditions
are equivalent:

(a) Sn(T ) is finite for each n ∈ ω.
(b) T is ω-categorical.
(c) Every countable model of T is prime.

For logic without equality, it is easily seen that (a) implies (b) and (b) implies
(c). But the following examples show that the reverse implications do not hold in
logic without equality. In each example, we will describe a countable model M and
let T be the complete theory of M without equality, T = Th(M).

Note that if the vocabulary L is finite and has no function symbols, then there are
essentially only finitely many atomic formulas, and the Leibniz equivalence relation
is definable (take the conjunction of the formulas in condition (1) where θ is atomic).
Thus in this case conditions (a)-(c) are still equivalent. For this reason, all of our
examples must either have an infinite vocabulary or function symbols.

Example 3.1 (Binary nested equivalence relations). Let L have countably many
binary relations En, n < ω. Let M be a countable model such that each En is an
equivalence relation, E0 has finitely many classes, and for every n, each equivalence
class for En is the union of two equivalence classes for En+1.

In this example, T is ω-categorical, but the Stone space S2(T ) is infinite, so (b)
holds but (a) fails. Another interesting property of this example is that every model
has cardinality at most continuum; the upward Löwenheim-Skolem-Tarski theorem
fails for (reduced models of) logic without equality.

Example 3.2 (Infinite nested equivalence relations). Let M be as in the preceding
example, except that each equivalence class for En is the union of countably many
equivalence classes for En+1.

Again, T is ω-categorical, but the Stone space S2(T ) is infinite. But this time
every model of T has elementary extensions of arbitrarily large cardinality.

Example 3.3 Let L have countably many binary relations En, n < ω, a unary
relation U , and a unary function symbol f . Let M be a countable model such that
(U,En)n∈ω is the structure from the first example, f is the identity on U , and for
each n,

M |= ∀y U(f(y)) ∧ ∀x[U(x) ⇒ ∃y[¬U(y) ∧ En(x, f(y))]].

That is, f maps the complement of U to a dense subset of U .
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The theory T is not ω-categorical, because there are countable models M where
range(f) = U and N where range(f) 6= U . But every countable model of T is
prime. Thus (c) holds but (b) fails. We also remark that the models M and N are
elementarily equivalent in the sense of L but are not elementarily equivalent with
respect to the corresponding equality logic L=.

Example 3.4 (An example with finite vocabulary). Let L have a unary relation U ,
a unary function symbol f , and a constant symbol c. In the model M,

M = {c} ∪ {xn : n ∈ ω}

with c and all the xn’s distinct, U = {x0}, and

f(c) = c, f(x0) = x0, f(xn+1) = xn for each n ∈ ω.

Here the theory T is ω-categorical but the Stone space S1(T ) is infinite. In fact,
all models of T are countable, so M is the only model of T up to isomorphism.

Another celebrated result for logic with equality is Vaught’s theorem [V] that
no complete theory can have exactly two countable models. This result fails in
logic without equality. By removing the constant symbol c from the vocabulary in
the preceding example, we get a complete theory in logic without equality which
has exactly two countable models up to isomorphism (and no uncountable models).
Hint: there is at most one element z such that ¬U(fn(z)) for all n.

Example 3.5 Let M be a model with a unary relation V , a copy of the model from
Example 3.4 on V , and an equivalence relation with infinitely many classes on the
complement of V .

In this example, T is κ-categorical for every infinite κ, but the interpretation
of V is countably infinite for every model of T . To see this, observe that the
theory of equality with infinitely many elements is κ-categorical for every infinite κ.
This example is an artifact of the failure of the upward Löwenheim-Skolem-Tarski
theorem. In a κ-categorical theory in logic with equality, all infinite definable sets
in a model of cardinality κ have cardinality κ.

4 Omitting Types

The culprit behind the odd examples of ω-categorical theories is the Omitting Types
Theorem. The usual formulation of the theorem does not hold without equality; the
problem is that in the proof, one must construct a model out of constant terms rather
than constant symbols. We now give a version of the Omitting Types Theorem which
holds for logic without equality.
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Definition 4.1 We say that a set of formulas q(~y) with n free variables ~y is locally
realized by a theory U if for some m, there is a formula θ(~x) with m free variables
~x and an n-tuple of terms ~σ(~x) such that θ(~x) is consistent with U and

U |= ∀~x[θ(~x) ⇒ ψ(~σ(~x))]

for all ψ ∈ q(~y). We also say that θ(~x) and ~σ witness the local realization.

Theorem 4.2 (Omitting Types without Equality) Let U be a consistent theory and
let q(~y) be a set of formulas in finitely many free variables ~y. Suppose that

(i) q(~y) is realized in every model of U .
Then

(ii) U locally realizes q(~y).

Note that since L is countable, (i) holds if and only if q is realized in every
countable model of U .

Here is a topological formulation of local realizing. An n-tuple of terms ~σ(~x) in
m free variables ~x induces the continuous mapping

σ̂ : Sm(U) → Sn(U)

defined by
σ̂(p) = {ψ(~y) : ψ(~σ(~x)) ∈ p}.

We shall call the mapping σ̂ a term mapping from Sm(U) into Sn(U). In logic with
equality, each term mapping is open, but in logic without equality term mappings
need not be open. Then U locally realizes q(~y) if and only if:

(iii) For some m, there is a term mapping

σ̂ : Sm(U) → Sn(U)

such that σ̂−1(q) has a nonempty interior.

In the classical Omitting Types Theorem for logic with equality, ~σ(~x) is just ~x,
and σ̂ is the identity mapping on Sn(U). The present statement is different even in
the case that the vocabulary L has only relation symbols.

In Examples 3.1 and 3.2, n = 2 with ~y = (y1, y2), and m = 1 with ~σ(x) = (x, x).
In these examples, condition (iii) holds for the nonisolated 2-type
q = {En(y1, y2) : n ∈ ω}, and σ̂ maps the one-point space S1(T ) to q.

In Example 3.4, n = 1, and m = 0 with the constant term σ = c. Condition
(iii) holds for the nonisolated 1-type q = {¬U(fn(y)) : n ∈ ω}, and σ̂ maps the
one-point space S0(T ) to q.
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Proof of the Omitting Types Theorem. We assume that (ii) fails and prove
that (i) fails. To do this we must construct a model M of U which omits (i.e. does
not realize) q(~y). Let n = |~y|.

Let C be a countable set of constant symbols which are not in L. Then LC is
countable, and we may arrange all the sentences in a list

ψm,m < ω.

We also arrange all the n-tuples of variable-free terms in a list

~σm,m < ω.

We will form an increasing chain of theories Um for LC such that for each m:
(a) Um is consistent and is a finite extension of U ;
(b) If ψm is consistent with Um then ψm ∈ Um+1;
(c) If ψm = ∃xθ(x) and ψm is consistent with Um, then there exists c ∈ C such

that θ(c) ∈ Um+1;
(d) There is a formula ϕ(~y) ∈ q(~y) such that (¬ϕ(~σm)) ∈ Um+1.
These conditions are the same as in the usual proof of the Omitting Types

Theorem for logic with equality (e.g. see [CK], p.80) except that condition (d) has
terms instead of a constant symbols from C. The construction of the chain Un is
routine and is left to the reader, with the hint that the hypothesis “U does not
locally realize q(~y)” is used to get condition (d).

The union Uω =
⋃

m Um is a complete theory in LC . In view of (c), Uω has a
model M′ = (M, cM)c∈C such that each element of M is the interpretation of a
variable-free term τ of LC . By (d), the reduct M of M′ to L is a model of U which
omits q(~y).
2

Corollary 4.3 Let T be a complete theory and let q(~y) be a set of formulas with n
free variables ~y. Then conditions (i) and (ii) of the Omitting Types Theorem are
equivalent.
2

As in the case of logic with equality, a minor modification of the proof gives the
following Extended Omitting Types Theorem.

Theorem 4.4 Let U be a consistent theory and for each m < ω let qm be a set
of formulas with finitely many free variables. Suppose that for each m, U does not
locally realize qm. Then U has a model which omits each qm.
2
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5 ω-categorical Theories

In this section we will use the Omitting Types theorem to characterize ω-categorical
theories. Let us say that U is a simple expansion of T if U = Th(M,~a) for some
countable M |= T and finite tuple ~a in M .

Corollary 5.1 The following are equivalent.
(i) T is ω-categorical.
(ii) Every countable model of T is ω-saturated.
(iii) For each simple expansion U of T , every type q ∈ Sn(U) is locally realized

by U .

Proof. As in the case of logic with equality, (i) ⇒ (ii) is proved using the compact-
ness theorem, and the converse is proved with a back and forth argument.

By the definition of ω-saturation, (ii) holds if and only if for every simple expan-
sion U of T , every type q ∈ Sn(U) is realized in every countable model of U . By the
Omitting Types Theorem, this is equivalent to condition (iii).
2

We shall now give a nicer characterization in the case that the vocabulary L
has no function symbols. L may still have infinitely many relation and/or constant
symbols.

Theorem 5.2 Suppose the vocabulary L has no function symbols. The following
are equivalent.

(i) T is ω-categorical.
(ii) Every countable model of T is prime.
(iii) For each n, every type in Sn(T ) is realized in every model of T .
(iv) For each n, every type in Sn(T ) is locally realized by T .

Proof. Even without the hypothesis that L has no function symbols, it is clear
that (i) implies (ii) and (ii) implies (iii), and the equivalence of (iii) and (iv) follows
from the Omitting Types Theorem.

To complete the proof we assume condition (iv) and prove (i). Let U = Th(M,~a)
be a simple expansion of T , and let q ∈ Sn(U). By Corollary 5.1, it suffices to prove
that q is locally realized by U . Let k = |~a|. Then q(~y) = r(~a, ~y) for some type
r(~u, ~y) ∈ Sk+n(T ). Let p(~u) be the projection of r to Sk(T ). Then U = p(~a).
We may assume without loss of generality that the tuple ~a contains no repeats or
constants from L. By (iv), there is a tuple of terms (~τ(~x), ~σ(~x)) and a formula θ(~x)
such that

T |= ∃~xθ(~x) ∧ ∀~x[θ(~x) ⇒
∧

r(~τ(~x), ~σ(~x))].
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Since L has no function symbols, ~τ is a sequence of variables from ~x and constant
symbols. Since ~a contains no repeats or constants from L, ~τ must be a k-tuple of
distinct variables, which we may take to be ~u. Let ~v be the variables in ~x which do
not occur in ~u, so that ~x = (~u,~v).

We claim that the formula ∃~v θ(~u,~v) belongs to the type p(~u). Proof of claim:
Suppose not. Since p is complete, ¬∃~v θ(~u,~v) belongs to p(~u). But then

T |= θ(~u,~v) ⇒ ¬∃~v θ(~u,~v),

and this contradicts the fact that

T |= ∃~u∃~vθ(~u,~v).

Now replace the variables ~u with the constant symbols ~a. The claim shows that

U |= ∃~v θ(~a,~v).

Since U contains T , we have

U |= ∀~v[θ(~a,~v) ⇒
∧

q(~σ))].

This shows that U locally realizes q(~y) and completes the proof.
2

In the general case that L has function symbols, we know from Example 3.3 that
(ii) does not imply (i). However, we do not know whether (iii) implies (ii).

We now consider the existence of prime models. Using the same argument as for
logic with equality, one can show that if Sn(T ) is at most countable for each n, then
every simple expansion of T has a prime model. Here is a necessary and sufficient
condition for every simple expansion of T to have a prime model.

Proposition 5.3 The following are equivalent:
(i) Every simple expansion U of T has a prime model.
(ii) For every simple expansion U of T , every formula ϕ(y) which is consistent

with U belongs to a 1-type q(y) which is locally realized by U .

Proof. The implication from (i) to (ii) is an easy corollary of the Omitting Types
Theorem.

Assume (ii). Let U be a simple expansion of T and let K be the vocabulary
of U . Add a countable sequence cn, n < ω of new constant symbols to K and let
K ′ = K∪{cn : n < ω}. We can form a list ϕk(y), k < ω of all formulas of K ′ with the
property that for each k, at most the constants cn, n < k occur in ϕk. Let U0 = U .
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By recursion, choose a sequence of simple expansions Uk of U to K ∪ {cn : n < k}
and 1-types qk over Uk such that:

(a) qk(y) is locally realized by Uk,
(b) qk(y) contains the formula ∃zϕk(z) ⇒ ϕk(y),
(c) Uk+1 = qk(ck).
The sequence {Uk} is an increasing chain of complete theories, so their union has

a model M′ with vocabulary K ′. Let N ′ be the submodel of M′ generated by the
constants cn : n < ω. By the criterion of Tarski and Vaught, N ′ ≺ M′. Therefore
the reduct N of N ′ to K is a model of U . By Corollary 4.3, qk(y) is realized in
every model of Uk. It follows that every model O of U has a sequence of elements
bn, n < ω such that for each k,

(O, b0, . . . , bk−1) |= Uk.

The mapping cn 7→ bn generates an elementary embedding of N into O, so N is
prime.
2

6 Bounded Theories

The usual proof of the downward Löwenheim-Skolem-Tarski theorem goes through
for logic without equality; that is, if ω ≤ λ ≤ κ and T has a model of cardinality κ,
then T has a model of cardinality λ. In fact, every model for L of cardinality κ has
an elementary submodel of cardinality λ.

We have already seen from our examples that the corresponding upward theorem
fails; there are complete theories which have models of cardinality ω but no larger,
and complete theories which have models of cardinality 2ω but no larger. In this
section we shall see that ω and 2ω are the only cardinals where this happens. This
shows that (2ω)+ is the Hanf number of first order logic without equality. We will
then show that any theory which is categorical in some uncountable cardinal must
have models of arbitrarily large cardinality.

Definition 6.1 T will be called bounded if the class of cardinalities of models of
T has an upper bound. Otherwise we say that T is unbounded.

By a fully saturated model we mean a model that is κ-saturated for all cardinals
κ. It is clear that M is fully saturated if and only if it is |M |+-saturated.
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Lemma 6.2 (i) If M is a fully saturated model T , then every model of T is ele-
mentarily embeddable in M, and every fully saturated model of T is isomorphic to
M.

(ii) T is bounded if and only if it has a fully saturated model.

Proof. (i) follows from the following two facts about a κ-saturated model M of
T of cardinality at most κ (see [CK], Section 5.1). Any κ-saturated model of T of
cardinality at most κ is isomorphic to M, and any model of T of cardinality at most
κ is elementarily embeddable in M.

(ii) Suppose T is bounded. Then for some κ, all models of T have cardinality
at most κ. But every T has a κ+-saturated model M (of cardinality at most 2κ).
Then M is |M |+-saturated and hence fully saturated.

Finally, suppose T has a fully saturated model M. By (i), every model of T
is elementarily embeddable in M and hence has cardinality at most |M |, so T is
bounded.
2

Lemma 6.3 Let M be a model of T . The following are equivalent:
(i) T is bounded.
(ii) Every equivalence relation definable without parameters in M has finitely

many equivalence classes.
(iii) Every equivalence relation definable with parameters in M has finitely many

equivalence classes.

Proof. We first prove that (i) implies (iii). Suppose that (iii) fails, so that M has
an equivalence relation with infinitely many classes defined by a formula θ(x, y,~a)
with parameters ~a. Using the compactness theorem, for each cardinal κ, M has an
elementary extension N in which θ(x, y,~a) defines an equivalence relation with at
least κ classes. Then |N | ≥ κ, so T is unbounded and (i) fails.

It is trivial that (iii) implies (ii).
We now assume (ii) and prove (i). The Leibniz congruence relation is an in-

tersection of countably many equivalence relations En, n ∈ ω which are definable
without parameters in M. By (ii), each En has finitely many classes. Since we are
restricting attention to reduced models, two elements of M which are equivalent
with respect to each En are equal. Therefore |M | ≤ 2ω, and thus T is bounded.
2

Our next theorem will give a concrete representation of the fully saturated model
of a bounded theory T and all its elementary submodels, up to an isomorphism.

By a finitely branching tree we mean a tree T which has ω levels and finitely
many nodes at each level. We denote the set of all branches of T by B(T ), and give
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B(T ) the usual topology where the set of all branches through a node is a basic
clopen set. This topology is compact and Hausdorff.

For each n ∈ ω we give B(T )n the product topology. By a clopen relation on
B(T ) we mean a relation which is clopen on B(T )n for some n. By a continuous
function of n variables on B(T ) we mean a continuous function from B(T )n into
B(T ).

Proposition 6.4 Suppose T is bounded. Then there is a finitely branching tree T
and a fully saturated model M of T such that:

(i) M has universe B(T ).
(ii) A relation is definable with parameters in M if and only if it is clopen in

B(T ).
(iii) Each function of finitely many variables defined in M by a term is contin-

uous on B(T ).
(iv) A subset M0 ⊆ M is the universe of an elementary substructure of M if

and only if M0 is dense in B(T ) and closed under each function defined by a term.

Proof. Let En, 0 < n < ω be a list of all equivalence relations definable without
parameters in M, and let Dn = E1 ∩ · · · ∩En. By Lemma 6.3, each En has finitely
many equivalence classes. Let D0 = E0 be the trivial equivalence relation with one
class. Then each Dn has finitely many equivalence classes, and Dn+1 is a refinement
of Dn. Let T be the finitely branching tree such that the set of nodes of T at level
n is equal to the set of equivalence classes of Dn, and whose order relation is reverse
inclusion. Identify each element x ∈ M with the branch of T whose node at level n
is the Dn-equivalence class of x. It follows from full saturation that each branch of
T is realized in M. Thus M has universe B(T ), and (i) holds.

(ii) Since each equivalence relation Dn is definable in M, each equivalence class
of Dn is definable with parameters in M. It follows that each clopen relation is
definable with parameters in M.

For the converse, suppose for example that a ternary relation R is defined by the
formula ψ(x, y, z,~a) with parameters ~a in M. Any definable equivalence relation in
M is refined by some Dn. We may therefore choose n large enough so that Dn(b, c)
implies

∀y∀z∀~u [ψ(b, y, z, ~u) ⇔ ψ(c, y, z, ~u)],

∀x∀z∀~u [ψ(x, b, z, ~u) ⇔ ψ(x, c, z, ~u)],

∀x∀y∀~u [ψ(x, y, b, ~u) ⇔ ψ(x, y, c, ~u)].

Now suppose that

Dn(x, x′), Dn(y, y′), Dn(z, z′), and R(x, y, z).
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It then follows in turn that ψ(x, y, z,~a), ψ(x′, y, z,~a), ψ(x′, y′, z,~a), ψ(x′, y′, z′,~a),
and R(x′, y′, z′). This shows that the relation R is clopen with respect to the product
topology in B(T ), and (ii) is proved.

(iii) Let S be a clopen set in B(T ) and σ(x, y, z) a term of L. By (ii), S is defin-
able by a formula ψ(u,~a). Then σ−1(S) is definable by the formula ψ(σ(x, y, z),~a),
and is clopen in B(T ) by (ii).

(iv) Let M0 ≺ M. It is clear that the universe M0 is closed under functions
defined by terms of L. Since each relation Dn has finitely many equivalence classes
and is definable without parameters in M, M0 must meet each equivalence class of
Dn. Therefore M0 is dense in B(T ).

For the converse, suppose M0 is dense in B(T ) and closed under each function
defined by a term of L. Then M0 is a substructure of M. Suppose M |= ∃xψ(x,~b)
where ~b is in M0. Since M0 is dense and the set defined by ψ(x,~b) in M is nonempty
and clopen, there exists a ∈ M0 such that M |= ψ(a,~b). Thus M0 ≺ M by the
criterion of Tarski and Vaught.
2

Let us say that T is countably bounded if all models of T are countable, and
uncountably bounded if T is bounded but has an uncountable model.

Corollary 6.5 (i) T is countably bounded if and only if T has a fully saturated
model of cardinality ω.

(ii) T is uncountably bounded if and only if T has a fully saturated model of
cardinality 2ω.

(iii) T is unbounded if and only if every model of T has elementary extensions
of arbitrarily large cardinality.

Proof. By Lemma 6.2, T is bounded if and only if it has a fully saturated model.
By Proposition 6.4, if T is bounded then its fully saturated model can be identified
with the set of branches of a finitely branching tree. But any finitely branching tree
with uncountably many branches has 2ω branches. We conclude that (i) and (ii)
hold. Part (iii) follows easily from Lemma 6.3.
2

Recall that the Hanf number of a logic is the least cardinal κ such that any
theory which has a model of cardinality at least κ has models of arbitrarily large
cardinality.

Corollary 6.6 The Hanf number of first order logic without equality is (2ω)+.
2

13



7 Uncountable Categoricity Implies Unbounded

In this section we will show that a bounded theory cannot be categorical in an
uncountable cardinal. In fact, an uncountably bounded theory T has the maximum
possible number 2λ of nonisomorphic models in each uncountable cardinal λ ≤ 2ω.

We first consider the case that λ ≤ 2ω < 2λ.

Theorem 7.1 Suppose T is uncountably bounded and λ ≤ 2ω < 2λ. Then T has 2λ

nonisomorphic models of cardinality λ.

Proof. By Corollary 6.5, T has a fully saturated model M, and |M| = 2ω. Let A
be a countable elementary submodel of M. By Proposition 6.4, distinct elements
of M realize distinct 1-types over A.

We will use the result of Shelah [S], Theorem VIII 1.5 (4). It shows that in logic
with equality, if there are uncountably many 1-types over a countable structure A,
then there is a set S of 1-types over A such that |S| = 2ω, and for each R ⊆ S there
is a structure BR � A which realizes each p ∈ R and omits each p ∈ S \ R. The
proof of this result still works in logic without equality. It follows that there is a
family of structures K = {BR : R ∈ [S]λ} such that A ≺ BR ≺ M, |BR| = λ, and
for all distinct Q,R ∈ [S]λ, there is no isomorphism from BQ to BR which is the
identity on A.

The family K has cardinality 2λ, and the relation of being isomorphic partitions
K into equivalence classes. To complete the proof it suffices to show that there are
2λ different equivalence classes. Suppose not. Then there is an equivalence class K0

of cardinality 2λ. Choose C ∈ K0, and for each BR ∈ K0 choose an isomorphism
fR : BR

∼= C. There are only 2ω different mappings from A into C, and since
2ω < 2λ, there are distinct BQ,BR ∈ K0 such that the isomorphisms fQ and fR

have the same restriction to A. But then by composing isomorphisms we see that
BQ,BR are isomorphic by a mapping which is the identity on A, and we have a
contradiction.
2

We now consider the case that ω < λ < 2λ = 2ω. Shelah in [S], Theorem VIII
1.8, proved that any theory T in logic with equality which is not ω-stable has at
least 2ω nonisomorphic models of cardinality λ. His argument can be applied to
logic without equality to show that any uncountably bounded theory has at least 2ω

nonisomorphic models of cardinality λ. We will now prove a slightly stronger result
in this direction.

Theorem 7.2 Suppose T is uncountably bounded. Then T has a family K of models
such that K has cardinality 2ω, each M ∈ K has cardinality 2ω, and whenever
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M ∈ K,N ∈ K, and M 6= N , no uncountable elementary submodel of M is
elementarily embeddable in N .

Given two distinct branches b, c of a finitely branching tree T , let δ(b, c) be the
level of the highest node on b∩c. We say that a mapping h from a subset Y ⊆ B(T )
into B(T ) is level-preserving if δ(h(b), h(c)) = δ(b, c) for all distinct b, c ∈ Y . In
the fully saturated model M of Proposition 6.4, the relation δ(x, y) = n says that n
is the least m for which ¬Em(x, y), and hence is definable in M without parameters.
It follows that every elementary embedding from an elementary submodel of M into
M is level-preserving. Therefore Theorem 7.2 is a consequence of Proposition 6.4
and the following topological result on finitely branching trees.

Theorem 7.3 Let T be a finitely branching tree with uncountably many branches,
and let F be a countable set of continuous functions of finitely many variables on
B(T ). Then there is a family {Xα ⊆ B(T ) : α < 2ω} such that each Xα is a
dense subset of B(T ) of size continuum which is closed under all f ∈ F and for
each distinct α, β, there is no level-preserving mapping from an uncountable subset
of Xα into Xβ.

Proof. For simplicity, we first consider the case that

T = 2<ω and B(T ) = B(2<ω)

Later we indicate how to do the more general case.
In this case

Definition 7.4 For any x, y ∈ B(2<ω)

δ(x, y) = min{n ∈ ω : x(n) 6= y(n)}

Definition 7.5 For any set X ⊆ B(2<ω) define

δ(X) = {δ(x, y) : x, y ∈ X}

Clearly, δ(X) is infinite for any infinite X.

We will construct Xα and Aα ⊆ ω such that the Aα are pairwise almost disjoint,
i.e.

Aα ∩ Aβ is finite

whenever α 6= β, and for any α we can decompose Xα into countable many sets

Xα =
⋃

{Xn
α : n ∈ ω}

15



such that δ(Xn
α) ⊆ Aα for each n < ω. This implies that there can be no level-

preserving map from any uncountable subset of Xα into Xβ. For suppose there were
a level-preserving bijection h : Y → Z with Y ⊆ Xα and Z ⊆ Xβ. By cutting down
the uncountable set Y we may assume that there exists n and m such that Y ⊆ Xn

α
and Z ⊆ Xm

β . Level preserving implies that δ(Y ) = δ(Z), but then

δ(Y ) = δ(Z) ⊆ Aα ∩ Aβ,

contradicting the fact that Aα and Aβ are almost disjoint.
The general case is a little messy, but the ideas are fairly simple. For the conve-

nience of the reader we do a simple case first.
We first do the case that F is empty. In this case we may take the family

{Aα : α < 2ω} to be any family of infinite pairwise almost disjoint subsets of ω.
Then define

Xα = {x ∈ B(2<ω) : ∀∞l (x(l) = 1 ⇒ l ∈ Aα)}
∀∞l means “for all but finitely many l”. It is easy to see that Xα is dense. Also, for
any n ∈ ω and any s ∈ 2n, if we define

Xα(s) = {x ∈ B(2<ω) : s ⊆ x and ∀l > n (x(l) = 1 ⇒ l ∈ Aα)}

then
δ(Xα(s)) ⊆ {l ∈ Aα : l ≥ n} and Xα =

⋃

s∈2<ω

Xα(s).

Now we consider the general case. We may assume that F is a family of continu-
ous operations which contains the identity function and is closed under composition.
Also, we may as well assume that for each s ∈ 2<ω there is an operation f ∈ F such
that f maps B(2<ω) one-to-one into [s], where

Definition 7.6 For s ∈ 2<ω define [s] = {x ∈ B(2<ω) : s ⊆ x}.

Thus it is unnecessary to guarantee that Xα is dense; we will only need to
construct Yα ⊆ B(2<ω) of cardinality continuum and then let Xα be the closure of
Yα under the operations of F .

Before diving into the details we give the general idea. Our plan is to construct
a sequence km < km+1 so that roughly speaking for each n-ary operation f ∈ F and
~x, ~y ∈ Y n

α

If
km < δ(f(~x), f(~y)) < km+1

then km < δ(u, v) < km+1 for some u, v from ~x ∪ ~y.
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Definition 7.7 For s ∈ 2l and l < k, let 〈s, k〉 ∈ 2k be the unique element of 2k

such that s ⊆ 〈s, k〉 and 〈s, k〉(i) = 0 for all i with l ≤ i < k. In other words, 〈s, k〉
is the sequence of length k gotten by extending s with zeros.

Lemma 7.8 Suppose F ⊆ F is finite and k < ω. Then there exists l > k such that
for every n-ary f ∈ F and (ri ∈ 2k : i < n) there exists a t ∈ 2k such that

f(
∏

i<n
[〈ri, l〉]) ⊆ [t]

Proof. This is easy, just use the continuity of the f ’s.
2

Now write F = ∪{Fn : n < ω} as an increasing union of finite sets. By iteratively
applying the last lemma we get:

There exist increasing sequences

(km ∈ ω : m < ω) and (lm ∈ ω : m < ω)

with km < lm < km+1 satisfying the following conditions:
Let

L = {lm : m < ω} and T = {s ∈ 2<ω : ∀l (s(l) = 1 ⇒ l ∈ L)}.

Then for any m < ω,

1. For every n-ary f ∈ Fm and
(

si ∈ T ∩ 2lm : i < n
)

there exists t ∈ 2km such
that

f(
∏

i<n
[si]) ⊆ [t].

2. For any n-ary f ∈ Fm and

(ri ∈ T ∩ 2km+1) : i < n) and (ti ∈ T ∩ 2km+1) : i < n),

if there exists k ≥ km+1 with the property that there are distinct r, t ∈ 2k with

f(
∏

i<n
[〈ri, k〉]) ⊆ [r] and f(

∏

i<n
[〈ti, k〉]) ⊆ [t],

then km+1 already has this property.
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This follows from the previous lemma. First we get lm > km by applying Lemma
7.8 with k = km and then we get km+1 as the maximum of finitely many k’s.

Given (Bα : α < 2ω) infinite pairwise almost disjoint subsets, define Yα as follows:

Yα = {x ∈ B(2<ω) : ∀l < ω (x(l) = 1 ⇒ ∃m ∈ Bα l = lm )}

and define
Aα = {i : ∃m ∈ Bα km ≤ i < km+1}.

Lemma 7.9 Suppose m0 ∈ Bα, f ∈ Fm0 is n-ary, and ~x, ~y ∈ Y n
α . Then

δ(f(~x), f(~y)) ∈ Aα ∪ km0+1

Proof. Suppose for contradiction that

km ≤ δ(f(~x), f(~y)) < km+1

for some m > m0 such that m /∈ Bα. By our construction lm has the following
property:

Let ri = xi|lm and let si = yi|lm for each i < n. Then there exists
r, s ∈ 2km such that

f(
∏

i<n
[ri]) ⊆ [r] and f(

∏

i<n
[si]) ⊆ [s]

Because km ≤ δ(f(~x), f(~y)), it must be that r = s.
Let m1 ≥ m0 be the largest element of Bα such that m1 ≤ m. So m0 ≤ m1 < m

and note that there is there is no splitting going on in Yα between lm1 + 1 and km+1,
i.e., if u, v ∈ Yα, then δ(u, v) ≤ lm1 or δ(u, v) ≥ lm+1.

Since m /∈ Bα and xi, yi ∈ Yα it must be they are identically zero on all l with
lm1 < l < lm+1. But lm+1 has been chosen so that for some r′, s′ ∈ 2km+1

f(
∏

i<n
[xi|lm+1 ]) ⊆ [r′] and f(

∏

i<n
[yi|lm+1 ]) ⊆ [s′]

Since we are assuming δ(f(~x), f(~y)) < km+1 it must be that r′ 6= s′, but then
this contradicts the way we have choose km1+1, i.e., it must be that m1 = m and
therefore m ∈ Bα.
2

It follows from Lemma 7.9 that for any t ∈ 2km0+1 and n-ary f ∈ Fm0 that

δ ([t] ∩ f(Y n
α ))) ⊆ Aα
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and since the closure of Yα under the operations of F can be written as a countable
union of such sets, Theorem 7.3 has been proven for the special case that B(T ) =
B(2<ω).

Now we indicate the modifications necessary to prove the Theorem in general.
Let T ′ be the subtree of T consisting of all those nodes of T which have uncountably
many branches thru them. Clearly,

Q = B(T ) \B(T ′)

is countable. Without loss of generality, we may assume that F also contains all
operations which can be obtained by substituting elements of Q, e.g., if f ∈ F is
binary and a ∈ Q then the unary operation g(x) = f(x, a) would also be in F . Thus
we may choose Yα ⊆ B(T ′) and then take

Xα = Q ∪
⋃

{f(Y n
α ) : f ∈ F , n-ary for some n ∈ ω}

and then Xα will be closed under the operations of F .
In the proof, we need to define 〈s, k〉 where s ∈ T ′ is at level l and k ≥ l. Put

a linear ordering on T ′ and then take 〈s, k〉 to be the node of T ′ at level k which
extends s and which is obtained by always taking the leftmost immediate branch.

The only other place in the proof that needs fixing is that we can not necessarily
assume that the tree branches between level ln and ln + 1. Hence, we would choose
l′n > ln so that

• each s ∈ T ′ at level ln has at least two incompatible extension in T ′ at level
l′n and

• kn < ln < l′n < kn+1

Then we would take Yα = B(Tα), where Tα is the subtree of T ′, where nodes can
be extended arbitrarily between levels ln and l′n if n ∈ Bα, but otherwise must be
extended by using 〈s, k〉, i.e., the leftmost path. The choice of kn is exactly the same
and so is the rest of the proof.
2

Combining Theorems 7.1 and 7.2, we have

Theorem 7.10 Suppose T is uncountably bounded. Then for every uncountable
cardinal λ ≤ 2ω, T has 2λ nonisomorphic models of cardinality λ.

Corollary 7.11 If T is uncountably bounded, then for every uncountable cardinal
κ, T is not κ-categorical.
2
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8 The  Loś Conjecture

In this section we show that the  Loś Conjecture, which was proved for logic with
equality by Morley [M], also holds for logic without equality. The proof follows the
same outline as the proof in [CK], which uses a two-cardinal omitting type theorem.
We will refer to arguments from [CK] when we can, and indicate the modifications
that are needed for logic without equality.

Recall that T is κ-stable if for every model M of T and every subset X ⊆ M of
cardinality κ, the theory Th(MX) has κ 1-types.

Proposition 8.1 If T is λ-categorical in some uncountable cardinal λ, then T is
ω-stable.

Proof. By Corollary 7.11, T is unbounded, so by Lemma 6.3, there is a formula
E(x, y) which defines an equivalence relation with infinitely many classes in every
model of T . One can now follow the proof of the corresponding result for logic with
equality (Lemma 7.1.4 in [CK]) but replace equality by E(x, y).
2

Lemma 8.2 If T is ω-stable, then for every model M of T , regular cardinal λ > ω,
and set Y ⊆ M of cardinality λ, there is an equivalence relation E(x, y) which is
definable in T without parameters such that the restriction of EM to Y × Y has λ
equivalence classes.

Proof. Suppose the result fails for a model M of T and set Y ⊆ M of regular
cardinality λ > ω. Let En, 0 < n < ω be a list of all equivalence relations definable
without parameters in T , and let Dn be the restriction of E1 ∩ · · · ∩ En to Y × Y .
Let T be the tree whose nodes at level n are the Dn-equivalence classes and whose
ordering is reverse inclusion. Call a node t of T large if there are at least λ branches
through t. Then the root of T is large, but at each level, T has fewer than λ nodes.
It follows that for each large node t of T there are two disjoint large nodes above
t. But then T has a subtree with countably many nodes and uncountably many
branches. Therefore M has a countable subset X such that there are uncountably
many types over MX , so T is not ω-stable.
2

Proposition 8.3 If T is ω-stable, then T is κ-stable for every infinite cardinal κ.

Proof. Suppose T is not κ-stable, so T has a model M which realizes κ+ types
over some set X ⊆ M of power κ. By Lemma 8.2, there is an equivalence relation
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E(x, y) definable in T and a subset Y ⊆ M such that |Y | = κ+, the restriction of
EM to Y × Y is the equality on Y , and any two distinct elements a, b ∈ Y realize
different types in MX . One can now repeat the proof of the corresponding result
for equality logic (Lemma 7.1.3 in [CK]) but with the relation E(x, y) in place of
equality.
2

Definition 8.4 A model M of T is said to be primary over a subset A ⊆ M if
there is a sequence 〈bβ : β < α〉 of elements of M such that

(i) A ∪ {bβ : β < α} generates M,
(ii) For each formula ϕ(y) in LA ∪ {bβ : β < α} there exists γ < α such that

(MA, bβ)β<α |= ∃yϕ(y) ⇒ ϕ(bγ).

(iii) For each β < α, the 1-type of bβ in Th((MA, bβ)β<α) is isolated, (i.e. bβ

satisfies a maximal consistent formula).

It is clear that every primary model over A is prime over A.

Lemma 8.5 Suppose T is ω-stable. Then for every model M of T and every set
A ⊆ M , M has an elementary submodel which is primary over A.

Proof. Since T is ω-stable, a binary tree argument shows that for every B ⊆ M ,
every formula ϕ(y) which is consistent with Th(MB) is implied by a formula ψ(y)
which is maximal consistent with Th(MB). By transfinite recursion, one can build a
sequence 〈bβ : β < α〉 in M such that conditions (ii) and (iii) in the above definition
hold. Condition (ii) implies that α > 0. It follows that the set A ∪ {bβ : β < α} is
nonempty, and generates a submodel M0 of M which is an elementary submodel
and is primary over A.
2

We need one more lemma, which is the analogue of Lemma 7.1.13 in [CK] for
logic without equality.

Lemma 8.6 Suppose T is ω-stable and M is an uncountable model of T . Then
there is a proper elementary extension N � M such that every countable set of
formulas Γ(y) which is realized in NM is realized in MM .

Proof. By ω-stability and a binary tree argument, there is a definable set D in
MM such that D is uncountable, but for any definable subset C ⊆ D, either C or
D\C is countable. By Lemma 8.2, there is an equivalence relation E(x, y) definable
without parameters in T whose restriction to D has uncountably many equivalence
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classes. One can now use Lemma 8.5, and the proof of Lemma 7.1.16 in [CK] with
E(x, y) in place of equality, to obtain the required model N �M.
2

Theorem 8.7 ( Loś Conjecture) If T is λ-categorical for some uncountable cardinal
λ, then T is κ-categorical for every uncountable cardinal κ.

Proof. We have shown that T is unbounded and stable in every infinite cardinal.
Now the usual proof that T has an ω1-saturated model in every uncountable cardinal
goes through (see [CK], Lemma 7.1.6). Finally, one can use Lemma 8.6 and the
argument in [CK], p. 494, to show that T is κ-categorical.
2
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